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Abstrat

In industrial appliations, optimal ontrol problems frequently ap-

pear in the ontext of deisions-making under inomplete information.

In suh framework, deisions must be adapted dynamially to aount

for possible regime hanges of the underlying dynamis. Using stohas-

ti �ltering theory, Markovian evolution an be modeled in terms of

latent variables, whih naturally leads to high dimensional state spae,

making pratial solutions to these ontrol problems notoriously hal-

lenging. In our approah, we utilize a spei� struture of this problem

lass to present a solution in terms of simple, reliable, and fast algo-

rithms.

1 Introdution

The main problem in the dynamial deision-making proess is to determine

how to update the information and to apply a ontrol ation in order to reah

an optimal result over a given time period. These questions are often stated

within deision theory for partially observable Markov proesses, whih deals

with disrete-time optimal stohasti ontrol under inomplete information.

Although theoretial fundamentals of these problems are well-understood,

(see [1℄, [2℄, [6℄, and [12℄) numerial solutions in pratial appliations remain

persistently hallenging and require using heuristis (see [11℄, [3℄). The main

trust of this ontribution is to present a working approah to a partiular

problem lass. We present a lass of optimal stohasti ontrol problems

under inomplete information, whih fall within the sope of the so-alled

onvex swithing systems (see [9℄) and possess e�ient algorithmi solutions.
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Important appliations an be modeled as stohasti ontrol problems

whose state dynamis is linear. It turns out that by exploiting this issue,

e�ient numerial shemes, inluding solution assessment, an be obtained.

Let us introdue a spei� optimal stohasti swithing problem whose state

evolution onsists of one disrete and one ontinuous omponent. We thus

suppose that the state spae E = P×R
d
is the produt of a �nite spae P and

the Eulidean spae R
d
. Furthermore, assume that the disrete omponent

p ∈ P is deterministially driven by a �nite set A of ations in terms of a

funtion α : P ×A → A, (p, a) → α(p, a), where α(p, a) ∈ P is the new value

of the disrete omponent of the state if its previous disrete omponent

value was p and the ation a ∈ A was taken. Furthermore, we assume that

the ontinuous state omponent evolves as an unontrolled Markov proess

(Zt)
T
t=0 on R

d
whose evolution is driven by random linear transformations

Zt+1 = Wt+1Zt with random d × d disturbane matries (Wt)
T
t=1 whih are

independent and integrable. Now we turn to the spei�ation of ontrol osts.

Assume that taking an ation a ∈ A auses an immediate reward rt(p, z, a)
whih depends on the state (p, z) ∈ E and on the ation a ∈ A through

given reward funtions rt : E × A → R whih may be time t = 0, . . . , T − 1
dependent. When the system arrives at the last time step t = T in the

state (p, z) ∈ E, the agent ollets the srap value rT (p, z), desribed by a

pre-spei�ed srap funtion rT : E → R. At eah time t = 0, . . . , T − 1 the

deision rule πt is given by a mapping πt : E → A, presribing at time t in the
state (p, z) ∈ E the ation πt(p, z) ∈ A. A sequene π = (πt)

T−1
t=0 of deision

rules is alled poliy. When ontrolling the system by poliy π = (πt)
T−1
t=0 ,

the positions (pπt )
T
t=0 and the ations (aπt )

T−1
t=0 evolve randomly

aπt = πt(p
π
t , Zt), pπt+1 = α(pπt , a

π
t ), Zt+1 = Wt+1Zt, t = 0, . . . , T−1.

Having started at initial values pπ0 = p0 and Z0 = z0, the goal of the ontroller
is to maximize the expetation of the reward

vπ0 (p0, z0) = E

(
T−1∑

t=0

rt(p
π
t , Zt, a

π
t ) + rT (p

π
T , ZT )

)

aumulated within the entire time depending on the hoie of the poliy

π = (πt)
T−1
t=0 . Following [9℄, we all suh Markov deision problem a onvex

swithing systems, if

rt(p, ·, a), rT (p, ·) for all t = 0, . . . , T − 1, a ∈ A, p ∈ P
are onvex and globally Lipshitz ontinuous.

(1)

Example: The simplest example of a onvex swithing system is given by
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an Amerian Put in disrete time. Here, the disounted asset prie (Zt)
T
t=0

at time steps 0, . . . , T is modeled by a sampled geometri Brownian motion

following

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1, Z0 ∈ R+ (2)

where (Wt)
T
t=1 are independent identially distributed random variables fol-

lowing log-normal distribution. The prie of an option with strike prie K
for the interest rate λ ≥ 0 and with maturity date T is given by the solution

to the optimal stopping problem

sup{E(max(e−λτ (K − Zτ ), 0)) : τ is {0, 1, . . . , T}-valued stopping time}.

This swithing system is de�ned by two positions and two ations P = {1, 2},
A = {1, 2}. Here, the positions "stopped" and "goes" are represented by

p = 1, p = 2 respetively and the ations "stop" and "go" denoted by a = 1
and a = 2. With this interpretation, the position hange is given by

(α(p, a))2p,a=1 =

[
α(1, 1) α(2, 1)
α(1, 2) α(2, 2)

]
=

[
1 1
1 2

]
.

The reward at time t = 0, . . . , T − 1 and the srap value are de�ned by

rt(p, z, a) = e−λt(K − z)+(p− α(p, a)), (3)

rT (p, z) = e−λT (K − z)+(p− α(p, 1)), (4)

for all p ∈ P , a ∈ A, z ∈ R.

Note that the state proess of a onvex swithing system follows a on-

trolled Markov proess on E = P × R
d
governed by the family

Ka
t v(p, z) = E(v(α(p, a),Wt+1z)), t = 0, . . . , T − 1, a ∈ A, (5)

of transition kernels ating on funtions v : E = P × R
d → R where the

above expetation exists. Using these kernels, the poliy value is obtained

by the poliy valuation algorithm

vπT = rT , vπt (p, z) = rt(p, z, πt(p, z)) +K
πt(p,z)
t vπt+1(p, z).

To obtain a poliy π∗ = (π∗
t )

T−1
t=0 , whih maximizes the total expeted reward,

one introdues for eah t = 0, . . . , T − 1 the so-alled Bellman operator

Ttv(p, z) = max
a∈A

(rt(p, z, a) +Ka
t v(p, z)) , (p, z) ∈ E (6)

ating on eah funtion v : E → R where the above expetation exists. Next

onsider the Bellman reursion, also referred to as the bakward indution:

vT = rT , vt = Ttvt+1, for t = T − 1, . . . , 0. (7)
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For onvex swithing systems, there exists a reursive solution (v∗t )
T
t=0 to the

Bellman reursion

vT (p, z) = rT (p, z) (8)

vt(p, z) = max
a∈A

(rt(p, z) + E(vt+1(α(p, a),Wt+1z))) (9)

for t = T − 1, . . . , 0, p ∈ P , and z ∈ R
d
. The funtions (v∗t )

T
t=0 resulting form

bakward indution are alled value funtions, they determine an optimal

poliy π∗ = (π∗
t )

T−1
t=0 via

π∗
t (p, z) = argmaxa∈A

(
rt(p, z, a) + E(v∗t+1(α(p, a),Wt+1z))

)
(10)

for p ∈ P , z ∈ R
d
, for all t = 0, . . . , T − 1.

2 Solution tehniques

The �rst step in obtaining a numerial solution to the bakward indution

(7) is an appropriate disretization of the Bellman operator (6). For this

reason, we onsider a modi�ed Bellman operator

T n
t v(p, z) = max

a∈A
(rt(p, ., a)+

n∑

k=1

νn
t+1(k)v(α(p, a),Wt+1(k)z))

with integration replaed by its numerial ounterpart, de�ned in terms of

appropriate distribution sampling (Wt(k))
n
k=1 to eah disturbane Wt, t =

1, . . . , T , with orresponding integration weights (νn
t (k))

n
k=1. In the resulting

modi�ed bakward indution

v
(n)
T = rT , v

(n)
t = T n

t v
(n)
t+1, t = T − 1, . . . 0 (11)

the funtions (v
(n)
t )Tt=0 need to be desribed by algorithmially tratable ob-

jets. Note that sine all reward (rt(p, ·, a))
T−1
t=0 and srap rT (p, ·) funtions

are onvex in the ontinuous variable, the modi�ed value funtions (11) are

also onvex. For these funtions, we suggest an approximation in terms of

pieewise linear and onvex funtions as follows: Introdue the so-alled sub-

gradient envelope SGf of a onvex funtion f : Rd → R on a grid G ⊂ R
d
as

a maximum

SGf = ∨g∈G(▽gf)

of sub-gradients ▽gf of f on all grid points g ∈ G. Using sub-gradient

envelope operation, we de�ne the double-modi�ed Bellman operator as

T m,n
t v(p, .) = SGmmax

a∈A

(
rt(p, ., a)+

n∑

k=1

νn
t+1(k)v(α(p, a),Wt+1(k).)

)
,
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where the operator SGm
stands for the sub-gradient envelope on the grid

Gm = {g1, . . . , gm}, as de�ned above. The orresponding double-modi�ed

bakward indution

v
(m,n)
T (p, ·) = SGmrT , (p, ·), p ∈ P (12)

v
(m,n)
t = T m,n

t v
(m,n)
t+1 , t = T − 1, . . . 0. (13)

yields the double-modi�ed value funtions (v
(n,m)
t )Tt=0. This sheme enjoys

exellent asymptoti properties. Under slight additional assumptions on dis-

tribution sampling and grid tightening, [9℄ shows that the double-modi�ed

value funtions onverge to the true value funtions almost surely uniformly

on ompat sets.

In this work we fous on the algorithmi properties of the sheme (12),

(13). Sine the double-modi�ed value funtions (v
(m,n)
t )Tt=0 are piee-wise

linear and onvex, they an be expressed in a ompat form, using matrix

representations. Note that a pieewise onvex funtion f an be desribed

by a matrix by representing all linear funtionals partiipating in the matrix

representation as matrix rows. To denote this relation, let us agree on the

following notation: Given a funtion f and a matrix F suh that f(z) =
max(Fz) holds for all z ∈ R

d
, then we write f ∼ F . Let us emphasize

that the sub-gradient envelope operation SG is re�eted on the side of matrix

representatives by a spei� row-rearrangement operator ΥG, in the following

sense

f ∼ F ⇒ SGf ∼ ΥG[F ].

Thereby, the row-rearrangement operator ΥG of the grid G = {g1, . . . , gm} ⊂
R

d
ats on eah matrix L with d olumns as

(ΥGF )i,· = Fargmax(Fgi),· for all i = 1, . . . , m.

For pieewise onvex funtions, the result of maximization, summation, and

omposition with linear mappings, followed by sub-gradient envelope an

be obtained using their matrix representatives. More preisely, for onvex

pieewise linear funtions (fi)
n
i=1 given in terms of their matrix representa-

tives (Fi)
n
i=1, meaning that fi ∼ Fi for i = 1, . . . , n, we obtain

SG(

n∑

i=1

fi) ∼

n∑

i=1

ΥG[Fi], (14)

SG(∨
n
i=1fi) ∼ ΥG[⊔

n
i=1Fi], (15)

SG(fi(W ·)) ∼ ΥG[FiW ], i = 1, . . . , n, (16)

where the operator ⊔ stands for binding matries by rows.
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In the ontext of onvex swithing systems, the double-modi�ed bakward

indution involves only maximizations, summations and ompositions with

linear mappings applied to pieewise linear onvex funtions, thus it an be

rewritten in terms of matrix operations, giving the following algorithm:

Pre-alulations: For a onvex swithing system and Gm = {g1, . . . , gm},
implement the row-rearrangement operator Υ = ΥGm

and the row maxi-

mization operator ⊔a∈A. For t = 1, . . . , T , determine a distribution sampling

(Wt(k))
n
k=1 of eah disturbaneWt with the orresponding weights (νt(k))

n
k=1.

Given reward (rt)
T−1
t=0 and srap rT funtions, determine the matrix represen-

tatives of their sub-gradient envelopes

SGmrt(p, ·, a) ∼ Rt(p, a), SGmrT (p, ·) ∼ RT (p)

for t = 0, . . . , T − 1, p ∈ P and a ∈ A. Denoting the matrix representatives

of eah (approximate) value funtion by

v
(m,n)
t (p, ·) ∼ Vt(p) for t = 0, . . . , T , p ∈ P .

These matrix representatives are obtained via:

Initialization: Start with the matries

VT (p) = RT (p), for all p ∈ P . (17)

Reursion: For t = T − 1, . . . , 0 alulate for p ∈ P

Vt(p) = ⊔a∈A

(
Rt(p, a) +

n∑

k=1

νt+1(k)Υ[Vt+1(α(p, a)) ·Wt+1(k)]
)

(18)

Example: Let us illustrate this algorithm using the optimal stopping prob-

lem from Amerian Put from above. To be able representing the funtions (3)

and (4), we embed the state spae R+ into R
2
amending the prie omponent

z by one (z, 1). This proedure yields matries Rt(p, a) = e−λt(p−α(p, a))Π,
RT (p, a) = e−λT (p−α(p, 1))Π for all p ∈ P, a ∈ A and t = 0, . . . , T −1 where

Π =

[
−1 K
0 0

]
with strike prie K ∈ R+.

To desribe the dynamis in R
2
suht hat the embedded �rst omponent

follows a geometri Browinan motion and the amended seond omponent is

�xed, we introdue the disturbane matries

Wt =

[
εt 0
0 1

]
with i.i.d random variables (εt)

T
t=1. (19)
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Thereby, for t = 1, . . . , T , the random variables ln(εt) follow normal distribu-

tion with mean λ− σ2

2
and variane σ2 > 0. Now we turn to the distribution

sampling. Using an ordinary Monte-Carlo sampling of the disturbane ma-

tries, de�ne for eah t = 1, . . . , T , the sequene (εt(k))
n
k=1 whih onsists of

independent realization opies of εt. The matries Wt(k) are de�ned as in

(19), replaing the variable εt by the realization εt(k) for k = 1, . . . n. For

optimal stopping problem, the reursion (18) boils down to a omparison of

the so-alled ontinuation value to the urrent payo�, hene one needs to

determine the matrix Vt(2) using for t = T − 1, . . . , 0 the reursion

VT (2) := e−λTΠ, Vt(2) = Υ[e−λtΠ] ⊔ (
1

n

n∑

k=1

Υ[Vt+1(2)Wt+1(k)]).

3 Swithing under inomplete information.

The subsequent work is devoted to an appliation of the above tehnique to

solve optimal swithing problems under partial observation. The so-alled

partially observable Markov deision proesses, whose appliations enjoys

unpreedented popularity [10℄, [7℄ have a long history in deision-making.

Starting with [13℄, [14℄ the optimal ontrol problems have been addressed in

[8℄, [4℄, and [1℄, among others.

For sake of onreteness, let us formulate our approah under the as-

sumption that the underlying stohasti driver follows the so-alled partially

observable Markov proesses (POMPs), whih is usually addressed under the

framework of hidden-Markov modeling (HMM).

The idea POMPs is to realize a time series (yt)
T
t=0 in suh a way that

it behaves as it was driven by a bakground devie whih may operate in

di�erent regimes. Thereby, one supposes that the operating regime is not

diretly observed and evolves like a Markov hain (xt)
T
t=0 on a �nite spae

whih is identi�ed with the set {e1, . . . , ed} of unit vetors in R
d
. In some

situations, the hidden proess (xt)
T
t=0 an be given a physial meaning, but

for many ases it just desribes the evolution of latent variables. The basi

advantage thereby is that it is possible to trae the evolution of the hidden

states indiretly, based on the observation of (yt)
T
t=0, using e�ient reursive

shemes for alulation of the so-alled hidden state estimate

x̂t = E(xt | yj, j ≤ t) t = 0, . . . T.

Thereby, at eah time t = 0, . . . , T − 1, the probability vetor x̂t desribes

the distribution of xt onditioned on the past observation of (yj)
t
j=0. More
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importantly, suh approah reprodues a Markovian dynamis in the follow-

ing sense: Although (yt)
T
t=0 is not Markovian in general, it turns out that

the observations (yt)
T
t=0 equipped with latent variables (x̂t)

T
t=0 form a two-

omponent proess suh that

the evolution (x̂t, yt)
T
t=0 is Markovian. (20)

From this perspetive, modeling a time series by POMP yields a tehnique

to address ontrol problems in ertain non-Markovian situations. Namely,

having assumed that the stohasti driver (yt)
T
t=0 of our ontrol problem an

be desribed as observations (yt)
T
t=0 of a POMP, the multi-variate Markovian

dynamis (x̂t, yt)
T
t=0 an be onstruted in order to treat the original problem

in the standard settings of optimal stohasti ontrol for Markovian proesses.

In what follows, we show how ertain POMP ontrol problems an be

solved within the framework of onvex swithing systems. To some extent,

this is a surprising result, sine the dynamis under partial observation in-

volves a regular a Bayesian information update, whih introdues a non-

linearity by re-normalization. That is, although we onsider ontrol problems

whih do not meet assumptions required for onvex swithing systems, a spe-

i� state spae extension transforms them into onvex swithing framework.

Let us introdue the ingredients required therefore. Assume that an

unobservable global regime evolves like a Markov hain (xt)
T
t=0 on the set

X = {e1, . . . , ed} of unit vetors in R
d
, while the information available to

the ontroller is gained from the observation of the proess (yt)
T
t=0 whih

takes values in a measure spae Y . As in the standard setting of POMP,

it is assumed that the transition to xt+1 and the generation of output yt+1

our independently, given urrent state xt. More preisely, the joint evo-

lution ((xt, yt))
T
t=0 follows a Markov proess whose transition kernels Qt for

t = 0, . . . , T − 1 are ating on funtions φ : X × Y → R as

∫
φ(x′, y′)Qt(d(x

′, y′) | (x, y)) =
∑

x′∈X

∫

Y

φ(x′, y′)Γx,x′µx(dy
′). (21)

Thereby, the stohasti matrix Γ = (Γx,x′)x,x′∈X desribes the transition from

xt to xt+1 whereas µx denotes the distribution of the observation yt+1 on-

ditioned on xt = x ∈ X . Assuming that for eah x ∈ X the distribution

µx is absolutely ontinuous with respet to a referene measure µ on Y , we
introdue the densities

νx(y) =
dµx

dµ
(y), y ∈ Y , x ∈ X ,

to write the distributions as

µx(dy) = νx(y)µ(dy) x ∈ X .
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Using the referene measure µ, the transition kernel (21) of (xt, yt)
T
t=0 is

written as

∫
φ(x′, y′)Qt(d(x

′, y′) | (x, y)) =
∑

x′∈X

∫

Y

φ(x′, y′)Γx,x′νx(y)µ(dy
′),

for all t = 0, . . . , T − 1, x ∈ X and y ∈ Y . As indiated above, it turns out

that (x̂t, yt)
T
t=0 follows a Markov proess on the state spae X̂ ×Y , driven by

transition kernels Q̂t whih at for t = 0, . . . , T−1 on funtions φ : X̂×Y → R

as

∫

X̂×Y

φ(x̂′, y′)Q̂t(d(x̂
′, y′) | (x̂, y)) =

∫

Y

φ

(
Γ⊤V (y′)x̂

‖V (y′)x̂‖
, y′
)
‖V (y′)x̂‖µ(dy′).(22)

In this formula, V (y) stands for the diagonal matrix whose diagonal elements

are given by (νx(y))x∈X for y ∈ Y , and the norm is de�ned as ‖z‖ =
∑n

i=1 |zi|,
eah z ∈ R

d
.

As in the ase of onvex swithing systems, we assume that the disrete

state omponent p ∈ P is deterministially ontrolled by ations a ∈ A
using a given funtion α : P × A → A where the sets P and A �nite.

Now, let us turn to the de�nition of our ontrol osts. Naturally, the reward

earned at time t is dependent on the observation yt. However, it is more

onvenient to model the expetation of the next-step reward, onditioned

on the situation at time t. That is, given t = 0, . . . , T − 1, we aim to

model the onditioned next-step reward expetation as a funtion of the state

distribution x̂, of the position p, and ation a hosen at the time t. Note that
with this modeling, the observation yt reorded at time t indiretly in�uenes
the next-step reward expetation through onditioned distribution x̂t. Let

us agree on the following de�nition

De�nition 1. With notations as above, a partially observable swithing prob-

lem is a stohasti ontrol problem whose ontrolled Markov evolution on the

state spae P × X × Y is governed by transition kernels

Ka
t φ(p, x̂, y) =

∫

Y

φ

(
α(p, a),

Γ⊤V (y′)x̂

‖V (y′)x̂‖
, y′
)
‖V (y′)x̂‖µ(dy′) a ∈ A, (23)

for t = 0, . . . , T − 1, ating on funtions φ on P × X × Y → R where the

above integral exists. Furthermore, the reward and sarp values are given as

funtions, whih do not depend on y ∈ Y:

rt : P × X ×A → R, rT : P × X → R, t = 0, . . . , T − 1. (24)
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Note that in (23) the resulting funtion Ka
t φ was not depending on the

last omponent y ∈ Y . In the ase that the argument funtion φ also does

not depend on the last omponent y ∈ Y , we agree to write

Ka
t φ(p, x̂) =

∫

Y

φ

(
α(p, a),

Γ⊤V (y′)x̂

‖V (y′)x̂‖

)
‖V (y′)x̂‖µ(dy′). (25)

Note that the value funtions of a partially observable Markov swithing

problem as de�ned above do not depend on the observation omponent. This

is veri�ed indutively. Using (24) and following for t = T − 1, . . . , 0 the

bakward indution with kernel ation (25), we obtain:

vT = rT , vt(p, x̂) = max
a∈A

(rt(p, x̂, a) +Ka
t vt+1(p, x̂)) , x̂ ∈ X , p ∈ P. (26)

Now let us introdue a funtion extension tehnique. Given a funtion f :
P × X̂ → R introdue its positive-homogeneous extension f̃ : P × R

d
+ → R

by

f̃(p, x) := ‖x‖f(p,
x

‖x‖
) x ∈ R

d
+, p ∈ P.

Note that with this de�nition, the values of ontinuous omponent x̂ ∈ X̂ are

extended to the entire one R
d
+ ⊃ X̂ and the extension f̃ is indeed positive-

homogeneous f̃(p, λx) = λf̃(p, x) for all x ∈ R
d
+, λ ∈ R+, for eah p ∈ P .

Similarly, for a funtion f : P × X̂ × A → R we introdue the positive-

homogeneous extension f : P × R
d
+ ×A → R by f̃(p, x, a) := ‖x‖f(p, x

‖x‖
, a)

for all x ∈ R
d
+, p ∈ P and a ∈ A.

Lemma 1. Given a partially observable swithing problem with notations as

above, onsider a funtion φ on P × X̂ with positive-homogeneous extension

φ̃, then it holds that

Ka
t φ(p, x̂) = E(φ̃(α(p, a),Wt+1x̂)) x̂ ∈ X̂ , a ∈ A, t = 0, . . . , T − 1, (27)

where the Wt+1 is given as a matrix-valued funtion

Wt+1 = Γ⊤V (Yt+1), a ∈ A, t = 0, . . . , T − 1 (28)

of a random variable Yt+1 whose distribution equals to the referene measure

µ.

Proof. Using (25) we verify the assertions (27) and (28) for eah p ∈ P ,
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a ∈ A, t = 0, . . . , T − 1 as

(Ka
tφ)(p, x̂) =

∫

Y

φ

(
α(p, a),

Γ⊤V (y′)x̂

‖Γ⊤V (y′)x̂‖

)
‖V (y′)x̂‖µ(dy′)

=

∫

Y

φ̃
(
α(p, a),Γ⊤V (y′)x̂

)
‖Γ⊤V (y′)x̂‖−1‖V (y′)x̂‖µ(dy′)

=

∫

Y

φ̃
(
α(p, a),Γ⊤V (y′)x̂

)
µ(dy′) = E(φ̃(α(p, a),Wt+1x̂)).

Let us de�ne the extended transition kernels by

K̃a
t φ̃(p, x) = E(φ̃(α(p, a),Wt+1x)) x ∈ R

d, a ∈ A, 0 = 1, . . . T − 1, (29)

where the disturbanes (Wt)
T
t=1 are given by (28) in terms of identially dis-

tributed random variables (Yt)
T
t=1, eah following referene distribution µ.

The following result shows that the original bakward indution (26) an be

solved using extended transition kernels (29) instead of the original kernels

(23).

Proposition 1. Given a partially observable Markov swithing problem, on-

sider its value funtions (vt)
T
t=0 returned by bakward indution (26) with

rewards, srap values and transition kernels given by (24) and (25). Further-

more , onsider funtions (ṽt)
T
t=0 on P × R

d
+ obtained reursively by

ṽT = r̃T , (30)

ṽt(p, x) = max
a∈A

(
r̃t(p, x, a) + K̃a

t ṽt+1(α(p, a), x)
)
, (31)

for x ∈ R
d
+, t = T−1, . . . , 0, with extended reward (r̃t)

T−1
t=0 , srap r̃T funtions

and transition kernels K̃a
t as de�ned above. Then it holds that

ṽt is the positive-homogeneous extension of vt for all t = 0, . . . , T . (32)

Proof. Let us proeed indutively, starting at t = T , where our indution

assumption (32) holds by the initialization in (26) and (30). Having supposed

that ṽt+1 is the positive-homogeneous extension of vt+1, we use Lemma 1 to

onlude that K̃a
t ṽt+1 is the positive-homogeneous extension of Ka

t vt+1 for

eah a ∈ A. Applying summations of and maximizations in (31), we verify

that ṽt is the positive-homogeneous extension of vt, as required.
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Sine for eah t = 0, . . . , T − 1 the transition kernel K̃a
t from (29) ats in

terms of disturbanes, the bakward indution (30), (31)

ṽT (p, x) = r̃T (p, x) (33)

ṽt(p, x) = max
a∈A

(r̃t(p, x) + E(ṽt+1(α(p, a),Wt+1x))) (34)

for t = T − 1, . . . , 0, p ∈ P , x ∈ R
d
, as required in (8), (9) for onvex

swithing systems. To ensure additional onvexity onditions (1) required

for the onvex swithing framework, further assumptions on extensions r̃t
and r̃T for t = 0, . . . , T − 1 must be imposed expliitly. For simpliity, let us

agree that

positive-homogeneous extenstions (r̃t(p, ·, a))
T−1
t=0 and r̃T (p, ·) for

p ∈ P a ∈ A of (24) are onvex and globally Lipshitz ontinuous.

(35)

It turns out that this assertion is ful�lled if for t = 0, . . . , T − 1 the original

funtions (24) are onvex and globally Lipshitz in the ontinuous omponent.

4 Example: An adaptive investment strategy.

We now illustrate our tehnique using a simpli�ed problem of dynami fund

alloation. In our approah we onsider optimization of an investment strat-

egy for a single risky asset under the assumption that the inrements of

the sampled asset prie proess follows a hidden Markov dynamis (see [5℄).

To obtain suh as prie evolution, we introdue a random time sampling

of the ontinuous prie proess (S(t))t≥0, whih is inspired by the so-alled

Point&Figure Chart tehnique.

Suppose trading shall our only at times where a notable prie hange

may require a position re-balaning. Thereby, the prie evolution is sampled

as follows: Having �xed a prie hange step ∆ > 0 and starting the observa-

tions at the initial time τ0 = 0, one writes into a Point&Figure Chart one of

the symbols x or o at the �rst time τ1 where the asset prie leaves the interval
[S(τ0)−∆, S(τ0) + ∆]. If the prie inreases to the upper bound S(τ0) + ∆
one writes the symbol x, otherwise the symbol o is written. Repeating the

same proedure with the next interval [S(τ1)−∆, S(τ1)+∆] and proeeding

further, a sequene of stopping times (τk)k∈N is determined, with the symbols

x or o at eah time, whih are arranged in a diagram as shown in Figure

1. Assume that the trading ours only at (τk)k∈N, and that at eah time τk
the trading deision is based only on the observation of the sampled prie

history S(τ0), . . . , S(τk). Sine the prie proess (S(t))t≥0 is ontinuous, the

12
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Figure 1: Asset prie and its P&F diagram.

stohasti driver of our model is given by the binary inrement proess

yt = S(τt)− S(τt−1), t = 1, . . . , T,

whih takes values in the set Y = {−∆,∆}. This proess is modeled as the

observable part (yt)
T
t=1 of a hidden Markov dynamis (xt, yt)

T
t=0. For the sake

of onreteness, we suppose that the hidden regimes X an be identi�ed with

some bakground market situations. As a simple illustration, we onsider a

two-state X = {e1, e2} regime swithing with transition matrix

Γ =

[
p1 (1− p1)

(1− p2) p2

]

and assume that if the market is in the state xt = e1 then the next prie

inrement yt+1 takes values in Y = {−∆,∆} with probabilities q1 and (1−q1)
respetively. Similarly, onditioned on the urrent state xt = e2 we have

the probabilities (1 − q2) and q2 for the observation yt+1 of the next prie

move. Choosing the referene measure µ as the uniform distribution on Y by

µ({∆}) = µ({−∆}) = 1/2, we obtain the following diagonal density matries

V(−∆) = 2

[
q1 0

1− q1

]
, V(∆) = 2

[
1− q2 0

0 q2

]
,

whih gives merely two disturbane matrix realizations Γ⊤V(−∆), Γ⊤V(∆).
Aording to (28), we de�ne the disturbane matries by (Wt = Γ⊤V(Yt))

T
t=1,

using independent identially distributed random variables (Yt)
T
t=1, whose

distribution is the referene measure µ.
Now, we introdue the position ontrol α for our dynami asset alloation

problem. Consider a situation where the asset position an either be short,

13



neutral, or long, labeled by the numbers p = 1, 2, 3 respetively. At eah time

t = 0, . . . , T , the ontroller must make a deision whether the next position

shall be long short, or neutral. Given the set P = {1, 2, 3} of all possible

positions, we introdue the ation set as A = {1, 2, 3} where a stands for

the targeted position after re-alloation, in whih ase the position ontrol

funtion α is determined by the following matrix:




α(1, 1) α(1, 2) α(1, 3)
α(2, 1) α(2, 2) α(2, 3)
α(3, 1) α(3, 2) α(3, 3)


 =




1 2 3
1 2 3
1 2 3


 .

Finally, let us turn to the de�nition of the reward and the srap funtions.

In this example, we model the payo� in terms of a�ne linear reward funtion

rt(p, x̂, a) = r(p, x̂, a) = (p− 1)ρ⊤x̂− c|p− α(p, a)|, t = 0, . . . T − 1 (36)

for all x ∈ X̂ , and a ∈ A. Here c(p − α(p, a)) represents the proportional

transation osts determined by a parameter c > 0 and the term (p− 1)ρ⊤x̂
stands for the expeted revenue from holding position p from time t to t+1,
if the distribution of the market state is desribed by the probability vetor

x̂ ∈ X̂ . Thereby, the vetor ρ ∈ R
2
given by

ρ = ∆[1 − 2q1, 2q2 − 1]⊤.

suh that (p− 2)ρ⊤x̂ desribes for the return, expeted from the realization

of next prie movement yt+1, onditioned on the information x̂t available at

time t, for a given portfolio position p ∈ P . Assuming that at the end t = T ,
all asset positions must be losed, we de�ne the srap value as

rT (p, x̂) = r(p, x̂, 2) for t = 0, . . . , T − 1, p ∈ P , x̂ ∈ X̂ . (37)

With these de�nitions, the assumption (24) is satis�ed. Furthermore, we

easily meet the assumption (35) in view of the following onsideration: Note

that sine all entries of the probability vetor x̂ ∈ X̂ sum up to one

~1⊤x̂ = 1,
the onstant transation ost term in (36) an be re-written for t = 0, . . . , T−

1, p ∈ P , x̂ ∈ X̂ as

rt(p, x̂, a) = R(p, a)x̂, rT (p, x̂) = R(p, 1)x̂ (38)

with

R(p, a) = ((p− 2)ρ− c|p− α(p, a)|~1)⊤

for t = 0, . . . , T − 1, p ∈ P , a ∈ A. Beause of this linearity, we observe that
the positive-homogeneous extensions are obtained by the same formula

r̃t(p, x, a) = R(p, a)x, r̃T (p, x) = R(p, 1)x

14



for all x ∈ R
2
, t = 0, . . . , T − 1, p ∈ P , a ∈ A, whih satisfy (35). Sine

now our problem ful�lls all assumptions required for the onvex swithing

algorithm, we propose an approximate solution via (17) and (18).

Initialization: Having de�ned the row-rearrangement operator Υ for a grid

G ⊂ X , initialize the matries representing the value funtions form the srap

matries given in (38)

VT (p) = R(p, 1), for all p ∈ P . (39)

Reursion: For t = T − 1, . . . , 0 use reward matries from (38) to alulate

for p ∈ P

V E
t+1(p) =

1

2

(
Υ[Vt+1(p) · Γ

⊤V(−∆)] + Υ[Vt+1(p) · Γ
⊤V(∆)]

)
, (40)

Vt(p) = ⊔a∈A

(
R(p, a) + V E

t+1(α(p, a))
)
, (41)

Note that beause there are only two disturbane realizations, we perform

an exat integration as in (9) using two weights of size 1/2 in the referene

measure µ.
Let us onsider a numerial illustration. A hidden Markov model with

parameters p1 = p2 = 0.8 and q1 = q2 = 0.9 generates inrements of size

∆ = 1 of the asset prie whose typial evolution is depited in the Figure

2. Having supposed transation osts c = 0.05 and introduing an equally
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Figure 2: Asset prie evolution, adjusted to start at the origin.

spaed grid G of size 101 as

G = {
k

100
e1 + (1−

k

100
)e2 : k = 0, . . . , 100} ⊂ X̂
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Figure 3: Funtions represented by (V1(p))
3
p=1 and (V E

2 (p))3p=1.

we determine the matrix representatives (Vt(p))
3
p=1 of the value funtions and

their expetations for t = 10, . . . , 1 from the reursions (39) � (41). For the

value funtions depited in the Figure 3, an andidate of the optimal deision

rule π∗
1 is determined by (10) as

π∗
1(x̂) = argmaxa∈A

(
maxR(p, a)x̂+maxV E

2 (α(p, a))x̂
)
, x̂ ∈ X̂ .

Finally, the Figure 4 shows a joint evolution of the asset prie (adjusted to

start at the origin, blue line), the portfolio positions obtained by subsequent

appliation of the deision rule π∗
1 (gray osillating line) and the orrespond-

ing wealth (green inreasing urve). To depit all three plots in the same
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Figure 4: Asset prie, portfolio positions and wealth
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graph, we have saled eah urve to the interval [0, 1].

5 Conlusion

In this work, we present a novel approah to solving spei� swithing prob-

lems under partial information and show how to apply these results to optimal

dynami asset alloation.
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