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APPLICATION OF MAXIMUM LIKELIHOOD ESTIMATION TO

STOCHASTIC SHORT RATE MODELS

K. FERGUSSON AND E. PLATEN

Abstract. The application of maximum likelihood estimation is not well

studied for stochastic short rate models because of the cumbersome detail
of this approach. We investigate the applicability of maximum likelihood esti-

mation to stochastic short rate models. We restrict our consideration to three

important short rate models, namely the Vasicek, Cox-Ingersoll-Ross and 3/2
short rate models, each having a closed-form formula for the transition density

function. The parameters of the three interest rate models are fitted to US

cash rates and are found to be consistent with market assessments.

1. Introduction

A short rate model is a mathematical model of the instantaneous, continuously
compounded deposit rate in a specific currency. The most realistic proxy for the
short rate among investible securities is probably the overnight cash deposit rate,
expressed as a continuously compounded rate.

Short rates are typically modelled as stochastic processes and coverages of short
rate models can be found, for example, in Rebonato [1998] and Brigo and Mer-
curio [2006]. Previous work on testing models of the short rate has been done
by Aı̈t-Sahalia [1996] on seven-day Euro dollar deposit rates from 1st June 1973
to 25th February 1995, where the parameter estimates are obtained by minimising
the distance between the parametric density and the nonparametric density. Accu-
rate closed-form approximations to the transition density function of an arbitrary
diffusion is described by Aı̈t-Sahalia [1999]. The use of Gaussian estimators has
been proposed by Yu and Phillips [2001] as an improvement upon the Euler ap-
proximation schemes of Chan et al. [1992]. The use of quasi-maximum likelihood
estimation has been described in Treepongkaruna [2003], whereby an approximation
to the maximum likelihood estimates is obtained by maximising a function that is
related to the logarithm of the likelihood function, but is not equal to it. Other
approaches, such as Faff and Gray [2006], employ generalised method of moments
to estimate the parameters. Our approach is to find parameters which maximise
the likelihood. The short rate models considered in this article are specified by
SDEs with one noise source and with constant coefficients. They are chosen be-
cause they have explicit formulae for their transition density functions, leading to
original proofs of the closed-form formulae of parameter estimates and standard
errors for the Vasicek model.
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Table 1. Stochastic differential equations of short rate models.

Short Rate Model Dynamics
Vasicek drt = κ(r̄ − rt)dt+ σdZt
CIR drt = κ(r̄ − rt)dt+ σ

√
rtdZt

3/2-Model drt = (prt + qr2
t )dt+ σr

3/2
t dZt

The three models of the short rate considered in this article are the Vasicek,
Cox-Ingersoll-Ross and 3/2 models. The SDE of the short rate of each model is
shown in Table 1.

The Vasicek model is a linear mean reverting stochastic model which ensures that
interest rates adhere to a long run reference level. It allows for negative interest
rates.

The CIR model is a linear mean reverting stochastic model, which avoids the
possibility of negative interest rates experienced in the Vasicek model.

Finally we examine the 3/2 model which also prohibits negative interest rates
but is not linear mean reverting. As we will see, its inverse is linear mean reverting
and, thus, adheres to a long run reference level.

The availability of explicit formulae for the transition density functions makes
possible the fitting of each model using maximum likelihood estimation. For esti-
mating the drift parameters the length of the observation window is crucial. There-
fore, we fit each model to Shiller’s annual data set comprised of US one-year rates
from 1871 to 2012, given by Shiller [1989]. The use of the one-year deposit rate as
a proxy for the short rate is an assumption that is made here. The magnitude of
the biases of a short term deposit rate in lieu of the unobservable short rate was
investigated in Chapman et al. [1999], where it was found not to be economically
significant.

2. Review of Models

We review each of the three short rate models, showing the transition density
function.

2.1. Vasicek Short Rate Model. The Vasicek model was proposed in Vasicek
[1977], whereby the short rate is described by the SDE

(2.1) drt = κ(r̄ − rt)dt+ σdZt

for positive constants r̄ and σ and κ. The parameter κ denotes the speed of reversion
of the short rate rt to the mean reverting level r̄. The parameter r̄ denotes the
average short rate. The parameter σ is the instantaneous volatility of the short
rate. This model is a particular case of the Hull-White model whose drift and
diffusion parameters are made time dependent. Since we have long-dated contracts
in our focus we concentrate on using constant parameters.

This SDE (2.1) is the Ornstein-Uhlenbeck SDE whose explicit solution is ob-
tained by solving the SDE of qt = rt exp(κt)

(2.2) dqt = d(rt exp(κt)) = κ exp(κt)r̄dt+ exp(κt)σdZt.

Vasicek’s model was the first one to capture mean reversion, an essential charac-
teristic of the interest rate that sets it apart from simpler models. Thus, as opposed
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to stock prices, for instance, interest rates are not expected to rise indefinitely. This
is because at very high levels they would hamper economic activity, prompting a
decrease in interest rates. Similarly, interest rates are unlikely to decrease indefi-
nitely. As a result, interest rates move mainly in a range, showing a tendency to
revert to a long run value.

The drift factor κ(r̄ − rt) represents the expected instantaneous change in the
interest rate at time t. The parameter r̄ represents the long run reference value
towards which the interest rate reverts. Indeed, in the absence of uncertainty, the
interest rate would remain constant when it has reached rt = r̄. The parameter κ,
governing the speed of adjustment, needs to be positive to ensure stability around
the long term value. For example, when rt is below r̄, the drift term κ(r̄ − rt)
becomes positive for positive κ, generating a tendency for the interest rate to move
upwards.

The main disadvantage seems that, under Vasicek’s model, it is theoretically
possible for the interest rate to become negative. In the academic literature this
has been interpreted as an undesirable feature. However, on several occasions the
market generated in recent years some slightly negative interest rates, for example
in Switzerland and in Europe. The possiblity of negative interest rates is excluded
in the Cox-Ingersoll-Ross model (discussed in Section 2.2), the exponential Vasicek
model, see Brigo and Mercurio [2001], the model of Black et al. [1990] and the
model of Black and Karasinski [1991], among many others, see Brigo and Mercurio
[2006] for further discussions. The Vasicek model was further extended in the Hull-
White model, see Hull and White [1990], by allowing time dependence in the drift
parameters.

Being an Ornstein-Uhlenbeck process, the short rate rt satisfying the SDE (2.1)
has solution

(2.3) rt = rs exp(−κ(t− s)) + r̄(1− exp(−κ(t− s))) + σ

∫ t

s

exp(−κ(t− u))dZu

for times s and t with 0 ≤ s < t and for positive constants r̄, κ and σ. Here Z is
the Wiener process in (2.1).

As is the case for the Ho-Lee and Hull-White models, the transition density
function of the Vasicek short rate is that of a normal distribution.

For times s and t with 0 ≤ s < t ≤ T the transition density of the short rate rt
in (2.1) is given by

pr(s, rs, t, rt) =
1√

2πσ2 1−exp(−2κ(t−s))
2κ

(2.4)

× exp

−1

2

rt − rs exp(−κ(t− s))− r̄(1− exp(−κ(t− s)))√
σ2 1−exp(−2κ(t−s))

2κ

2
 .

As for other Gaussian short rate models such as the Ho-Lee model and the Hull-
White model, a potential disadvantage of the Vasicek model is the possibility of
negative interest rates.
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2.2. Cox-Ingersoll-Ross Short Rate Model. The Cox-Ingersoll-Ross (CIR)
model was introduced in 1985 by Cox et al. [1985] as an alternative to the Va-
sicek model. A good explanation of the model is given in Hull [1997]. The short
rate is described by the SDE

(2.5) drt = κ(r̄ − rt)dt+ σ
√
rtdZt

for positively valued constants r̄, σ and κ. A zero valued short rate is avoided
because we set κr̄ > 1

2σ
2. The parameter κ denotes the speed of reversion of the

short rate rt to the mean reverting level r̄. As in the Ho-Lee, Hull-White and
Vasicek models, r̄ can be thought of as a smoothed average short rate which is
targeted by the central bank.

The CIR model has the advantage over the Ho-Lee, Hull-White and Vasicek
models that for the above conditions on the parameters the interest rates can never
be negative.

We can remove the occurrence of rt in the drift term of (2.5) by means of the
integrating factor exp(κt), giving the SDE for qt = rt exp(κt) in the form

(2.6) dqt = κ exp(κt)r̄dt+ exp(κt/2)σ
√
qtdZt.

We now remove the occurrence of qt in the diffusion coefficient by making the
transformation

√
qt for which we have the SDE

d
√
qt =

1

2
√
qt
dqt −

1

8
√
q3
t

d[q]t(2.7)

=
σ2 exp(κt)

8
√
qt

(
4κr̄

σ2
− 1

)
dt+

1

2
exp(κt/2)σdZt.

An explicit solution to (2.5) is

(2.8) rt = exp(−κt)
ν∑
i=1

(λ(i) + Z(i)
ϕt )2

where λ(1), . . . , λ(ν) are chosen such that r0 =
∑ν
i=1(λ(i))2, ϕt = ϕ0+ 1

4σ
2(exp(κt)−

1)/κ and ν is an integer such that ν = 4κr̄
σ2 > 2.

The transition density function of the short rate process in (2.5) is that of the
non-central chi-square distribution, which, for times s and t with 0 ≤ s < t, is given
by

pr(s, rs, t, rt) =
1

2(ϕt − ϕs) exp(−κt)

(
rt exp(κt)

rs exp(κs)

) 1
2 ( ν2−1)

(2.9)

× exp

(
−1

2

rs exp(κs) + rt exp(κt)

(ϕt − ϕs)

)
I ν

2−1

(√
rsrt exp(κ(s+ t))

(ϕt − ϕs)

)
,

where ϕt = ϕ0 + 1
4σ

2(exp(κt)− 1)/κ and ν = 4κr̄
σ2 and where

(2.10) Iν(x) =

∞∑
i=0

1

i!Γ(i+ ν + 1)

(x
2

)2i+ν

is the power series expansion of the modified Bessel function of the first kind.
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Restated, for t > s the conditional random variable

(2.11)
exp(κt)

ϕt − ϕs
rt

given rs has a non-central chi-squared distribution with ν = 4κr̄/σ2 degrees of
freedom and non-centrality parameter λ = rs exp(κs)/(ϕt − ϕs), namely

(2.12)
exp(κt)

ϕt − ϕs
rt ∼ χ2

ν,rs exp(κs)/((ϕt−ϕs)).

2.3. The 3/2 Short Rate Model. The 3/2 model was first derived in Platen
[1999] and studied by Ahn and Gao [1999], the SDE of which is

(2.13) drt = (prt + qr2
t )dt+ σr

3/2
t dZt,

where q < σ2/2 and σ > 0 so as to avoid explosive values of rt. The 3/2 power
law for the volatility in this model was shown in Chan et al. [1992] to be the best
fitting power law. Also the nonlinear drift term of this model could not be rejected
in Aı̈t-Sahalia [1996].

Setting Rt = 1/rt we obtain the SDE

(2.14) dRt = (σ2 − q − pRt)dt− σ
√
RtdZt,

which shows that Rt = 1/rt follows a square root process. This fact makes the
derivation of the transition density function of the 3/2 model straightforward.

We remark that it is possible to generalise the 3/2 model to allow for an arbitrary
exponent of the short rate in the diffusion term by modelling the short rate as a
power transformation of an underlying stochastic process obeying a CIR-type SDE.
The maximum likelihood estimation of parameters could then be performed over
four parameters and yielding an improved fit. However, we confine our attention
to the 3/2 model in this article.

The solution to the SDE (2.13) is

(2.15) rt = exp(pt)/

ν∑
i=1

(λ(i) + Z(i)
ϕt )2

where ν is an integer such that ν = 4(σ2−q)
σ2 , λ(1), . . . , λ(ν) are chosen such that

r0 = 1/
∑ν
i=1(λ(i))2 and where ϕt = ϕ0 + 1

4σ
2(exp(pt)− 1)/p.

The transition density function of the 3/2 short rate model in (2.13) is

pr(s, rs, t, rt) =
r−2
t

2(ϕt − ϕs) exp(−pt)

(
r−1
t exp(pt)

r−1
s exp(ps)

) 1
2 ( ν2−1)

(2.16)

× exp

(
−1

2

r−1
s exp(ps) + r−1

t exp(pt)

(ϕt − ϕs)

)

× I ν
2−1


√
r−1
s r−1

t exp(p(s+ t))

(ϕt − ϕs)

 ,

where ϕt = ϕ0 + 1
4σ

2(exp(pt)− 1)/p and ν = 4(1− q/σ2) and where

(2.17) Iν(x) =

∞∑
i=0

1

i!Γ(i+ ν + 1)

(x
2

)2i+ν
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is the power series expansion of the modified Bessel function of the first kind as in
(2.10).

Alternatively stated, the conditional random variable

(2.18)
exp(pt)

rt(ϕt − ϕs)

given rs has a non-central chi-squared distribution with ν = 4(σ2 − q)/σ2 degrees
of freedom and non-centrality parameter λ = exp(ps)/(rs(ϕt − ϕs)), namely

(2.19)
exp(pt)

rt(ϕt − ϕs)
∼ χ2

ν,exp(ps)/(rs(ϕt−ϕs)),

given rs where ϕt = ϕ0 + 1
4σ

2(exp(pt)− 1)/p.

3. Maximum Likelihood Estimation Method

The maximum likelihood estimation is demonstrated for each of the three short
rate models.

3.1. Vasicek Short Rate Model. Estimating the parameters of the Vasicek
model is achieved using maximum likelihood estimation. To avoid any potential
confusion we derive the estimators showing all steps. Because the transition density
function of the Vasicek short rate is normal it suffices to obtain formulae for the
conditional mean and variance, which are given as

ms(t) = r̄κB(s, t) + rs(1− κB(s, t))(3.1)

vs(t) = σ2

(
B(s, t)− 1

2
κB(s, t)2

)
,

where

(3.2) B(s, t) = (1− exp(−κ(t− s)))/κ.

Therefore our log-likelihood function under the Vasicek model on the set of
observed short rates rti , for i = 0, 2, . . . , n is

(3.3) `(r̄, κ, σ) = −1

2

n∑
i=1

(
log(2πvti−1(ti)) +

(rti −mti−1
(ti))

2

vti−1
(ti)

)
,

where

mti−1(ti) = r̄κB(ti−1, ti) + rti−1(1− κB(ti−1, ti)),(3.4)

vti−1
(ti) = σ2

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)
,

and where B(s, t) is as in (3.2).
The following theorem provides explicit maximum likelihood estimates (MLEs)

of r̄, κ and σ for a fixed value of r̄. Such formulae are supplied in Liptser and
Shiryaev [2001] but we supply them explicitly here.
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Theorem 1. Assume that the times t0 < t1 < . . . < tn are equidistant with spacing
δt. Then the MLEs of r̄, κ and σ are given by

r̄ =
S1S00 − S0S01

S0S1 − S2
0 − S01 + S00

,(3.5)

κ =
1

δt
log

S0 − r̄
S1 − r̄

,

σ2 =
1

nβ(1− 1
2κβ)

n∑
i=1

(rti −mti−1
(ti))

2,

where

S0 =
1

n

n∑
i=1

rti−1 , S1 =
1

n

n∑
i=1

rti ,(3.6)

S00 =
1

n

n∑
i=1

rti−1rti−1 , S01 =
1

n

n∑
i=1

rti−1rti ,

and β = 1
κ (1− exp(−κδt)).

Proof. See Appendix. �

As a result, Theorem 1 supplies the explicit MLEs (ˆ̄r, κ̂, σ̂), denoted by the
three-vector

(3.7) θ̂
˜V asicek

=

 ˆ̄r
κ̂
σ̂

 .

To provide standard errors of these MLEs, we note that their variances satisfy
the Cramér-Rao inequality

(3.8) V AR((ˆ̄r, κ̂, σ̂)) ≥ 1

I(r̄, κ, σ)
,

where I(r̄, κ, σ) is the Fisher information matrix. As the number of observations
approaches infinity the variance is asymptotic to the lower bound. Also the Fisher
information matrix is approximated by the observed Fisher information matrix

(3.9) I(r̄, κ, σ) ≈ I(ˆ̄r, κ̂, σ̂) = −∇2`(ˆ̄r, κ̂, σ̂).

The following theorem supplies the observed Fisher information matrix in respect
of MLEs of the Vasicek model. As far as we can ascertain, there is no explicit
statement of the Fisher Information Matrix for the Vasicek model in the literature.

Theorem 2. The observed Fisher information matrix in respect of the MLEs in
Theorem 1 is given by

(3.10)

 nκ2β2

σ2(β+ 1
2κβ

2)
0 0

0 e 0
0 0 2n

σ2

 ,

where β = 1
κ (1−exp(−κδt)) and we have assumed that the times t0 < t1 < . . . < tn

are equidistant with spacing δt.

Proof. See Appendix. �
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3.2. Cox-Ingersoll-Ross Short Rate Model. Estimating the parameters of the
CIR model is achieved using the maximum likelihood method. The log-likelihood
function is given by

(3.11) `(r̄, κ, σ) =

n∑
i=1

log pr(ti−1, rti−1
, ti, rti),

where the transition density function pr is as in (2.9). Employing a gradient ascent
algorithm in log parameter space ensures positivity of the estimates. The initial
estimate u

˜0

of the log parameter triple is computed as

(3.12) u
˜0

= log


θ̂
˜

(1)

V asicek

θ̂
˜

(2)

V asicek

θ̂
˜

(3)

V asicek

/

√
θ̂
˜

(1)

V asicek

 ,

derived from the θ̂
˜V asicek

triple in (3.7). Subsequent approximations are iteratively

obtained using the formula

(3.13) u
˜k

= u
˜k−1

+
1

‖∇`(u
˜k−1

)‖2
∇`(u

˜k−1

),

for k ≥ 1 and where ` is the log likelihood function in terms of the log parameters.

3.3. Cox-Ingersoll-Ross Model with a Log-Normal Approximation. Poulsen
[1999] shows that good estimates can be obtained by approximating the transition
density of the CIR process with a Gaussian distribution having the same mean
and variance as the transition density function. However, our fitting of the CIR
model to the data suggests that that the Gaussian distribution is inadequate as an
approximation and further, we find that similar estimates to those derived using
the exact transition density can be obtained with the lognormal approximation by
matching first and second moments. This is not surprising given that the lognormal
distribution is positively skewed and is defined for positive values of the random
variable, as is the case for the non-central chi-squared distribution.

For the CIR process in (2.5) and times s, t with s ≤ t the mean and variance of
rt given rs are given by

ms(t) = r̄κB(s, t) + rs(1− κB(s, t))(3.14)

vs(t) = σ2

(
1

2
κB(s, t)2r̄ + (B(s, t)− κB(s, t)2)rs

)
,

where

(3.15) B(s, t) = (1− exp(−κ(t− s)))/κ.

We approximate the transition density of the CIR process from time s to time t by
a lognormal distribution that matches the mean and variance. It is straightforward

to show that the approximating lognormal distribution has parameters µ
(LN)
s (t),
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σ
(LN)
s (t) given by

µ(LN)
s (t) = logms(t)−

1

2
(σ(LN)
s (t))2(3.16)

(σ(LN)
s (t))2 = log

(
1 +

vs(t)

ms(t)2

)
where

mti−1
(ti) = r̄κB(ti−1, ti) + rti−1

(1− κB(ti−1, ti))(3.17)

vti−1(ti) = σ2

(
1

2
κB(ti−1, ti)

2r̄ + (B(ti−1, ti)− κB(ti−1, ti)
2)rti−1

)
and B(s, t) is as in (3.15).

Therefore, our approximating log-likelihood function on the set of observed short
rates rti , for i = 0, 2, . . . , n is

(3.18) `(r̄, κ, σ) = −1

2

n∑
i=1

(
log(2πvti−1(ti)) + log rti +

(log rti − µ
(LN)
ti−1

(ti))
2

(σ
(LN)
ti−1

(ti))2

)
.

3.4. 3/2 Short Rate Model. Estimating the parameters of the 3/2 model is
achieved using the maximum likelihood method. The log-likelihood function is
given by

(3.19) `(p, q, σ) =

n∑
i=1

log pr(ti−1, rti−1
, ti, rti),

where the transition density function pr is as in (2.16). Exploiting the fact that
the 3/2 short rate model is a CIR model of the reciprocal of the short rate, we
compute initial estimate u

˜0

under the CIR short rate model using the reciprocal

of the elements in the data set. The corresponding (p̂, q̂, σ̂) triple for the 3/2 short
rate model is computed as

(3.20)

 p̂
q̂
σ̂

 =


u
˜

(2)

0

(u
˜

(3)

0

)2 − u
˜

(1)

0

u
˜

(2)

0

u
˜

(3)

0

 .

In the same vein as that done for the CIR model, a gradient ascent algorithm in
log parameter space converges to the solution.

4. Numerical Results of Method

Maximum likelihood estimation is applied to the annual series of one-year deposit
rates from 1871 to 2012, given by Shiller [1989]. The numerical results are shown
in this section for each model and comparisons of goodness-of-fits are made.
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Figure 1. Actual short rate and fitted Vasicek mean reverting
level for US cash rates.
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4.1. Vasicek Model. We fit the Vasicek model to the data set. We obtain the
MLEs, with standard errors shown in brackets,

r̄ = 0.042994 (0.0080023)(4.1)

κ = 0.162953 (0.053703)

σ = 0.015384 (0.00099592).

We show the parameter estimate for the mean reverting level r̄ alongside the
historical short rates in Figure 1. We note that for the periods after 1930 a time
dependent reference level may be appropriate but we deliberately keep constant
parameters in our consideration.

One way of assessing the goodness of fit of the parameter estimates for σ and
κ in a graphical fashion is to compare the theoretical quadratic variation of qt =
rt exp(κt) with the observed quadratic variation.

From the SDE (2.2) the theoretical quadratic variation of qt = rt exp(κt) is

(4.2) [q]t = σ2

∫ t

0

exp(2κs)ds = σ2 exp(2κt)− 1

2κ

and the observed quadratic variation of q is computed using the formula

(4.3) [q]t ≈
∑
j:tj≤t

(rtj exp(κtj)− rtj−1 exp(κtj−1))2.
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Figure 2. Logarithm of quadratic variation of exp(κt)rt.
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The logarithm of the observed quadratic variation of qt = rt exp(κt) in (4.3) is
shown alongside the logarithm of the fitted quadratic variation function (4.2) in
Figure 2. We note that we have visually a good fit.

4.2. Cox-Ingersoll-Ross Model. We fit the CIR model to the data set, giving
the maximum likelihood estimates

r̄ = 0.041078 (0.011421)(4.4)

κ = 0.092540 (0.038668)

σ = 0.064670 (0.0040761),

where the standard errors are shown in brackets.
In Figure 3 we plot the actual short rate versus the fitted mean reversion level.

We obtain a similar reference level as for the Vasicek model, see (4.1).

The logarithm of the empirically calculated quadratic variation of
√
rt exp(κt)

is shown alongside the logarithm of the theoretically computed quadratic variation
function, [

√
q]t = 1

4σ
2(exp(κt) − 1)/κ, in Figure 4. We note visually a reasonable

long term fit.
We remark that substituting the values for r̄, κ and σ given in (4.4) into the

equation ν = 4κr̄
σ2 gives ν = 4 × 0.041078 × 0.092540/(0.064670)2 = 3.6357, which

could be approximated by ν ≈ 4.
Unlike the Vasicek model, under the CIR model there is no possibility of negative

interest rates, as demonstrated by (2.8).
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Figure 3. Actual short rate and fitted CIR mean reversion level
for US cash rates.
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4.3. Cox-Ingersoll-Ross Model with a Log-Normal Approximation. We fit
the CIR model to the data set, giving the maximum likelihood estimates

r̄ = 0.042470 (0.010935)(4.5)

κ = 0.102677 (0.041105)

σ = 0.070948 (0.0041198).

We note that these estimates are close to those in (4.4).

4.4. The 3/2 Short Rate Model. We fit the 3/2 model to the data set using the
maximum likelihood method giving the parameter values

p = 0.038506 (0.042284)(4.6)

q = 0.877908 (1.177853)

σ = 2.0681 (0.13241),

where the standard errors are shown in brackets.
The mean reverting level of Rt = 1/rt in (2.14) is given by

(4.7)
σ2 − q
p

.

The inverse of this level is not the mean reverting level of rt. The limiting distri-
bution of rt/p as t → ∞ is an inverse chi-squared distribution with ν degrees of
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Figure 4. Logarithm of quadratic variation of
√

exp(κt)rt for US
cash rates.
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freedom and the mean of rt as t→∞ is deduced to be

(4.8)
p/σ2

ν − 2
=

p

2σ2 − 4q
.

In Figure 5 the graph of the short rate is shown along with the implied reverting
level, the mean, of 0.03054 of the 3/2 model. The dimension of the square root
process 1/rt is here estimated as ν = 4(σ2 − q)/σ2 ≈ 3.1790, which is reasonably
close to three.

4.5. Comparing Fits. The three models considered in this article have explicit
formulae for their transition density functions and this has allowed the fitting of
parameters using maximum likelihood estimation. The Vasicek model is most easily
fitted to the data because it has closed form expressions for the parameter estimates.
In contrast, the CIR and 3/2 models each require iterative algorithms to find the
best fitting parameters.

In fitting the three models to the US cash rates we can identify which model
provides the best fit to the data by looking at the value of the maximum likeli-
hood function. Since each of the models has the same number of parameters it is
not necessary to use the Akaike Information Criterion, as given in Burnham and
Anderson [2004] for example. The log likelihood value of each model is shown in
Table 2, where the CIR model appears to be the best fitting model.

To establish further whether the CIR model is a good fitting model we con-
sider Pearson’s goodness-of-fit chi-squared statistic, described in Kendall and Stuart



14 K. FERGUSSON AND E. PLATEN

Figure 5. The fitted reverting level under the 3/2 model.
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Table 2. Values of the log likelihood in respect of various short
rate models (US cash rates).

Model Parameters Log Likelihood

Vasicek 3 399.7019
CIR 3 427.8116
3/2 3 406.2713

[1961], given by

(4.9) S =

k∑
i=1

(Oi − Ei)2/Ei,

where Oi is the number of observations in category i and Ei is the correspond-
ing expected number of observations according to the hypothesised model. The
test statistic S is asymptotically distributed as χ2

ν , where ν equals the number of
categories k less the number of constraints and estimated parameters of the model.

Given a time series of interest rates {rtj : j = 1, 2, . . . , n} and given a hypothe-
sised transition density function with corresponding cumulative distribution func-
tion F we compute the n− 1 quantiles qj = F (tj−1, rtj−1

, tj , rtj ) for j = 2, 3, . . . , n.
Under the hypothesised model the quantiles qj are independent and uniformly dis-
tributed. These quantiles are graphed against those of the uniform distribution in
Figure 6. One notes that the CIR model remains in some sense visually closest over
the [0, 1] interval.
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Figure 6. Comparison of quantile-quantile plots of short rate
models (Shiller US data).
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A similar comparison is shown in Figure 7 for the monthly data series of one-year
US Treasury bond yields from January 1962 to June 2014, sourced from the US
Federal Reserve Bank website, where a similar conclusion follows.

For a fixed integer k satisfying 2 ≤ k ≤ (n− 1)/5 we partition the unit interval
into k equally sized subintervals. Hence we compute the number of observations
Oi in the i-th subinterval ((i − 1)/k, i/k] for i = 1, 2, . . . , k. The corresponding
expected number of observations Ei in the i-th subinterval is (n − 1)/k. Our test
statistic is thus computed as

(4.10) S = k

k∑
i=1

(Oi − (n− 1)/k)2/(n− 1),

which is approximately chi-squared distributed with ν = k−1−nparameters degrees
of freedom.

The value of the Pearson’s chi-squared statistic and corresponding p-value for
each model and for a range of partition sizes is shown in Table 3. It is evident
that the 3/2 model and, for some partition sizes, the Vasicek model can be rejected
at the 1% level of significance and that the CIR model cannot be rejected at this
level of significance. We conclude that the CIR model cannot be rejected as a valid
model whereas we can reject the validity of the Vasicek model and the 3/2 model.

Another test of goodness-of-fit is the Kolmogorov-Smirnov test, as described
by Stephens [1974]. Under the null hypothesis that the set of n observations
u1, u2, . . . , un emanate from a uniform distribution, the Kolmogorov test statistic
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Figure 7. Comparison of quantile-quantile plots of short rate
models (US Federal Reserve monthly data).
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Table 3. Pearson’s chi-squared statistic with p-values shown in
brackets in respect of various short rate models (US cash rates).

k ν Vasicek CIR 3/2

5 1 8.7143 (0.3157%) 0.5714 (44.9703%) 30.6429 (0.0000%)
10 6 13.7143 (3.2996%) 1.8571 (93.2361%) 35.5714 (0.0003%)
15 11 21.7857 (2.6087%) 10.2143 (51.1220%) 37.6429 (0.0090%)
20 16 34.0000 (0.5433%) 11.1429 (80.0580%) 42.5714 (0.0324%)
25 21 30.3571 (8.5044%) 18.9286 (58.9720%) 41.7857 (0.4476%)

is

(4.11) Dn = sup
x∈{u1,u2,...,un}

max
(
F (n)(x)− x, x− F (n)(x)− 1

n

)
and the modified test statistic Kn =

√
nDn has the limiting distribution function,

as n→∞,

(4.12) F (x) =

√
2π

x

∞∑
k=1

exp(−(2k − 1)2π2/(8x2)),

where

(4.13) F (n)(x) =
1

n

n∑
i=1

1ui≤x
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Table 4. Kolmogorov-Smirnov test statistics in respect of various
short rate models (US cash rates).

Vasicek CIR 3/2

Dn 0.08468 0.04526 0.17092
n 141 141 141
Kn 1.00556 0.53749 2.02958
F (Kn) 0.73592 0.06518 0.99947
p-value 0.26408 0.93482 0.00053

Table 5. Anderson-Darling test statistics in respect of various
short rate models (US cash rates).

Vasicek CIR 3/2
S -142.50533 -141.28374 -146.21838
n 141 141 141
A2 = −n− S 1.50533 0.28374 5.21838
A 1.22692 0.53267 2.28438
p-value 0.1898 0.9546 0.0015

is the empirical cumulative distribution function. We compute the test statistics in
Table 4 where we see that only the 3/2 short rate model can be rejected at the 1%
level of significance.

Finally, another test of goodness-of-fit is the Anderson-Darling test, as described
in Stephens [1974]. Under the null hypothesis that the set of n observations
u1, u2, . . . , un emanate from a uniform distribution, the test statistic A is given
by

(4.14) A =
√
−n− S,

where

(4.15) S =

n∑
i=1

2i− 1

n

(
log ui + log(1− un+1−i)

)
.

We compute the test statistics in Table 5 where, as for the Kolmogorov-Smirnov
test, we see that only the 3/2 short rate model can be rejected at the 1% level of
significance. The p-values of the test statistic A in Table 5 were estimated using
sample Anderson-Darling statistics of 1000 simulations of sets of 141 uniformly
distributed observations.

5. Conclusions

In this article we have demonstrated applicability of the maximum likelihood
estimation of parameters of short rate models. The fitted parameters fitted to the
data set have values consistent with market assessments. Clearly the possibility of
negative interest rates under the Vasicek model makes it less preferable to the other
two models which preclude such a possibility. An example of a modification to the
Vasicek model which precludes negative interest rates is the exponential Vasicek
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model. Also, we have demonstrated several ways of assessing the goodness-of-fits
of short rate models.

Appendix: Proofs of Results on the Vasicek Model

Here we present proofs of results in Section 2.1.

Proof of Theorem 1. Differentiating (3.3) with respect to r̄ we have

∂

∂r̄
`(r̄, κ, σ) = −1

2

n∑
i=1

2(rti −mti−1(ti))

vti−1(ti)
×−∂mti

∂r̄
(A1)

= κ

n∑
i=1

(rti −mti−1(ti))B(ti−1, ti)

vti−1
(ti)

,

where we have used the fact that
∂mti−1

(ti)

∂r̄ = κB(ti−1, ti). Equating (A1) to zero
gives the equation

(A2)

n∑
i=1

(rti −mti−1(ti)) = 0

which, using (3.1), is equivalent to

(A3)

n∑
i=1

(rti − r̄) =

n∑
i=1

(rti−1
− r̄)(1− κB(ti−1, ti)).

Since the sampling times ti are equidistant we can solve for κ, giving the solution

(A4) κ =
1

δt
log

∑n
i=1(rti−1 − r̄)∑n
i=1(rti − r̄)

.

Differentiating (3.3) with respect to σ we have

∂

∂σ
`(r̄, κ, σ) = −1

2

n∑
i=1

(
1

vti−1
(ti)
−

(rti −mti−1
(ti))

2

vti−1
(ti)2

)
∂vti−1

(ti)

∂σ
(A5)

= −
n∑
i=1

(
1

vti−1
(ti)
−

(rti −mti−1
(ti))

2

vti−1
(ti)2

)
vti−1

(ti)

σ

= − 1

σ

n∑
i=1

(
1−

(rti −mti−1
(ti))

2

vti−1
(ti)

)
,

where we have used the fact that
∂vti−1

(ti)

∂σ = 2
vti−1

(ti)

σ . Equating (A5) to zero
gives the equation

(A6)

n∑
i=1

(rti −mti−1
(ti))

2

vti−1
(ti)

=

n∑
i=1

1

which, using the equation for vti−1
(ti) in (3.1), is equivalent to

(A7) σ2 =
1

n

n∑
i=1

(rti −mti−1
(ti))

2

B(ti−1, ti)(1− 1
2κB(ti−1, ti))

.
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Since the sampling times ti are equidistant we can simplify the equation for σ2 to

(A8) σ2 =
1

nβ(1− 1
2κβ)

n∑
i=1

(rti −mti−1
(ti))

2.

Differentiating (3.3) with respect to κ we have

∂

∂κ
`(r̄, κ, σ) = −1

2

n∑
i=1

1

vti

∂vti
∂κ

+
∂

∂κ

(
(rti −mti−1(ti))

2

vti−1(ti)

)
(A9)

= −1

2

n∑
i=1

{
1

vti−1(ti)

∂vti−1(ti)

∂κ

+
2(rti −mti−1(ti))

vti−1
(ti)

×
(
−
∂mti−1

(ti)

∂κ

)
−

(rti −mti−1(ti))
2

vti−1(ti)2
×
∂vti−1(ti)

∂κ

}
= −1

2

n∑
i=1

1

vti−1(ti)

∂vti−1(ti)

∂κ

(
1−

(rti −mti−1(ti))
2

vti−1(ti)

)
−

2(rti −mti−1(ti))

vti−1
(ti)

∂mti−1(ti)

∂κ
.

To simplify (A9) we determine expressions for
∂vti−1

(ti)

∂κ and
∂mti−1

(ti)

∂κ . Firstly,

∂vti
∂κ

=
∂

∂κ

{
σ2

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)}
(A10)

= σ2

(
∂B(ti−1, ti)

∂κ
− 1

2
B(ti−1, ti)

2 − κB(ti−1, ti)
∂B(ti−1, ti)

∂κ

)
.

We note that

∂(κB(ti−1, ti))

∂κ
=
∂(1− exp(−κ(ti − ti−1)))

∂κ
(A11)

= (ti − ti−1) exp(−κ(ti − ti−1))

= (ti − ti−1)(1− κB(ti−1, ti))

and, therefore,

∂B(ti−1, ti)

∂κ
=

1

κ

(
∂(κB(ti−1, ti))

∂κ
−B(ti−1, ti)

)
(A12)

=
1

κ

(
(ti − ti−1)(1− κB(ti−1, ti))−B(ti−1, ti)

)
.
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Hence (A10) becomes

∂vti
∂κ

= σ2

(
− 1

2
B(ti−1, ti)

2 + (1− κB(ti−1, ti))
∂B(ti−1, ti)

∂κ

)
(A13)

= σ2

{
− 1

2
B(ti−1, ti)

2

+ (1− κB(ti−1, ti))
1

κ

(
(ti − ti−1)(1− κB(ti−1, ti))−B(ti−1, ti)

)}
= σ2

(
− 1

2
B(ti−1, ti)

2

+
ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
B(ti−1, ti)(1− κB(ti−1, ti))

)
= σ2

(
− 1

2
B(ti−1, ti)

2

+
ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
B(ti−1, ti) +B(ti−1, ti)

2)

)
= σ2

(
ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
B(ti−1, ti) +

1

2
B(ti−1, ti)

2)

)
= σ2 ti − ti−1

κ
(1− κB(ti−1, ti))

2 − σ2

κ

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)
= σ2 ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
vti .

Secondly,

∂mti−1
(ti)

∂κ
=

∂

∂κ

(
rs + (r̄ − rs)κB(ti−1, ti)

)
(A14)

= (r̄ − rs)(ti − ti−1)(1− κB(ti−1, ti))

= −(ti − ti−1)(mti−1(ti)− r̄).

Substituting (A13) and (A14) into (A9) gives

∂

∂κ
`(r̄, κ, σ) = −1

2

n∑
i=1

{
1

vti−1
(ti)

(
σ2 ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
vti−1

(ti)

)(A15)

×
(

1−
(rti −mti−1

(ti))
2

vti−1
(ti)

)
+

2(rti −mti−1
(ti))

vti−1
(ti)

(ti − ti−1)(mti−1
(ti)− r̄)

}
.

If the right hand side of (A5) is zero, then (A15) simplifies to

∂

∂κ
`(r̄, κ, σ) = −1

2

n∑
i=1

2(rti −ti−1 (ti))

vti−1
(ti)

(ti − ti−1)(mti−1
(ti)− r̄)(A16)

= δt
1

σ2(β + 1
2κβ

2)

n∑
i=1

(rti −mti−1
(ti))(mti−1

(ti)− r̄).
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Hence ∂
∂κ`(r̄, κ, σ) = 0 is equivalent to

0 =

n∑
i=1

(rti −mti−1
(ti))(mti−1

(ti)− r̄)(A17)

=

n∑
i=1

(rti − r̄ − (1− κβ)(rti−1
− r̄))(rti−1

− r̄)(1− κβ)

from which we have

(A18) 1− κβ =

∑n
i=1(rti − r̄)(rti−1 − r̄)∑n

i=1(rti−1 − r̄)2
.

Thus in addition to (A3), we have an expression for 1−κβ in (A18) and this allows
us to solve explicitly for r̄. �

Proof of Theorem 2. We compute the second order partial derivatives of the log-
likelihood function. Differentiating (A1) with respect to r̄ gives

∂2`

∂r̄2
=

∂

∂r̄

{
κ

n∑
i=1

(rti −mti−1(ti))B(ti−1, ti)

vti−1
(ti)

}
(A19)

= −κ2
n∑
i=1

B(ti−1, ti)
2

vti−1
(ti)

.

Differentiating (A1) with respect to σ gives

∂2`

∂σ∂r̄
=

∂

∂σ

{
κ

n∑
i=1

(rti −mti−1(ti))B(ti−1, ti)

vti−1(ti)

}
(A20)

= −2κ

σ

n∑
i=1

(rti −mti−1
(ti))B(ti−1, ti)

vti−1
(ti)

.

At the point of maximum likelihood the right hand side of (A1) vanishes and
therefore so does the right hand side of (A20).

Differentiating (A1) with respect to κ gives

∂2`

∂κ∂r̄
=

∂

∂κ

{
κ

n∑
i=1

(rti −mti−1
(ti))B(ti−1, ti)

vti−1
(ti)

}
(A21)

= −2κ

σ

n∑
i=1

(rti −mti−1
(ti))B(ti−1, ti)

vti−1
(ti)

.

At the point of maximum likelihood the right hand side of (A1) vanishes and
therefore so does the right hand side of (A21).

Differentiating (A5) with respect to σ gives

∂2`

∂σ2
=

∂

∂σ

{
− 1

σ

n∑
i=1

(
1−

(rti −mti−1
(ti))

2

vti−1(ti)

)}
(A22)

=
1

σ2

n∑
i=1

(
1− 3

(rti −mti−1
(ti))

2

vti−1(ti)

)
.

At the point of maximum likelihood the right hand side of (A5) vanishes and
therefore at this point of maximum likelihood the right hand side of (A22) becomes
− 2n
σ2 .



22 K. FERGUSSON AND E. PLATEN

Differentiating (A5) with respect to κ gives

∂2`

∂κ∂σ
=

∂

∂κ

{
− 1

σ

n∑
i=1

(
1−

(rti −mti−1
(ti))

2

vti−1(ti)

)}
(A23)

=
1

σ

n∑
i=1

∂

∂κ

(
(rti −mti−1(ti))

2

vti−1(ti)

)
.

At the point of maximum likelihood the right hand side of (A9) vanishes and
therefore at this point of maximum likelihood we have

(A24)

n∑
i=1

∂

∂κ

(
(rti −mti−1(ti))

2

vti−1(ti)

)
=

n∑
i=1

1

vti−1(ti)

∂vti−1(ti)

∂κ
.

Thus (A23) becomes

(A25)
∂2`

∂κ∂σ
= − 1

σ

n∑
i=1

1

vti−1
(ti)

∂vti−1
(ti)

∂κ
.

From (A13) we have

(A26)
1

vti−1(ti)

∂vti−1(ti)

∂κ
= − 1

κ
+
ti − ti−1

κ

(1− κB(ti−1, ti))
2

B(ti−1, ti)− 1
2κB(ti−1, ti)2

�
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