Online Seminar: Prof Yvonne Gao, NUS, Singapore
Engineering a coherent and tunable bilinear coupling between two microwave quantum memories in a 3D circuit QED architecture.
Towards Universal Quantum Computation with Bosonic Qubits
SPEAKER: Professor Yvonne Gao
AFFILIATION: Centre for Quantum Technologies, National University of Singapore
HOSTED BY: A/Prof Nathan Langford, UTS Centre for Quantum Software and Information
ABSTRACT:
The realisation of robust universal quantum computation with any platform ultimately requires both the coherent storage of quantum information and (at least) one entangling operation between individual elements. The use of multiphoton states encoded in superconducting microwave cavities as quantum memories is a promising route to preserve the coherence of quantum information against naturally-occurring errors. However, operations between such encoded qubits can be challenging due to the lack of intrinsic coupling between them.
In this talk, I will discuss the recent experimental work on engineering a coherent and tunable bilinear coupling between two otherwise isolated microwave quantum memories in a three-dimensional circuit QED architecture. Building upon this coupling, we also demonstrate programmable interference between stationary quantum modes and realise robust entangling operations between two encoded qubits.
Our results provide a crucial primitive for universal quantum computation using bosonic modes.