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On a solution of the optimal stopping problem for processes with
independent increments

Alexander Novikov 1 and Albert Shiryaev 2

Abstract
We discuss a solution of the optimal stopping problem for the case when a reward

function is a power function of a process with independent stationary increments
(random walks or Levy processes) on an infinite time interval. It is shown that an
optimal stopping time is the first crossing time through a level defined as the largest
root of the Appell function associated with the maximum of the underlying process.

1. Introduction. Let X = (Xt) be a process with independent stationary
increments with a discrete time parameter t ∈ Z+ = {0, 1, 2, . . .} or continuous time
parameter t ∈ R+ = [0,∞), X0 = x ∈ R = (−∞,∞). We suppose that X is
defined on a probability space (Ω,F , P ) with a natural filtration Ft = σ{Xs, s ≤ t},
F0 = {∅,Ω} .

The optimal stopping problem we study here consists in finding the “value” func-
tion

V (x) = sup
τ∈M

E(e−qτg(Xτ )I{τ < ∞}) , x ∈ R, q ≥ 0,

where g(x) is a measurable function, M is the class of all Markov times τ (with
respect to (Ft) ) with values in [0,∞] , I{A} is the indicator function. We call τ∗

as the optimal stopping time if

(1) V (x) = E(e−qτ∗g(Xτ∗) I{τ∗ < ∞}), x ∈ R.

We discuss here only the case of power reward functions that is the case

g(x) = (x+)ν , ν > 0 , x+ = max(x, 0)

though the method developed below is quite general and can be used for finding
explicit solutions for monotone functions g(x) .

The explicit solution of the problem under consideration for discrete time setting
and the case ν = 1 was found in [7] and [6]. We generalised their results for the case
of integer ν = 1, 2, . . . in [11] (we discussed the case q = 0 in [11]) using properties
of the so-called Appell polynomials associated with the maximum of the process Xt .
Kyprianou and Surya [8] have got an extension of our result to the continuous time
setting with q > 0.

To solve the problem for arbitrary power ν > 0 we had to study a generalisation
of Appell polynomials which we call Appell functions. As in [11] and [8] we show the
optimal stopping time has the threshold form that is

τ∗ = τa = inf{t ≥ 0 : Xt ≥ a}

where the optimal value of the parameter a is defined as a positive root of the Appell
function associated with the maximum of the process Xt , see Theorem 1 in Section
4. Note that for the case 0 < ν < 1 this result can be derived also by methods of the
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paper Beibel [1] (we thank Prof. R. Lerche for this reference). Some necessary facts
about Appell functions and the maximum of Xt are presented in Sections 2 and 3.
In Section 5 we put two simple examples.

2. Appell functions. Appell polynomials (or, Sheffer polynomials, see e.g. [12])
generated by a random variable (r.v.) η such that E|η|n < ∞ can be defined as
follows:

(2) Qk(y; η) = (−1)k dk

duk

( e−u y

Ee−uη

)∣∣∣
u=0

k = 1, 2, . . . , n .

Based on this definition it is easy to derive the following properties of Appell polyno-
mials which are valid under the assumption E|η|n < ∞ : for k = 1, . . . , n

(3)
d

dy
Qk(y; η) = kQk−1(y; η),

(4) E(Qk(η + y; η)) = yk.

Now we define continuous functions (we call them Appell functions) which have these
two properties but with real parameter ν instead integer k. At first we find a function
Qν(y; η) which satisfies both (3) and (4) with negative ν instead of integer k.

We assume further that η is a nonnegative random variable and

(5) P (0 ≤ η < ε) > 0 for any ε > 0.

Actually, Appell functions can be defined under more general assumptions but for
purposes of this paper we shall need only this case. Condition (5) implies

Ee−uη ≥ P (0 ≤ η < ε)e−uε > 0, ε > 0,

and, hence, for any ν < 0 and y > 0

(6)
∫ ∞

0

u−ν−1 e−u y

Ee−uη
du < ∞.

For the proof of main results (see Section 4) we shall use the random variable η =
Mθ = sup0≤t<θ(Xt −X0) which does satisfy (5) (see e.g. Lemma 2 in Section 3).

At first, we define the Appell function of order ν for ν < 0 using the following
integral representation:

(7) Qν(y; η) =
∫ ∞

0

u−ν−1 e−u y

Ee−uη

du

Γ(−ν)
( y > 0 , ν < 0 )

where Γ(z) is the Gamma function. Accordingly to this representation the function
Qν(y; η) is continuous with respect to both parameters ν and y. Note also that for
all y > 0

(8) lim
ν↑0

Qν(y; η) = 1.

To see this we write the integral in (7) as a sum of two integrals
∫ ε

0
+

∫∞
ε

and then
show that

∫∞
ε

vanishes as ν ↑ 0 for any ε > 0 . With help of the fundamental
2



property of the Gamma function (that is Γ(z + 1) = zΓ(z) , Γ(1) = 1 ) one can show
that ∫ ε

0

u−ν−1 e−u y

Ee−uη

du

Γ(−ν)
= 1 + o(1), ν ↑ 0,

and that implies (8). So, to define a continuous function Qν(y; η) (as a function of
parameter ν ) we need to set

(9) Q0(y; η) = 1

for all y > 0.
Definition (7) implies

(10)
d

dy
Qν(y; η) = −

∫ ∞

0

u−ν e−u y

Ee−uη

du

Γ(−ν)
= νQν−1(y; η) ( y > 0 , ν < 0 )

where we used the fundamental property of the Gamma function Γ(z + 1) = zΓ(z)
and the last equation holds due to (7). Also,

(11) E(Qν(y + η; η)) =
∫ ∞

0

u−ν−1 Ee−u (y+η)

Ee−uη

du

Γ(−ν)
= yν ( y > 0 , ν < 0 ).

So, we have got properties (3) and (4) with parameter ν < 0 instead of k .
To define Qν(y; η) for real ν > 0 we set as a definition the following relation:

(12) Qν(y; η) = Qν(0; η) + ν

∫ y

0

Qν−1(z; η) dz, y > 0, ν > 0,

assuming that Qν(0; η) is a finite constant. In other words, we require the validity
of (10) also for ν > 0.

To implement this definition we define at first the function Qν(y; η) for ν ∈ (0, 1)
using the representation (7), then for ν ∈ (1, 2) based on (12) and with Qν(y; η) just
defined for ν ∈ (0, 1) and so on. Doing so, we get the analog of property (3) for any
real ν instead of integer k .

Note the defined function Qν(y; η) is continuous with respect to both parameters
ν and y > 0 because the right-hand side of (12) is an integral of a continuous function.

To have an analog of property (4) we set

(13) Qν(0; η) = −νE

( ∫ η

0

Qν−1(z; η)dz

)
ν > 0,

assuming that the last expectation is finite. The finiteness of the last integral does
hold under the condition

E(ην) < ∞.

To see this, we may chose the constant A > 0 such that P (0 ≤ η < A) > 0 and
apply the estimate

Ee−uη ≥ P (0 ≤ η < A)e−u A.

Since

Qν−1(z; η) =
∫ ∞

0

u−ν e−u z

Ee−uη

du

Γ(1− ν)
( y > 0 , ν < 1 ),

3



we get the following upper bound with A from above and any y > 0 , ν ∈ (0, 1) :∫ y

0

Qν−1(z; η)dz ≤ I(y ≤ A)
∫ A

0

Qν−1(z; η) dz

+ I(y > A)
∫ y

A

( ∫ ∞

0

u−νe−u(z−A)

Γ(1− ν)P (0 ≤ η < A)
du

)
dz

≤ I(y ≤ A)A max
0≤z≤A

Qν−1(z; η) + I(y > A)
∫ y

A

(z −A)ν−1

P (0 ≤ η < A)
dz

≤ C(A, ν)(I(y ≤ A) + I(y > A)(y −A)ν).

where C(A, ν) is a finite positive constant. By (13) the last estimate implies that for
ν ∈ (0, 1)

(14) |Qν(0; η)| ≤ C(A, ν)
(
1 + E(I(η > A)(η −A)ν)

)
< ∞, ν ∈ (0, 1),

and also by (12)

|Qν(y; η)| ≤ |Qν(0; η)|+ C(A, ν)(I(y ≤ A) + I(y > A)(y −A)ν), ν ∈ (0, 1),

where C(A, ν) is some finite positive constant. Now we can apply this estimate in
(12) for the case ν ∈ (1, 2) and similarly get

|Qν(0; η)| ≤ C(A, ν)(|Qν(0; η)|E(η) + 1 + E(I(η > A)(η −A)ν)) < ∞, ν ∈ (1, 2)

with another finite positive constant C(A, ν). Continuing this procedure we get the
estimate with the main term E(I(η > A)(η −A)ν) like in (14) but for any ν > 0.

Now we claim that under the condition E(ην) < ∞ we have the analog of the
property (4) for any ν :

(15) E(Qν(η + y; η)) = yν , y > 0.

Indeed, we have shown above that it is true for ν < 0 (see (11)). For ν = 0 it is true
by definition (9). For ν ∈ (0, 1) and y > 0 we have by definitions (12) and (13) that

E(Qν(η + y; η)) = νE

∫ η+y

η

Qν−1(z; η) dz = ν

∫ y

0

EQν−1(z + η; η) dz,

where EQν−1(z + η; η) = zν−1 due to (11). So we have shown the validity of (15)
for ν ∈ (0, 1) . Applying this consideration recursively (of course, always assuming
the existence of integrals) we get the validity of (15) for all real ν > 0.

The case of integer ν = 0, 1, 2, . . . now can viewed as a limiting case of functions
Qν(y; η) but, of course, the original definition (2) is easier to use.

Below we shall use the following property of the Appell functions.
Lemma 1. Let (5) hold and let E(ην) < ∞ . Then for any ν > 0 there exists

aν such that

(16) Qν(y; η) ≤ 0 for 0 < y < aν , Qν(aν ; η) = 0

and Qν(y; η) is an increasing function for y ≥ aν .
Proof. For integer ν = 1, 2, . . . the statement of this lemma was proved in [11,

Lemma 5].
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For the case ν ∈ (0, 1) we note at first that due to the assumption η ≥ 0 we
have the estimate

Qν−1(y; η) ≥
∫ ∞

0

u−ν−1e−u y du

Γ(−ν)
= yν−1 (ν < 1)

and so by (13) Qν(0; η) < 0. Also, by (12) we have that Qν(y; η) is a nondecreasing
function (of the variable y ) such that

Qν(y; η) ≥ Qν(0; η) + yν .

So, it grows to infinity and, hence, Lemma 1 does hold for ν ∈ (0, 1) .
Next, consider the case ν ∈ (1, 2) and y > 0 . Then due the fact just proved

Qν−1(y; η) < 0 for y ∈ (0, aν−1).

So, on the interval (0, aν−1) the function Qν(y; η) is negative and decreasing. Obvi-
ously, it reaches its minimum at point y = aν−1 . For y ≥ aν−1 the function Qν(y; η)
is ultimately increasing to infinity due to the estimate

Qν(y; η) ≥ Qν(0; η) + Qν−1(0; η)y + yν for y > 0.

Hence, there exists a root aν > aν−1 > 0 .
Using (12) recursively and the consideration presented above we see that the

statement of Lemma 1 holds for all ν > 0 .
3. Some facts about the distribution of maximum
Writing t ∈ Z+ or t ∈ R+ we will indicate that the discrete time or continuous

time cases are under consideration correspondingly. We formulate here all results in a
form which is valid for the both cases t ∈ Z+ and t ∈ R+ but proofs of corresponding
results we will have to discuss separately.

We assume always below that (Xt) is a process with independent homogeneous
increments, X0 = x . Let a random variable θ be independent of Xt such that

P (θ > t) = e−tq, q > 0,

where t ∈ Z+ or t ∈ R+ . Set

Mθ,q = sup
0≤t<θ

(Xt − x),

and by definition set for the case q = 0

Mθ,0 = M∞
def= sup

0≤t<∞
(Xt − x).

Further we always assume that for the case q = 0

(17) E(X+
1 ) < ∞ nand E(X1 − x) < 0.

Lemma 2. If q ≥ 0 then

(18) P{Mθ,q < ε} > 0 for any ε > 0.

Proof.
5



1) For the case t ∈ Z+ and q = 0 this result is a consequence of the observation
that

P{M∞ < ε} ≥ P{M∞ = 0}

and the fact that under imposed conditions

(19) P{M∞ = 0} > 0

(see e.g. [3, pp. 91–92]).
2) For the case t ∈ Z+ and q > 0 note that if θ = 1 then Mθ,q = 0 and, hence,

P{Mθ,q < ε} ≥ P{θ = 1} = e−q > 0.

So (18) holds as well.
3) Consider now the case t ∈ R+ and q = 0 . Let (Rt) be a compound Poisson

process generated by jumps of (Xt) which are greater than 1 . Set

Qt = Xt − x−Rt.

Due to this definition the process (Qt) does not contain jumps exceeding 1. Note
that (Rt) and (Qt) are independent processes with stationary increments, E(R1) ≥
0.

To prove Lemma 2 we note that for any m

M∞ = sup
t≥0

(Qt + mt + Rt −mt) ≤ sup
t≥0

(Qt + mt) + sup
t≥0

(Rt −mt)

and so due to independency of (Rt) and (Qt) we have for any ε > 0

(20) P{M∞ < ε} ≥ P
{

sup
t≥0

(Qt + mt) < ε/2
}

P
{

sup
t≥0

(Rt −mt) < ε/2
}

.

We shall estimate the both last probabilities separately under a proper choice of m .
To estimate P{supt≥0(Qt + mt) < ε/2} note that we may choose the constant

m > E(R1) ≥ 0 such that

E(Q1) + m = E(X1 − x) + m− E(R1) < 0

(see assumption (17)). Now we show that with the such choice of m for any ε > 0

(21) P
(

sup
t≥0

(Qt + mt) < ε
)

> 0.

To see this, consider the exponential martingale

Zt(u) = exp{u(Qt + mt)− tϕ(u)}

with

ϕ(u) = log Eeu(Q1+m).

Then

ϕ(0) = 0, ϕ′(0) = E(Q1 + m) < 0.

6



and, as well known, ϕ(u) is a continuous convex function.
Suppose the function ϕ(u) has a root u∗ > 0 . (It is certainly true when

ϕ(u) →∞ , e.g. when Qt contains a diffusion component or a component with pos-
itive jumps.) Then the process Zt(u∗) = exp{u∗Qt} is an exponential martingale.
Applying the optional stopping theorem for the stopping time

τε = inf{t : Qt + mt ≥ ε}

and the fact that E(exp{u∗(Qt + mt)}) = 1 we get the inequality

(22) EI{τε < ∞} exp{u∗(Qτε + mτε)} ≤ 1.

Since Qτε
+ mτε ≥ ε on the set {τε < ∞} = {supt≥0(Qt + mt) ≥ ε} it implies that

P{τε < ∞} ≤ e−u∗ε and so

(23) P
{

sup
t≥0

(Qt + mt) < ε
}
≥ 1− e−u∗ε > 0.

Hence, (21) does hold under the assumption that the function ϕ(u) has a root u∗ > 0 .
Consider now the alternative case when ϕ(u) ≤ 0 for all u > 0 . Then we may

choose u = 1 and similar to (22) we get

(24) EI{τε < ∞} exp{Qτε
+ mτε − τεϕ(1)} ≤ 1.

Since ϕ(1) ≤ 0 and Qτε + mτε ≥ ε on the set {τε < ∞}, this inequality implies
(23) with u∗ = 1 and so (21) does hold for all possible cases.

Next, we show that for any constant m > E(R1) ≥ 0 and any ε > 0

(25) P
{

sup
t≥0

(Rt −mt) < ε
}

> 0.

This estimate is, actually, a consequence of the fact (19) and the estimate (23) proved
above. Recall that (Rt) is a compound Poisson process generated by jumps of (Xt)
which are greater than 1 and so it has the representation

Rt =
Nt∑

k=1

ξk,

where (Nt) is a Poisson process with the rate λ ≥ 0 , ξk are independent identically
distributed (iid) random variables, ξk > 1, {ξk} and Nt are independent. Assume
further λ > 0 (otherwise P{supt≥0(Rt −mt) < ε} = 1) , choose b such that

E(R1) = λE(ξ1) < λb < m

and note

P
{

sup
t≥0

(Rt −mt) < ε
}
≥ P

{
sup
t≥0

(Rt − bNt) = 0, sup
t≥0

(bNt −mt) < ε
}

.

Here Rt − bNt =
∑Nt

k=1(ξk − b) and so

(26) sup
t≥0

(Rt − bNt) = sup
k≥1

S+
k ,
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where (Sk) is a random walk with negative drift as E(S1) = E(ξk − b) < 0. This
implies

P
{

sup
t≥0

(Rt − bNt) = 0
}

= P
{

sup
k≥1

S+
k = 0

}
> 0

(see the step 1).
Since the set {supk≥1 S+

k = 0} and the process (Nt) are independent we get

P
{

sup
t≥0

(Rt −mt) < ε
}
≥ P

{
sup
k≥1

S+
k = 0

}
P

{
sup
t≥0

(Nt − tm/b) < ε/b
}

.

Now we need just to note that the inequality

P
{

sup
t≥0

(Nt − tm/b) < ε
}

> 0

is a particular case of (23) because (Nt) is a Poisson process with unit jumps and
E(N1) = λ < m/b.

To complete the proof of Lemma 2 we need just to note that under the choice of
m indicated above we have shown that the lower bound in (20) ε > 0.

4) For the case t ∈ R+ and q > 0 note that due to independency of (Rt) and
(Qt) we have for any ε > 0

P{Mθ,q < ε} ≥ P
{

sup
0≤t<θ

Rt < ε/2
}

P
{

sup
0≤t<θ

Qt < ε/2
}

.

Due to independency of θ and sup0≤s≤t Rs we have

P
{

sup
0≤s<θ

Rs < ε/2
}
≥ P

{
sup

0≤s≤1
Rs < ε/2

}
P{θ < 1},

where P{θ < 1} = 1− e−q > 0 and so, obviously,

P
{

sup
0≤s≤1

Rs < ε/2
}
≥ P

{
sup

0≤s≤1
Rs = 0

}
> 0

for any ε > 0 .
To estimate from below P{sup0≤t<θ Qt < ε} we can use the consideration from

the previous step 3) in the part related to the process Qt . At first note

P
{

sup
0≤s<θ

Qs < ε
}
≥ P

{
sup

0≤s≤t
Qs < ε

}
P{θ < t}.

Consider the exponential martingale Zt(u) = exp{uQt − tϕ(u)} , u > 0. Applying
the optional stopping theorem for the stopping time τε = inf{t : Qt > ε} we get

E
(
I{τε < t}euQτε−τεϕ(u)

)
≤ 1.

Then due to the estimate Qτε
≥ ε we get

P{τε < t} ≤ e−uε+tϕ(u)

and so

P
{

sup
0≤s≤t

(Qs) < ε
}

= 1− P{τε < t} ≥ 1− e−uε+tϕ(u).
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Fixing ε > 0 we can find small t such that uε > tϕ(u) and this implies the
required fact that for any ε > 0

P{ sup
0≤s<θ

(Qs) < ε} > 0.

The proof of Lemma 2 is completed.
Lemma 3. Let ν > 0 ,

q = 0, E(X1) < 0, E((X+
1 )ν+1) < ∞

or

q > 0, E((X+
1 )ν) < ∞.

Then

(27) E(Mν
θ,q) < ∞.

Proof. 1) For the case t ∈ Z+ and q = 0 this result is well know, see e.g. [3,
pp. 91–92].

2) Consider here the case t ∈ Z+ and q > 0 . At first note that

Mθ,q ≤
θ∑

k=1

(∆Xk)+,

where ∆Xk are iid r.v. For the case 0 < ν ≤ 1 by Hölder inequality and Wald’s
identity

E(Mν
θ ) ≤ E

( θ∑
k=1

((∆Xk)+)ν

)
= E(θ)E((∆Xk)+)ν) < ∞.

For the case 1 < ν ≤ 2 we note that

(28) Zt =
t∑

k=1

[(∆Xk)+ − E(∆Xk)+]

is a martingale and so we can use well-known martingale inequalities (see e.g. [5])
which lead to the estimate

E(Mν
θ ) ≤ Cν(E(|Zθ|ν) + CνE(θν)(E((∆Xk)+)ν))

and

E(|Zθ|ν) ≤ CνE(θν)E((∆Xk)+)ν) < ∞

with some finite constants Cν .
For ν ≥ 2 the process (Zt) from (28) is a square integrable martingale and with

help of the same martingale inequalities from [5] we get

E(Mν
θ ) ≤ Cν(E(|Zθ|2)ν/2 + CνE(θν)E((∆Xk)+)ν)

9



and

E(|Zθ|2) ≤ CνE(θν)E((∆Xk)+)ν) < ∞

with some finite constants Cν .
So, (27) is proved for the case t ∈ Z+ and q > 0 .
3) Consider now the case t ∈ R+ and q = 0 . We may use considerations which

are similar to the proof of Lemma 2. With the same choice of constants m and b as
in the proof of Lemma 2 (step 3) we have for any x > 0

P{M∞ > x} ≤ P
{

sup
t≥0

(Rt − bNt) >
x

3

}
+ P

{
sup
t≥0

(Qt + mt) >
x

3

}
+ P

{
sup
t≥0

(Nt − tm/b) >
x

3b

}
.

Integrating both sides of this inequality with respect to the measure

I{x > 0}νxν−1 dx

we get

E(Mν
∞) ≤ 3νE

(
sup
t≥0

(Rt − bNt)ν
)

+ 3νE
(

sup
t≥0

(Qt + mt)ν
)

(29)

+ (3b)νE
(

sup
t≥0

(N − tm/b)ν
)
.

Note that due to the relation (26)

E
(

sup
t≥0

(Rt − bNt)ν
)

= E
(

sup
k≥1

(S+
k )ν

)
and so this term in (29) is finite because we have assumed that E(X+

1 )ν+1 < ∞ (see
step 1) above).

Now we show that for any ν > 0

E
(

sup
t≥0

(Qt + mt)ν
)

< ∞(30)

and

E(sup
t≥0

(N − tm/b)ν) < ∞.(31)

To prove these facts we can use again the exponential martingale Zt(u∗) =
= exp{u∗(Qt +mt)} and apply the optional stopping theorem with the stopping time

τx = inf{t : Qt + mt > x}.

With some standard considerations involving uniform integrability we get the identity

E
(
I{τx < ∞} exp{u∗(Qτx + mτx)}

)
= 1.

Since Qτε
≥ x it implies that P{τx < ∞} ≤ e−u∗x and so

P
{

sup
t≥0

(Qt + mt) > x
}

= P{τx < ∞} ≤ e−u∗x

10



and so (30) does hold. To complete the step 3) we need just note that the inequality
(31) is a particular case of (30).

4) The result of this part of Lemma 3 was proved in [8]. We would like to mention
here that, actually, it is a simple consequence of general martingale inequalities proved
originally in [10].

Lemma 4.
(a) Let τa = inf{t ≥ 0 : Xt ≥ a} , a ≥ x . Then for all u ≤ 0

(32) E(I{τa < ∞} euXτa e−qτa) =
E(I{Mθ + x ≥ a} eu(Mθ+x))

E(euMθ )

(b) Let the conditions of Lemma 3 hold. Then for all a ≥ x and ν

(33) E(I{τa < ∞}Xν
τa

e−qτa) = E(I{Mθ + x ≥ a}Qν(Mθ + x;Mθ)).

Proof. (a) This result for the case t ∈ Z+ and q = 0 was proved in [11]. For
the case t ∈ Z+ with q > 0 the proof needs just some minor modifications by taking
into account, in particular, the memoryless property of geometric distribution. We
need to note that on the set {Mθ + x ≥ a} = {τa < θ}

M̂θ := Mθ − (Xτa
− x) law= Mθ

and M̂θ is independent of Xτa
on the event {τa < θ}. Here we show details of the

proof for the case t ∈ Z+ and q > 0 only.
We have P (θ = k) = e−kq(eq − 1) for k = 1, 2, . . . and so

E(euMθ ) =
∞∑

k=1

E(I{θ = k}euMk−1) =
∞∑

k=1

e−kq(eq − 1)E(euMk−1).

Note also that Xτa
= x + Mτa

and so

E(I{Mθ + x ≥ a} eu(Mθ+x)) = E(I{τa < θ} eu(Mθ+x−Xτa )euXτa )

=
∞∑

k=1

E(I{τa = k}I{k < θ} eu(Mθ−Mk)euXk)

= E(
∞∑

k=1

∞∑
n=k

I{τa = k}I{k < n}I{θ = n} eu(Mn−1−Mk)euXk)

= E(
∞∑

k=1

I{τa = k}euXkI{k < n}
∞∑

n=k+1

E(I{θ = n} euM̂n−1−k |Fk)) =

(setting n = k + i and taking into account that both θ and M̂i−1 are independent
and also independent of Fk )

= E[
∞∑

k=1

I{τa = k}euXk

∞∑
i=1

P{θ = i + k}EeuM̂i−1 ]

=
∞∑

k=1

E(I{τa = k}euXke−kq
∞∑

i=1

e−iq(eq − 1)EeuM̂i)

=
∞∑

k=1

E(I{τa = k} euXke−kqEeuMθ ) = E(euXτa I{τa < ∞} euXτa e−qτa)E(euMθ ).
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For the case t ∈ R+ considerations are similar (see [8] for more details).
(b). Relation (33) for ν < 0 is obtained by integrating of both sides of (32) with

respect to the measure

I{u > 0}u−ν−1du/Γ(−ν), ν < 0.

Then use relation (12) for ν ∈ (0, 1) and so on.
Lemma 5. Let t ∈ Z+, q ≥ 0 and let f(x) and g(x) be nonnegative functions

such that for all x

(34) f(x) ≥ g(x)

and

(35) f(x) ≥ e−qEf(X1).

Then for all x

(36) f(x) ≥ sup
τ∈M

E I{τ < ∞} e−qτg(Xτ ).

Proof. Condition (35) implies the fact that the process e−qt(Xt) is a nonnegative
supermartingale and, hence, by the supermartingale property we have for any stopping
time τ

f(x) ≥ E I{τ < ∞} e−qτf(Xτ ).

Now one can see that inequality (36) is a consequence of condition (34).
Remark. Lemma 5 is just a slight generalisation of Lemma 7 from [11] (see also

[2]).
4. Main result

Theorem 1. Let g(x) = (x+)ν , ν > 0 , the conditions of Lemma 3 hold and let aν

be the positive root of the equation

(37) Qν(y;Mθ) = 0.

Then the stopping time τaν is optimal and

ν(x) = E(e−qτaXτaν
I{τaν < ∞}) = E (Qν(Mθ + x;Mθ) I{Mθ + x ≥ aν}).

Proof. For integer ν = 1, 2, . . . the proof was given for the case t ∈ Z+ and
q = 0 in [11] and for the case t ∈ R+ and q ≥ 0 in [8]. (Note that the condition of
Theorem 2 in [8] for the case q = 0 should be changed as we formulated in Lemma 3
above.) The proof for real ν > 0 , actually, coincides with the lines of the proof in the
mentioned papers. By this reason we just outline it here, omitting obvious details.

At first we show that the function E(Xν
τa

I{τa < ∞}) achieves its maximum
at the point a = aν where aν is the positive root of the equation (37) and so by
Lemma 4

ν̂(x) = E( Xν
τaν

I{τaν
< ∞}) = E(Qν(M + x;M) I{M + x ≥ aν}).

This fact is a direct consequence of Lemmas 1, 3, 4(b) and (15).
Next, we note that, obviously,

V̂ (x) ≤ V (x).
12



At the final step we show that

(38) V̂ (x) ≥ ν(x)

and conclude that the optimal stopping time is τ = τaν .
The proof of (38) for the case t ∈ Z+ and q = 0 follows the lines of the proof

from the paper [11] given there for integer ν ; for the case t ∈ R+ and q ≥ 0 it
follows the lines of the paper [8].

Here we present some details of the proof for (38) only for the case t ∈ Z+ and
q > 0 . The idea of our proof is similar to that one used in [6] and [11] and it is based
on Lemma 5 and the following fact known as Lindley recursion:

M̂θ = (γM̂θ + ξ)+ (by law)

where M̂θ , γ , and ξ are independent r.v.’s,

ξ = X1 − x, P (γ = 1) = e−q = 1− P (γ = 0).

Using this equation we check that the function

f(x) = ν(x) = E(Qν(Mθ + x;Mθ) I{Mθ + x ≥ aν})

satisfies conditions (35) and (34) with g(x) = (x+)ν and so by Lemma 5 it implies
the required inequality (38).

Condition (35) holds because the function f(x) = ν̂(x) is nonnegative increasing
function as x increases and, therefore,

f(x) = E(I{(γMθ + ξ)+ + x ≥ aν}Qν((γMθ + ξ)+ + x))

= e−qE(I{(Mθ + ξ)+ + x ≥ aν}Qν((Mθ + ξ)+ + x))

≥ e−qE(I{x ≥ a∗, M + ξ < 0}Qν(M + ξ + x))

+ e−qE(I{M + ξ + x ≥ a∗, M + ξ ≥ 0}Qν(M + ξ + x))

= e−qE(f(x + ξ)).

Condition (34) holds because for any x > 0 f(x) = E(Qν(Mθ + x;Mθ)+ and
so by Jensen’s inequality and Lemma 4

f(x) ≥ (E(Qν(Mθ + x;Mθ))+ = (x+)ν) = g(x).

5. Examples.
(1) Discrete time case. Let ξ+

1 have the density pe−λx , x > 0; p > 0 , 0 < λ < ∞ ,
E(ξ1) < 0 . Then using martingale considerations like in the proof of Lemma 3 we
can show that

P (M∞ > a) =
λe−u0a

λ + u0
, P (M∞ = 0) =

u0

λ + u0
,

where u0 is a positive root of the equation

E(euξ1) = 1.
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By direct calculations one can get that for any ν and y > 0

Qν(y; η) = (2/3)ν exp(3y/2)(−3νΓ[ν, y/2] + Γ[1 + ν, 3y/2]).

where Γ[z, y] is the incomplete Gamma function.
(2) Brownian Motion case. Let Lt = Wt −mt , g(x) = (x+)ν , ν > 0.

If m > 0 then M∞ = supt≥0(Wt −mt) ∼ Exp(2m) and the Appell function for any
ν and y > 0 is

Qν(y;M) = yν−1
(
y − ν

2m

)
.

So, the optimal threshold is

aν =
ν

2m
.

If q > 0, m = 0 then Mθ = sups≤θ(Ws) = |Wθ| (by distribution), where θ ∼
Exp(q) . We get

a1 = E(|Wθ|) =
√

1
2q

,

a2 = E(|Wθ|) +
√

var(Wθ) =
√

1
2q

(1 +
√

2),

and so on.
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