An Institutional Theory of Momentum and Reversal

Dimitri Vayanos
LSE, CEPR and NBER

Paul Woolley
LSE

Sydney - October 2008
1. Introduction

• Momentum during tech run-up in late 1990s:
 – Good performance by tech stocks
 ⇒ Underperformance by value funds.
 ⇒ Flows out of value funds and into growth funds.
 – Gradual flows (e.g., contracts)
 ⇒ Gradual run-up of tech stocks, and overvaluation.
This Paper

• Cross-sectional asset pricing under delegated portfolio management.

• Main assumptions:
 – Investors can invest through index fund and active fund.
 – “Ability” of active manager is time-varying
 ⇒ Flows in and out of active fund.
Results

- Momentum and reversal.
 - Fund flows amplify price effects of cashflow shocks.

- Comovement.
 - Fund flows transmit cashflow shocks to unrelated assets.
 - Positive comovement for assets that are both overweighed by active fund or both underweighed.
 - Negative comovement between an overweighed and an underweighed asset.
Results (cont’d)

• Expected returns priced by two factors.

• Risk premium of second factor: severity of mispricings.
 – Depends on manager’s concern with commercial risk.
 – Time-varying.
Related Literature

• Behavioral theories of momentum.

• Limits to arbitrage and delegated portfolio management.
1. Introduction

Roadmap

- Introduction. ✓
- Model.
- Symmetric information.
- Asymmetric information.
- Asymmetric information and gradual flows. (Incomplete)
2. Model

- Continuous time $t \in [0, \infty)$.
- Exogenous riskless rate r.
- N risky stocks (industries, asset classes).
 - Supply of one share. (Normalization)
 - Endogenous prices $S_t \equiv (S_{1t}, \ldots, S_{Nt})'$.
- Cumulative dividends $D_t \equiv (D_{1t}, \ldots, D_{Nt})'$ follow
 \[ddD_t = F_t dt + \sigma dB_t^D. \]
- Drift $F_t \equiv (F_{1t}, \ldots, F_{Nt})'$ follows
 \[df_t = \kappa(\bar{F} - F_t) dt + \phi \sigma dB_t^F. \]
- (B_t^D, B_t^F): Independent d-dimensional Brownian motions.
- Proportional diffusion matrices (ϕ scalar).
- $\Sigma \equiv \sigma \sigma'$.

Dividends
Residual Supply

- \(1 - \theta_n \) shares of stock \(n \) held by exogenous agents who do not trade.
- \(\theta \equiv (\theta_1, \ldots, \theta_N) \): residual-supply portfolio.
- \(1 \equiv (1, \ldots, 1) \): market portfolio.
- \((\theta, 1)\) not proportional \(\Rightarrow\) Benefit of investing in active fund.
 - High \(\theta_n \) stocks: Low demand, active overweighs.
 - Low \(\theta_n \) stocks: High demand, active underweighs.
Investor

- Can invest in riskless asset and two stock-only funds.
 - Index fund. Market portfolio.
 - Active fund. Portfolio determined by manager.
- Holds \((x_t, y_t)\) shares of index and active fund.
- Maximizes expected utility of intertemporal consumption

\[-E \int_0^\infty \exp(-\alpha c_t - \beta t)dt.\]
Manager

- Chooses active portfolio.
- Can invest personal wealth in riskless asset and active fund.
 - Pins down manager’s objective.
 - Manager acts as trading counterparty to investor.
- Holds \bar{y}_t shares of active fund.
- Maximizes expected utility of intertemporal consumption

$$ -E \int_0^\infty \exp(-\bar{\alpha}\bar{c}_t - \beta t) dt. $$
2. Model

Cost of Active Management

- Return of active fund to investor is net of a cost.
 - Managerial perks.
 - Reduced form for managerial ability.
- Flow cost is $C_t y_t$, where
 $$dC_t = k(\bar{C} - C_t)dt + sdB^C_t,$$
- B^C_t: Brownian motion independent of (B^D_t, B^F_t).
Managerial Benefits

- Manager benefits from investor’s participation in fund.
 - Perks, fees.
- Flow benefit is By_t.
-Normalization: $y_t + \bar{y}_t = 1$.
Summary Flowchart

Investor

Cost C_t

Active Fund

Benefit B

Manager

Buy-and-Hold Investors

Index Fund

Stocks
3. Symmetric Information

- Cost C_t observable by both investor and manager.

- In equilibrium,
 - Stock prices are
 \[S_t = \frac{\bar{F}}{r} + \frac{F_t - \bar{F}}{r + \kappa} - (a_0 + a_1 C_t). \]
 - Investor’s holding of active fund is
 \[y_t = b_0 - b_1 C_t. \]
Equilibrium for $C_t = 0$

- Investor holds zero shares in index fund and

 $$y_t = \frac{\bar{\alpha}}{\alpha + \bar{\alpha}}$$

 shares in active fund.

- Expected returns are

 $$E_t(dR_t) = \frac{r\alpha\bar{\alpha}}{\alpha + \bar{\alpha}} Cov_t(dR_t, \theta dR_t sol).$$

 Covariance with residual-supply portfolio.
3. Symmetric Information

Equilibrium for Stochastic C_t

- Following increase in C_t, investor
 - Sells slice of residual-supply portfolio θ.
 - Maintains constant overall index exposure.

\Rightarrow Sells slice of flow portfolio

$$p_f \equiv \theta - \frac{1\Sigma\theta'}{1\Sigma1'}1.$$

- Long positions in p_f: High θ_n, active overweighs.
- Short positions in p_f: Low θ_n, active underweighs.
Expected Returns

- Expected returns are

 $$E_t(dR_t) = \Lambda_1 \text{Cov}_t(dR_t, \mathbf{1}dR_t) + \Lambda_2t \text{Cov}_t(dR_t, pf dR_t).$$

- Two-factor model: market, flow portfolio pf.

- Factor risk premium Λ_{2t}: severity of mispricings relative to market CAPM.
 - Undervaluation of stocks covarying positively with pf.
 - Overvaluation of stocks covarying negatively with pf.
3. Symmetric Information

Expected Returns (cont’d)

- Factor risk premium Λ_{2t} increases in
 - Cost C_t. (Outflows from active fund increase mispricings.)
 - Stocks covarying positively with p_f become more undervalued.
 - Stocks covarying negatively with p_f become more overvalued.
 - Managerial benefits B. (Concern with commercial risk makes manager less willing to trade against mispricings.)
Comovement

- Covariance matrix of returns is
 \[g\Sigma + k_s\Sigma p_f' p_f \Sigma, \quad g, k_s > 0. \]

- \(g\Sigma \): Fundamental covariance. Driven purely by cashflows.

- \(k_s\Sigma p_f' p_f \Sigma \): Non-fundamental covariance. Added effect of fund flows.
 - Consider two stocks covarying positively with \(p_f \).
 - \(C_t \uparrow \Rightarrow \text{Outflows from active fund} \Rightarrow \text{Both stocks } \downarrow \).
4. Asymmetric Information

- Cost C_t observable only by manager.
- In equilibrium,
 - Investor believes that C_t is normal with mean \hat{C}_t.
 - Stock prices are
 \[
 S_t = \frac{\bar{F}}{r} + \frac{F_t - \bar{F}}{r + \kappa} - (a_0 + a_1 \hat{C}_t + a_2 C_t).
 \]
 - Investor’s holding of active fund is
 \[
 y_t = b_0 - b_1 \hat{C}_t.
 \]
Investor’s Inference

- Learn about C_t by observing
 - Net return of active fund $\equiv \theta ddD_t - C_t dt$.
 - Price of active fund $\equiv \theta S_t$.
 (S_t informative about $\frac{F_t}{r+\kappa} - a_2 C_t \equiv \hat{S}_t$.)
 - Return of index fund $\equiv 1dD_t$.
 - Price of index fund $= 1S_t$.

- Optimal inference yields benchmarking on index.
4. Asymmetric Information

Dynamics of \hat{C}_t

- Kalman filtering:

$$d\hat{C}_t = -\beta_1 \left\{ p_f \left[dD_t - E_t(dD_t) \right] - (C_t - \hat{C}_t)dt \right\}$$

$$- \beta_2 p_f \left[d\hat{S}_t - E_t(d\hat{S}_t) \right] + \kappa (\bar{C} - \hat{C}_t)dt,$$

for $\beta_1, \beta_2 > 0$.

- Following a stock’s positive cashflow news,
 - $\hat{C}_t \downarrow$ if stock’s weight in p_f is > 0 (active overweigh).
 - $\hat{C}_t \uparrow$ if stock’s weight in p_f is < 0 (active underweigh).
Momentum

• Positive cashflow news by a stock.
 – Stock’s weight in p_f is $> 0 \Rightarrow \hat{C}_t \downarrow \Rightarrow$ Inflows into active fund \Rightarrow Stock ↑.
 – Stock’s weight in p_f is $< 0 \Rightarrow \hat{C}_t \uparrow \Rightarrow$ Outflows from active fund \Rightarrow Stock ↑.

• Fund flows amplify price effects of cashflow shocks.

• Momentum is instantaneous.
4. Asymmetric Information

Comovement

- Covariance matrix of returns is

\[g \Sigma + k_a \sum p'_f p_f \Sigma, \quad g, k_a > 0. \]

- Compared to symmetric information,
 - Fundamental covariance is identical.
 - Non-fundamental covariance is scalar multiple.

- Yet, non-fundamental covariance includes cashflow effects!
Consider two stocks covarying positively with p_f.

- $\hat{C}_t \uparrow \Rightarrow$ Outflows from active fund \Rightarrow Stocks \downarrow. (DR,DR)
- Negative cashflow news by one stock \Rightarrow Outflows from active fund \Rightarrow Other stock \downarrow. (CF,DR)

Consistent with Anton and Polk (2008).
Symmetric vs. Asymmetric Information

- (CF, DR) only under asymmetric information.
- (DR, DR) weaker under asymmetric information.
 - \hat{C}_t varies less than C_t.
- Non-fundamental covariance is larger under asymmetric information. ($k_a > k_s$)
- Stocks’ volatility is larger under asymmetric information.
Investor incurs flow cost $\psi \left(\frac{dy_t}{dt} \right)^2$ to change active-fund holding.

Conjecture equilibrium in which stock prices are

$$S_t = \frac{\bar{F}}{r} + \frac{F_t - \bar{F}}{r + \kappa} - \left(a_0 + a_1 \hat{C}_t + a_2 C_t + a_3 y_t \right).$$

Momentum is gradual.

TBD.
• Empirical counterpart of flow portfolio?
 – Value-growth?

• Empirical counterpart of two-factor model? Of time-varying premium on second factor?

• Correlation between momentum and value?
6. Conclusion

- Cross-sectional asset pricing under delegated portfolio management.
- Momentum/reversal, flow-driven comovement.
- Tractable, linear framework.