Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2023
  4. arrow_forward_ios 02
  5. arrow_forward_ios New technology to improve cancer detection and treatment

New technology to improve cancer detection and treatment

27 February 2023

A new device, developed by UTS researchers, can detect cancer cells without invasive and expensive surgery.

The mould of a new device to detect cancer.

The Static Droplet Microfluidic device is able to rapidly detect circulating tumour cells that have broken away from a primary tumour and entered the bloodstream. Photo by Dr Majid Warkiani.

Researchers from the University of Technology Sydney have developed a new device that can detect and analyse cancer cells from blood samples, enabling doctors to avoid invasive biopsy surgeries, and to monitor treatment progress.

Cancer is a leading cause of illness and death in Australia, with more than 150,000 Australians diagnosed every year. Those with suspected cancer, particularly in organs such as the liver, colon or kidney, often require surgery for a definitive diagnosis.

Professor Majid Warkiani from the UTS School of Biomedical Engineering said getting a biopsy can cause discomfort to patients, as well as an increased risk of complications due to surgery and higher costs, but an accurate cancer diagnosis is vital to effective treatment.

“Managing cancer through the assessment of tumour cells in blood samples is far less invasive than taking tissue biopsies. It allows doctors to do repeat tests and monitor a patient’s response to treatment,” he said.

The Static Droplet Microfluidic device is able to rapidly detect circulating tumour cells that have broken away from a primary tumour and entered the bloodstream. The device uses a unique metabolic signature of cancer to differentiate tumour cells from normal blood cells.

The study, Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics, has just been published in the peer-reviewed scientific journal, Biosensors and Bioelectronics.

 “In the 1920s, Otto Warburg discovered that cancer cells consume a lot of glucose and so produce more lactate. Our device monitors single cells for increased lactate using pH sensitive fluorescent dyes that detect acidification around cells,” said Professor Warkiani.

“A single tumour cell can exist among billions of blood cells in just one millilitre of blood, making it very difficult to find. The new detection technology has 38,400 chambers capable of isolating and classifying the number of metabolically active tumour cells,” he said.

Once the tumour cells are identified with the device, they can undergo genetic and molecular analysis, which can aid in the diagnosis and classification of the cancer and inform personalised treatment plans.

Circulating tumour cells are also precursors of metastasis – where cancer migrates to distant organs – which is the cause of 90% of cancer-associated deaths. Studying these cells may provide insights into the biology of cancer metastasis, which can inform the development of new treatments.

Existing liquid biopsy technologies are time-consuming, expensive and rely on skilled operators, limiting their application in clinical settings.

This new technology is designed for integration into research and clinical labs without relying on high-end equipment and trained operators. This will enable doctors to diagnose and monitor cancer patients in a practical and cost-effective manner.

The UTS research team has filed a provisional patent for the Static Droplet Microfluidic device and has plans to commercialise the product.

Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to Health and science

Related News

  • Man with oxygen mask. Image: Adobe Stock / auremar
    Discovery could open door to new COPD treatment
  • Nurse. Adobe Stock
    Cardiovascular nursing and climate change: A call to action
  • An artist's impression of a quantum microscope for study of chemical reactions and to identify molecular origin. Credit: Dr Mehran Kianinia
    Seeing clearly into a new realm of quantum microscopy

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility