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Abstra
t

In industrial appli
ations, optimal 
ontrol problems frequently ap-

pear in the 
ontext of de
isions-making under in
omplete information.

In su
h framework, de
isions must be adapted dynami
ally to a

ount

for possible regime 
hanges of the underlying dynami
s. Using sto
has-

ti
 �ltering theory, Markovian evolution 
an be modeled in terms of

latent variables, whi
h naturally leads to high dimensional state spa
e,

making pra
ti
al solutions to these 
ontrol problems notoriously 
hal-

lenging. In our approa
h, we utilize a spe
i�
 stru
ture of this problem


lass to present a solution in terms of simple, reliable, and fast algo-

rithms.

1 Introdu
tion

The main problem in the dynami
al de
ision-making pro
ess is to determine

how to update the information and to apply a 
ontrol a
tion in order to rea
h

an optimal result over a given time period. These questions are often stated

within de
ision theory for partially observable Markov pro
esses, whi
h deals

with dis
rete-time optimal sto
hasti
 
ontrol under in
omplete information.

Although theoreti
al fundamentals of these problems are well-understood,

(see [1℄, [2℄, [6℄, and [12℄) numeri
al solutions in pra
ti
al appli
ations remain

persistently 
hallenging and require using heuristi
s (see [11℄, [3℄). The main

trust of this 
ontribution is to present a working approa
h to a parti
ular

problem 
lass. We present a 
lass of optimal sto
hasti
 
ontrol problems

under in
omplete information, whi
h fall within the s
ope of the so-
alled


onvex swit
hing systems (see [9℄) and possess e�
ient algorithmi
 solutions.
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Important appli
ations 
an be modeled as sto
hasti
 
ontrol problems

whose state dynami
s is linear. It turns out that by exploiting this issue,

e�
ient numeri
al s
hemes, in
luding solution assessment, 
an be obtained.

Let us introdu
e a spe
i�
 optimal sto
hasti
 swit
hing problem whose state

evolution 
onsists of one dis
rete and one 
ontinuous 
omponent. We thus

suppose that the state spa
e E = P×R
d
is the produ
t of a �nite spa
e P and

the Eu
lidean spa
e R
d
. Furthermore, assume that the dis
rete 
omponent

p ∈ P is deterministi
ally driven by a �nite set A of a
tions in terms of a

fun
tion α : P ×A → A, (p, a) → α(p, a), where α(p, a) ∈ P is the new value

of the dis
rete 
omponent of the state if its previous dis
rete 
omponent

value was p and the a
tion a ∈ A was taken. Furthermore, we assume that

the 
ontinuous state 
omponent evolves as an un
ontrolled Markov pro
ess

(Zt)
T
t=0 on R

d
whose evolution is driven by random linear transformations

Zt+1 = Wt+1Zt with random d × d disturban
e matri
es (Wt)
T
t=1 whi
h are

independent and integrable. Now we turn to the spe
i�
ation of 
ontrol 
osts.

Assume that taking an a
tion a ∈ A 
auses an immediate reward rt(p, z, a)
whi
h depends on the state (p, z) ∈ E and on the a
tion a ∈ A through

given reward fun
tions rt : E × A → R whi
h may be time t = 0, . . . , T − 1
dependent. When the system arrives at the last time step t = T in the

state (p, z) ∈ E, the agent 
olle
ts the s
rap value rT (p, z), des
ribed by a

pre-spe
i�ed s
rap fun
tion rT : E → R. At ea
h time t = 0, . . . , T − 1 the

de
ision rule πt is given by a mapping πt : E → A, pres
ribing at time t in the
state (p, z) ∈ E the a
tion πt(p, z) ∈ A. A sequen
e π = (πt)

T−1
t=0 of de
ision

rules is 
alled poli
y. When 
ontrolling the system by poli
y π = (πt)
T−1
t=0 ,

the positions (pπt )
T
t=0 and the a
tions (aπt )

T−1
t=0 evolve randomly

aπt = πt(p
π
t , Zt), pπt+1 = α(pπt , a

π
t ), Zt+1 = Wt+1Zt, t = 0, . . . , T−1.

Having started at initial values pπ0 = p0 and Z0 = z0, the goal of the 
ontroller
is to maximize the expe
tation of the reward

vπ0 (p0, z0) = E

(
T−1∑

t=0

rt(p
π
t , Zt, a

π
t ) + rT (p

π
T , ZT )

)

a

umulated within the entire time depending on the 
hoi
e of the poli
y

π = (πt)
T−1
t=0 . Following [9℄, we 
all su
h Markov de
ision problem a 
onvex

swit
hing systems, if

rt(p, ·, a), rT (p, ·) for all t = 0, . . . , T − 1, a ∈ A, p ∈ P
are 
onvex and globally Lips
hitz 
ontinuous.

(1)

Example: The simplest example of a 
onvex swit
hing system is given by
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an Ameri
an Put in dis
rete time. Here, the dis
ounted asset pri
e (Zt)
T
t=0

at time steps 0, . . . , T is modeled by a sampled geometri
 Brownian motion

following

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1, Z0 ∈ R+ (2)

where (Wt)
T
t=1 are independent identi
ally distributed random variables fol-

lowing log-normal distribution. The pri
e of an option with strike pri
e K
for the interest rate λ ≥ 0 and with maturity date T is given by the solution

to the optimal stopping problem

sup{E(max(e−λτ (K − Zτ ), 0)) : τ is {0, 1, . . . , T}-valued stopping time}.

This swit
hing system is de�ned by two positions and two a
tions P = {1, 2},
A = {1, 2}. Here, the positions "stopped" and "goes" are represented by

p = 1, p = 2 respe
tively and the a
tions "stop" and "go" denoted by a = 1
and a = 2. With this interpretation, the position 
hange is given by

(α(p, a))2p,a=1 =

[
α(1, 1) α(2, 1)
α(1, 2) α(2, 2)

]
=

[
1 1
1 2

]
.

The reward at time t = 0, . . . , T − 1 and the s
rap value are de�ned by

rt(p, z, a) = e−λt(K − z)+(p− α(p, a)), (3)

rT (p, z) = e−λT (K − z)+(p− α(p, 1)), (4)

for all p ∈ P , a ∈ A, z ∈ R.

Note that the state pro
ess of a 
onvex swit
hing system follows a 
on-

trolled Markov pro
ess on E = P × R
d
governed by the family

Ka
t v(p, z) = E(v(α(p, a),Wt+1z)), t = 0, . . . , T − 1, a ∈ A, (5)

of transition kernels a
ting on fun
tions v : E = P × R
d → R where the

above expe
tation exists. Using these kernels, the poli
y value is obtained

by the poli
y valuation algorithm

vπT = rT , vπt (p, z) = rt(p, z, πt(p, z)) +K
πt(p,z)
t vπt+1(p, z).

To obtain a poli
y π∗ = (π∗
t )

T−1
t=0 , whi
h maximizes the total expe
ted reward,

one introdu
es for ea
h t = 0, . . . , T − 1 the so-
alled Bellman operator

Ttv(p, z) = max
a∈A

(rt(p, z, a) +Ka
t v(p, z)) , (p, z) ∈ E (6)

a
ting on ea
h fun
tion v : E → R where the above expe
tation exists. Next


onsider the Bellman re
ursion, also referred to as the ba
kward indu
tion:

vT = rT , vt = Ttvt+1, for t = T − 1, . . . , 0. (7)
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For 
onvex swit
hing systems, there exists a re
ursive solution (v∗t )
T
t=0 to the

Bellman re
ursion

vT (p, z) = rT (p, z) (8)

vt(p, z) = max
a∈A

(rt(p, z) + E(vt+1(α(p, a),Wt+1z))) (9)

for t = T − 1, . . . , 0, p ∈ P , and z ∈ R
d
. The fun
tions (v∗t )

T
t=0 resulting form

ba
kward indu
tion are 
alled value fun
tions, they determine an optimal

poli
y π∗ = (π∗
t )

T−1
t=0 via

π∗
t (p, z) = argmaxa∈A

(
rt(p, z, a) + E(v∗t+1(α(p, a),Wt+1z))

)
(10)

for p ∈ P , z ∈ R
d
, for all t = 0, . . . , T − 1.

2 Solution te
hniques

The �rst step in obtaining a numeri
al solution to the ba
kward indu
tion

(7) is an appropriate dis
retization of the Bellman operator (6). For this

reason, we 
onsider a modi�ed Bellman operator

T n
t v(p, z) = max

a∈A
(rt(p, ., a)+

n∑

k=1

νn
t+1(k)v(α(p, a),Wt+1(k)z))

with integration repla
ed by its numeri
al 
ounterpart, de�ned in terms of

appropriate distribution sampling (Wt(k))
n
k=1 to ea
h disturban
e Wt, t =

1, . . . , T , with 
orresponding integration weights (νn
t (k))

n
k=1. In the resulting

modi�ed ba
kward indu
tion

v
(n)
T = rT , v

(n)
t = T n

t v
(n)
t+1, t = T − 1, . . . 0 (11)

the fun
tions (v
(n)
t )Tt=0 need to be des
ribed by algorithmi
ally tra
table ob-

je
ts. Note that sin
e all reward (rt(p, ·, a))
T−1
t=0 and s
rap rT (p, ·) fun
tions

are 
onvex in the 
ontinuous variable, the modi�ed value fun
tions (11) are

also 
onvex. For these fun
tions, we suggest an approximation in terms of

pie
ewise linear and 
onvex fun
tions as follows: Introdu
e the so-
alled sub-

gradient envelope SGf of a 
onvex fun
tion f : Rd → R on a grid G ⊂ R
d
as

a maximum

SGf = ∨g∈G(▽gf)

of sub-gradients ▽gf of f on all grid points g ∈ G. Using sub-gradient

envelope operation, we de�ne the double-modi�ed Bellman operator as

T m,n
t v(p, .) = SGmmax

a∈A

(
rt(p, ., a)+

n∑

k=1

νn
t+1(k)v(α(p, a),Wt+1(k).)

)
,
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where the operator SGm
stands for the sub-gradient envelope on the grid

Gm = {g1, . . . , gm}, as de�ned above. The 
orresponding double-modi�ed

ba
kward indu
tion

v
(m,n)
T (p, ·) = SGmrT , (p, ·), p ∈ P (12)

v
(m,n)
t = T m,n

t v
(m,n)
t+1 , t = T − 1, . . . 0. (13)

yields the double-modi�ed value fun
tions (v
(n,m)
t )Tt=0. This s
heme enjoys

ex
ellent asymptoti
 properties. Under slight additional assumptions on dis-

tribution sampling and grid tightening, [9℄ shows that the double-modi�ed

value fun
tions 
onverge to the true value fun
tions almost surely uniformly

on 
ompa
t sets.

In this work we fo
us on the algorithmi
 properties of the s
heme (12),

(13). Sin
e the double-modi�ed value fun
tions (v
(m,n)
t )Tt=0 are pie
e-wise

linear and 
onvex, they 
an be expressed in a 
ompa
t form, using matrix

representations. Note that a pie
ewise 
onvex fun
tion f 
an be des
ribed

by a matrix by representing all linear fun
tionals parti
ipating in the matrix

representation as matrix rows. To denote this relation, let us agree on the

following notation: Given a fun
tion f and a matrix F su
h that f(z) =
max(Fz) holds for all z ∈ R

d
, then we write f ∼ F . Let us emphasize

that the sub-gradient envelope operation SG is re�e
ted on the side of matrix

representatives by a spe
i�
 row-rearrangement operator ΥG, in the following

sense

f ∼ F ⇒ SGf ∼ ΥG[F ].

Thereby, the row-rearrangement operator ΥG of the grid G = {g1, . . . , gm} ⊂
R

d
a
ts on ea
h matrix L with d 
olumns as

(ΥGF )i,· = Fargmax(Fgi),· for all i = 1, . . . , m.

For pie
ewise 
onvex fun
tions, the result of maximization, summation, and


omposition with linear mappings, followed by sub-gradient envelope 
an

be obtained using their matrix representatives. More pre
isely, for 
onvex

pie
ewise linear fun
tions (fi)
n
i=1 given in terms of their matrix representa-

tives (Fi)
n
i=1, meaning that fi ∼ Fi for i = 1, . . . , n, we obtain

SG(

n∑

i=1

fi) ∼

n∑

i=1

ΥG[Fi], (14)

SG(∨
n
i=1fi) ∼ ΥG[⊔

n
i=1Fi], (15)

SG(fi(W ·)) ∼ ΥG[FiW ], i = 1, . . . , n, (16)

where the operator ⊔ stands for binding matri
es by rows.
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In the 
ontext of 
onvex swit
hing systems, the double-modi�ed ba
kward

indu
tion involves only maximizations, summations and 
ompositions with

linear mappings applied to pie
ewise linear 
onvex fun
tions, thus it 
an be

rewritten in terms of matrix operations, giving the following algorithm:

Pre-
al
ulations: For a 
onvex swit
hing system and Gm = {g1, . . . , gm},
implement the row-rearrangement operator Υ = ΥGm

and the row maxi-

mization operator ⊔a∈A. For t = 1, . . . , T , determine a distribution sampling

(Wt(k))
n
k=1 of ea
h disturban
eWt with the 
orresponding weights (νt(k))

n
k=1.

Given reward (rt)
T−1
t=0 and s
rap rT fun
tions, determine the matrix represen-

tatives of their sub-gradient envelopes

SGmrt(p, ·, a) ∼ Rt(p, a), SGmrT (p, ·) ∼ RT (p)

for t = 0, . . . , T − 1, p ∈ P and a ∈ A. Denoting the matrix representatives

of ea
h (approximate) value fun
tion by

v
(m,n)
t (p, ·) ∼ Vt(p) for t = 0, . . . , T , p ∈ P .

These matrix representatives are obtained via:

Initialization: Start with the matri
es

VT (p) = RT (p), for all p ∈ P . (17)

Re
ursion: For t = T − 1, . . . , 0 
al
ulate for p ∈ P

Vt(p) = ⊔a∈A

(
Rt(p, a) +

n∑

k=1

νt+1(k)Υ[Vt+1(α(p, a)) ·Wt+1(k)]
)

(18)

Example: Let us illustrate this algorithm using the optimal stopping prob-

lem from Ameri
an Put from above. To be able representing the fun
tions (3)

and (4), we embed the state spa
e R+ into R
2
amending the pri
e 
omponent

z by one (z, 1). This pro
edure yields matri
es Rt(p, a) = e−λt(p−α(p, a))Π,
RT (p, a) = e−λT (p−α(p, 1))Π for all p ∈ P, a ∈ A and t = 0, . . . , T −1 where

Π =

[
−1 K
0 0

]
with strike pri
e K ∈ R+.

To des
ribe the dynami
s in R
2
su
ht hat the embedded �rst 
omponent

follows a geometri
 Browinan motion and the amended se
ond 
omponent is

�xed, we introdu
e the disturban
e matri
es

Wt =

[
εt 0
0 1

]
with i.i.d random variables (εt)

T
t=1. (19)
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Thereby, for t = 1, . . . , T , the random variables ln(εt) follow normal distribu-

tion with mean λ− σ2

2
and varian
e σ2 > 0. Now we turn to the distribution

sampling. Using an ordinary Monte-Carlo sampling of the disturban
e ma-

tri
es, de�ne for ea
h t = 1, . . . , T , the sequen
e (εt(k))
n
k=1 whi
h 
onsists of

independent realization 
opies of εt. The matri
es Wt(k) are de�ned as in

(19), repla
ing the variable εt by the realization εt(k) for k = 1, . . . n. For

optimal stopping problem, the re
ursion (18) boils down to a 
omparison of

the so-
alled 
ontinuation value to the 
urrent payo�, hen
e one needs to

determine the matrix Vt(2) using for t = T − 1, . . . , 0 the re
ursion

VT (2) := e−λTΠ, Vt(2) = Υ[e−λtΠ] ⊔ (
1

n

n∑

k=1

Υ[Vt+1(2)Wt+1(k)]).

3 Swit
hing under in
omplete information.

The subsequent work is devoted to an appli
ation of the above te
hnique to

solve optimal swit
hing problems under partial observation. The so-
alled

partially observable Markov de
ision pro
esses, whose appli
ations enjoys

unpre
edented popularity [10℄, [7℄ have a long history in de
ision-making.

Starting with [13℄, [14℄ the optimal 
ontrol problems have been addressed in

[8℄, [4℄, and [1℄, among others.

For sake of 
on
reteness, let us formulate our approa
h under the as-

sumption that the underlying sto
hasti
 driver follows the so-
alled partially

observable Markov pro
esses (POMPs), whi
h is usually addressed under the

framework of hidden-Markov modeling (HMM).

The idea POMPs is to realize a time series (yt)
T
t=0 in su
h a way that

it behaves as it was driven by a ba
kground devi
e whi
h may operate in

di�erent regimes. Thereby, one supposes that the operating regime is not

dire
tly observed and evolves like a Markov 
hain (xt)
T
t=0 on a �nite spa
e

whi
h is identi�ed with the set {e1, . . . , ed} of unit ve
tors in R
d
. In some

situations, the hidden pro
ess (xt)
T
t=0 
an be given a physi
al meaning, but

for many 
ases it just des
ribes the evolution of latent variables. The basi


advantage thereby is that it is possible to tra
e the evolution of the hidden

states indire
tly, based on the observation of (yt)
T
t=0, using e�
ient re
ursive

s
hemes for 
al
ulation of the so-
alled hidden state estimate

x̂t = E(xt | yj, j ≤ t) t = 0, . . . T.

Thereby, at ea
h time t = 0, . . . , T − 1, the probability ve
tor x̂t des
ribes

the distribution of xt 
onditioned on the past observation of (yj)
t
j=0. More

7



importantly, su
h approa
h reprodu
es a Markovian dynami
s in the follow-

ing sense: Although (yt)
T
t=0 is not Markovian in general, it turns out that

the observations (yt)
T
t=0 equipped with latent variables (x̂t)

T
t=0 form a two-


omponent pro
ess su
h that

the evolution (x̂t, yt)
T
t=0 is Markovian. (20)

From this perspe
tive, modeling a time series by POMP yields a te
hnique

to address 
ontrol problems in 
ertain non-Markovian situations. Namely,

having assumed that the sto
hasti
 driver (yt)
T
t=0 of our 
ontrol problem 
an

be des
ribed as observations (yt)
T
t=0 of a POMP, the multi-variate Markovian

dynami
s (x̂t, yt)
T
t=0 
an be 
onstru
ted in order to treat the original problem

in the standard settings of optimal sto
hasti
 
ontrol for Markovian pro
esses.

In what follows, we show how 
ertain POMP 
ontrol problems 
an be

solved within the framework of 
onvex swit
hing systems. To some extent,

this is a surprising result, sin
e the dynami
s under partial observation in-

volves a regular a Bayesian information update, whi
h introdu
es a non-

linearity by re-normalization. That is, although we 
onsider 
ontrol problems

whi
h do not meet assumptions required for 
onvex swit
hing systems, a spe-


i�
 state spa
e extension transforms them into 
onvex swit
hing framework.

Let us introdu
e the ingredients required therefore. Assume that an

unobservable global regime evolves like a Markov 
hain (xt)
T
t=0 on the set

X = {e1, . . . , ed} of unit ve
tors in R
d
, while the information available to

the 
ontroller is gained from the observation of the pro
ess (yt)
T
t=0 whi
h

takes values in a measure spa
e Y . As in the standard setting of POMP,

it is assumed that the transition to xt+1 and the generation of output yt+1

o

ur independently, given 
urrent state xt. More pre
isely, the joint evo-

lution ((xt, yt))
T
t=0 follows a Markov pro
ess whose transition kernels Qt for

t = 0, . . . , T − 1 are a
ting on fun
tions φ : X × Y → R as

∫
φ(x′, y′)Qt(d(x

′, y′) | (x, y)) =
∑

x′∈X

∫

Y

φ(x′, y′)Γx,x′µx(dy
′). (21)

Thereby, the sto
hasti
 matrix Γ = (Γx,x′)x,x′∈X des
ribes the transition from

xt to xt+1 whereas µx denotes the distribution of the observation yt+1 
on-

ditioned on xt = x ∈ X . Assuming that for ea
h x ∈ X the distribution

µx is absolutely 
ontinuous with respe
t to a referen
e measure µ on Y , we
introdu
e the densities

νx(y) =
dµx

dµ
(y), y ∈ Y , x ∈ X ,

to write the distributions as

µx(dy) = νx(y)µ(dy) x ∈ X .

8



Using the referen
e measure µ, the transition kernel (21) of (xt, yt)
T
t=0 is

written as

∫
φ(x′, y′)Qt(d(x

′, y′) | (x, y)) =
∑

x′∈X

∫

Y

φ(x′, y′)Γx,x′νx(y)µ(dy
′),

for all t = 0, . . . , T − 1, x ∈ X and y ∈ Y . As indi
ated above, it turns out

that (x̂t, yt)
T
t=0 follows a Markov pro
ess on the state spa
e X̂ ×Y , driven by

transition kernels Q̂t whi
h a
t for t = 0, . . . , T−1 on fun
tions φ : X̂×Y → R

as

∫

X̂×Y

φ(x̂′, y′)Q̂t(d(x̂
′, y′) | (x̂, y)) =

∫

Y

φ

(
Γ⊤V (y′)x̂

‖V (y′)x̂‖
, y′
)
‖V (y′)x̂‖µ(dy′).(22)

In this formula, V (y) stands for the diagonal matrix whose diagonal elements

are given by (νx(y))x∈X for y ∈ Y , and the norm is de�ned as ‖z‖ =
∑n

i=1 |zi|,
ea
h z ∈ R

d
.

As in the 
ase of 
onvex swit
hing systems, we assume that the dis
rete

state 
omponent p ∈ P is deterministi
ally 
ontrolled by a
tions a ∈ A
using a given fun
tion α : P × A → A where the sets P and A �nite.

Now, let us turn to the de�nition of our 
ontrol 
osts. Naturally, the reward

earned at time t is dependent on the observation yt. However, it is more


onvenient to model the expe
tation of the next-step reward, 
onditioned

on the situation at time t. That is, given t = 0, . . . , T − 1, we aim to

model the 
onditioned next-step reward expe
tation as a fun
tion of the state

distribution x̂, of the position p, and a
tion a 
hosen at the time t. Note that
with this modeling, the observation yt re
orded at time t indire
tly in�uen
es
the next-step reward expe
tation through 
onditioned distribution x̂t. Let

us agree on the following de�nition

De�nition 1. With notations as above, a partially observable swit
hing prob-

lem is a sto
hasti
 
ontrol problem whose 
ontrolled Markov evolution on the

state spa
e P × X × Y is governed by transition kernels

Ka
t φ(p, x̂, y) =

∫

Y

φ

(
α(p, a),

Γ⊤V (y′)x̂

‖V (y′)x̂‖
, y′
)
‖V (y′)x̂‖µ(dy′) a ∈ A, (23)

for t = 0, . . . , T − 1, a
ting on fun
tions φ on P × X × Y → R where the

above integral exists. Furthermore, the reward and s
arp values are given as

fun
tions, whi
h do not depend on y ∈ Y:

rt : P × X ×A → R, rT : P × X → R, t = 0, . . . , T − 1. (24)
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Note that in (23) the resulting fun
tion Ka
t φ was not depending on the

last 
omponent y ∈ Y . In the 
ase that the argument fun
tion φ also does

not depend on the last 
omponent y ∈ Y , we agree to write

Ka
t φ(p, x̂) =

∫

Y

φ

(
α(p, a),

Γ⊤V (y′)x̂

‖V (y′)x̂‖

)
‖V (y′)x̂‖µ(dy′). (25)

Note that the value fun
tions of a partially observable Markov swit
hing

problem as de�ned above do not depend on the observation 
omponent. This

is veri�ed indu
tively. Using (24) and following for t = T − 1, . . . , 0 the

ba
kward indu
tion with kernel a
tion (25), we obtain:

vT = rT , vt(p, x̂) = max
a∈A

(rt(p, x̂, a) +Ka
t vt+1(p, x̂)) , x̂ ∈ X , p ∈ P. (26)

Now let us introdu
e a fun
tion extension te
hnique. Given a fun
tion f :
P × X̂ → R introdu
e its positive-homogeneous extension f̃ : P × R

d
+ → R

by

f̃(p, x) := ‖x‖f(p,
x

‖x‖
) x ∈ R

d
+, p ∈ P.

Note that with this de�nition, the values of 
ontinuous 
omponent x̂ ∈ X̂ are

extended to the entire 
one R
d
+ ⊃ X̂ and the extension f̃ is indeed positive-

homogeneous f̃(p, λx) = λf̃(p, x) for all x ∈ R
d
+, λ ∈ R+, for ea
h p ∈ P .

Similarly, for a fun
tion f : P × X̂ × A → R we introdu
e the positive-

homogeneous extension f : P × R
d
+ ×A → R by f̃(p, x, a) := ‖x‖f(p, x

‖x‖
, a)

for all x ∈ R
d
+, p ∈ P and a ∈ A.

Lemma 1. Given a partially observable swit
hing problem with notations as

above, 
onsider a fun
tion φ on P × X̂ with positive-homogeneous extension

φ̃, then it holds that

Ka
t φ(p, x̂) = E(φ̃(α(p, a),Wt+1x̂)) x̂ ∈ X̂ , a ∈ A, t = 0, . . . , T − 1, (27)

where the Wt+1 is given as a matrix-valued fun
tion

Wt+1 = Γ⊤V (Yt+1), a ∈ A, t = 0, . . . , T − 1 (28)

of a random variable Yt+1 whose distribution equals to the referen
e measure

µ.

Proof. Using (25) we verify the assertions (27) and (28) for ea
h p ∈ P ,

10



a ∈ A, t = 0, . . . , T − 1 as

(Ka
tφ)(p, x̂) =

∫

Y

φ

(
α(p, a),

Γ⊤V (y′)x̂

‖Γ⊤V (y′)x̂‖

)
‖V (y′)x̂‖µ(dy′)

=

∫

Y

φ̃
(
α(p, a),Γ⊤V (y′)x̂

)
‖Γ⊤V (y′)x̂‖−1‖V (y′)x̂‖µ(dy′)

=

∫

Y

φ̃
(
α(p, a),Γ⊤V (y′)x̂

)
µ(dy′) = E(φ̃(α(p, a),Wt+1x̂)).

Let us de�ne the extended transition kernels by

K̃a
t φ̃(p, x) = E(φ̃(α(p, a),Wt+1x)) x ∈ R

d, a ∈ A, 0 = 1, . . . T − 1, (29)

where the disturban
es (Wt)
T
t=1 are given by (28) in terms of identi
ally dis-

tributed random variables (Yt)
T
t=1, ea
h following referen
e distribution µ.

The following result shows that the original ba
kward indu
tion (26) 
an be

solved using extended transition kernels (29) instead of the original kernels

(23).

Proposition 1. Given a partially observable Markov swit
hing problem, 
on-

sider its value fun
tions (vt)
T
t=0 returned by ba
kward indu
tion (26) with

rewards, s
rap values and transition kernels given by (24) and (25). Further-

more , 
onsider fun
tions (ṽt)
T
t=0 on P × R

d
+ obtained re
ursively by

ṽT = r̃T , (30)

ṽt(p, x) = max
a∈A

(
r̃t(p, x, a) + K̃a

t ṽt+1(α(p, a), x)
)
, (31)

for x ∈ R
d
+, t = T−1, . . . , 0, with extended reward (r̃t)

T−1
t=0 , s
rap r̃T fun
tions

and transition kernels K̃a
t as de�ned above. Then it holds that

ṽt is the positive-homogeneous extension of vt for all t = 0, . . . , T . (32)

Proof. Let us pro
eed indu
tively, starting at t = T , where our indu
tion

assumption (32) holds by the initialization in (26) and (30). Having supposed

that ṽt+1 is the positive-homogeneous extension of vt+1, we use Lemma 1 to


on
lude that K̃a
t ṽt+1 is the positive-homogeneous extension of Ka

t vt+1 for

ea
h a ∈ A. Applying summations of and maximizations in (31), we verify

that ṽt is the positive-homogeneous extension of vt, as required.
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Sin
e for ea
h t = 0, . . . , T − 1 the transition kernel K̃a
t from (29) a
ts in

terms of disturban
es, the ba
kward indu
tion (30), (31)

ṽT (p, x) = r̃T (p, x) (33)

ṽt(p, x) = max
a∈A

(r̃t(p, x) + E(ṽt+1(α(p, a),Wt+1x))) (34)

for t = T − 1, . . . , 0, p ∈ P , x ∈ R
d
, as required in (8), (9) for 
onvex

swit
hing systems. To ensure additional 
onvexity 
onditions (1) required

for the 
onvex swit
hing framework, further assumptions on extensions r̃t
and r̃T for t = 0, . . . , T − 1 must be imposed expli
itly. For simpli
ity, let us

agree that

positive-homogeneous extenstions (r̃t(p, ·, a))
T−1
t=0 and r̃T (p, ·) for

p ∈ P a ∈ A of (24) are 
onvex and globally Lips
hitz 
ontinuous.

(35)

It turns out that this assertion is ful�lled if for t = 0, . . . , T − 1 the original

fun
tions (24) are 
onvex and globally Lips
hitz in the 
ontinuous 
omponent.

4 Example: An adaptive investment strategy.

We now illustrate our te
hnique using a simpli�ed problem of dynami
 fund

allo
ation. In our approa
h we 
onsider optimization of an investment strat-

egy for a single risky asset under the assumption that the in
rements of

the sampled asset pri
e pro
ess follows a hidden Markov dynami
s (see [5℄).

To obtain su
h as pri
e evolution, we introdu
e a random time sampling

of the 
ontinuous pri
e pro
ess (S(t))t≥0, whi
h is inspired by the so-
alled

Point&Figure Chart te
hnique.

Suppose trading shall o

ur only at times where a notable pri
e 
hange

may require a position re-balan
ing. Thereby, the pri
e evolution is sampled

as follows: Having �xed a pri
e 
hange step ∆ > 0 and starting the observa-

tions at the initial time τ0 = 0, one writes into a Point&Figure Chart one of

the symbols x or o at the �rst time τ1 where the asset pri
e leaves the interval
[S(τ0)−∆, S(τ0) + ∆]. If the pri
e in
reases to the upper bound S(τ0) + ∆
one writes the symbol x, otherwise the symbol o is written. Repeating the

same pro
edure with the next interval [S(τ1)−∆, S(τ1)+∆] and pro
eeding

further, a sequen
e of stopping times (τk)k∈N is determined, with the symbols

x or o at ea
h time, whi
h are arranged in a diagram as shown in Figure

1. Assume that the trading o

urs only at (τk)k∈N, and that at ea
h time τk
the trading de
ision is based only on the observation of the sampled pri
e

history S(τ0), . . . , S(τk). Sin
e the pri
e pro
ess (S(t))t≥0 is 
ontinuous, the

12
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Figure 1: Asset pri
e and its P&F diagram.

sto
hasti
 driver of our model is given by the binary in
rement pro
ess

yt = S(τt)− S(τt−1), t = 1, . . . , T,

whi
h takes values in the set Y = {−∆,∆}. This pro
ess is modeled as the

observable part (yt)
T
t=1 of a hidden Markov dynami
s (xt, yt)

T
t=0. For the sake

of 
on
reteness, we suppose that the hidden regimes X 
an be identi�ed with

some ba
kground market situations. As a simple illustration, we 
onsider a

two-state X = {e1, e2} regime swit
hing with transition matrix

Γ =

[
p1 (1− p1)

(1− p2) p2

]

and assume that if the market is in the state xt = e1 then the next pri
e

in
rement yt+1 takes values in Y = {−∆,∆} with probabilities q1 and (1−q1)
respe
tively. Similarly, 
onditioned on the 
urrent state xt = e2 we have

the probabilities (1 − q2) and q2 for the observation yt+1 of the next pri
e

move. Choosing the referen
e measure µ as the uniform distribution on Y by

µ({∆}) = µ({−∆}) = 1/2, we obtain the following diagonal density matri
es

V(−∆) = 2

[
q1 0

1− q1

]
, V(∆) = 2

[
1− q2 0

0 q2

]
,

whi
h gives merely two disturban
e matrix realizations Γ⊤V(−∆), Γ⊤V(∆).
A

ording to (28), we de�ne the disturban
e matri
es by (Wt = Γ⊤V(Yt))

T
t=1,

using independent identi
ally distributed random variables (Yt)
T
t=1, whose

distribution is the referen
e measure µ.
Now, we introdu
e the position 
ontrol α for our dynami
 asset allo
ation

problem. Consider a situation where the asset position 
an either be short,

13



neutral, or long, labeled by the numbers p = 1, 2, 3 respe
tively. At ea
h time

t = 0, . . . , T , the 
ontroller must make a de
ision whether the next position

shall be long short, or neutral. Given the set P = {1, 2, 3} of all possible

positions, we introdu
e the a
tion set as A = {1, 2, 3} where a stands for

the targeted position after re-allo
ation, in whi
h 
ase the position 
ontrol

fun
tion α is determined by the following matrix:




α(1, 1) α(1, 2) α(1, 3)
α(2, 1) α(2, 2) α(2, 3)
α(3, 1) α(3, 2) α(3, 3)


 =




1 2 3
1 2 3
1 2 3


 .

Finally, let us turn to the de�nition of the reward and the s
rap fun
tions.

In this example, we model the payo� in terms of a�ne linear reward fun
tion

rt(p, x̂, a) = r(p, x̂, a) = (p− 1)ρ⊤x̂− c|p− α(p, a)|, t = 0, . . . T − 1 (36)

for all x ∈ X̂ , and a ∈ A. Here c(p − α(p, a)) represents the proportional

transa
tion 
osts determined by a parameter c > 0 and the term (p− 1)ρ⊤x̂
stands for the expe
ted revenue from holding position p from time t to t+1,
if the distribution of the market state is des
ribed by the probability ve
tor

x̂ ∈ X̂ . Thereby, the ve
tor ρ ∈ R
2
given by

ρ = ∆[1 − 2q1, 2q2 − 1]⊤.

su
h that (p− 2)ρ⊤x̂ des
ribes for the return, expe
ted from the realization

of next pri
e movement yt+1, 
onditioned on the information x̂t available at

time t, for a given portfolio position p ∈ P . Assuming that at the end t = T ,
all asset positions must be 
losed, we de�ne the s
rap value as

rT (p, x̂) = r(p, x̂, 2) for t = 0, . . . , T − 1, p ∈ P , x̂ ∈ X̂ . (37)

With these de�nitions, the assumption (24) is satis�ed. Furthermore, we

easily meet the assumption (35) in view of the following 
onsideration: Note

that sin
e all entries of the probability ve
tor x̂ ∈ X̂ sum up to one

~1⊤x̂ = 1,
the 
onstant transa
tion 
ost term in (36) 
an be re-written for t = 0, . . . , T−

1, p ∈ P , x̂ ∈ X̂ as

rt(p, x̂, a) = R(p, a)x̂, rT (p, x̂) = R(p, 1)x̂ (38)

with

R(p, a) = ((p− 2)ρ− c|p− α(p, a)|~1)⊤

for t = 0, . . . , T − 1, p ∈ P , a ∈ A. Be
ause of this linearity, we observe that
the positive-homogeneous extensions are obtained by the same formula

r̃t(p, x, a) = R(p, a)x, r̃T (p, x) = R(p, 1)x

14



for all x ∈ R
2
, t = 0, . . . , T − 1, p ∈ P , a ∈ A, whi
h satisfy (35). Sin
e

now our problem ful�lls all assumptions required for the 
onvex swit
hing

algorithm, we propose an approximate solution via (17) and (18).

Initialization: Having de�ned the row-rearrangement operator Υ for a grid

G ⊂ X , initialize the matri
es representing the value fun
tions form the s
rap

matri
es given in (38)

VT (p) = R(p, 1), for all p ∈ P . (39)

Re
ursion: For t = T − 1, . . . , 0 use reward matri
es from (38) to 
al
ulate

for p ∈ P

V E
t+1(p) =

1

2

(
Υ[Vt+1(p) · Γ

⊤V(−∆)] + Υ[Vt+1(p) · Γ
⊤V(∆)]

)
, (40)

Vt(p) = ⊔a∈A

(
R(p, a) + V E

t+1(α(p, a))
)
, (41)

Note that be
ause there are only two disturban
e realizations, we perform

an exa
t integration as in (9) using two weights of size 1/2 in the referen
e

measure µ.
Let us 
onsider a numeri
al illustration. A hidden Markov model with

parameters p1 = p2 = 0.8 and q1 = q2 = 0.9 generates in
rements of size

∆ = 1 of the asset pri
e whose typi
al evolution is depi
ted in the Figure

2. Having supposed transa
tion 
osts c = 0.05 and introdu
ing an equally
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Figure 2: Asset pri
e evolution, adjusted to start at the origin.

spa
ed grid G of size 101 as

G = {
k

100
e1 + (1−

k

100
)e2 : k = 0, . . . , 100} ⊂ X̂
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Figure 3: Fun
tions represented by (V1(p))
3
p=1 and (V E

2 (p))3p=1.

we determine the matrix representatives (Vt(p))
3
p=1 of the value fun
tions and

their expe
tations for t = 10, . . . , 1 from the re
ursions (39) � (41). For the

value fun
tions depi
ted in the Figure 3, an 
andidate of the optimal de
ision

rule π∗
1 is determined by (10) as

π∗
1(x̂) = argmaxa∈A

(
maxR(p, a)x̂+maxV E

2 (α(p, a))x̂
)
, x̂ ∈ X̂ .

Finally, the Figure 4 shows a joint evolution of the asset pri
e (adjusted to

start at the origin, blue line), the portfolio positions obtained by subsequent

appli
ation of the de
ision rule π∗
1 (gray os
illating line) and the 
orrespond-

ing wealth (green in
reasing 
urve). To depi
t all three plots in the same
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Figure 4: Asset pri
e, portfolio positions and wealth
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graph, we have s
aled ea
h 
urve to the interval [0, 1].

5 Con
lusion

In this work, we present a novel approa
h to solving spe
i�
 swit
hing prob-

lems under partial information and show how to apply these results to optimal

dynami
 asset allo
ation.

Referen
es

[1℄ N. Bäuerle and U. Rieder. Markov De
ision Pro
esses with Appli
ations

to Finan
e. Springer, Heidelberg, 2011.

[2℄ D. P. Bertsekas. Dynami
 Programming and Optimal Control. Athena

S
ienti�
, 2005.

[3℄ D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynami
 Programming.

Athena S
ienti�
, 1996.

[4℄ P. Kasyanov E. Feinberg and M. Zgurovsky. Partially observable total-


ost markov de
ision pro
ess with weakly 
ontinuous transition proba-

bilities. arXiv:1401.2168, 2014.

[5℄ R. Elliott and J. Hinz. Portfolio optimization, hidden Markov models,

and te
hni
al analysis of p&f-
harts. 5(4):1�15, 2002.

[6℄ E. A. Feinberg and A. Shwartz. Handbook of Markov De
ision Pro
esses.

Kluwer A
ademi
, 2002.

[7℄ M. Hauskre
ht. Value-fun
tion approximations for partially observable

Markov de
ision pro
esses. Journal of Arti�
ial Intelligen
e Resear
h,

13:33�94, 2000.

[8℄ O. Hernández-Lerma. Adaptive Markov Control Pro
esses. Springer,

1989.

[9℄ J. Hinz. Optimal sto
hasti
 swit
hing under 
onvexity assumptions.

SIAM Journal on Control and Optimization, 52(1):164�188, 2014.

[10℄ George E. Monahan. A survey of partially observable Markov de
ision

pro
esses: Theory, models, and algorithms. Management S
ien
e, 28:1�

16, 1982.

17



[11℄ W. B. Powell. Approximate dynami
 programming: Solving the 
urses

of dimensionality. Wiley, 2007.

[12℄ M.L. Puterman. Markov De
ision Pro
esses: Dis
rete Sto
hasti
 Dy-

nami
 Programming. Wiley, New York, 1994.

[13℄ D. Rhenius. In
omplete information in markovian de
ision models. Ann.

Statist., 2:1327 � 1334, 1974.

[14℄ A. Yushkevi
h. Redu
tion of a 
ontrolled markov model with in
omplete

data to a problem with 
omplete information in the 
ase of borel state

and 
ontrol spa
es. Theory Prob. Appl., 21:153�158, 1976.

18


