Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2024
  4. arrow_forward_ios 11
  5. arrow_forward_ios Scientists develop test to better track whooping cough

Scientists develop test to better track whooping cough

5 November 2024

Used to analyse past outbreaks, a new method to identify whooping cough strains could be implemented to inform public health policy.

Stock picture of a mother tending a sick child who is coughing

Picture: Adobe Stock

Researchers from the University of Technology Sydney (UTS) and UNSW Sydney have developed a new genomic test that can identify the specific strains of whooping cough (bacterium Bordetella pertussis).

This new technology has provided insights into two previous epidemics of whooping cough in Australia and overseas, with results published today in the Journal of Clinical Microbiology. The team, led by Professor Ruiting Lan from UNSW and Dr Laurence Luu from UTS and UNSW, hope to use the assay to pinpoint the strain responsible for the current outbreak in Australia.

In 2024, all states and territories have reported a rise in whooping cough cases compared to previous years. Detailed information on the strain involved could play a crucial role in improving both the management of the outbreak and future vaccine development.

“This study paves the way for real-time surveillance of whooping cough strains, overcoming current testing limitations,” says UTS Chancellor’s Research Fellow Dr Laurence Luu, who led the study. “Our results provide important baseline data to understand how whooping cough has changed in Australia and could be used to help guide us through the current outbreak.” 

‘The 100-day cough’

Whooping cough is a severe respiratory disease with symptoms that include a persistent cough that can last up to 100 days. The disease is highly infectious, with one infected person potentially spreading it to 17-18 susceptible individuals without vaccination.

“It starts out like all your other cold and flu symptoms – runny nose, mild cough and low-grade fever, but then over time, so within about a week or two, that coughing starts to become more and more intense,” says Dr Luu, also an Adjunct Associate Lecturer in the UNSW School of Biotechnology and Biomolecular Sciences. “It can cause coughing fits followed by a sharp inhalation of breath, which is the noticeable ‘whooping’ noise you hear.”

Vaccination against pertussis is highly recommended for infants and pregnant women, to reduce the risk of infection and complications. Immunisation for pregnant people between 20 to 32 weeks provides important protection for newborns during their most vulnerable early months, before they are eligible for vaccinations.

Outbreak patterns

Previous research from the team suggests that whooping cough may be evolving under vaccine pressure, much like we saw with COVID-19. “Our past research suggests that whooping cough is evolving against the vaccine,” says Dr Luu. “Having said that, the vaccine is still very effective at protecting against serious disease.”

Historical data shows that despite the widespread use of the vaccine, whooping cough cases tend to spike every four to five years.

After an outbreak in 2019, border closures and COVID-19 lockdowns led to a record low in whooping cough cases. However, a recent outbreak in Australia has resulted in approximately 39,000 laboratory confirmed cases – the highest year on record since the introduction of vaccines. Reports indicate that in 2024, there have been more than 10 times the number of cases compared to the whole of 2023, with children aged 9 to 12 accounting for nearly 40% of all notified cases.

The method we've developed, known as mPCR sequencing assay, can directly sequence the residual whooping cough DNA leftover from a PCR test and needs as few as four copies of the bacterial DNA to work effectively. It doesn’t require us to grow the bacteria.

Dr Laurence Luu

Developing a sequencing assay for whooping cough

For many years, whooping cough was diagnosed by growing the causative bacteria, before a switch was made over to PCR testing that no longer requires culturing (growing) the live bacteria.

“This change in diagnostic practice means we no longer recover the bacteria for surveillance and can’t monitor what strains are circulating in the community, or whether they are still being targeted by the current vaccine or antibiotics,” says Dr Luu.

To give a clearer insight into the strains causing whooping cough, the team set out to develop a highly sensitive strain test without the need to grow bacteria.

“Usually, to understand what strains are circulating in the community, you need to grow the bacteria, so that you have enough of it to sequence its DNA,” says Dr Luu.

The DNA sequencing on clinical swabs of whooping cough is a cocktail of all sorts of DNA, both from humans and all other bacteria human respiratory tract. “Typically, this makes it really hard to sequence,” says Dr Luu. “But the method we've developed, known as mPCR sequencing assay, can directly sequence the residual whooping cough DNA leftover from a PCR test and needs as few as four copies of the bacterial DNA to work effectively. It doesn’t require us to grow the bacteria.”

The team tested their assay on 178 leftover diagnostic DNA samples from across Australia from two previous outbreaks, with the samples collected between 2010-2012 and 2019.

Tracking previous epidemics

Analysis of the results provided unprecedented detail on the evolution of the whooping cough strains that had been circulating in Australia prior to the pandemic.

One of the key findings revealed that the 2012 outbreak was characterised by up to five different strains, or lineages, of B. pertussis. “We found that the strains that were associated with the big 2008-2012 epidemic had evolved to no longer produce one of the three components that's targeted by the vaccine.”

By 2019, a single one of these strains had become dominant.

“Surprisingly, we also identified a number of cases where the infection wasn't caused by whooping cough, but by another closely related bacterium called Bordetella holmesii,” says Dr Luu. “In the clinical laboratories, the two bacteria share the same diagnostic marker, but what we see is that in 2019 there were actually two species that were causing the infection, and even cases where they were co-infected with two different bacteria.

“Having past data is important to understanding how the bacteria may have changed over time, such as whether they are evolving against the vaccines or developing resistance to antibiotics.”

Routine surveillance of whooping cough

The gold standard for tracking disease outbreaks is COVID-19, Dr Luu explains. “We knew the exact timing of when Delta and Omicron strains started being circulated which helped us continue to develop the vaccine and respond with appropriate strategies,” he says.

While this latest paper has revealed their assay is effective and sensitive, next steps for Dr Luu and his team involve applying their techniques to the current outbreak.

The team is working with pathology service providers to convert this assay into a tool for routine public health surveillance to determine what strains of whooping cough are circulating in the community. “By knowing what strains are transmitting in the community, this will allow us to spot and respond to outbreaks faster.”

The research team worked closely with Prof Vitali Sintchenko from the NSW Health Pathology Institute of Clinical Pathology and Medical Research and the Sydney Infectious Diseases Institute of the University of Sydney and Dr Jenny Robson from Sullivan Nicolaides Pathology, Queensland.

Byline

Lilly Matson
Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to Health and science

Related News

  • Stock picture of a coughing toddler in its mother's arms
    Whooping cough is surging in Australia – what's the best protection?
  • A woman with glasses focussing on work on a laptop
    New accessible programs for people who stutter
  • Man vaping. Adobe Stock
    Vape residue may harm unborn babies

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility