Skip to main content

Site navigation

  • University of Technology Sydney home
  • Home

    Home
  • For students

  • For industry

  • Research

Explore

  • Courses
  • Events
  • News
  • Stories
  • People

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt
  • Study at UTS

    • arrow_right_alt Find a course
    • arrow_right_alt Course areas
    • arrow_right_alt Undergraduate students
    • arrow_right_alt Postgraduate students
    • arrow_right_alt Research Masters and PhD
    • arrow_right_alt Online study and short courses
  • Student information

    • arrow_right_alt Current students
    • arrow_right_alt New UTS students
    • arrow_right_alt Graduates (Alumni)
    • arrow_right_alt High school students
    • arrow_right_alt Indigenous students
    • arrow_right_alt International students
  • Admissions

    • arrow_right_alt How to apply
    • arrow_right_alt Entry pathways
    • arrow_right_alt Eligibility
arrow_right_altVisit our hub for students

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Apply for a coursearrow_right_alt
  • Current studentsarrow_right_alt
  • Scholarshipsarrow_right_alt
  • Featured industries

    • arrow_right_alt Agriculture and food
    • arrow_right_alt Defence and space
    • arrow_right_alt Energy and transport
    • arrow_right_alt Government and policy
    • arrow_right_alt Health and medical
    • arrow_right_alt Corporate training
  • Explore

    • arrow_right_alt Tech Central
    • arrow_right_alt Case studies
    • arrow_right_alt Research
arrow_right_altVisit our hub for industry

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Partner with usarrow_right_alt
  • Explore

    • arrow_right_alt Explore our research
    • arrow_right_alt Research centres and institutes
    • arrow_right_alt Graduate research
    • arrow_right_alt Research partnerships
arrow_right_altVisit our hub for research

For you

  • Libraryarrow_right_alt
  • Staffarrow_right_alt
  • Alumniarrow_right_alt
  • Current studentsarrow_right_alt

POPULAR LINKS

  • Find a UTS expertarrow_right_alt
  • Research centres and institutesarrow_right_alt
  • University of Technology Sydney home
Explore the University of Technology Sydney
Category Filters:
University of Technology Sydney home University of Technology Sydney home
  1. home
  2. arrow_forward_ios ... Newsroom
  3. arrow_forward_ios ... 2022
  4. arrow_forward_ios 12
  5. arrow_forward_ios We are sleepwalking into a global food crisis

We are sleepwalking into a global food crisis

19 December 2022

Phosphorus supply is increasingly disrupted and this crucial fertiliser component is mostly found in just five countries, write Julia Martin-Ortega from the University of Leeds and UTS Institute for Sustainable Futures researchers Brent Jacobs and Dana Cordell.

Stock picture of a tractor applying fertiliser to a field

Picture: oticki / shutterstock

Without phosphorus food cannot be produced, since all plants and animals need it to grow. Put simply: if there is no phosphorus, there is no life. As such, phosphorus-based fertilisers – it is the “P” in “NPK” fertiliser – have become critical to the global food system.

Most phosphorus comes from non-renewable phosphate rock and it cannot be synthesised artificially. All farmers therefore need access to it, but 85% of the world’s remaining high-grade phosphate rock is concentrated in just five countries (some of which are “geopolitically complex”): Morocco, China, Egypt, Algeria and South Africa.

Seventy per cent is found in Morocco alone. This makes the global food system extremely vulnerable to disruptions in the phosphorus supply that can lead to sudden price spikes. For example, in 2008 the price of phosphate fertilisers rocketed 800%.

At the same time, phosphorus use in food production is extremely inefficient, from mine to farm to fork. It runs off agricultural land into rivers and lakes, polluting water which in turn can kill fish and plants, and make water too toxic to drink.

In the UK alone, less than half of the 174,000 tonnes of imported phosphate are actually used productively to grow food, with similar phosphorus efficiencies measured throughout the EU. Consequently, the planetary boundaries (the Earth’s “safe space”) for the amount of phosphorus flow into water systems have long been transgressed.

Unless we fundamentally transform the way we use phosphorus, any supply disruption will cause a global food crisis since most countries are largely dependent on imported fertilisers. Using phosphorus in a smarter way, including using more recycled phosphorus, would also help already stressed rivers and lakes.

We are currently experiencing the third major phosphate fertiliser price spike in 50 years, thanks to the COVID-19 pandemic, China (the biggest exporter) imposing export tariffs, and Russia (one of top five producers) banning exports and then invading Ukraine. Since the start of the pandemic, fertiliser prices have risen steeply and at one point had quadrupled within two years. They are still at their highest levels since 2008.

Graph of global phosphate prices since 1970

Prices spiked in 2008 and again over the past year. DAP and TSP are two of the main fertilisers extracted from phosphate rock. Dana Cordell; data: World Bank, Author provided

Stop ignoring phosphorus

Despite its critical importance, there is no comprehensive global framework for phosphorus governance. It is largely ignored in international policy discussions, and in countries where phosphorus regulation does exist, it is often dated and fails to address food security.

Diagram of phosphorus use

How phosphorus goes from mine to food. UK Phosphorus Transformation Strategy, Author provided

Policies have generally focused on removing phosphorus from wastewater to prevent water pollution or encouraging farmers to fertilise fields with phosphorus-rich animal manure or to use less phosphorus in the first place. These are fine, but they are piecemeal and ignore important inefficiencies at other stages in the food supply chain, for example in producing fertiliser, or in food processing or arising from our dietary choices.

For more than a decade, scientists have been warning that if no one takes responsibility for ensuring phosphorus security, further disruptions in its supply can have major consequences for the food system. Vulnerable farmers could be pushed to the brink and global crop yields severely reduced. We are essentially sleepwalking into a food crisis.

The first comprehensive national strategy

But there is still time to wake up. We have put together the first ever UK National Phosphorus Transformation Strategy to help guide the country away from its current unsustainable situation. If the UK government and institutions were to adopt this strategy, we hope it could trigger a broader transformation elsewhere.

boxes with words and images

What the strategy hopes to achieve. UK Phosphorus Transformation Strategy, Author provided

Surprisingly, despite being almost entirely dependent on imported phosphorus in fertilisers and animal feed, our team’s research shows the UK theoretically has enough phosphorus already circulating in the food system: 90,000 tonnes per year of “legacy phosphorus” accumulate in agricultural soils, 26,000 tonnes per year leak into water bodies and 22,000 tonnes are sent to landfill and construction. These hotspots of phosphorus inefficiency and loss represent a critical resource, which could instead be used productively.

The strategy identifies six phosphorus priority pathways that can turn that around, ranging from the development of innovative technologies to financial incentives for industry and engaging communities in the changes needed.

This includes things like supporting the roll-out of “biodigesters” to process bulky animal manures and food wastes into concentrated and nutrient-rich fertilisers that can be more cost-effectively transported across the country to crop production areas. Or harmonising national policies to incentivise both phosphorus removal to prevent pollution, and stimulate the productive reuse of phosphorus-rich wastes for farmers.

The good news is that some of these actions are already underway at a small scale. If they are scaled up and others are introduced and become part of mainstream operations, then the UK’s phosphorus system can become more resilient. For that to happen, we need the commitment of all sectors involved and we need to address the issues in an integrated and collaborative way.

Importantly, the strategy has been developed after extensive consultation with farmers, regulators, policy-makers, food producers, wastewater companies and environmental managers. This should give us the confidence that change is possible.The Conversation

Phosphorus and the UK food system: a video made by Seed in collaboration with the authors.

Julia Martin-Ortega, Professor, Sustainability Research Insitute. Associate Director water@leeds, University of Leeds; Brent Jacobs, Research Director, Institute for Sustainable Futures, University of Technology Sydney, and Dana Cordell, Associate Professor, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Share
Share this on Facebook Share this on Twitter Share this on LinkedIn
Back to Social justice and sustainability

Related News

  • NiCE launch merch
    Flushed with potential
  • House construction. Image: Adobe / ungvar
    Western Sydney foodbowl being lost to development
  • Australian farm
    Hidden casualty of Russia’s war: global phosphorus security

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberongal People of the Dharug Nation upon whose ancestral lands our campuses now stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. 

University of Technology Sydney

City Campus

15 Broadway, Ultimo, NSW 2007

Get in touch with UTS

Follow us

  • Instagram
  • LinkedIn
  • YouTube
  • Facebook

A member of

  • Australian Technology Network
Use arrow keys to navigate within each column of links. Press Tab to move between columns.

Study

  • Find a course
  • Undergraduate
  • Postgraduate
  • How to apply
  • Scholarships and prizes
  • International students
  • Campus maps
  • Accommodation

Engage

  • Find an expert
  • Industry
  • News
  • Events
  • Experience UTS
  • Research
  • Stories
  • Alumni

About

  • Who we are
  • Faculties
  • Learning and teaching
  • Sustainability
  • Initiatives
  • Equity, diversity and inclusion
  • Campus and locations
  • Awards and rankings
  • UTS governance

Staff and students

  • Current students
  • Help and support
  • Library
  • Policies
  • StaffConnect
  • Working at UTS
  • UTS Handbook
  • Contact us
  • Copyright © 2025
  • ABN: 77 257 686 961
  • CRICOS provider number: 00099F
  • TEQSA provider number: PRV12060
  • TEQSA category: Australian University
  • Privacy
  • Copyright
  • Disclaimer
  • Accessibility