Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2023
  4. arrow_forward_ios 09
  5. arrow_forward_ios Carbon removal vital to limit global heating

Carbon removal vital to limit global heating

22 September 2023

Carbon removal: why ambitious ‘no nonsense’ plans are vital to limit global heating to 2℃

sea ice

Antarctica's sea-ice levels are the lowest on record. Image: Adobe Stock by Geber86

2023 is proving to be a year of climate and weather extremes. Record-busting global air and ocean temperatures, unprecedented low levels of Antarctic sea ice, and devastating fires and floods have been reported across the world.

Less discussed by the world media is the continuing rise in atmospheric greenhouse gases driving these changes. Carbon dioxide (CO₂) is at a level not seen since the hothouse world of the Pliocene, 3 million years ago. On top of that, an El Niño event is now likely, so widespread extreme events may intensify in coming months.

Despite the changes we are seeing, global efforts to cut emissions fall well short of what’s needed to keep heating to less than 2℃, let alone the more ambitious Paris Agreement target of 1.5℃. This creates an urgent need for the purposeful removal of atmospheric CO₂ as well as cuts in emissions.

In a recent article in Nature, we argue for a different approach to pricing carbon. It should take into account how it is removed from the atmosphere, for how long, and with what confidence. This will help fund the most promising technologies for reaching net-zero carbon emissions by 2050.

Carbon removal is on the agenda

The United Nations hosted a “no-nonsense” Climate Ambition Summit in New York this week with the aim of accelerating the global transition away from carbon. This must be done to avoid breaching 2℃ of global heating relative to the pre-industrial era.

Two strategies are being pursued:

  1. carbon emission reductions
  2. carbon dioxide removal (CDR), also called “negative emissions”.

At COP26 in 2021, global resolutions on cutting emissions drove the push for “net zero” across nations, cities and sectors. However, some worldwide activities, including aviation and heavy industry, face challenges eliminating emissions. Carbon credits have become the main way to offset their remaining emissions.

The dilemma lies in the nature of carbon credits. Most are allocated for so-called “avoidance” measures. A prime example is not clearing forest, which has come under intense scrutiny.

And these measures do nothing about the existing excess carbon dioxide.

A big change in our thinking is needed. The emphasis must shift from emission “avoidance” to “removal” offsets that actively pull carbon from the atmosphere. So how do we tackle the monumental challenge of reducing atmospheric CO₂?

What’s needed is a shift from avoidance to verifiable carbon dioxide removal. Almost all current removal efforts come from traditional land management. Less than 1% comes from innovative removal technologies.

Removal technologies include:

  • biochar – where carbon from plant material is sequestered as charcoal and stored in soil
  • direct air carbon capture and storage (DACCS) – which directly removes CO₂ from the air and stores it in geological formations.

A major advance at COP26 was to work out the projected demand and market trajectory for carbon offsets. Offset credits play a vital role in advancing CO₂ removal technologies and developing carbon markets.

Another key goal was to formulate a carbon trading rulebook. The resulting Taskforce on Scaling Voluntary Carbon Markets predicts demand for carbon offsets will grow tenfold by 2030 and 50-fold by 2050.

So what are the obstacles?

We identify a potential bottleneck. Developing, testing and scaling up CO₂ removal technologies takes time. This means a lag in supply could stymie the rapidly growing demand for carbon dioxide removal.

Another problem is that the current carbon offset market offers a flat rate, no matter the quality or effectiveness of the CO₂ removal method. There is an urgent need for a tiered market that values high-quality, proven CO₂ removal methods. This will provide an incentive to fast-track their use.

The carbon offset market’s pricing mechanism is a stumbling block. The price for offsetting a tonne of CO₂ is in the range US$10–100. Cheaper avoidance strategies, such as not clearing forests, heavily influence this price.

The existing pricing falls short when we consider the costs of CO₂ removal technologies, which can exceed US$200 per tonne removed.

The prevailing metric, simplifying everything to “one tonne of carbon”, doesn’t consider the complexities of CO₂ removal. Each method has its own specifics about how long it can store carbon, how reliably it can be verified and the potential risks or side effects. Shoehorning such a varied field into a single metric stifles innovation in CO₂ removal.

What are the solutions?

Understanding the market’s resistance to intricate metrics, we propose a more nuanced yet approachable two-step solution:

  1. Shift in metrics: change the standard from a “carbon tonne” to a “carbon tonne year”. This recognises the longevity of CO₂ removal methods and rewards those that store carbon longer. Such a metric connects directly with efforts to cut emissions.
  2. A mandatory warranty: each “carbon tonne year” requires a warranty from the seller to vouch for the method’s reliability (verification) and its overall safety (assessing risks and side effects).

These changes will foster a system that appropriately values CO₂ removal methods that are long-lasting, reliable and safe. It creates an incentive to develop and use these methods.

In our Nature article, we advocate a structured ten-year plan. This timeframe is crucial for maturing the markets, establishing effective regulatory frameworks and fine-tuning verification.

It’s essential to prepare for the evolution and scaling up of carbon dioxide removal. A decade provides a realistic window to develop the processes needed to reach net zero.

The magnitude of this task cannot be overstated. In just a few decades, CO₂ removal must operate on a colossal scale, comparable to global food production.

The New York summit has set the stage for the COP28 meeting in Dubai later this year. An ambitious long-term global strategy can still provide a sustainable future within the heating limits set in the 2015 Paris Agreement.

It’s time to get real about carbon.The Conversation

Christian Turney, Pro Vice-Chancellor of Research, University of Technology Sydney; Lennart Bach, Associate Professor, Institute for Marine and Antarctic Studies, University of Tasmania, and Philip Boyd, Professor of Marine Science, Institute for Marine and Antarctic Studies, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to Social justice and sustainability

Related News

  • wind farm
    Every country can make a difference
  • Green roof with solar
    A green roof or rooftop solar?
  • A generative AI image of a blazing sun over an urban landscape.
    Do phrases like ‘global boiling’ help or hinder action?

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility