Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2023
  4. arrow_forward_ios 08
  5. arrow_forward_ios Wastewater facilities could tackle food waste: here's how

Wastewater facilities could tackle food waste: here's how

2 August 2023

Researchers from the UTS Institute for Sustainable Futures estimated just three wastewater facilities could fill 20% of the identified anaerobic digestion capacity gap required for Sydney by 2030.

A wide view of a wastewater treatment plant

Wastewater facilities are normally built with excess capacity to meet future demand and so could be used to handle food waste. Photo: Adobe Stock.

Most Australian food waste ends up in landfill. Rotting in the absence of oxygen produces methane, a potent greenhouse gas. While some facilities capture this “landfill gas” to produce energy, or burn it off to release carbon dioxide instead, it’s a major contributor to climate change. Valuable resources such as water and nutrients are also wasted.

Composting food waste is the most common alternative. In the presence of oxygen, microbes break down food and garden organics without producing methane. The product returns nutrients to farms and gardens. But composting facilities are limited and struggling to cope with contamination from plastic.

We analysed the capacity of three wastewater facilities in Sydney to process organic wastes from surrounding households and businesses.

We found processing at the wastewater treatment plants could cut 33,000 tonnes of emissions and capture 9,600 tonnes of nutrients. All 14 wastewater facilities in Sydney could be modified to accept food waste, reducing emissions and producing renewable energy.

Why process food waste at wastewater facilities?

Most wastewater facilities in Sydney use “anaerobic digestors” to treat sewage. Along with producing energy, this type of processing produces nutrient-rich biosolids that can be used for soil conditioning and as fertiliser.

Wastewater facilities are normally built with excess capacity to meet future demand and so could be used to handle food waste.

When the New South Wales government recently assessed the infrastructure needs to process food waste for the Greater Sydney Area by 2030, it identified an additional 260,000 tonnes per year of anaerobic digestion capacity is needed, on top of additional new composting infrastructure.

Currently, there is only one commercial anaerobic digestion plant in Sydney with a processing capacity of 52,000 tonnes per year.

Our study estimated just three wastewater facilities could fill 20% of the identified anaerobic digestion capacity gap required for Sydney by 2030.

Overseas, it is common for wastewater facilities to handle food waste, and in some cases generate more electricity than needed for their operation. These facilities give the excess electricity to the communities from which the food waste is collected and the nutrients back to local farms, creating a circular economy.

While industrial-scale composting facilities are normally located on the outskirts of Sydney, wastewater facilities are distributed throughout the city. This provides an additional benefit as food waste can be processed closer to where it is made, saving on significant transfer infrastructure and transport costs.

Although some changes are required to enable wastewater facilities to accept and process food waste, there are great returns on investment. As a recent economic study for Western Parkland City has shown, upgrading facilities brings wider economic benefits and creates jobs, along with the environmental benefits.

Separate food waste at the source

To maximise anaerobic digestion at wastewater facilities, food waste needs to be separated from other wastes. This is because contamination and non-compatible materials in the waste stream can hinder the microbal processes driving anaerobic digestion.

NSW targets require all businesses making large amounts of food waste to separate it from other waste by 2025. Similarly, all households will need to separate food waste by 2030.

Currently most councils in Sydney offer a garden waste collection service. Only a few provide food waste collection and mostly in FOGO bins (combined Food Organics and Garden Organics waste service). However, the garden organics component of FOGO cannot be easily digested with sewage and would need significant additional pre-treatment before it can be processed.

Urban food organics are normally collected by trucks. This waste stream could potentially be piped to the wastewater treatment plant, with or without sewage. But piped networks were not considered for food waste collection in this study. It’s an interesting area for future research, especially in dense urban areas.

Achieving net zero targets while reducing waste

The three wastewater facilities we studied could generate an estimated total of 38 billion litres of methane a year. This could replace the natural gas used by 30,000 households.

The bioenergy potential of the organic wastes from the study areas was estimated to be 126,000MWh. That is four and a half times more than the energy generated from solar panels installed in the area.

This study shows methane generated by anaerobic digestion can play an important role in the renewable energy mix. It can be used to generate electricity, as transport fuel, or as a natural gas replacement.

The wastewater facility at Malabar in Sydney is the first project in Australia injecting biogas into the gas network, demonstrating its feasibility.

The waste, energy and water sectors are all expected to achieve net zero targets. Reducing food waste and redirecting to more beneficial use works towards these targets.

Harnessing the full potential of anaerobic digestion of food waste at wastewater facilities will require collaboration between these sectors. But as we have shown, it will be worth it. The Conversation

Melita Jazbec, Research Principal at the Institute for Sustainable Futures, University of Technology, Sydney, University of Technology Sydney; Andrea Turner, Research Director, Institute for Sustainable Futures, University of Technology Sydney, and Ben Madden, Senior Research Consultant at the Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to Social justice and sustainability

Related News

  • picking up rubbish outside
    How to encourage sustainable behaviour
  • Stock image of a field of grain next to a area of grass and trees
    ‘Regenerative agriculture’ won't fix our food system
  • a construction worker levels wet concrete with a tool.
    Sustainability in the mix

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility