UNIVERSITY OF
TECHNOLOGY SYDNEY

QUANTITATIVE FINANCE
RESEARCH CENTRE

QUANTITATIVE FINANCE
RESEARCH CENTRE

THINK.CHANGE.DO

QUANTITATIVE FINANCE RESEARCH CENTRE

Research Paper 358 March 2015

Stochastic Switching for Partially Observable
Dynamics and Optimal Asset Allocation

Juri Hinz

ISSN 1441-8010 www.qfrc.uts.edu.au



Stochastic switching for partially observable
dynamics and optimal asset allocation

Juri Hinz
juri.hinz@uts.edu.au

March 10, 2015

Abstract

In industrial applications, optimal control problems frequently ap-
pear in the context of decisions-making under incomplete information.
In such framework, decisions must be adapted dynamically to account
for possible regime changes of the underlying dynamics. Using stochas-
tic filtering theory, Markovian evolution can be modeled in terms of
latent variables, which naturally leads to high dimensional state space,
making practical solutions to these control problems notoriously chal-
lenging. In our approach, we utilize a specific structure of this problem
class to present a solution in terms of simple, reliable, and fast algo-
rithms.

1 Introduction

The main problem in the dynamical decision-making process is to determine
how to update the information and to apply a control action in order to reach
an optimal result over a given time period. These questions are often stated
within decision theory for partially observable Markov processes, which deals
with discrete-time optimal stochastic control under incomplete information.
Although theoretical fundamentals of these problems are well-understood,
(see [1], [2], [6], and [12]) numerical solutions in practical applications remain
persistently challenging and require using heuristics (see [11], |3]). The main
trust of this contribution is to present a working approach to a particular
problem class. We present a class of optimal stochastic control problems
under incomplete information, which fall within the scope of the so-called
convex switching systems (see [9]) and possess efficient algorithmic solutions.



Important applications can be modeled as stochastic control problems
whose state dynamics is linear. It turns out that by exploiting this issue,
efficient numerical schemes, including solution assessment, can be obtained.
Let us introduce a specific optimal stochastic switching problem whose state
evolution consists of one discrete and one continuous component. We thus
suppose that the state space £ = PxR? is the product of a finite space P and
the Euclidean space R?. Furthermore, assume that the discrete component
p € P is deterministically driven by a finite set A of actions in terms of a
function a: Px A — A, (p,a) = a(p,a), where a(p,a) € P is the new value
of the discrete component of the state if its previous discrete component
value was p and the action a € A was taken. Furthermore, we assume that
the continuous state component evolves as an uncontrolled Markov process
(Z;)L, on R? whose evolution is driven by random linear transformations
Zy11 = W, Z, with random d x d disturbance matrices (W,)[_, which are
independent and integrable. Now we turn to the specification of control costs.
Assume that taking an action a € A causes an immediate reward r,(p, z, a)
which depends on the state (p,z) € E and on the action a € A through
given reward functions r; : £ X A — R which may be time ¢t =0,...,7T —1
dependent. When the system arrives at the last time step ¢ = 7' in the
state (p,z) € E, the agent collects the scrap value rr(p, z), described by a
pre-specified scrap function rr : E — R. At each time t =0,...,7 — 1 the
decision rule m; is given by a mapping m; : E — A, prescribing at time ¢ in the
state (p, z) € E the action m,(p, 2) € A. A sequence 7 = (m,)]-; of decision
rules is called policy. When controlling the system by policy m = (Wt)tT:_Ol,

the positions (pf)’, and the actions (aJ )., evolve randomly

a; = m(pr, Zi), p?+1 = a(p}, af), Zi1 = W1 Zy, t=0,...,7-1

Having started at initial values pf = py and Z, = 2y, the goal of the controller
is to maximize the expectation of the reward

T-1
vy (Pos 20) = E (Z re(pf, Zis af) + (o7, ZT))

t=0

accumulated within the entire time depending on the choice of the policy
7 = (m)[5. Following [9], we call such Markov decision problem a convez

switching systems, if

ri(p,-,a),rr(p,:) forallt =0,...., T -1, a€ A,pe P
are convex and globally Lipschitz continuous.

(1)

Example: The simplest example of a convex switching system is given by



an American Put in discrete time. Here, the discounted asset price (Z;)L,
at time steps 0,...,7T is modeled by a sampled geometric Brownian motion
following

Ziy =W Zy, t=0,....T—1,Zy € Ry (2)

where (W;)I_, are independent identically distributed random variables fol-
lowing log-normal distribution. The price of an option with strike price K
for the interest rate A > 0 and with maturity date 7" is given by the solution
to the optimal stopping problem

sup{E(max(e (K — Z,),0)) : 7is {0,1,...,T}-valued stopping time}.

This switching system is defined by two positions and two actions P = {1, 2},
A = {1,2}. Here, the positions "stopped" and "goes" are represented by
p =1, p = 2 respectively and the actions "stop" and "go" denoted by a =1
and a = 2. With this interpretation, the position change is given by

oot [0 211 3]

The reward at time ¢t =0,...,T — 1 and the scrap value are defined by
Tt(pa 2, Cl) = e_At(K - Z)+(p - Oé(p’ a))? (3)
re(p,z) = e MK —2)"(p—a(p,1)), (4)

forallpe P,a€c A, z € R.
Note that the state process of a convex switching system follows a con-
trolled Markov process on E = P x R? governed by the family

Koo(p,2) = E(v(a(p,a), Wyp2),  t=0,....T—1, ac A, (5)

of transition kernels acting on functions v : £ = P x R? — R where the
above expectation exists. Using these kernels, the policy value is obtained
by the policy valuation algorithm

VE=rr, ol (p,2) = rilp, 2 m(p, 2)) + KT () 2).

To obtain a policy 7" = (7}).', which maximizes the total expected reward,
one introduces for each t = 0,...,T — 1 the so-called Bellman operator
Tev(p, 2) = max (ri(p, z,a) + Kyv(p, 2) . (p,2) € B (6)

acting on each function v : £ — R where the above expectation exists. Next
consider the Bellman recursion, also referred to as the backward induction:

v =T, 'Ut:’E'UH_l, fOI't:T—l,...,O. (7)



For convex switching systems, there exists a recursive solution (v;)_, to the
Bellman recursion

vr(p,z) = ro(p,z) (8)
vi(p,2) = Igleaj((rt(p, z) + E(viri(alp, a), Wiia2))) (9)

fort =T —1,...,0,p € P,and z € R% The functions (v;)L resulting form

backward induction are called value functions, they determine an optimal

policy 7 = (7)) via

71—: (pa Z) = arginax;ec 4 (Tt(p> 2 CL) + E(U:—i—l (a(p, a), VVt-l—lz))) (10)
forpe P,zeR? forallt=0,...,7 — 1.

2 Solution techniques

The first step in obtaining a numerical solution to the backward induction
(7) is an appropriate discretization of the Bellman operator (6). For this
reason, we consider a modified Bellman operator

T v(p, z) = Igleaj((rt(p, . a)—i-z vy (B)v(a(p, a), W, (k)z))

k=1

with integration replaced by its numerical counterpart, defined in terms of
appropriate distribution sampling (W,(k))7_, to each disturbance W;, t =

1,...,T, with corresponding integration weights (1;'(k));_,. In the resulting
modified backward induction
o = ry, o = Tl t=T-1,...0 (11)

the functions (vf"))fzo need to be described by algorithmically tractable ob-

jects. Note that since all reward (r,(p,-,a))’ " and scrap r7(p, -) functions
are convex in the continuous variable, the modified value functions (11) are
also convex. For these functions, we suggest an approximation in terms of
piecewise linear and convex functions as follows: Introduce the so-called sub-
gradient envelope Sg f of a convex function f: R — R on a grid G C R? as

a maximuin

SGf = VgEG(vgf)
of sub-gradients V,f of f on all grid points ¢ € G. Using sub-gradient
envelope operation, we define the double-modified Bellman operator as

k=1

7;m7nv(p’ ) = SGm%leaj( (Tt(p> ) &)‘l‘Z V:L+1(k;)v(a(pa a’)? Wt-i—l(k))) )



where the operator Sgm stands for the sub-gradient envelope on the grid
G™ = {g',..., g™}, as defined above. The corresponding double-modified
backward induction

o p,) = Somrr,(p,), pEP (12)

o= =T 1,0, (13)

yields the double-modified value functions (v§"’m))f:0. This scheme enjoys

excellent asymptotic properties. Under slight additional assumptions on dis-

tribution sampling and grid tightening, [9] shows that the double-modified

value functions converge to the true value functions almost surely uniformly
on compact sets.

In this work we focus on the algorithmic properties of the scheme (12),
(13). Since the double-modified value functions (v,ﬁm’"))fzo are piece-wise
linear and convex, they can be expressed in a compact form, using matrix
representations. Note that a piecewise convex function f can be described
by a matrix by representing all linear functionals participating in the matrix
representation as matrix rows. To denote this relation, let us agree on the
following notation: Given a function f and a matrix F' such that f(z) =
max(Fz) holds for all z € R? then we write f ~ F. Let us emphasize
that the sub-gradient envelope operation Sg is reflected on the side of matrix
representatives by a specific row-rearrangement operator Y, in the following
sense

Thereby, the row-rearrangement operator Y of the grid G = {¢', ..., ¢™} C
R? acts on each matrix L with d columns as

(TgF)iV = Iargmax(Fg?), for all ¢ = 1, o, M.

For piecewise convex functions, the result of maximization, summation, and
composition with linear mappings, followed by sub-gradient envelope can
be obtained using their matrix representatives. More precisely, for convex
piecewise linear functions (f;)’; given in terms of their matrix representa-
tives (F;),, meaning that f; ~ F; fori =1,...,n, we obtain

SG(Z fi) ~ ZTG[Fz']a (14)

SG(Vi;:lfi) ~ T_G[U?:lFi], (15)
Sa(fi(W) ~ YglFEW], i=1,...,n, (16)

where the operator U stands for binding matrices by rows.



In the context of convex switching systems, the double-modified backward
induction involves only maximizations, summations and compositions with
linear mappings applied to piecewise linear convex functions, thus it can be
rewritten in terms of matrix operations, giving the following algorithm:

Pre-calculations: For a convex switching system and G™ = {g',..., g™},
implement the row-rearrangement operator T = Tgm and the row maxi-
mization operator L,c4. Fort =1,..., T determine a distribution sampling
(W,(k))y_, of each disturbance W; with the corresponding weights (v,(k))7_;.
Given reward ()], and scrap r7 functions, determine the matrix represen-
tatives of their sub-gradient envelopes

SGmrt(p> ) CL) ~ Rt(p> a)a SGmTT(p, ) ~ RT(p)

fort=0,...,7T—1,p € P and a € A. Denoting the matrix representatives
of each (approximate) value function by

vlfm’")(p,-) ~Vi(p) fort=0,...,T,peP.

These matrix representatives are obtained via:

Initialization: Start with the matrices

Vr(p) = Rr(p), for all p € P. (17)

Recursion: Fort =T —1,...,0 calculate for p € P

Vi(p) = Uaea(Re(p, a) + ) vy ()Y Vira (alp, @) - Wy (R)]) - (18)

Example: Let us illustrate this algorithm using the optimal stopping prob-
lem from American Put from above. To be able representing the functions (3)
and (4), we embed the state space R, into R? amending the price component
z by one (z,1). This procedure yields matrices R;(p,a) = e~ (p — a(p, a))1I,
Rr(p,a) = e (p—a(p, 1)l forallp € P,a€ Aandt=0,...,T —1 where

IT = [ _01 Ig } with strike price K € R,.

To describe the dynamics in R? sucht hat the embedded first component
follows a geometric Browinan motion and the amended second component is
fixed, we introduce the disturbance matrices

5t0

W, = { 0 1 } with i.i.d random variables (g;)L;. (19)

6



Thereby, for t = 1,...,T, the random variables In(g;) follow normal distribu-
tion with mean \ — "—22 and variance o2 > 0. Now we turn to the distribution
sampling. Using an ordinary Monte-Carlo sampling of the disturbance ma-
trices, define for each ¢t = 1,..., T, the sequence (g:(k))}_; which consists of
independent realization copies of €;. The matrices W;(k) are defined as in
(19), replacing the variable ¢; by the realization £,(k) for k = 1,...n. For
optimal stopping problem, the recursion (18) boils down to a comparison of
the so-called continuation value to the current payoff, hence one needs to
determine the matrix V;(2) using for t =7 —1,...,0 the recursion

Vir(2) :== eI, Vi(2) = Y[e I U Z T [Vip1 (2) Wi (k).

3 Switching under incomplete information.

The subsequent work is devoted to an application of the above technique to
solve optimal switching problems under partial observation. The so-called
partially observable Markov decision processes, whose applications enjoys
unprecedented popularity [10], [7] have a long history in decision-making.
Starting with [13|, [14] the optimal control problems have been addressed in
18], [4], and [1], among others.

For sake of concreteness, let us formulate our approach under the as-
sumption that the underlying stochastic driver follows the so-called partially
observable Markov processes (POMPs), which is usually addressed under the
framework of hidden-Markov modeling (HMM).

The idea POMPs is to realize a time series (y;)._, in such a way that
it behaves as it was driven by a background device which may operate in
different regimes. Thereby, one supposes that the operating regime is not
directly observed and evolves like a Markov chain (z;)_, on a finite space
which is identified with the set {ej,...,eq} of unit vectors in R%. In some
situations, the hidden process (z;)]_, can be given a physical meaning, but
for many cases it just describes the evolution of latent variables. The basic
advantage thereby is that it is possible to trace the evolution of the hidden
states indirectly, based on the observation of (y;)L_,, using efficient recursive
schemes for calculation of the so-called hidden state estimate

Thereby, at each time ¢ = 0,...,T7 — 1, the probability vector x; describes
the distribution of z; conditioned on the past observation of (y;)i_,. More



importantly, such approach reproduces a Markovian dynamics in the follow-
ing sense: Although (y;)L, is not Markovian in general, it turns out that
the observations (y;)L, equipped with latent variables (7;)L, form a two-
component process such that

the evolution (7, y;)l, is Markovian. (20)

From this perspective, modeling a time series by POMP yields a technique
to address control problems in certain non-Markovian situations. Namely,
having assumed that the stochastic driver (y;)L, of our control problem can
be described as observations (y;)7_, of a POMP, the multi-variate Markovian
dynamics (Zy, y;)7_, can be constructed in order to treat the original problem
in the standard settings of optimal stochastic control for Markovian processes.

In what follows, we show how certain POMP control problems can be
solved within the framework of convex switching systems. To some extent,
this is a surprising result, since the dynamics under partial observation in-
volves a regular a Bayesian information update, which introduces a non-
linearity by re-normalization. That is, although we consider control problems
which do not meet assumptions required for convex switching systems, a spe-
cific state space extension transforms them into convex switching framework.

Let us introduce the ingredients required therefore. Assume that an
unobservable global regime evolves like a Markov chain (x;)L_, on the set

= {e1,...,e4} of unit vectors in R?, while the information available to
the controller is gained from the observation of the process (y;)L_, which
takes values in a measure space ). As in the standard setting of POMP,
it is assumed that the transition to z;,; and the generation of output v,
occur independently, given current state x;. More precisely, the joint evo-
lution ((zy,y:))L, follows a Markov process whose transition kernels @, for
t=0,...,7 —1 are acting on functions ¢ : X x Y — R as

T
/cbnyt((:vy (z,)) Z/¢xy Tyt (dy).  (21)

r'eX

Thereby, the stochastic matrix I' = (T, /), .7ex describes the transition from
Ty to x441 whereas u, denotes the distribution of the observation ;11 con-
ditioned on x; = ¢ € X. Assuming that for each x € X the distribution
i, is absolutely continuous with respect to a reference measure p on Y, we
introduce the densities

dp
v,(y) = —W), yely, e X,
(y) dﬂ()

to write the distributions as

py(dy) = v, (y)u(dy)  zeX.

8



Using the reference measure p, the transition kernel (21) of (zy,y:)l, is
written as

/¢nyt((xy (z,9))

Z/qsx V)T, v, () (dy),

’'eX

forallt=0,...,7—1,z € X and y € Y. As indicated above, it turns out
that (74, y;)L, follows a Markov process on the state space X x ), driven by
transition kernels ; which act for¢t = 0,...,7—1 on functions ¢ : XY*x) — R
as

L'vy)z
V)l

In this formula, V(y) stands for the diagonal matrix whose diagonal elements
are given by (v, (y))zex for y € ), and the norm is defined as || z|| = >, |z,
each z € R%.

As in the case of convex switching systems, we assume that the discrete
state component p € P is deterministically controlled by actions a € A
using a given function o : P x A — A where the sets P and A finite.
Now, let us turn to the definition of our control costs. Naturally, the reward
earned at time t is dependent on the observation ;. However, it is more
convenient to model the expectation of the next-step reward, conditioned
on the situation at time ¢. That is, given ¢ = 0,...,T — 1, we aim to
model the conditioned next-step reward expectation as a function of the state
distribution Z, of the position p, and action a chosen at the time ¢. Note that
with this modeling, the observation y,; recorded at time ¢ indirectly influences
the next-step reward expectation through conditioned distribution Z;. Let
us agree on the following definition

6@,y )@, y) | (@) = / ¢>< ) IV(y)zln(dy).(22)

)?xy

Definition 1. With notations as above, a partially observable switching prob-
lem s a stochastic control problem whose controlled Markov evolution on the
state space P x X x Y s governed by transition kernels

I'v)z
Vel

fort =0,...,T — 1, acting on functions ¢ on P x X x Y — R where the
above integral exists. Furthermore, the reward and scarp values are given as
functions, which do not depend ony € Y:

Koo(p,3,y) = /y as(a(p,) )nwy')a?nu(dy') ac A (23)

ri: PxXxA—R, rp: PxX =R, t=0,...,7—1. (24)



Note that in (23) the resulting function Kf¢ was not depending on the
last component y € Y. In the case that the argument function ¢ also does
not depend on the last component y € Y, we agree to write

vz

Ki0(02) = [ o (ol ot ) VORI, (5

y

Note that the value functions of a partially observable Markov switching
problem as defined above do not depend on the observation component. This
is verified inductively. Using (24) and following for t = 7" — 1,...,0 the
backward induction with kernel action (25), we obtain:

vp =T, Ut(pa/x\> :I;lea‘j{(rt(pv/x:a)+K?Ut+1(p7/x\))7 i‘\e vae P (26)

Now let us introduce a function extension technique. Given a function f :
P x X — R introduce its positive-homogeneous extension f:Px ]Rd — R
by

fp,) = |zl f(p, 7= ) zeRL, peP

Note that with this definition, the values of continuous component 7€ X are
extended to the entire cone ]Ri D X and the extension f is indeed positive-

homogeneous f(p, \z) = Af(p,z) for all = € R%, X € Ry, for each p € P.

Similarly, for a function f : P x XxA—-R we introduce the positive-
homogeneous extension f : P X ]Ri x A — R by f(p,x,a) = |z||f(p, ﬁaa)

foralle]R‘fr,pePandaeA.

Lemma 1. Given a partially observable switching problem with notations as
above, consider a function ¢ on P x X with positive-homogeneous extension

(ﬁ, then it holds that
Ked(p, T) = E(d(a(p,a), W,,, @) TeX, acAt=0,...,T—1 (27)
where the W, is given as a matriz-valued function
W =T"V(Yiy), a€At=0,....,T—1 (28)

of a random variable Yy 1 whose distribution equals to the reference measure
(L.

Proof. Using (25) we verify the assertions (27) and (28) for each p € P,

10



ac€ A t=0,....T—1as

) TV Y
ki3 = [ o (alpa) ) VRl

=/ ¢ (a(p,a), TTV()Z) [TV E)Z] IV ()] u(dy)

_ /Y 3 (a(p, ). TTV()E) u(dy') = E(3(a(p, a), W,,17)).

O

Let us define the extended transition kernels by
K?QE(Z% J}') = E((i(a(Z% CL), Wt+1$)) VIS Rd? ac A7 0= 17 T = 17 (29)

where the disturbances (W,)7_, are given by (28) in terms of identically dis-
tributed random variables (V;)Z_,, each following reference distribution .
The following result shows that the original backward induction (26) can be
solved using extended transition kernels (29) instead of the original kernels
(23).

Proposition 1. Given a partially observable Markov switching problem, con-
sider its value functions (v;)L, returned by backward induction (26) with
rewards, scrap values and transition kernels given by (24) and (25). Further-
more , consider functions (0;)_y on P x R% obtained recursively by

’ijT = fT7 (30)
Bp,w) = max (7i(p, 2, 0) + Kioa (a(p,a), 7)) (31)
forz e R, t =T-1,...,0, with extended reward (7)o, scrap 7 functions

and transition kernels K¢ as defined above. Then it holds that
Uy is the positive-homogeneous extension of vy for allt =0,...,T. (32)

Proof. Let us proceed inductively, starting at ¢ = T', where our induction
assumption (32) holds by the initialization in (26) and (30). Having supposed
that ;41 is the positive-homogeneous extension of v, we use Lemma 1 to
conclude that I@?ﬁtﬂ is the positive-homogeneous extension of Kfwv,; for
each a € A. Applying summations of and maximizations in (31), we verify
that v, is the positive-homogeneous extension of v;, as required. O

11



Since for each t = 0,...,T — 1 the transition kernel K¢ from (29) acts in
terms of disturbances, the backward induction (30), (31)

or(p,r) = 7r(p, ) (33)
w(p,x) = max(ry(p, x) + B0 (a(p, a), W) (34)

fort =T —1,...,0, p € P, z € R% as required in (8), (9) for convex
switching systems. To ensure additional convexity conditions (1) required
for the convex switching framework, further assumptions on extensions 7,
and r7r for t =0,...,T — 1 must be imposed explicitly. For simplicity, let us
agree that

positive-homogeneous extenstions (7(p, -, a))_ and 7(p, -) for (35)

p € P ae Aof (24) are convex and globally Lipschitz continuous.

It turns out that this assertion is fulfilled if for £ = 0,...,T — 1 the original
functions (24) are convex and globally Lipschitz in the continuous component.

4 Example: An adaptive investment strategy.

We now illustrate our technique using a simplified problem of dynamic fund
allocation. In our approach we consider optimization of an investment strat-
egy for a single risky asset under the assumption that the increments of
the sampled asset price process follows a hidden Markov dynamics (see [5]).
To obtain such as price evolution, we introduce a random time sampling
of the continuous price process (S(t))i>0, which is inspired by the so-called
PointésFigure Chart technique.

Suppose trading shall occur only at times where a notable price change
may require a position re-balancing. Thereby, the price evolution is sampled
as follows: Having fixed a price change step A > 0 and starting the observa-
tions at the initial time 7y = 0, one writes into a PointéFigure Chart one of
the symbols x or o at the first time 71 where the asset price leaves the interval
[S(70) — A, S(79) + A]. If the price increases to the upper bound S(7p) + A
one writes the symbol x, otherwise the symbol o is written. Repeating the
same procedure with the next interval [S(7) — A, S(71) + A] and proceeding
further, a sequence of stopping times (7% ey is determined, with the symbols
X or o at each time, which are arranged in a diagram as shown in Figure
1. Assume that the trading occurs only at (7% )ken, and that at each time 73
the trading decision is based only on the observation of the sampled price
history S(79),...,S(7). Since the price process (S(t)):>o is continuous, the

12
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Figure 1: Asset price and its P&F diagram.

stochastic driver of our model is given by the binary increment process
yt:S(Tt)—S(Tt_l), t:]_,...,T,

which takes values in the set ) = {—A, A}. This process is modeled as the
observable part (y;)L, of a hidden Markov dynamics (z;,y;)L,. For the sake
of concreteness, we suppose that the hidden regimes X can be identified with
some background market situations. As a simple illustration, we consider a
two-state X = {ey, ex} regime switching with transition matrix

_ D1 (1—p1)
b= (1 —pz) b2

and assume that if the market is in the state x; = e; then the next price
increment y;,1 takes values in ) = {—A, A} with probabilities ¢; and (1—¢;)
respectively. Similarly, conditioned on the current state z; = es we have
the probabilities (1 — ¢2) and ¢ for the observation y,,; of the next price
move. Choosing the reference measure p as the uniform distribution on Y by
p({A}) = u({—=A}) = 1/2, we obtain the following diagonal density matrices

S LR R |

which gives merely two disturbance matrix realizations I'"V(—A), TTV(A).
According to (28), we define the disturbance matrices by (W, = I'TV(Y;))L |,
using independent identically distributed random variables (Y;)L,, whose
distribution is the reference measure pu.

Now, we introduce the position control « for our dynamic asset allocation
problem. Consider a situation where the asset position can either be short,

13



neutral, or long, labeled by the numbers p = 1,2, 3 respectively. At each time
t=0,...,T, the controller must make a decision whether the next position
shall be long short, or neutral. Given the set P = {1,2,3} of all possible
positions, we introduce the action set as A = {1,2,3} where a stands for
the targeted position after re-allocation, in which case the position control
function « is determined by the following matrix:

a(1,1) a(1,2) o1,3) 12 3
a(2,1) a(2,2) «(2,3) | =11 2 3
a(3,1) a(3,2) «3,3) 12 3

Finally, let us turn to the definition of the reward and the scrap functions.
In this example, we model the payoff in terms of affine linear reward function

Tt(p,ff, a’) - ’l"(p,fl'\, a’) = (p - 1)pTZE\_ Clp - Oé(p, a)l? = 07 T =1 (36)

for all z € )A(, and a € A. Here ¢(p — a(p,a)) represents the proportional
transaction costs determined by a parameter ¢ > 0 and the term (p — 1)p'Z
stands for the expected revenue from holding position p from time ¢ to ¢t 41,
if the distribution of the market state is described by the probability vector
7 € X. Thereby, the vector p € R? given by

p=A1-2q,2q — 1]T-

such that (p — 2)p' 7 describes for the return, expected from the realization
of next price movement y;,1, conditioned on the information x; available at
time t, for a given portfolio position p € P. Assuming that at the end t =T,
all asset positions must be closed, we define the scrap value as

re(p, @) = r(p,7,2) fort=0,.... T—1,peP,T€X. (37)

With these definitions, the assumption (24) is satisfied. Furthermore, we
easily meet the assumption (35) in view of the following consideration: Note
that since all entries of the probability vector ¥ € X’ sum up to one "7 = 1,

the constant transaction cost term in (36) can be re-written fort = 0,...,7—
l,pe P,z € X as

r(p,7,a) = R(p,a)¥, rr(p,T) = R(p,1)Z (38)
with

R(p,a) = ((p = 2)p — clp — a(p,a)[1)"
fort=0,...,T—1,p € P, a € A. Because of this linearity, we observe that
the positive-homogeneous extensions are obtained by the same formula

ft(p> x, CL) = R(pa CI,)ZL’, ’FT(pa ZL’) = R(pa I)ZE
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forallz € R, ¢t =0,....,T — 1, p € P, a € A, which satisfy (35). Since
now our problem fulfills all assumptions required for the convex switching
algorithm, we propose an approximate solution via (17) and (18).
Initialization: Having defined the row-rearrangement operator T for a grid
G C X, initialize the matrices representing the value functions form the scrap
matrices given in (38)

Vr(p) = R(p, 1), for all p € P. (39)
Recursion: For t =7 —1,...,0 use reward matrices from (38) to calculate
forpe P
1
Vt+1(p) - §(T[V2+1(p) ’ FTV(_A)] + T[Visa(p) - FTV(A)]), (40)
Vilp) = Uaea(R(p, a) + Vi{i(alp, ), (41)

Note that because there are only two disturbance realizations, we perform
an exact integration as in (9) using two weights of size 1/2 in the reference
measure /.

Let us consider a numerical illustration. A hidden Markov model with
parameters p; = po = 0.8 and ¢; = ¢ = 0.9 generates increments of size
A =1 of the asset price whose typical evolution is depicted in the Figure
2. Having supposed transaction costs ¢ = 0.05 and introducing an equally

0 20 40 60

price deviation from initail value
-40
|

T T T T T
[0} 1000 2000 3000 4000 5000

Time

Figure 2: Asset price evolution, adjusted to start at the origin.

spaced grid G of size 101 as

k

ck=0,....1 ?/C'\
100)62 k=0,...,100} C

6= {ygger+ (1~

15



1.4
I

value functions
1.5
|

1.0
|
expected value functions

0.6 08 1.0 1.2
I I I I

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Functions represented by (Vi(p))3_, and (Vy"(p))3_,.

we determine the matrix representatives (V(p))3_; of the value functions and
their expectations for ¢ = 10,...,1 from the recursions (39) — (41). For the
value functions depicted in the Figure 3, an candidate of the optimal decision
rule 7} is determined by (10) as

71 () = argmax,. 4 (max R(p, a)T + max V;" (a(p,a))T), T € X.

Finally, the Figure 4 shows a joint evolution of the asset price (adjusted to
start at the origin, blue line), the portfolio positions obtained by subsequent
application of the decision rule 7} (gray oscillating line) and the correspond-
ing wealth (green increasing curve). To depict all three plots in the same

00 02 04 06 08 10

[0} 50 100 150 200 250 300 350

Index

Figure 4: Asset price, portfolio positions and wealth

16



graph, we have scaled each curve to the interval [0, 1].

5 Conclusion

In this work, we present a novel approach to solving specific switching prob-
lems under partial information and show how to apply these results to optimal
dynamic asset allocation.
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