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Abstract. This paper verifies the endogenous mechanism and economic intuition

on volatility clustering using the coexistence of two locally stable attractors pro-

posed by Gaunersdorfer, Hommes and Wagener (2008). By considering a simple

asset pricing model with two types of boundedly rational traders, fundamentalists

and trend followers, and noise traders, we provide conditions on the coexistence of

locally stable steady state and invariant cycle of the underlying nonlinear deter-

ministic financial market model and show numerically that the interaction of the

coexistence of the deterministic dynamics and noise processes can endogenously

generate volatility clustering and long range dependence in volatility observed

in financial markets. Economically, volatility clustering occurs when neither the

fundamental nor trend following traders dominate the market and when traders

switch more often between the two strategies.

Key words: Volatility clustering, fundamentalists and trend followers, bounded

rationality, stability, coexisting attractors.

JEL Classification: D84, E32, G12
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1. Introduction

Volatility clustering, one of the most important stylized facts in financial mar-

kets, refers to the observation that large changes in price tend to be followed by

large changes and small changes tend to be followed by small changes. In other

words, asset price fluctuations display irregular interchanging between high volatil-

ity and low volatility episodes. Since it was first observed by Mandelbrot (1963) in

commodity prices, volatility clustering has been widely observed and documented

in stocks, market indices and exchange rates. Despite the extensive development

of various statistical models following the ARCH and GARCH models pioneered

by Engle (1982) and Bollerslev (1986), these models offer very limited economical

explanation of the mechanism in generating the volatility clustering.

Recent development of asset pricing models based on boundedly rational traders

with heterogeneous beliefs has proposed a number of mechanism explanations. In

particular, Gaunersdorfer et al. (2008) propose an endogenous mechanism and eco-

nomic intuition based on the coexistence of a stable steady state and a stable limit

cycle. In this paper, we consider a simple asset pricing model with two types of

boundedly rational traders, fundamentalists and trend followers, and noise traders.

By applying normal form analysis and the center manifold theory on the under-

lying nonlinear deterministic model, we provide conditions on the coexistence of a

stable steady state and a stable closed invariant cycle. When buffered with noises,

the stochastic model can endogenously generate volatility clustering and long range

dependence in volatility observed in financial markets. Economically, with strong

trading activities of either the fundamental investors or the trend followers, mar-

ket price fluctuates around either the fundamental value with low volatility or a

cyclical price movement with high volatility depending on market conditions. With

the fundamental noise and noise traders, this triggers an irregular shifting between

two volatility regimes and therefore leads to volatility clustering. In particular,

the effect becomes more significant when traders switch their strategies more often.

We therefore verify the endogenous mechanism on volatility clustering proposed by

Gaunersdorfer et al. (2008) and provide an economic explanation on the volatility

clustering.
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Gaunersdorfer et al. (2008) propose two generic mechanisms to explain the volatil-

ity clustering: one is the coexistence of a stable steady state and a stable limit cycle

and the other is the intermittency and associated bifurcation routes to strange at-

tractors. They provide very nice economic intuitions on how the mechanisms could

be used to explain the volatility clustering and why these phenomena arise in nonlin-

ear evolutionary financial systems. The main idea behind the first proposed mecha-

nism of Gaunersdorfer et al. (2008) is that a locally stable steady state and a locally

stable closed invariant circle coexist in a nonlinear financial market system. When

the price is attracted by the stable steady state, that is when the fundamentalists

are more active in the market, the price is stable and the corresponding return is

less volatile. However when the trend followers exhibit strong trading activity, the

market price is attracted by the stable circle, leading to large price fluctuation and

high volatility in returns. Buffeted with noises in the market, the price process ir-

regularly switches between the two stable regions from time to time. As a result, the

irregular interchanging between the two attractors triggered by large random shocks

leads the return process to exhibit volatility clustering. Mathematically, Gauners-

dorfer et al. (2008) demonstrate the coexistence through a Chenciner bifurcation, a

codimension-two bifurcation in which two parameters vary simultaneously. Near the

Chenciner bifurcation point, there exists an open region, called “volatility clustering

region”, in a two-dimensional parameter subspace in which a stable steady state and

a stable limit cycle coexist. Due to the complexity of the normal form analysis of

codimension-two bifurcation, they identify the volatility clustering region numeri-

cally and indicate the potential of the mechanism in generating volatility clustering.

The proposed mechanism has also been used to explain path dependent coordination

of expectations in asset pricing experiments. In the learning-to-forecast laboratory

experiments, Hommes, Sonnemans, Tuinstra and van de Velden (2005) find three

different types of aggregate asset price behavior: monotonic convergence to the

stable fundamental steady state, dampened price oscillations and permanent price

oscillations. Motivated by the mechanism of Gaunersdorfer et al. (2008), Agliari,

Hommes and Pecora (2015) develop a simple behavior model with switching and
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explain individual as well as the three different types of aggregate behavior in the

experiments through the coexistence mechanism.

In this paper, we obtain analytical conditions on the coexistence of a stable steady

state and a stable closed invariant cycle and provide a systematic way to identify

“volatility clustering interval” by examining the stability of a Neimark-Sacker bi-

furcation through the change of one parameter.1 More explicitly, we first apply the

stability and bifurcation analysis to examine the local stability of the steady state

with respect to a Neimark-Sacker bifurcation parameter. We then investigate the

direction and the stability of the bifurcated closed invariant cycle by applying the

normal form method and the center manifold theory. The coexistence is then jointly

determined by the conditions when the steady state is locally stable and the bifur-

cated cycle is backward and unstable. In this case, the bifurcated unstable cycle

can be extended backward with respect to the bifurcation parameter until a thresh-

old value and then the extended cycle becomes forward and stable. Therefore, the

stable steady state coexists with the stable ‘forward extended’ cycle, in between the

‘backward extended’ cycle is unstable. Correspondingly, there exists an interval for

the bifurcation parameter in which the two locally stable attractors coexist. This

implies that, even when the fundamental steady state is locally stable, prices need

not converge to the fundamental value, but may settle down to a stable limit cycle,

depending on the initial conditions. Based on the conditions on the coexistence,

we further demonstrate numerically that the stochastic model is able to generate

various stylized facts, including non-normality in asset returns, volatility clustering,

and long range dependence in volatility observed in financial markets. Therefore we

1Gaunersdorfer et al. (2008) illustrate the coexistence through Chenciner bifurcation, which

requires Hopf bifurcation plus the condition on the first Lyapunov coefficient a(0) = 0. The

advantage of our method over the analysis merely based on Chenciner is that we can detect

systematically the coexistence interval. This advantage is based on the analysis of both bifurcation

direction and bifurcation stability, which provide results with respect to one parameter. In general

both the bifurcation direction and stability are determined by different conditions, however for our

model, they are completely determined by a(0) only (due to ρ′(γ∗∗) > 0; see Theorem B.3). This

simplifies our analysis by focusing on the first Lyapunov coefficient.
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provide theoretical foundation and numerically supporting evidence on the proposed

mechanism of Gaunersdorfer et al. (2008).

This paper contributes to the heterogeneous agent models (HAMs) literature by

providing better understanding of the global dynamics of the underlying nonlinear

deterministic financial market model, the interaction between deterministic global

dynamics and noises, and therefore complexity of financial market behavior. Follow-

ing the seminal work of Brock and Hommes (1997, 1998), various HAMs have been

developed to incorporate adaptation, evolution, heterogeneity, and even learning

with both Walrasian and market maker market clearing scenarios.2 Those models

have successfully explained various market behavior (such as market booms and

crashes, long deviations of the market price from the fundamental price), the styl-

ized facts (such as skewness, kurtosis, volatility clustering and fat tails of returns),

and power laws behavior, including the long range dependence in return volatility

observed in financial markets.3 Given the complexity of nonlinear financial market

systems, most work on HAMs is computationally oriented based on the local stabil-

ity and bifurcation analysis. The globally nonlinear properties are seldom analyzed.4

In fact, the coexistence of two locally stable attractors involves the stability analysis

of the bifurcated cycle, which is beyond the local analysis on constant steady state.

In this paper we apply the normal form method and the center manifold theory to

conduct a global analysis on the coexistence phenomenon of the HAM developed

in Dieci, Foroni, Gardini and He (2006). In this model, apart from noise traders,

there are two types of traders in a financial market: fundamentalists, who believe

that prices will move in the direction of the fundamental value, and trend followers

2See, for example, the market maker scenario in Farmer and Joshi (2002) and Chiarella and

He (2003); the impact of heterogeneous risk aversion and learning in Chiarella and He (2002); the

dynamics of moving averages in Chiarella, He and Hommes (2006); and complex price dynamics

within a multi-asset market framework in Westerhoff (2004).
3We refer readers to Hommes (2006), LeBaron (2006), Chiarella, Dieci and He (2009), and Lux

(2009) for surveys of the recent development in this literature.
4He, Li, Wei and Zheng (2009) is one of the few exceptions. In addition to the local stability

analysis, He et al. (2009) analytically examine the bifurcation properties, including the direction of

the bifurcation and the stability of the bifurcated cycle, and the global extension of the bifurcated

cycle.
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or chartists, who extrapolate the latest observed price change. The fractions of the

two different types of the traders change over time according to the evolutionary

fitness of the two strategies, as measured by the realized profits.

Apart from Gaunersdorfer et al. (2008) (and Gaunersdorfer and Hommes (2007)),

there are other two different mechanisms in generating the volatility clustering that

have been proposed: the herding mechanism in Alfarano, Lux and Wagner (2005)

and the stability switching near the bifurcation boundary in He and Li (2007). By

considering an extremely parsimonious stochastic herding model with fundamental-

ists (who trade on observed mispricing) and noise traders (who follow the mood of

the market), Alfarano et al. (2005) show that price changes are generated by either

exogenous inflow of new information about fundamentals or endogenous changes in

demand and supply via the herding mechanism. The model is able to produce re-

turn time series whose distributional and temporal characteristics are astonishingly

close to the empirical findings, including the volatility clustering and long range

dependence in volatility. The generating mechanism is due to a bi-modal limit-

ing distribution for the fraction of noise traders in the optimistic and pessimistic

groups of individuals and the stochastic nature of the process, which leads to re-

current switches from one majority to another. By considering a simple market

fraction asset pricing model with fundamental and trend following investors, He and

Li (2007) show that, even when the fundamental steady state is locally stable, for

parameter values near the bifurcation boundary, the risk-adjusted trend chasing and

the interplay of the noises and the underlying deterministic dynamics can generate

volatility clustering and power-law distributed fluctuations. Intuitively, with the

risk-adjusted trend chasing behaviour from the trend followers and stabilizing role

of the fundamentalists, the price dynamics do not explode when the fundamental

steady state becomes unstable. Buffered with fundamental and market noises, the

price dynamics interchange between stable and unstable fundamental steady state.

This mechanism shares a similar mechanism to the coexistence of two locally stable

attractors in a much simpler and very different way. The statistic analysis based

on model calibration and Monte Carlo simulations in He and Li (2007, 2015b) pro-

vides further evidence on the mechanism. Different from these two mechanisms, the



8 HE, LI AND WANG

analysis of this paper provides a better understanding and further insight into the

mechanism from a global dynamics point of view.

The paper is organized as follows. We first outline a stochastic HAM of asset

pricing developed in Dieci et al. (2006) in Section 2. In Section 3, we apply the

stability and bifurcation theory, together with the normal form analysis and the

center manifold theory, to examine the coexistence of a local stable fundamental

price and a locally stable closed cycle around the fundamental price. Section 4

conducts analysis on the stochastic model numerically. It explores the joint impact

of the coexistence effect of the deterministic dynamics and noises on generating

various market behavior and the stylized facts, including volatility clustering and

long range dependence. Section 5 concludes. All the proofs are included in the

appendices.

2. The Model

The model introduced here has been developed in Dieci et al. (2006) and then

extended in He and Li (2015c). The model of Dieci et al. (2006) is a standard

discounted asset pricing model with two types of heterogeneous agents, the funda-

mentalists and trend followers, and population evolution. To provide an economic

intuition of the market noise, He and Li (2015c) extend the model to include noise

traders explicitly and show that the resulting model is in fact the same as the model

in Dieci et al. (2006). For completeness we outline the model and refer readers to

Dieci et al. (2006) and He and Li (2015c) for the details.

Consider an economy with one risky asset and one risk free asset. It is assumed

that the risk free asset is perfectly elastically supplied at gross return of R = 1+r/K,

where r is the constant risk-free rate per annum and K is the trading frequency

measured in units of a year.5 Let pt and Dt be the (ex dividend) price and dividend

per share of the risky asset at time t, respectively.

There are three types of traders (or investors/agents), fundamental traders (or

fundamentalists), trend followers (or chartists) and noise traders, denoted by type

5Typically, K = 1, 12; 52 and 250 representing trading periods of year, month, week and day,

respectively. To calibrate the stylized facts observed from daily price movement in financial market,

we select K = 250 in our discussion.
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1, 2 and 3 traders respectively. Let Qi,t(i = 1, 2, 3) be their market fractions at

time t, respectively. We assume that there is a fixed fraction of noise traders,

denoted by n3. Among 1 − n3, the market fractions of the fundamentalists and

trend followers have fixed and time-varying components. Denote by n1 and n2 the

fixed proportions of fundamentalists and trend followers among 1−n3, respectively.

Then (1−n3)(n1+n2) represents the proportion of traders who do not change their

strategies over time, while (1 − n3)[1 − (n1 + n2)] is the proportion of traders who

may switch between the two types. Among the switching traders, we denote n1,t

and n2,t = 1 − n1,t the proportions of fundamentalists and trend followers at time

t, respectively. It follows that the market fractions (Q1,t, Q2,t, Q3,t) at time t are

expressed by

Q1,t = (1−n3)[n1+(1−n1−n2)n1,t], Q2,t = (1−n3)[n2+(1−n1−n2)n2,t], Q3,t = n3.

Denote n0 = n1 + n2, m0 = (n1 − n2)/n0 and mt = n1,t − n2,t. Then the market

fractions at time t can be rewritten as




Q1,t = 1
2
(1− n3) [n0 (1 +m0) + (1− n0) (1 +mt)] ,

Q2,t = 1
2
(1− n3) [n0 (1−m0) + (1− n0) (1−mt)] ,

Q3,t = n3

(2.1)

For a typical investor-h, his wealth Wh,t+1 at t+ 1 is given by

Wh,t+1 = RWh,t + (pt+1 +Dt+1 −Rpt)zh,t, (2.2)

where zh,t is the number of shares of the risky asset purchased by investor-h at t.

Let Eh,t and Vh,t be the beliefs of type h traders about the conditional expectation

and variance at t + 1 based on their information at time t. Denote by Rt+1(=

pt+1 +Dt+1 −Rpt) the excess capital gain on the risky asset at t+ 1. Assume that

type h traders have constant absolute risk aversion (CARA) utility functions with

a risk aversion coefficient ah, that is Uh(W ) = −e−ahW . Then, under the standard

conditional normality assumption, their optimal demands on the risky asset zh,t are

determined by

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.3)
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Assume the demand of the noise traders is given by ξ̃t ∼ N(0, σ2
ξ ), which is an i.i.d.

random disturbance. With zero supply of outside shares, the population weighted

average excess demand Z̃e,t at time t is given by

Z̃e,t ≡ Q1,t z1,t +Q2,t z2,t + n3ξ̃t.

Following Chiarella and He (2003), the market price in each trading period is deter-

mined by a market maker who adjusts the price as a function of the excess demand.

The market maker takes a long position when Z̃e,t < 0 and a short position when

Z̃e,t > 0. The market price is adjusted according to

pt+1 = pt + λZ̃e,t, (2.4)

where λ denotes the speed of price adjustment of the market maker. Denote µ =

(1− n3)λ and σδ = λn3σξ. Then equation (2.4) becomes

pt+1 = pt + µZe,t + δ̃t, (2.5)

where Ze,t = q1,t z1,t + q2,t z2,t and δ̃t ∼ N(0, σ2
δ ) with





q1,t = Q1,t/(1− n3) = [n0(1 +m0) + (1− n0)(1 +mt)]/2,

q2,t = Q2,t/(1− n3) = [n0(1−m0) + (1− n0)(1−mt)]/2.
(2.6)

The price equation (2.5) is exactly the same model developed in Dieci et al. (2006).

We now describe briefly the heterogeneous beliefs of the fundamentalists and trend

followers and the adaptive switching mechanism, as in Dieci et al. (2006). Denote

by Ft = {pt, pt−1, · · · ;Dt, Dt−1, · · · } the common information set formed at time

t. Apart from the common information set, the fundamentalists are assumed to

have superior information on the fundamental value, p∗t , of the risky asset which is

introduced as an exogenous news arrival process. More precisely, the relative return

p∗t+1/p
∗

t − 1 of the fundamental value is assumed to follow a normal distribution,

p∗t+1 = p∗t [1 + σǫǫ̃t], ǫ̃t ∼ N (0, 1), σǫ ≥ 0, p∗0 = p̄ > 0, (2.7)

where ǫ̃t is independent of the noisy demand process δ̃t and p̄ is a constant to be

specified. Fundamental traders believe that the stock price may be driven away

from the fundamental price in the short run, but it will eventually return to the
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fundamental value in the long-run. Thus the conditional mean and variance of the

price for the fundamental traders are assumed to follow

E1,t (pt+1) = pt + (1− α)(Et[p
∗

t+1]− pt), V1,t (pt+1) = σ2
1, (2.8)

where σ2
1 is a constant variance on the price. The speed of adjustment towards the

fundamental price is represented by (1−α), where 0 < α < 1. An increase in α may

thus indicate less confidence on the convergence to the fundamental price, leading

to a slower adjustment.

Unlike the fundamental traders, trend followers are assumed to extrapolate the

latest observed price deviation from a long run sample mean price. More precisely,

their conditional mean and variance are assumed to follow

E2,t (pt+1) = pt + γ (pt − ut) , V2,t (pt+1) = σ2
1 + b2vt, (2.9)

where γ ≥ 0 measures the extrapolation from the trend, ut and vt are sample mean

and variance, respectively, which follow

ut = δut−1 + (1− δ) pt, vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 ,

representing limiting processes of geometric decay processes when the memory lag

tends to infinity.6 Here b2 ≥ 0 measures the sensitivity to the sample variance and

δ ∈ (0, 1) measures the geometric decay rate. Note that a constant variance is

assumed for the fundamentalists who believe the mean reverting of the market price

to the fundamental price; while a time-varying component of the variance for the

trend followers reflects the extra risk they take by chasing the trend.

We now specify how traders compute the conditional variance of the dividend Dt+1

and of the excess return Rt+1 over the trading period. For simplicity we assume that

traders share homogeneous belief about the dividend process and that the trading

period dividend Dt is i.i.d. and normally distributed with mean D̄ and variance σ2
D.

Denote by p̄ = D̄/(R− 1) = (K/r)D̄ the long-run fundamental price. The common

estimate of the variance of the dividend (σ2
D) is assumed to be proportional to the

variance of the fundamental price, with no correlation between price and dividend.

6With a geometric decaying probability distribution (1 − δ){1, δ, δ2, δ3, · · · } over the historical

prices {pt, pt−1, pt−2, pt−3, · · · , }, ut and vt are the corresponding sample mean and variance.
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It follows that traders’ conditional variances of the excess return can be estimated7

as V1,t (Rt+1) = (1 + r2)σ2
1 and V2,t (Rt+1) = σ2

1 (1 + r2 + bvt), where b = b2/σ
2
1.

Using (2.8) and (2.9), it turns out that the optimal demands of the fundamentalists

and trend followers are determined by, respectively,

z1,t =
(α− 1)

(
pt − p∗t+1

)
− (R− 1) (pt − p̄)

a1 (1 + r2) σ2
1

, z2,t =
γ (pt − ut)− (R− 1) (pt − p̄)

a2σ2
1 (1 + r2 + bvt)

.

(2.10)

Denote by πh,t+1 the realized profit, or excess return, between t and t+1 by type

h traders, πh,t+1 = zh,t(pt+1 +Dt+1 −Rpt) = Wh,t+1 −RWh,t for h = 1, 2. Following

Brock and Hommes (1997, 1998), the proportion of “switching” traders at time t+1

is determined by

nh,t+1 =
exp [β (πh,t+1 − Ch)]∑2
i=1 exp [β (πi,t+1 − Ci)]

, h = 1, 2,

where Ch ≥ 0 is a fixed cost associated with strategy h, parameter β is the intensity

of choice measuring the switching sensitivity of the population of adaptively rational

traders to the better profitable strategy. It follows from mt+1 = n1,t+1 − n2,t+1 that

mt+1 = tanh

{
β

2
[(π1,t+1 − π2,t+1)− (C1 − C2)]

}
. (2.11)

7The long-run fundamental value is given by p̄ = (KD̄)/r, where KD̄ is the average annual

dividend. Let σp̄ be the annual volatility of the price p, where σ represents the annual volatility of 1

dollar invested in the risky asset. Under independent price increments, the trading period variance

of the price can be estimated as σ2
1 = (p̄σ)2 /K. Denote by DA and σ2

DA
the annual dividend

and its variance respectively and assume an approximate relationship DA = rp between annual

dividend and price. Then one gets σ2
DA

= r2(σp̄)2 and therefore σ2
D = σ2

DA
/K = r2(σp̄)2/K =

r2σ2
1 . Assuming zero correlation between price and dividend, then V1,t (Rt+1) =

(
1 + r2

)
σ2
1 and

V2,t (Rt+1) = σ2
1(1 + r2) + b2vt.
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Together with (2.6) the market fractions and asset price dynamics are determined

by the following random discrete-time dynamical system





pt+1 = pt + µ(q1,t z1,t + q2,t z2,t) + δ̃t,

ut = δut−1 + (1− δ) pt,

vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 ,

mt = tanh

{
β

2
[(z1,t−1 − z2,t−1) (pt +Dt − Rpt−1)− (C1 − C2)]

}
,

p∗t+1 = p∗t [1 + σǫǫ̃t],

(2.12)

where z1,t and z2,t are given by (2.10). In the following sections, we first conduct a

global analysis of the underlying deterministic model to examine the coexistence of

a locally stable steady state and a locally stable limit cycle.

3. Coexistence of the Nonlinear Deterministic Model

In order to understand the interaction of the deterministic dynamics and the noise

processes, we first study the dynamics of the corresponding deterministic model in

this section. Without market noise and fundamental noise, that is, δ̃t = 0 and

p∗t = p̄, the stochastic system (2.12) reduces to a deterministic model





pt+1 = pt +
µ

2

(
[n0 (1 +m0) + (1− n0) (1 +mt)] z1,t

+ [n0 (1−m0) + (1− n0) (1−mt)] z2,t

)
,

ut = δut−1 + (1− δ) pt,

vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 ,

mt = tanh

{
β

2

[
(z1,t−1 − z2,t−1)

(
pt + D̄ − Rpt−1

)
− (C1 − C2)

]}
,

(3.1)

where

z1,t =
(α− R) (pt − p̄)

a1 (1 + r2) σ2
1

, z2,t =
γ (pt − ut)− (R− 1) (pt − p̄)

a2σ
2
1 (1 + r2 + bvt)

. (3.2)

3.1. No-switching Model. To understand the impact of the evolution learning on

the price dynamics, we first study a special case without population evolution (with

no = 1) by fixing market fractions q1,t, q2,t as constants q1, q2. Consequently, system
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(3.1) reduces to 



pt+1 = pt +
µ

2
(q1 z1,t + q2 z2,t),

ut = δut−1 + (1− δ) pt,

vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 .

(3.3)

A stability and bifurcation analysis of system (3.3) with respect to the parameter γ

leads to the following result.

Theorem 3.1. Denote ρ = a2
a1
, Q = 2a2σ

2
1(1 + r2),

K =
µ

Q
[q1ρ(α−R) + q2(1− R)](< 0)

and

γ∗ = (R− 1) +
Q(1− δ)

δµq2
+

ρq1(R− α)

q2
. (3.4)

(i) The deterministic system (3.3) has a unique fundamental steady state (p, u, v) =

(p̄, p̄, 0).

(ii) Assume −2 < K < 0. Then the fundamental steady state (p̄, p̄, 0) is locally

asymptotically stable for γ ∈ (0, γ∗), and it undergoes a Neimark-Sacker

bifurcation at γ = γ∗, that is, there is an invariant cycle near the fundamental

steady state.

(iii) Moreover, the bifurcated invariant cycle is forward and stable when a1(0) < 0

and backward and unstable when a1(0) > 0, here the first Lyapunov coefficient

a1(0) is defined by (A.10) in Appendix A.

Proof. See Appendix A. �

Theorem 3.1 implies that the fundamental price p̄ is locally stable when the activ-

ity of the trend followers, measured by γ, is not strong (so that γ < γ∗). Note that γ∗

increases as q1 or ρ increases, or as q2, δ, α or µ decreases. Intuitively, when the fun-

damental traders dominate the market, characterized by their high market fraction

q1, high speed of price adjustment 1− α, and less risk aversion a1, the fundamental

price is stabilized. When the trend followers dominate the market, characterized by

their high market fraction q2, strong extrapolation γ, high weight on the past price

trend δ, and less risk aversion a2, the fundamental price is destabilized. Also, an

increase in the price adjustment µ from the market maker always destabilizes the
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fundamental price. These results have been explored in Dieci et al. (2006) and He

and Li (2007). However, what is new in Theorem 3.1 is part (iii) on the dynamics

of the bifurcation based on the normal form analysis and center manifold theory.

On the dynamics, near the bifurcation point γ = γ∗, there exists an invariant cycle

around the fundamental steady state, which can be either stable or unstable. From

Theorem 3.1 (iii), the stability of the bifurcated invariant cycle depends crucially on

the sign of a1(0), the first Lyapunov coefficient. When a1(0) < 0, the fundamental

steady state becomes unstable as γ increases and passes the bifurcation value γ∗

and then the solution trajectory of the system converges to a locally stable attractor

characterized by the bifurcated invariant cycle. In this case, the bifurcation does

not lead to a coexistence of two locally stable attractors. However, when a1(0) > 0,

the bifurcation becomes backward and unstable, meaning that the fundamental

steady state is still locally stable as γ passes the bifurcation value γ∗; however an

invariant cycle is bifurcated from the fundamental steady state as γ decreases from

the bifurcation value γ∗ and the invariant cycle is unstable. For the no-switching

model (3.3), Fig. 3.1 illustrates the first Lyapunov coefficient. Different from the

population evolution model (3.1) to be discussed later, Fig. 3.1 shows that a1(0)

is always negative when the market fraction of the fundamental traders q1 varies

from zero to one. This implies that (for the given set of parameters), there is

no coexistence of the stable fundamental steady state and a stable invariant cycle

for system (3.3). Note that however this does not imply that the corresponding

stochastic system for (3.3) is not able to generate volatility clustering. In fact, He

and Li (2007) observe volatility clustering generated from this model by choosing a

set of parameters close to the bifurcation boundary. Buffered with the fundamental

and market noises, the price irregularly switches between the stable region and

unstable region, resulting in volatility clustering. This mechanism on the volatility

clustering conducted by Monte Carlo simulation and model calibration is different

from the analytical mechanism discussed in this paper.
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Figure 3.1. The plot of the first Lyapunov coefficient a1(0) as a

function of the market fraction of fundamentalists q1 for the no-

switching model (3.3); here K = 250, r = 0.05, D̄ = 0.02, σ = 0.2,

a = a1 = a2 = 0.5, µ = 1, α = 0.3, γ = γ∗∗, δ = 0.85, and b2 = 0.05.

3.2. The Switching Model. Next we examine the full model (3.1). Though we

obtain a very similar result in Theorem 3.2 on the global bifurcation to Theorem

3.1, the dynamics of (3.1) is much richer. In particular, we obtain the coexistence

of the locally stable steady state and bifurcated invariant cycles.

Theorem 3.2. Denote ρ = a2
a1
, Q = 2a2σ

2
1(1 + r2), m̄ = tanh β(C2−C1)

2
, mq =

n0m0 + (1− n0)m̄,

M =
µ

Q
[ρ(1 +mq)(α−R) + (1−mq)(1− R)](< 0),

and

γ∗∗ = (R− 1) +
Q(1− δ)

δµ(1−mq)
+

ρ(1 +mq)(R− α)

(1−mq)
, (3.5)

(i) The deterministic system (3.1) has a unique fundamental steady state (p, u, v,m) =

(p̄, p̄, 0, m̄).

(ii) Assume −2 < M < 0. The fundamental steady state (p̄, p̄, 0, m̄) is locally

asymptotically stable for γ ∈ (0, γ∗∗), and it undergoes a Neimark-Sacker bi-

furcation at γ = γ∗∗, that is, there is an invariant curve near the fundamental

steady state.

(iii) Moreover, the bifurcated closed invariant curve is forward and stable when

a2(0) < 0 and backward and unstable when a2(0) > 0, here the first Lyapunov

coefficient a2(0) is given by (B.11) in Appendix B.
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Proof. See Appendix B. �

Note that the market fractions of the fundamentalists and trend followers at the

fundamental steady state are given by q1 = (1 + mq)/2 and q2 = (1 − mq)/2,

respectively. The local stability result in Theorem 3.2 shares the same intuition as

in Theorem 3.1. In addition, if the cost for the fundamental strategy C1 is higher

than the cost for the trend followers C2, then an increase in the switching intensity

β leads to a decrease in γ∗∗, meaning that the fundamental price becomes less stable

when traders switch their strategies more often. This is essentially the rational

routes to randomness of Brock and Hommes (1997, 1998). On the dynamics, Fig.

3.2 illustrates two different types of bifurcations.
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(b) n0 = 0.5

Figure 3.2. The bifurcation diagrams of the market price with re-

spect to γ. Here K = 250, r = 0.05, D̄ = 0.02, σ = 0.2,

C = C1 − C2 = 0.5, a = a1 = a2 = 0.5, µ = 1, α = 0.3, δ = 0.85,

β = 0.5, b2 = 0.05, γ = 0.8, and m0 = 0.

Similar to the previous result, it is the sign of the first Lyapunov coefficient

a2(0) that determines the bifurcation direction, either forward or backward, and the

stability of the bifurcated invariant cycles, leading to different bifurcation dynamics.

When a2(0) < 0, the bifurcation is forward and stable, meaning that the bifurcated

invariant cycle occurring for γ > γ∗∗ is locally stable. In this case, as γ increases

and passes γ∗∗, the fundamental steady state becomes unstable and the trajectory

converges to an invariant cycle bifurcating from the fundamental steady state. As



18 HE, LI AND WANG

γ increases further, the trajectory converges to invariant cycles with different sizes.

This is illustrated in Fig. 3.2 (a) with γ∗∗ ≈ 0.93 where the two bifurcating curves

for γ > γ∗ indicate the minimum and maximum value boundaries of the bifurcating

invariant cycles as γ increases.

However, when a2(0) > 0, the bifurcation is backward and unstable, meaning that

the bifurcated invariant cycle occurring at γ = γ∗∗ is unstable. This is illustrated

in Fig. 3.2 (b) (with γ∗∗ ≈ 0.88). There would be a continuation of the unstable

bifurcated cycles as γ decreases initially until it reaches a critical value γ̂, which is

indicated by the two red curves of the bifurcating cycles for γ̂ < γ < γ∗∗. Then as γ

increases from the critical value γ̂, the bifurcation becomes forward and stable. This

is illustrated by the two blue curves, which are the boundaries of the bifurcating

cycles, for γ > γ̂. Therefore, the stable steady state coexists with the ‘forward

extended’ cycle for γ̂ < γ < γ∗∗, in between there is a backward extended unstable

cycle.8 For γ̂ < γ < γ∗∗, even when the fundamental steady state is locally stable,

prices need not converge to the fundamental value, may settle down to a stable limit

cycle. We call γ̂ < γ < γ∗∗ the ‘volatility clustering region’.

Based on the above analysis, a necessary condition on the coexistence is the pos-

itive first Lyapunov coefficient a2(0) > 0. Therefore it is very helpful to understand

the condition and economic intuition for various parameters satisfying a2(0) > 0. In

the following discussion, we numerically examine this necessary condition and the

coexistence.

8The global extension of bifurcated cycle can be frequently observed in continuous-time dynami-

cal systems, see for example, He et al. (2009), He and Li (2012, 2015a), Di Guilmi, He and Li (2014)

and Li (2014). Mathematically, it can be demonstrated that the space Σ = Cl{(x, γ, l) : (x, γ, l) ∈

X × R+ × R+} is unbounded (X is the space of the solutions of the system, γ is the examined

parameter and l is the period of the cycle), however the solutions of the dynamical system are

uniformly bounded and the period is also bounded. Therefore, the space Σ has to be unbounded

with respect to the examined parameter γ. In other words, the bifurcated cycle can be globally

extended with respect to γ. We refer readers to He et al. (2009) for the details. However, such

analysis on the global extension for the discrete-time dynamical system becomes very challenging.

This is mainly due to the fact that the bifurcated closed invariant cycle in discrete-time dynamical

system has no exact ‘period’. However, we demonstrate numerically that the bifurcated closed

invariant cycle of our system can also be globally extended.
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3.3. The First Lyapunov Coefficient. The first Lyapunov coefficient a2(0) is

defined by (B.11) in Appendix B. We have illustrated the main results by using

the extrapolation parameter γ of the trend followers. To provide further insights

into the mechanism on the coexistence, we examine the dependence of a2(0) on the

market fractions no and mo, the switching intensity β, the decaying rate of the price

trend δ, the activity of the fundamentalists α, the risk aversion a(= a1 = a2), and

the price adjustment of the market maker µ. Unless specified otherwise, all the

results are based on the set of parameter values with K = 250, r = 0.05, D̄ = 0.02,

σ = 0.2, C = C1 − C2 = 0.5, a = a1 = a2 = 0.5, µ = 1, α = 0.3, γ = γ∗∗, δ = 0.85,

β = 0.5, b2 = 0.05 and m0 = 0.
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Figure 3.3. The plots of (a) M , (b) the first Lyapunov coefficient

for the switching model (3.1) and (c) γ∗∗ as a function of n0. Here

K = 250, r = 0.05, D̄ = 0.02, σ = 0.2, C = C1 − C2 = 0.5, a = a1 =

a2 = 0.5, µ = 1, α = 0.3, γ = γ∗∗, δ = 0.85, β = 0.5, b2 = 0.05 and

m0 = 0.

We first consider the effect of n0, the proportion of investors who do not change

their strategies. Fig. 3.3 (a) shows that the condition −2 < M < 0 of Theorem

3.2 is always satisfied when n0 varies from zero to one. Fig. 3.3 (b) illustrates that

the volatility clustering interval (a2(0) > 0) for n0 < 0.62. This explains the results

of Figs. 3 (c) and (d) in Dieci et al. (2006) who numerically show the coexistence

of a stable cycle and a stable steady state when n0 = 0.5 (with the same other

parameters). Fig. 3.3 (b) also complements the numerical findings in Dieci et al.
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(2006) by providing a wider range of coexistence with respect to n0. When n0 = 0.62,

the first Lyapunov coefficient equals zero as illustrated in Fig. 3.3 (b), and the

system (3.1) undergoes a Chenciner (generalized Neimark-Sacker) bifurcation. Fig.

3.3 (c) plots the first Neimark-Sacker bifurcation value γ∗∗. Notice that Theorem

3.2 depicts that the steady state is stable for 0 < γ < γ∗∗ and undergoes a Neimark-

Sacker bifurcation at γ = γ∗∗. Fig. 3.3 (c) shows that γ∗∗ is an increase function of

n0 in this case. This implies that, as more investors switch their trading strategies

(that is when no decreases), even with the trend followers become less active in the

market, the price dynamics is more likely displaying the coexistence. In particular,

when there is no agent using fixed strategies and all agents switch their strategies

over time (n0 = 0), the system is stable for 0 < γ < γ∗∗(= 0.79) and becomes

unstable for γ > γ∗∗. a2(0) > 0 when γ = γ∗∗. However when there is no switching

(no = 1) and all agents use fixed strategies over time (n0 = 1), the stable region

increases to 0 < γ < γ∗∗(= 0.97) and a2(0) < 0 when γ = γ∗∗. This implies that,

with more agents to switch between two strategies, a weak extrapolation from the

trend followers can lead to the coexistence.

On the effect of other parameters, Fig. 3.4 plots of the first Lyapunov coefficient

a2(0) against β, δ α, a and µ. Fig. 3.4 (a) shows that a2(0) becomes positive when

β > 0.4, implying the coexistence when agents switch between strategies more often.

Interestingly, we know from Fig. 3.1 that there is no coexistence when no investor

switches; however, Fig. 3.4 (a) and Fig. 3.3 (b) show that when more traders switch

their strategies more often, the price dynamics display more coexistence. Fig. 3.4

(b) shows that a2(0) is positive when δ > 0.72, indicating the coexistence when

more weight is given to the past price when calculating the price trend. Fig. 3.4

(c) shows that a2(0) is positive for medium range of α. This is consistent with the

intuition from Gaunersdorfer et al. (2008) that, when the trading activity from the

fundamentalists is neither too weak nor too strong, the price can converge to the

fundamental value when the trend extrapolation from the trend followers is weak or

to an invariant cycle when the extrapolation is strong, leading to the coexistence.

Fig. 3.4 (d) and (e) show that a2(0) becomes positive when a < 0.6 or µ < 1.2,

indicating the coexistence when agents are less risk averse or the market maker
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Figure 3.4. The plots of the first Lyapunov coefficient for the switch-

ing model (3.1) as a function of (a) β, (b) δ, (c) α, (d) a and (e) µ

. Here K = 250, r = 0.05, D̄ = 0.02, σ = 0.2, C = C1 − C2 = 0.5,

a = a1 = a2 = 0.5 (except for (e)), µ = 1 (except for (d)), α = 0.3

(except for (c)), γ = γ∗∗, δ = 0.85 (except for (b)), β = 0.5 (except

for (a)), b2 = 0.05, n0 = 0.5 and m0 = 0.

adjusts the market price weakly. These results based on Fig. 3.4 further verify

the simple economic intuition proposed in Gaunersdorfer et al. (2008): “if traders’

sensitivity to differences in fitness is high (i.e. the intensity of choice β is high) then

the interaction between weakly extrapolating trend followers (i.e. for large values

of decay rate δ) and weakly stabilizing fundamentalists (i.e. with large adjustment

speed 1−α) leads to coexistence of attractors and agents may coordinate on a stable

limit cycle around the locally stable fundamental steady state.”
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Figure 3.5. The plots of the first Lyapunov coefficient for the switch-

ing model (3.1) as a function of (a)—(c) m0, (d)—(f) µ and (g)—

(i) a(= a1 = a2). Here K = 250, r = 0.05, D̄ = 0.02, σ = 0.2,

C = C1 − C2 = 0.5, a = a1 = a2 = 0.5 (except for (g-i)), µ = 1

(except for (d-f)), α = 0.3, γ = γ∗∗, δ = 0.85, β = 0.5, b2 = 0.05 and

m0 = 0 (except for (a-c)).

We further study the joint impact of mo and no. Figs. 3.5 (a)—(c) show that

m0 can affect the sign of the first Lyapunov coefficient only when n0 is close to its

critical value for the coexistence, n0 = 0.62, as illustrated in Fig. 3.3 (b). When n0

departs from the critical value 0.62, Figs. 3.5 (a) and (c) show that the sign of a2(0)

becomes less sensitive to the change of m0.
9 In summary, economically, the above

analysis show that when the trading activities of either the fundamental investors

or the trend followers dominate the market, market price fluctuates around either

the fundamental value with low volatility or a cyclical price movement with high

volatility depending on market conditions. When neither the fundamental traders

nor the trend followers dominate the market, the fundamental noise and noise traders

trigger an irregular shifting between two volatility regimes and therefore leads to

volatility clustering. In particular, the effect of volatility clustering becomes more

9However, Figs. 3.3 and 3.4 show that n0, β, δ, α and µ can affect the sign of a2(0) even when

n0 = 0.5, or when n0 is chosen far away from its critical value, say n0 = 0.1 or 0.9 (not reported

here).
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significant when traders switch their strategies more often, which is a very different

from the mechanism proposed in He and Li (2007).
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Figure 3.6. (a) The deterministic trajectories of price versus time

for (a) (p0, u0, v0, m0) = (p̄+ 1, p̄, 0, m̄) and (b) (p0, u0, v0, m0) = (p̄+

1, p̄−1, 0, m̄) and (c) the phase plot of (p, u). Here K = 250, r = 0.05,

D̄ = 0.02, σ = 0.2, C = C1 − C2 = 0.5, a = a1 = a2 = 0.5, µ = 1,

α = 0.3, δ = 0.85, β = 0.5, b2 = 0.05, γ = 0.8, n0 = 0.5 and m0 = 0.

3.4. The Coexistence and Basin of Attraction. To conclude the analysis of

the deterministic dynamics, we numerically verify the coexistence demonstrated by

Theorem 3.2. Fig. 3.2(b) illustrates the bifurcation diagram of the market price

with respect to γ and demonstrates the global extension of the bifurcated cycle. The

blue horizontal line indicates that the steady state is stable for 0 < γ < γ∗∗(≈ 0.88)

and undergoes a Neimark-Sacker bifurcation at γ = γ∗∗. Notice a2(0) > 0 when

n0 = 0.5 as illustrated in Fig. 3.3 (b). So the bifurcation is backward and the

corresponding bifurcated closed invariant cycle is unstable. We plot the unstable

cycle using red line, which is extended until γ = γ̂ ≈ 0.76. Then the bifurcated

closed cycle becomes forward and stable. This is illustrated by the two upper and

lower blue boundaries of the closed invariant curves with respect to γ, starting

from γ̂ ≈ 0.76. Therefore, the stable cycle coexists with the stable steady state for

γ̂ < γ < γ∗∗. To demonstrate the coexistence, we plot the deterministic trajectories

of price versus time with different initial conditions. First, we choose the initial



24 HE, LI AND WANG

values (p0, u0, v0, m0) = (p̄ + 1, p̄, 0, m̄) ≈ (101, 100, 0,−0.1244), which are their

steady state values except for a slightly higher price than the fundamental price.

Fig. 3.6 (a) shows that the steady state is locally asymptotically stable in this case.

When we decrease the initial point of u0 to p̄ − 1, slightly smaller than its steady

state value, and choose the other parameters the same as those in Fig. 3.6 (a), Figs.

3.6 (b) and (c) illustrate that the price trajectory converges to the closed invariant

curve. This coexistence phenomenon is also observed in Dieci et al. (2006).10
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Figure 3.7. The projections of the basin of the two attractors on

(a) (p, u) space, (b) (p, v) space and (c) (p,m) space. Here K = 250,

r = 0.05, D̄ = 0.02, σ = 0.2, C = C1 − C2 = 0.5, a = a1 = a2 = 0.5,

µ = 1, α = 0.3, δ = 0.85, β = 0.5, b2 = 0.05, γ = 0.8, n0 = 0.5 and

m0 = 0.

The coexistence of the locally stable steady state and invariant cycle illustrated

in Figs. 3.6 (a) and (b) shows that the price dynamics depends on the initial values,

or basins of attraction, illustrated in Fig. 3.7. With the set of parameters K = 250,

r = 0.05, D̄ = 0.02, σ = 0.2, C = C1 −C2 = 0.5, a = a1 = a2 = 0.5, µ = 1, α = 0.3,

δ = 0.85, β = 0.5, b2 = 0.05, γ = 0.8, n0 = 0.5 and m0 = 0, Fig. 3.7 shows that

the system only has two attractors, that is, a fundamental steady state and a closed

10Under this set of parameters, further numerical simulations suggest that the fundamental

steady state (invariant cycle) is globally stable for γ < γ̂ (γ > γ∗∗), and the system (3.1) only has

these two attractors for γ̂ < γ < γ∗∗.
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invariant curve extended backward from the bifurcated curve at γ∗∗. The white

(light) area indicates the basin of attraction of the fundamental steady state and

the green (dark) area is of the closed invariant curve. Both areas are the projection

of the basin of attractor (p̄, p̄, 0, m̄) on the sub-space of (p, u) in (a), (p, v) in (b),

and (p,m) in (c). For example, the green (white) area in Fig. 3.7 (a) illustrates the

initial conditions with respect to (p, u) at which the trajectories eventually converge

to the closed invariant curve (fundamental steady state) by fixing the initial values

of v,m at their steady state values and letting the initial values of p, u vary.11

4. Price behavior of the stochastic model

In this section, through numerical simulations, we study the interaction between

the coexistence of the deterministic dynamics and the noise processes and explore the

potential power of the model to generate various market behavior and the stylized

facts, in particular, the volatility clustering and long range dependence in volatility

observed in financial markets.

We explore the potential of the stochastic model in generating the stylized facts for

daily data observed in financial markets, including volatility clustering and power-

law behavior, see He and Li (2007). For the stochastic model with both noise

processes, we use the same set of parameters as in Section 3 to guarantee the coex-

istence of two locally stable attractors. The volatilities of the market price process

and fundamental price process are chosen as σδ = 2 and σǫ = 0.025, respectively.

Fig. 4.1 represents the results of a typical simulation. Fig. 4.1 (a) shows that the

market price (the red solid line) follows the fundamental price (the blue dotted line)

in general, but accompanied with large deviations from time to time. With the

11Strictly speaking, the green (white) areas in Figs. 3.7 (a)—(c) are not exactly the projection

of the basin of the closed invariant curve (fundamental steady state) on different sub-space because

we plot them versus the initial values for two variables by fixing those of the other two, rather

than plot the basin of attraction by letting all variables’ initial values vary versus a sub-space. For

convenience, we call it as ‘projection’ in this paper. Also notice that there can be more than one

green (white) area in each plot. However, they are generated from the same basin of the closed

invariant curve (fundamental steady state) on a sub-space. Because the system is a 4-dimensional,

the projection on a sub-space may be divided into multiple areas.
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Figure 4.1. The time series of (a) the market price (red solid line)

and the fundamental price (blue dotted line), (b) the market returns;

and (c) the deviation of market price from its fundamental |pt − p∗t |;

(d) the return distribution; the ACs of (e) the returns; (f) the absolute

returns, and (g) the squared returns. Here K = 250, r = 0.05, D̄ =

0.02, σ = 0.2, C = C1 − C2 = 0.5, a = a1 = a2 = 0.5, µ = 1, α = 0.3,

δ = 0.85, β = 0.5, b2 = 0.05, γ = 0.8, n0 = 0.5, m0 = 0, σδ = 2 and

σǫ = 0.025.
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coexistence of a locally stable steady state and a locally stable limit cycle of the

deterministic model shown in Section 3 and the presence of noises, the evolutionary

price dynamics then switches irregularly between a phase close to the fundamental

steady state with small amplitude price fluctuations and a phase with large price

fluctuations along a (noisy) limit cycle. The market returns in Fig. 4.1 (b) show

significant volatility clustering. The deviation of market price from fundamental

price in Fig. 4.1 (c) is consistent with the pattern of volatility clustering, illustrated

by the large volatility in (b) and the big spike in the deviation |pt − p∗t | in (c) for

t around t = 3000. Comparing to the corresponding normal distribution, the re-

turn distribution in Fig. 4.1 (d) displays high kurtosis. The returns show almost

insignificant autocorrelations (ACs) in Fig. 4.1 (e), but the ACs for the absolute

returns and the squared returns in Figs. 4.1 (f) and (g) are significant with strong

decaying patterns as time lag increases, implying a long range dependence. These

results demonstrate that the stochastic model established in this paper can generate

most of the stylized facts observed in financial markets.

The above features of the stochastic model is a joint outcome of the interaction

of the nonlinear HAM and the two noisy processes, similar to He and Li (2007).

With the same random seeds, we report the simulation results in Figs. 4.2 and 4.3

when there is only one stochastic process involved. In Fig. 4.2, there is no market

noise and the fundamental price is the only stochastic process. The time series,

return density distribution, and the ACs of the returns, the absolute returns and

the squared returns do not replicate these stylized facts demonstrated in Fig. 4.1.

Alternatively, in Fig. 4.3 the market noise process is the only stochastic process. It

shows that the return is basically described by a white noise process. Both Figs 4.2

and 4.3 indicate that the potential of the model in generating the stylized facts is

not due to either one of the two stochastic processes, but to both noisy processes.

The underlying mechanism in generating the stylized facts, long range dependence,

and the interplay between the nonlinear deterministic dynamics and noises are very

similar to the one explored in He and Li (2007). Economically, the fundamental

noise can be very different from the market noise coming from the noise traders and

consequently they affect the market price differently. Without the market noise,
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Figure 4.2. The time series of (a) the market price (red solid line)

and the fundamental price (blue dotted line), (b) the market returns;

and (c) the deviation of market price from its fundamental |pt − p∗t |;

(d) the return distribution; the ACs of (e) the returns; (f) the absolute

returns, and (g) the squared returns. Here K = 250, r = 0.05, D̄ =

0.02, σ = 0.2, C = C1 − C2 = 0.5, a = a1 = a2 = 0.5, µ = 1, α = 0.3,

δ = 0.85, β = 0.5, b2 = 0.05, γ = 0.8, n0 = 0.5, m0 = 0, σδ = 0 and

σǫ = 0.025.
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Figure 4.3. The time series of (a) the market price (red solid line)

and the fundamental price (blue dotted line), (b) the market returns;

and (c) the deviation of market price from its fundamental |pt − p∗t |;

(d) the return distribution; the ACs of (e) the returns; (f) the absolute

returns, and (g) the squared returns. Here K = 250, r = 0.05, D̄ =

0.02, σ = 0.2, C = C1 − C2 = 0.5, a = a1 = a2 = 0.5, µ = 1, α = 0.3,

δ = 0.85, β = 0.5, b2 = 0.05, γ = 0.8, n0 = 0.5, m0 = 0, σδ = 2 and

σǫ = 0.
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the market price are driven by the mean-reverting of the fundamentalists (to the

fundamental price) and the trend chasing of the chartists; both contribute to building

up market price trend. Due to the randomness of the fundamental price, there

are persistent mean-reverting activities from the fundamentalists that provide the

chartists opportunities to explore the price trend. Therefore, the significant ACs

of the market returns, absolute returns and squared returns in Fig. 4.2 reflect

the interaction of the fundamentalists and the trend followers. However, with the

market noise and a constant fundamental price, the price trend is less likely formed

and explored by the chartists. This limits the impact of the speculative behavior of

the chartists, which explains the insignificant ACs of the market returns, absolute

returns and squared returns in Fig. 4.3. With both noise processes, the price trend

is difficult to explore (due to the market noise) and consequently the returns become

less predictable. However, the interaction of the fundamentalists and trend followers

becomes intensive due to some large changes in the fundamental price from time to

time, implying the significant ACs in return volatility, shown in Fig. 4.1 (e)-(g).

5. Conclusion

This paper contributes to the volatility clustering literature and the development

of financial market modelling and asset price dynamics with heterogeneous agents.

We consider a simple asset pricing model with two types of boundedly rational

traders, fundamentalists and trend followers, and noise traders. By applying the

normal form method and the center manifold theory, we obtain analytical condi-

tions on the coexistence of a stable steady state and a stable closed invariant cycle

and provide a systematic way to identify volatility clustering interval by examining

the stability of a Neimark-Sacker bifurcation through the change of one parame-

ter. When buffered with noises, we then show numerically that the interaction of

the coexistence of the deterministic dynamics and noise processes can endogenously

generate volatility clustering and long range dependence in volatility observed in

financial markets. Economically, with strong trading activities of either the funda-

mental investors or the trend followers, market price fluctuates around either the
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fundamental value with low volatility or a cyclical price movement with high volatil-

ity depending on market condition. With the fundamental noise and noise traders,

this triggers an irregular shifting between two volatility regimes and therefore leads

to volatility clustering. We therefore verify the endogenous mechanism on volatility

clustering proposed by Gaunersdorfer et al. (2008) and provide an economic expla-

nation on the volatility clustering. The analysis sheds light on the understanding of

volatility clustering. The method developed in this paper can be easily applied to

other nonlinear financial and economic models. This helps to provide deep under-

standing of the globally nonlinear properties of the financial and economic systems.



32 HE, LI AND WANG

Appendix A. Stability and Bifurcation Analysis of the Constant

Market Fraction Model

Let wt = pt+1, then (3.3) becomes





wt = wt−1 + µq1
(α−R)(wt−1 − p̄)

2a1σ
2
1(1 + r2)

+ µq2
γ(wt−1 − ut)− (R− 1)(wt−1 − p̄)

2a2σ
2
1(1 + r2 + bvt)

,

ut = δut−1 + (1− δ)wt−1,

vt = δvt−1 + δ (1− δ) (wt−1 − ut−1)
2 ,

(A.1)

which is equivalent to the following 3-d map: T (w, u, v) → (w′, u′, v′)






w′ = w + µq1
(α− R)(w − p̄)

2a1σ2
1(1 + r2)

+ µq2
γδ(w − u)− (R− 1)(w − p̄)

2a2σ2
1[1 + r2 + bδv + bδ(1− δ)(w − u)2]

,

u′ = δu+ (1− δ)w,

v′ = δv + δ (1− δ) (w − u)2 ,

(A.2)

It is straightforward to see that (p̄, p̄, 0) is an equilibrium of (A.2). Denote ρ = a2
a1
,

Q = 2a2σ
2
1(1 + r2). The Jacobian matrix of the function in right-hand side of (A.2)

at this equilibrium is given by

J =




J11(γ) J12(γ) 0

1− δ δ 0

0 0 δ


 , (A.3)

where

J11(γ) = 1 +
µ

Q
[q1ρ(α−R) + q2(γδ + 1− R)], J12(γ) = −

µq2γδ

Q
.

The characteristic equation of J is

[λ2 + A(γ)λ+B(γ)](λ− δ) = 0 (A.4)

with

A(γ) = −

[
1 + δ +

µ

Q
[q1ρ(α− R) + q2(γδ + 1−R)]

]
,

B(γ) = δ

[
1 +

µ

Q
[q1ρ(α−R) + q2(γ + 1− R)]

]
.
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Denote 




γ∗ = (R− 1) +
Q(1 − δ)

δµq2
−

ρq1(α− R)

q2
,

K =
µ

Q
[q1ρ(α− R) + q2(1− R)] < 0.

(A.5)

Then, the distribution of the roots of (A.4) is described by the following theorem if

we use γ as variable parameter.

Lemma A.1. Suppose −2 < K < 0. Then, all the roots of (A.4) lie inside of the

unit circle for γ ∈ [0, γ∗), and there is a pair of conjugate roots, cos θ0 ± i sin θ0 for

some θ0 ∈ (0, π/2), of (A.4) when γ = γ∗.

Proof. When γ = 0, the roots of (A.4) are

λ1 = 1 +K, λ2 = λ3 = δ.

Therefore, −1 < λ1, λ2, λ3 < 1. Suppose λ = cos θ0 ± i sin θ0, θ0 ∈ (0, π), is a root of

(A.4). Then

2 sin θ0 cos θ0 + A sin θ0 = 0,

cos2 θ0 − sin2 θ0 + A cos θ0 +B = 0,
(A.6)

which holds for B = 1, or equivalently, γ = γ∗. Substituting γ∗ into A(γ), we know

A(γ∗) = −(2 + (1 − δ)K). This implies that cos θ0 = −A(γ∗)
2

∈ (δ, 1). Therefore,

θ0 ∈ (0, π/2). �

Lemma A.2. Suppose ρ(γ)(cos θ(γ) ± i sin θ(γ)) be the roots of (A.4) satisfying

ρ(γ∗) = 1 and θ(γ∗) = θ0. Then, ρ′(γ∗) > 0.

Proof. Differentiating

λ(γ) = ρ(γ)(cos θ(γ) + i sin θ(γ)),

0 = λ(γ)2 + A(γ)λ(γ) +B(γ),

with respect to γ, respectively, we have

λ′(γ) = ρ′(γ) cos θ(γ)−ρ(γ)θ′(γ) sin θ(γ)+iρ′(γ) sin θ(γ)+iρ(γ)θ′(γ) cos θ(γ), (A.7)
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and

λ′(γ) = −
B′(γ) + A′(γ)λ(γ)

2λ(γ) + A(γ)

= −
B′(γ) + A(γ)ρ(γ)(cos θ(γ) + i sin θ(γ))

A(γ) + 2ρ(γ)(cos θ(γ) + i sin θ(γ))

= M(γ) + iN(γ),

(A.8)

where

M(γ) =
−(B′(γ) + A′(γ)ρ(γ) cos θ(γ))(A(γ) + 2ρ(γ) cos θ(γ))− 2A′(γ)ρ2(γ) sin2 θ(γ)

(A(γ) + 2ρ(γ) cos θ(γ))2 + (2ρ(γ) sin θ(γ))2
,

N(γ) =
2ρ(γ) sin θ(γ)(B′(γ) + A′(γ)ρ(γ) cos θ(γ))− (A(γ) + 2ρ(γ) cos θ(γ))A′(γ)ρ(γ) sin θ(γ)

(A(γ) + 2ρ(γ) cos θ(γ))2 + (2ρ(γ) sin θ(γ))2
.

From (A.7) and (A.8), we get

M(γ) = ρ′(γ) cos θ(γ)− ρ(γ)θ′(γ) sin θ(γ),

N(γ) = ρ′(γ) sin θ(γ) + ρ(γ)θ′(γ) cos θ(γ)

which implies

ρ′(γ) = M(γ) cos θ(γ) +N(γ) sin θ(γ).

Using the fact that ρ(γ∗) = 1, B′(γ∗) = δµq2
a1σ

2

1
(1+r2)

> 0 and A(γ∗)+2ρ(γ∗) cos θ(γ∗) =

0, we know

Sign{ρ′(γ∗)} = Sign{−2A′(γ∗)ρ2(γ∗) sin2 θ(γ∗) cos θ(γ∗)

+ 2ρ(γ∗) sin2 θ(γ∗)(B′(γ∗) + A′(γ∗)ρ(γ∗) cos θ(γ∗))}

= Sign{2B′(γ∗) sin2 θ(γ∗)} > 0.

�

From Lemmas A.1 and A.2, we obtain the following results on occurence of

Neimark-Sacker bifurcation.

Theorem A.3. Assume −2 < K < 0. The equilibrium (p̄, p̄, 0) of Eq. (A.2) is

asymptotically stable if γ ∈ (0, γ∗), and Eq. (A.2) undergoes a Neimark-Sacker

bifurcation at γ = γ∗, that is, there is an isolated closed invariant curve near the

origin. Moreover, the bifurcation is forward(backward) and the bifurcated closed

invariant curve is stable (unstable) if a1(0) < 0(a1(0) > 0).
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The first Lyapunov coefficient a1(0) is computed as below, following the algorithm

in p.178 of Kuznetsov (2004). Let q and p̃ be the eigenvectors of J and J ′ with respect

to eiθ0 and e−iθ0 respectively. Then

q =




eiθ0−δ
1−δ

1

0


 , p̃ =




e−iθ0−δ
J12(γ∗)

1

0


 .

Set p = cp̃ with

c =
(1− δ)J12(γ

∗)

(e−iθ0 − δ)2 + (1− δ)J12(γ∗)
.

Then, < p, q >=
∑3

i=1 p̄iqi = 1. Recall that the nonlinear term of (A.2) takes the

form

f(w, u, v) =




µq2
γδ(w−u)−(R−1)(w−p̄)

2a2σ2

1
[1+r2+bδv+bδ(1−δ)(w−u)2 ]

0

δ(1− δ)(w − u)2


 =




f 1

f 2

f 3


 . (A.9)

The second and third order partial derivatives of f at (p̄, p̄, 0), when γ = γ∗, are

f 1
ww = f 1

uu = f 1
vv = f 1

wu = f 1
uw = 0,

f 1
wv = f 1

vw = c1(γ
∗δ + 1− R), f 1

uv = f 1
vu = c2γ

∗δ,

f 3
ww = f 3

uu = 2δ(1− δ), f 3
wu = −2δ(1− δ),

and

f 1
www = 6c1(γ

∗δ + 1− R)(1− δ), f 1
wuu = 2c1(3γ

∗δ + 1− R)(1− δ),

f 1
uuu = 6c2(1− δ)γ∗δ, f 1

wwu = 2c2(3γ
∗δ + 2− 2R)(1− δ)

f 1
vvv = f 1

wwv = f 1
uuv = f 1

wuv = 0,

f 1
wvv = −

2bδc1(γ
∗δ + 1−R)

1 + r2
, f 1

uvv = −
2bδc2γ

∗δ

1 + r2
,

with

c1 = −
µq2bδ

Q(1 + r2)
, c2 =

µq2bδ

Q(1 + r2)
.

For i1, i2, · · · , is, ij ∈ N, j = 1, 2, · · · , s, denote by (i1, i2, · · · , is) the set of all

permutations of i1i2 · · · is. For instance, (1, 2, 3) = {123, 132, 213, 231, 312, 321}.

Then we can rewrite (A.9) as

f =
1

2
B(x, x) +

1

6
C(x, x, x) +O(‖x|‖4),
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where B(x, y) and C(x, y, z) are symmetric multilinear vector functions of x, y, z ∈

R
3, and given by

B(x, y) =




f 1
wvΣij∈(1,3)xiyj + f 1

uvΣij∈(2,3)xiyj

0

f 3
wwx1y1 + f 3

uux2y2 + f 3
wuΣij∈(1,2)xiyj




and

C(x, y, z) =




f 1
wwwx1y1z1 + f 1

uuux2y2z2 + f 1
wwuΣijk∈(1,1,2)xiyjzk

+f 1
wuuΣijk∈(1,2,2)xiyjzk + f 1

uvvΣijk∈(2,3,3)xiyjzk + f 1
wvvΣijk∈(1,3,3)xiyjzk

0

0




Therefore, the first Lyapunov coefficient a1(0) is given by

a1(0) =
1

2
Re

{
e−iθ0 [< p,C(q, q, q̄) > +2 < p,B(q, (E − J)−1B(q, q̄)) >

+ < p,B(q̄, (e2iθ0E − J)−1B(q, q)) >]
}

=
1

2
Re

{
c̄(1− δe−iθ0)

J12(γ∗)

[
K3 +

(
(e−iθ0 − δ)

(1− δ)
f 1
wv + f 1

uv

)
(2K1 +K2)

]}
(A.10)

where

K1 = 2δ

[
(eiθ0 − δ)(e−iθ0 − δ)

(1− δ)2
−

(eiθ0 − e−iθ0)

1− δ
+ 1

]
,

K2 =
2δ(1− δ)

e2iθ0 − δ

[(
eiθ0 − δ

1− δ

)2

−
2(eiθ0 − δ)

1− δ
+ 1

]
,

K3 =
(eiθ0 − δ)2(e−iθ0 − δ)

(1− δ)3
f 1
www + f 1

uuu +

[(
eiθ0 − δ

1− δ

)2

+
2(eiθ0 − δ)(e−iθ0 − δ)

(1− δ)2

]
f 1
wwu

+

(
e−iθ0 − δ

1− δ
+

2(eiθ0 − δ)

1− δ

)
f 1
wuu
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Appendix B. Stability and Neimark-Sacker Bifurcation of the

Evolution Model

The whole system is





p′ = p+
µ

2
{[n0(1 +m0)

+ (1− n0)(1 +m)]z1 + [n0(1−m0) + (1− n0)(1−m)]z2},

u′ = δu+ (1− δ)p′,

v′ = δv + δ(1− δ)(p′ − u)2,

m′ = tanh

{
β

2
[(z1 − z2)(p

′ + D̄ − Rp)− C1 + C2]

}
,

(B.1)

where

z1 = z1(p) =
(α− R)(p− p̄)

a1σ2
1(1 + r2)

,

z2 = z2(p, u, v) =
γ(p− u)− (R− 1)(p− p̄)

a2σ
2
1(1 + r2 + bv)

,

(B.2)

The positive equilibrium of (B.1) is given by E = (p̄, p̄, 0, m̄) with p̄ = D̄
R−1

and

m̄ = tanh β(C2−C1)
2

. Denote ρ = a2
a1
, Q = 2a2σ

2
1(1+ r2), and mq = n0m0+(1−n0)m̄.

The matrix associated with the linearized system of (B.1) at E is

J =


 G1 0

0 G2




where

G1 =




∂p′

∂p

∂p′

∂u

(1− δ)∂p
′

∂p
δ + (1− δ)∂p

′

∂u



 :=



 G11(γ) G12(γ)

G21(γ) G22(γ)



 (B.3)

with

∂p′

∂p
= 1 +

µ(1−mq)

Q
[ρ(α− R)− (γ + 1−R)],

∂p′

∂u
= −

γµ(1−mq)

Q

and

G2 =



 δ 0

0 0



 (B.4)
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It is obvious that the eigenvalues of G2 are δ and 0. It remains to investigate the

eigenvalues of G1. Define

γ∗∗ = (R − 1) +
Q(1− δ)

δµ(1−mq)
−

ρ(1 +mq)(α− R)

(1−mq)
,

M =
µ

Q
[ρ(1 +mq)(α− R) + (1−mq)(1− R)] < 0.

(B.5)

Using a similar argument as in Section A, we arrive at the following results

Lemma B.1. Suppose −2 < M < 0. Then, all the eigenvalues of G1 lie in the unit

circle for γ ∈ [0, γ∗∗), and G1 has a pair of conjugate roots, cos θ0± i sin θ0 for some

θ0 ∈ (0, π/2), when γ = γ∗∗(> 0).

Lemma B.2. Suppose ρ(γ)(cos θ(γ)± i sin θ(γ)) be the eigenvalues of G1 satisfying

ρ(γ∗∗) = 1 and θ(γ∗∗) = θ0. Then, Sign{ρ′(γ∗∗)} = Sign(1−mq).

It can be verified that mq < 1 and hence Sign{ρ′(γ∗∗)} > 0.

Theorem B.3. Assume −2 < M < 0. The equilibrium (p̄, p̄, 0, m̄) of Eq.(B.1) is

asymptotically stable if γ ∈ (0, γ∗∗), and Eq. (B.1) undergoes a Neimark-Sacker

bifurcation at γ = γ∗∗, that is, there is an isolated closed invariant curve near

the origin. Moreover, the bifurcation is forward(backward) if Sign{ρ′(γ∗∗)}/a2(0) <

0(Sign{ρ′(γ∗∗)}/a2(0) > 0), and the bifurcated closed invariant curve is stable(unstable)

if a2(0) < 0(a2(0) > 0).

To compute the first Lyapunov coefficient a2(0). The following quantities are

needed. The eigenvectors of J and J ′ associated with eiθ0 and e−iθ0 are

q =




G12

eiθ0−G11

1

0

0




, p = c




(1−δ)G11

e−iθ0−G11

1

0

0




, (B.6)

where

G11(γ
∗∗) =

1

δ
, G12(γ

∗∗) = −
γ∗∗µ(1−mq)

Q

at γ = γ∗∗, and

c =
(e−iθ0 −G11)

2

(1− δ)G11G12 + (e−iθ0 −G11)2
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The symmetric multilinear vector functions B(x, y) and C(x, y, z) of x, y, z ∈ R
4,

defined by the Tarlor expansion of (B.1) at the equilibrium, are

B1(x, y) =
∂2p′

∂p∂v
Σij∈(1,3)xiyj +

∂2p′

∂p∂m
Σij∈(1,4)xiyj +

∂2p′

∂u∂v
Σij∈(2,3)xiyj +

∂2p′

∂u∂m
Σij∈(2,4)xiyj

B2(x, y) =
∂2u′

∂p∂v
Σij∈(1,3)xiyj +

∂2u′

∂p∂m
Σij∈(1,4)xiyj +

∂2u′

∂u∂v
Σij∈(2,3)xiyj +

∂2u′

∂u∂m
Σij∈(2,4)xiyj

B3(x, y) =
∂2v′

∂p∂p
x1y1 +

∂2v′

∂p∂u
Σij∈(1,2)xiyj +

∂2v′

∂u∂u
x2y2

B4(x, y) =
∂2m′

∂p∂p
x1y1 +

∂2m′

∂p∂u
Σij∈(1,2)xiyj +

∂2m′

∂u∂u
x2y2

(B.7)

and

C1(x, y, z) =
∂3p′

∂p∂v∂v
Σijk∈(1,3,3)xiyjzk +

∂3p′

∂p∂v∂m
Σijk∈(1,3,4)xiyjzk

+
∂3p′

∂u∂v∂v
Σijk∈(2,3,3)xiyjzk +

∂3p′

∂u∂v∂m
Σijk∈(2,3,4)xiyjzk

C2(x, y, z) =
∂3u′

∂p∂v∂v
Σijk∈(1,3,3)xiyjzk +

∂3u′

∂p∂v∂m
Σijk∈(1,3,4)xiyjzk

+
∂3u′

∂u∂v∂v
Σijk∈(2,3,3)xiyjzk +

∂3u′

∂u∂v∂m
Σijk∈(2,3,4)xiyjzk

C3(x, y, z) =
∂3v′

∂p∂p∂v
Σijk∈(1,1,3)xiyjzk +

∂3v′

∂p∂p∂m
Σijk∈(1,1,4)xiyjzk

+
∂3v′

∂p∂u∂v
Σijk∈(1,2,3)xiyjzk +

∂3v′

∂p∂u∂m
Σijk∈(1,2,4)xiyjzk

+
∂3v′

∂u∂u∂v
Σijk∈(2,2,3)xiyjzk +

∂3v′

∂u∂u∂m
Σijk∈(2,2,4)xiyjzk

C4(x, y, z) =
∂3m′

∂p∂p∂v
Σijk∈(1,1,3)xiyjzk +

∂3m′

∂p∂p∂m
Σijk∈(1,1,4)xiyjzk

+
∂3m′

∂p∂u∂v
Σijk∈(1,2,3)xiyjzk +

∂3m′

∂p∂u∂m
Σijk∈(1,2,4)xiyjzk

+
∂3m′

∂u∂u∂v
Σijk∈(2,2,3)xiyjzk +

∂3m′

∂u∂u∂m
Σijk∈(2,2,4)xiyjzk

(B.8)
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All the possible second and third order partial derivatives of p′, u′, v′ and m′, which

are nonzero at the equilibrium, are given by

∂2p′

∂p∂v
= −

bµ(1 −mq)(γ + 1−R)

Q(1 + r2)
,

∂2p′

∂p∂m
=

µ(1− n0)

Q
[ρ(α−R)− (γ1 − R)]

∂2p′

∂u∂v
=

bµγ(1−mq)

Q(1 + r2)
,

∂2p′

∂u∂m
=

µγ(1− n0)

Q

∂2u′

∂p∂v
= (1− δ)

∂2p′

∂p∂v
,

∂2u′

∂p∂m
= (1− δ)

∂2p′

∂p∂m
,

∂2u′

∂u∂v
= (1− δ)

∂2p′

∂u∂v
,

∂2u′

∂u∂m
= (1− δ)

∂2p′

∂u∂m
,

∂2v′

∂p2
=

2(1− δ)

δ
,

∂2v′

∂p∂u
= −2(1− δ)

(
1 +

γµ(1−mq)

Q

)
,

∂2v′

∂u2
= 2δ(1− δ)

[
1 +

γµ(1−mq)

Q

]2
,

∂2m′

∂p2
=

2β

Q
(1− m̄2)(

1

δ
−R)[ρ(α− R)− (γ + 1−R)],

∂2m′

∂p∂u
=

γβ

Q
(1− m̄2)

{
(
1

δ
− R)− µ(1−mq)[ρ(α− R)− (γ + 1−R)]

}
,

∂2m′

∂u2
= −2(1 − m̄2)

µβγ2(1−mq)

Q2

(B.9)
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and

∂3p′

∂p∂v2
=

2b2µ(1−mq)(γ + 1− R)

Q(1 + r2)2
,

∂3p′

∂p∂v∂m
=

bµ(1− n0)(γ + 1− R)

Q(1 + r2)

∂3p′

∂u∂v2
= −

2b2γµ(1−mq)

Q(1 + r2)2
,

∂3p′

∂u∂v∂m
= −

bµγ(1 − n0)

Q(1 + r2)

∂3u′

∂p∂v2
= (1− δ)

∂3p′

∂p∂v2
,

∂3u′

∂p∂v∂m
= (1− δ)

∂3p′

∂p∂v∂m
,

∂3u′

∂u∂v2
= (1− δ)

∂3p′

∂u∂v2
,

∂3u′

∂u∂v∂m
= (1− δ)

∂3p′

∂u∂v∂m
,

∂3v′

∂p2∂v
= −

4bµ(1− δ)(1−mq)(γ + 1− R)

Q(1 + r2)
,

∂3v′

∂p2∂m
=

4µ(1− δ)(1− n0)

Q
[ρ(α− R)− (γ + 1− R)],

∂3v′

∂p∂u∂v
=

2bµδ(1− δ)(1−mq)

Q(1 + r2)

[
γ

δ
+ (γ + 1− R)

(
1 +

γµ(1−mq)

Q

)]
,

∂3v′

∂p∂u∂m
=

2µδ(1− δ)(1− n0)

Q

[
γ

δ
− [ρ(α−R)− (γ + 1− R)]

(
1 +

γµ(1−mq)

Q

)]
,

∂3v′

∂u2∂v
= −

4bγδµ(1− δ)(1−mq)

Q(1 + r2)

(
1 +

γµ(1−mq)

Q

)
,

∂3v′

∂u2∂m
= −

4γδµ(1− δ)(1− n0)

Q

(
1 +

γµ(1−mq)

Q

)
,

∂3m′

∂p2∂v
=

2bβ(1− m̄2)(γ + 1− R)

Q(1 + r2)

{
(
1

δ
−R)−

µ(1−mq)

Q
[ρ(α −R)− (γ + 1− R)]

}
,

∂3m′

∂p2∂m
=

2βµ(1− m̄2)(1− n0)

Q2
[ρ(α− R)− (γ + 1−R)]2,

∂3m′

∂p∂u∂v
=

bγβ(1− m̄2)

Q(1 + r2)

{
−
µ(1−mq)(γ + 1− R)

Q
− (

1

δ
−R)

+
µ(1−mq)

Q
[ρ(α− R)− 2(γ + 1− R)]

}
,

∂3m′

∂p∂u∂m
=

2µβγ(1− m̄2)(1− n0)

Q2
[ρ(α− R)− (γ + 1− R)] ,

∂3m′

∂u2∂v
=

4bγ2βµ(1− m̄2)(1−mq)

Q2(1 + r2)
,

∂3m′

∂u2∂m
=

2γ2βµ(1− m̄2)(1− n0)

Q2
,

(B.10)
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Then the first Lyapunov coefficient can be obtained according to the following for-

mula

a2(0) =
1

2
Re

{
e−iθ0[< p,C(q, q, q̄) > +2 < p,B(q, (I − J)−1B(q, q̄)) >

+ < p,B(q̄, (e2iθ0I − J)−1B(q, q)) >]
} (B.11)

where p, q, B and C are defined by (B.6), (B.7), (B.8) and I is a 4 × 4 identity

matrix.
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Mandelbrot, B. (1963), ‘The variation of certain speculative prices’, Journal of Business 36, 394–

419.

Westerhoff, F. (2004), ‘Multiasset market dynamics’, Macroeconomic Dynamics 8, 591–616.


	1. Introduction
	2. The Model
	3. Coexistence of the Nonlinear Deterministic Model
	3.1. No-switching Model
	3.2. The Switching Model
	3.3. The First Lyapunov Coefficient
	3.4. The Coexistence and Basin of Attraction

	4. Price behavior of the stochastic model
	5. Conclusion
	Appendix A.  Stability and Bifurcation Analysis of the Constant Market Fraction Model
	Appendix B.  Stability and Neimark-Sacker Bifurcation of the Evolution Model
	References

