GENE THERAPY FOR TYPE 1 DIABETES

Ann M. Simpson
Centre for Health Technologies
In a normal individual, blood glucose levels are determined by insulin that is produced by the \(\beta \)-cell of the pancreas.
POSSIBLE THERAPIES (1)

Insulin Therapy

Does not provide a cure and patients develop the chronic complications of diabetes.

- Retinopathy → Blindness
- Nephropathy → Kidney Failure
- Neuropathy → Nerve Degeneration
- Macrovascular → Stroke
- Cardiovascular disease
- Gangrene
POSSIBLE THERAPIES (2)

Transplantation of Insulin-Secreting pancreatic tissue
- Too few donors
- Patients must be immunosuppressed

Stem Cells
- May be prone to autoimmune attack
- Immunosuppression

Gene Therapy
- Production of replacement β-cells by genetic engineering
WHAT DOES AN ARTIFICIAL BETA CELL NEED TO FUNCTION CORRECTLY?

- The ability to accurately sense glucose levels
- The ability to metabolise glucose
- The ability to store insulin for later secretion

Liver cells have:

- Similar glucose-sensing apparatus to pancreatic β cells
- Synthesise and secrete complex proteins
- Ability to undergo differentiation into β-like cells that possess storage granules
ALTERNATIVE GENE THERAPY SOLUTIONS

• Insulin-secreting liver cell line that can be encapsulated and used as a treatment

• Direct delivery of genes to the liver curing the disease
CREATION OF MELLIGEN CELLS

- As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes.
- Melligen cells which express β cell transcription factors store insulin in granules and secrete insulin to glucose correctly, reversing diabetes.
MELLIGEN CELLS: REVERSAL OF DIABETES

- Capsules are made of bio-inert material (cellulose/cotton)
- Capsules have pores for nutrient and waste transfer
- Pores are too small for immune system cells to enter or encapsulated live cells to leave
- Long-term (5+ years) frozen storage of encapsulated live cells with more than 95% viability of cells upon thawing
- Manageable logistics and long shelf-life
- Cell-in-a-Box® encapsulation performed in a cGMP-compliant facility
- Other live cell encapsulation technologies use alginate (derived from seaweed). All are far less robust and stable. None can be frozen to ship
- Cell-in-a-Box® capsules shown to be safe, effective and durable

http://pharmacyte.com/diabetes/
DIRECT DELIVERY OF INSULIN TO LIVERS

Human insulin is delivered directly in a viral vector to animal livers by a surgical technique that isolates the liver from the circulation

REVERSAL OF DIABETES IN NON OBESE DIABETIC (NOD) MICE

Storage granules
REVERSAL OF DIABETES IN NOD MICE

Spontaneous expression of β-cell transcription factors
FUTURE DIRECTIONS/ PARTNERING

Different Cell Types
- Bone marrow mesenchymal stem cells
- Human islet progenitor cells
- Gall bladder cells

Pre-clinical Animal Models: Direct delivery of insulin
- Humanised FRG mice
- Large animal models
ACKNOWLEDGEMENTS

UTS
Binhai Ren
Bronwyn O’Brien
Najah Nassif
Janet Lawandi
Chang Tao
Michelle Byrne
Edwin Ch’ng
Prudence Gatt
Fraser Torpy

USyd
Anne Swan
Paul Williams

Griffith
Ming Wei

Australian Government
National Health and Medical Research Council

Rebecca L. Cooper
Medical Research Foundation

Diabetes
Australia Research Trust

Ann.Simpson@uts.edu.au: gene therapy, diabetes, vectors, molecular biology