UNIVERSITY OF TECHNOLOGY SYDNEY

QUANTITATIVE FINANCE RESEARCH CENTRE

Quantitative Finance Research Centre

On a Solution of the Optimal Stopping

 Problem for Processes with Independent IncrementsAlexander Novikov and Albert Shiryaev

On a solution of the optimal stopping problem for processes with independent increments Alexander Novikov ${ }^{1}$ and Albert Shiryaev ${ }^{2}$

Abstract
We discuss a solution of the optimal stopping problem for the case when a reward function is a power function of a process with independent stationary increments (random walks or Levy processes) on an infinite time interval. It is shown that an optimal stopping time is the first crossing time through a level defined as the largest root of the Appell function associated with the maximum of the underlying process.

1. Introduction. Let $X=\left(X_{t}\right)$ be a process with independent stationary increments with a discrete time parameter $t \in \mathbf{Z}^{+}=\{0,1,2, \ldots\}$ or continuous time parameter $t \in \mathbf{R}^{+}=[0, \infty), X_{0}=x \in \mathbf{R}=(-\infty, \infty)$. We suppose that X is defined on a probability space (Ω, \mathcal{F}, P) with a natural filtration $\mathcal{F}_{t}=\sigma\left\{X_{s}, s \leq t\right\}$, $\mathcal{F}_{0}=\{\varnothing, \Omega\}$.

The optimal stopping problem we study here consists in finding the "value" function

$$
V(x)=\sup _{\tau \in \mathcal{M}} E\left(e^{-q \tau} g\left(X_{\tau}\right) I\{\tau<\infty\}\right), \quad x \in \mathbf{R}, \quad q \geq 0
$$

where $g(x)$ is a measurable function, \mathcal{M} is the class of all Markov times τ (with respect to $\left.\left(\mathcal{F}_{t}\right)\right)$ with values in $[0, \infty], I\{A\}$ is the indicator function. We call τ^{*} as the optimal stopping time if

$$
\begin{equation*}
V(x)=E\left(e^{-q \tau^{*}} g\left(X_{\tau^{*}}\right) I\left\{\tau^{*}<\infty\right\}\right), \quad x \in \mathbf{R} . \tag{1}
\end{equation*}
$$

We discuss here only the case of power reward functions that is the case

$$
g(x)=\left(x^{+}\right)^{\nu}, \quad \nu>0, \quad x^{+}=\max (x, 0)
$$

though the method developed below is quite general and can be used for finding explicit solutions for monotone functions $g(x)$.

The explicit solution of the problem under consideration for discrete time setting and the case $\nu=1$ was found in [7] and [6]. We generalised their results for the case of integer $\nu=1,2, \ldots$ in [11] (we discussed the case $q=0$ in [11]) using properties of the so-called Appell polynomials associated with the maximum of the process X_{t}. Kyprianou and Surya [8] have got an extension of our result to the continuous time setting with $q>0$.

To solve the problem for arbitrary power $\nu>0$ we had to study a generalisation of Appell polynomials which we call Appell functions. As in [11] and [8] we show the optimal stopping time has the threshold form that is

$$
\tau^{*}=\tau_{a}=\inf \left\{t \geq 0: X_{t} \geq a\right\}
$$

where the optimal value of the parameter a is defined as a positive root of the Appell function associated with the maximum of the process X_{t}, see Theorem 1 in Section 4. Note that for the case $0<\nu<1$ this result can be derived also by methods of the

[^0]paper Beibel [1] (we thank Prof. R. Lerche for this reference). Some necessary facts about Appell functions and the maximum of X_{t} are presented in Sections 2 and 3. In Section 5 we put two simple examples.
2. Appell functions. Appell polynomials (or, Sheffer polynomials, see e.g. [12]) generated by a random variable (r.v.) η such that $E|\eta|^{n}<\infty$ can be defined as follows:
\[

$$
\begin{equation*}
Q_{k}(y ; \eta)=\left.(-1)^{k} \frac{d^{k}}{d u^{k}}\left(\frac{e^{-u y}}{E e^{-u \eta}}\right)\right|_{u=0} \quad k=1,2, \ldots, n \tag{2}
\end{equation*}
$$

\]

Based on this definition it is easy to derive the following properties of Appell polynomials which are valid under the assumption $E|\eta|^{n}<\infty$: for $k=1, \ldots, n$

$$
\begin{gather*}
\frac{d}{d y} Q_{k}(y ; \eta)=k Q_{k-1}(y ; \eta), \tag{3}\\
E\left(Q_{k}(\eta+y ; \eta)\right)=y^{k}
\end{gather*}
$$

Now we define continuous functions (we call them Appell functions) which have these two properties but with real parameter ν instead integer k. At first we find a function $Q_{\nu}(y ; \eta)$ which satisfies both (3) and (4) with negative ν instead of integer k.

We assume further that η is a nonnegative random variable and

$$
\begin{equation*}
P(0 \leq \eta<\varepsilon)>0 \text { for any } \varepsilon>0 . \tag{5}
\end{equation*}
$$

Actually, Appell functions can be defined under more general assumptions but for purposes of this paper we shall need only this case. Condition (5) implies

$$
E e^{-u \eta} \geq P(0 \leq \eta<\varepsilon) e^{-u \varepsilon}>0, \quad \varepsilon>0
$$

and, hence, for any $\nu<0$ and $y>0$

$$
\begin{equation*}
\int_{0}^{\infty} u^{-\nu-1} \frac{e^{-u y}}{E e^{-u \eta}} d u<\infty \tag{6}
\end{equation*}
$$

For the proof of main results (see Section 4) we shall use the random variable $\eta=$ $M_{\theta}=\sup _{0 \leq t<\theta}\left(X_{t}-X_{0}\right)$ which does satisfy (5) (see e.g. Lemma 2 in Section 3).

At first, we define the Appell function of order ν for $\nu<0$ using the following integral representation:

$$
\begin{equation*}
Q_{\nu}(y ; \eta)=\int_{0}^{\infty} u^{-\nu-1} \frac{e^{-u y}}{E e^{-u \eta}} \frac{d u}{\Gamma(-\nu)} \quad(y>0, \nu<0) \tag{7}
\end{equation*}
$$

where $\Gamma(z)$ is the Gamma function. Accordingly to this representation the function $Q_{\nu}(y ; \eta)$ is continuous with respect to both parameters ν and y. Note also that for all $y>0$

$$
\begin{equation*}
\lim _{\nu \uparrow 0} Q_{\nu}(y ; \eta)=1 \tag{8}
\end{equation*}
$$

To see this we write the integral in (7) as a sum of two integrals $\int_{0}^{\varepsilon}+\int_{\varepsilon}^{\infty}$ and then show that $\int_{\varepsilon}^{\infty}$ vanishes as $\nu \uparrow 0$ for any $\varepsilon>0$. With help of the fundamental
property of the Gamma function (that is $\Gamma(z+1)=z \Gamma(z), \Gamma(1)=1$) one can show that

$$
\int_{0}^{\varepsilon} u^{-\nu-1} \frac{e^{-u y}}{E e^{-u \eta}} \frac{d u}{\Gamma(-\nu)}=1+o(1), \quad \nu \uparrow 0
$$

and that implies (8). So, to define a continuous function $Q_{\nu}(y ; \eta)$ (as a function of parameter ν) we need to set

$$
\begin{equation*}
Q_{0}(y ; \eta)=1 \tag{9}
\end{equation*}
$$

for all $y>0$.
Definition (7) implies

$$
\begin{equation*}
\frac{d}{d y} Q_{\nu}(y ; \eta)=-\int_{0}^{\infty} u^{-\nu} \frac{e^{-u y}}{E e^{-u \eta}} \frac{d u}{\Gamma(-\nu)}=\nu Q_{\nu-1}(y ; \eta) \quad(y>0, \nu<0) \tag{10}
\end{equation*}
$$

where we used the fundamental property of the Gamma function $\Gamma(z+1)=z \Gamma(z)$ and the last equation holds due to (7). Also,

$$
\begin{equation*}
E\left(Q_{\nu}(y+\eta ; \eta)\right)=\int_{0}^{\infty} u^{-\nu-1} \frac{E e^{-u(y+\eta)}}{E e^{-u \eta}} \frac{d u}{\Gamma(-\nu)}=y^{\nu} \quad(y>0, \nu<0) \tag{11}
\end{equation*}
$$

So, we have got properties (3) and (4) with parameter $\nu<0$ instead of k.
To define $Q_{\nu}(y ; \eta)$ for real $\nu>0$ we set as a definition the following relation:

$$
\begin{equation*}
Q_{\nu}(y ; \eta)=Q_{\nu}(0 ; \eta)+\nu \int_{0}^{y} Q_{\nu-1}(z ; \eta) d z, \quad y>0, \quad \nu>0 \tag{12}
\end{equation*}
$$

assuming that $Q_{\nu}(0 ; \eta)$ is a finite constant. In other words, we require the validity of (10) also for $\nu>0$.

To implement this definition we define at first the function $Q_{\nu}(y ; \eta)$ for $\nu \in(0,1)$ using the representation (7), then for $\nu \in(1,2)$ based on (12) and with $Q_{\nu}(y ; \eta)$ just defined for $\nu \in(0,1)$ and so on. Doing so, we get the analog of property (3) for any real ν instead of integer k.

Note the defined function $Q_{\nu}(y ; \eta)$ is continuous with respect to both parameters ν and $y>0$ because the right-hand side of (12) is an integral of a continuous function.

To have an analog of property (4) we set

$$
\begin{equation*}
Q_{\nu}(0 ; \eta)=-\nu E\left(\int_{0}^{\eta} Q_{\nu-1}(z ; \eta) d z\right) \quad \nu>0 \tag{13}
\end{equation*}
$$

assuming that the last expectation is finite. The finiteness of the last integral does hold under the condition

$$
E\left(\eta^{\nu}\right)<\infty .
$$

To see this, we may chose the constant $A>0$ such that $P(0 \leq \eta<A)>0$ and apply the estimate

$$
E e^{-u \eta} \geq P(0 \leq \eta<A) e^{-u A}
$$

Since

$$
Q_{\nu-1}(z ; \eta)=\int_{0}^{\infty} u^{-\nu} \frac{e^{-u z}}{E e^{-u \eta}} \frac{d u}{\Gamma(1-\nu)} \quad(y>0, \nu<1),
$$

we get the following upper bound with A from above and any $y>0, \nu \in(0,1)$:

$$
\begin{aligned}
\int_{0}^{y} Q_{\nu-1}(z ; \eta) d z \leq & I(y \leq A) \int_{0}^{A} Q_{\nu-1}(z ; \eta) d z \\
& +I(y>A) \int_{A}^{y}\left(\int_{0}^{\infty} \frac{u^{-\nu} e^{-u(z-A)}}{\Gamma(1-\nu) P(0 \leq \eta<A)} d u\right) d z \\
\leq & I(y \leq A) A \max _{0 \leq z \leq A} Q_{\nu-1}(z ; \eta)+I(y>A) \int_{A}^{y} \frac{(z-A)^{\nu-1}}{P(0 \leq \eta<A)} d z \\
\leq & C(A, \nu)\left(I(y \leq A)+I(y>A)(y-A)^{\nu}\right)
\end{aligned}
$$

where $C(A, \nu)$ is a finite positive constant. By (13) the last estimate implies that for $\nu \in(0,1)$

$$
\begin{equation*}
\left|Q_{\nu}(0 ; \eta)\right| \leq C(A, \nu)\left(1+E\left(I(\eta>A)(\eta-A)^{\nu}\right)\right)<\infty, \quad \nu \in(0,1) \tag{14}
\end{equation*}
$$

and also by (12)

$$
\left|Q_{\nu}(y ; \eta)\right| \leq\left|Q_{\nu}(0 ; \eta)\right|+C(A, \nu)\left(I(y \leq A)+I(y>A)(y-A)^{\nu}\right), \quad \nu \in(0,1)
$$

where $C(A, \nu)$ is some finite positive constant. Now we can apply this estimate in (12) for the case $\nu \in(1,2)$ and similarly get

$$
\left|Q_{\nu}(0 ; \eta)\right| \leq C(A, \nu)\left(\left|Q_{\nu}(0 ; \eta)\right| E(\eta)+1+E\left(I(\eta>A)(\eta-A)^{\nu}\right)\right)<\infty, \nu \in(1,2)
$$

with another finite positive constant $C(A, \nu)$. Continuing this procedure we get the estimate with the main term $E\left(I(\eta>A)(\eta-A)^{\nu}\right)$ like in (14) but for any $\nu>0$.

Now we claim that under the condition $E\left(\eta^{\nu}\right)<\infty$ we have the analog of the property (4) for any ν :

$$
\begin{equation*}
E\left(Q_{\nu}(\eta+y ; \eta)\right)=y^{\nu}, \quad y>0 \tag{15}
\end{equation*}
$$

Indeed, we have shown above that it is true for $\nu<0$ (see (11)). For $\nu=0$ it is true by definition (9). For $\nu \in(0,1)$ and $y>0$ we have by definitions (12) and (13) that

$$
E\left(Q_{\nu}(\eta+y ; \eta)\right)=\nu E \int_{\eta}^{\eta+y} Q_{\nu-1}(z ; \eta) d z=\nu \int_{0}^{y} E Q_{\nu-1}(z+\eta ; \eta) d z
$$

where $E Q_{\nu-1}(z+\eta ; \eta)=z^{\nu-1}$ due to (11). So we have shown the validity of (15) for $\nu \in(0,1)$. Applying this consideration recursively (of course, always assuming the existence of integrals) we get the validity of (15) for all real $\nu>0$.

The case of integer $\nu=0,1,2, \ldots$ now can viewed as a limiting case of functions $Q_{\nu}(y ; \eta)$ but, of course, the original definition (2) is easier to use.

Below we shall use the following property of the Appell functions.
Lemma 1. Let (5) hold and let $E\left(\eta^{\nu}\right)<\infty$. Then for any $\nu>0$ there exists a_{ν} such that

$$
\begin{equation*}
Q_{\nu}(y ; \eta) \leq 0 \text { for } 0<y<a_{\nu}, \quad Q_{\nu}\left(a_{\nu} ; \eta\right)=0 \tag{16}
\end{equation*}
$$

and $Q_{\nu}(y ; \eta)$ is an increasing function for $y \geq a_{\nu}$.
Proof. For integer $\nu=1,2, \ldots$ the statement of this lemma was proved in [11, Lemma 5].

For the case $\nu \in(0,1)$ we note at first that due to the assumption $\eta \geq 0$ we have the estimate

$$
Q_{\nu-1}(y ; \eta) \geq \int_{0}^{\infty} u^{-\nu-1} e^{-u y} \frac{d u}{\Gamma(-\nu)}=y^{\nu-1} \quad(\nu<1)
$$

and so by (13) $Q_{\nu}(0 ; \eta)<0$. Also, by (12) we have that $Q_{\nu}(y ; \eta)$ is a nondecreasing function (of the variable y) such that

$$
Q_{\nu}(y ; \eta) \geq Q_{\nu}(0 ; \eta)+y^{\nu}
$$

So, it grows to infinity and, hence, Lemma 1 does hold for $\nu \in(0,1)$.
Next, consider the case $\nu \in(1,2)$ and $y>0$. Then due the fact just proved

$$
Q_{\nu-1}(y ; \eta)<0 \text { for } y \in\left(0, a_{\nu-1}\right) .
$$

So, on the interval $\left(0, a_{\nu-1}\right)$ the function $Q_{\nu}(y ; \eta)$ is negative and decreasing. Obviously, it reaches its minimum at point $y=a_{\nu-1}$. For $y \geq a_{\nu-1}$ the function $Q_{\nu}(y ; \eta)$ is ultimately increasing to infinity due to the estimate

$$
Q_{\nu}(y ; \eta) \geq Q_{\nu}(0 ; \eta)+Q_{\nu-1}(0 ; \eta) y+y^{\nu} \text { for } y>0
$$

Hence, there exists a root $a_{\nu}>a_{\nu-1}>0$.
Using (12) recursively and the consideration presented above we see that the statement of Lemma 1 holds for all $\nu>0$.
3. Some facts about the distribution of maximum

Writing $t \in \mathbf{Z}^{+}$or $t \in \mathbf{R}^{+}$we will indicate that the discrete time or continuous time cases are under consideration correspondingly. We formulate here all results in a form which is valid for the both cases $t \in \mathbf{Z}^{+}$and $t \in \mathbf{R}^{+}$but proofs of corresponding results we will have to discuss separately.

We assume always below that $\left(X_{t}\right)$ is a process with independent homogeneous increments, $\quad X_{0}=x$. Let a random variable θ be independent of X_{t} such that

$$
P(\theta>t)=e^{-t q}, \quad q>0,
$$

where $t \in \mathbf{Z}^{+}$or $t \in \mathbf{R}^{+}$. Set

$$
M_{\theta, q}=\sup _{0 \leq t<\theta}\left(X_{t}-x\right),
$$

and by definition set for the case $q=0$

$$
M_{\theta, 0}=M_{\infty} \stackrel{\text { def }}{=} \sup _{0 \leq t<\infty}\left(X_{t}-x\right) .
$$

Further we always assume that for the case $q=0$

$$
\begin{equation*}
E\left(X_{1}^{+}\right)<\infty \quad n \text { and } \quad E\left(X_{1}-x\right)<0 \tag{17}
\end{equation*}
$$

Lemma 2. If $q \geq 0$ then

$$
\begin{equation*}
P\left\{M_{\theta, q}<\varepsilon\right\}>0 \text { for any } \varepsilon>0 \tag{18}
\end{equation*}
$$

Proof.

1) For the case $t \in \mathbf{Z}^{+}$and $q=0$ this result is a consequence of the observation that

$$
P\left\{M_{\infty}<\varepsilon\right\} \geq P\left\{M_{\infty}=0\right\}
$$

and the fact that under imposed conditions

$$
\begin{equation*}
P\left\{M_{\infty}=0\right\}>0 \tag{19}
\end{equation*}
$$

(see e.g. [3, pp. 91-92]).
2) For the case $t \in \mathbf{Z}^{+}$and $q>0$ note that if $\theta=1$ then $M_{\theta, q}=0$ and, hence,

$$
P\left\{M_{\theta, q}<\varepsilon\right\} \geq P\{\theta=1\}=e^{-q}>0
$$

So (18) holds as well.
3) Consider now the case $t \in \mathbf{R}^{+}$and $q=0$. Let $\left(R_{t}\right)$ be a compound Poisson process generated by jumps of $\left(X_{t}\right)$ which are greater than 1 . Set

$$
Q_{t}=X_{t}-x-R_{t}
$$

Due to this definition the process $\left(Q_{t}\right)$ does not contain jumps exceeding 1. Note that $\left(R_{t}\right)$ and $\left(Q_{t}\right)$ are independent processes with stationary increments, $E\left(R_{1}\right) \geq$ 0.

To prove Lemma 2 we note that for any m

$$
M_{\infty}=\sup _{t \geq 0}\left(Q_{t}+m t+R_{t}-m t\right) \leq \sup _{t \geq 0}\left(Q_{t}+m t\right)+\sup _{t \geq 0}\left(R_{t}-m t\right)
$$

and so due to independency of $\left(R_{t}\right)$ and $\left(Q_{t}\right)$ we have for any $\varepsilon>0$

$$
\begin{equation*}
P\left\{M_{\infty}<\varepsilon\right\} \geq P\left\{\sup _{t \geq 0}\left(Q_{t}+m t\right)<\varepsilon / 2\right\} P\left\{\sup _{t \geq 0}\left(R_{t}-m t\right)<\varepsilon / 2\right\} \tag{20}
\end{equation*}
$$

We shall estimate the both last probabilities separately under a proper choice of m.
To estimate $P\left\{\sup _{t \geq 0}\left(Q_{t}+m t\right)<\varepsilon / 2\right\}$ note that we may choose the constant $m>E\left(R_{1}\right) \geq 0$ such that

$$
E\left(Q_{1}\right)+m=E\left(X_{1}-x\right)+m-E\left(R_{1}\right)<0
$$

(see assumption (17)). Now we show that with the such choice of m for any $\varepsilon>0$

$$
\begin{equation*}
P\left(\sup _{t \geq 0}\left(Q_{t}+m t\right)<\varepsilon\right)>0 \tag{21}
\end{equation*}
$$

To see this, consider the exponential martingale

$$
Z_{t}(u)=\exp \left\{u\left(Q_{t}+m t\right)-t \varphi(u)\right\}
$$

with

$$
\varphi(u)=\log E e^{u\left(Q_{1}+m\right)}
$$

Then

$$
\varphi(0)=0, \quad \varphi^{\prime}(0)=E\left(Q_{1}+m\right)<0
$$

and, as well known, $\varphi(u)$ is a continuous convex function.
Suppose the function $\varphi(u)$ has a root $u^{*}>0$. (It is certainly true when $\varphi(u) \rightarrow \infty$, e.g. when Q_{t} contains a diffusion component or a component with positive jumps.) Then the process $Z_{t}\left(u^{*}\right)=\exp \left\{u^{*} Q_{t}\right\}$ is an exponential martingale. Applying the optional stopping theorem for the stopping time

$$
\tau_{\varepsilon}=\inf \left\{t: Q_{t}+m t \geq \varepsilon\right\}
$$

and the fact that $E\left(\exp \left\{u^{*}\left(Q_{t}+m t\right)\right\}\right)=1$ we get the inequality

$$
\begin{equation*}
E I\left\{\tau_{\varepsilon}<\infty\right\} \exp \left\{u^{*}\left(Q_{\tau_{\varepsilon}}+m \tau_{\varepsilon}\right)\right\} \leq 1 \tag{22}
\end{equation*}
$$

Since $Q_{\tau_{\varepsilon}}+m \tau_{\varepsilon} \geq \varepsilon$ on the set $\left\{\tau_{\varepsilon}<\infty\right\}=\left\{\sup _{t \geq 0}\left(Q_{t}+m t\right) \geq \varepsilon\right\}$ it implies that $P\left\{\tau_{\varepsilon}<\infty\right\} \leq e^{-u^{*} \varepsilon}$ and so

$$
\begin{equation*}
P\left\{\sup _{t \geq 0}\left(Q_{t}+m t\right)<\varepsilon\right\} \geq 1-e^{-u^{*} \varepsilon}>0 \tag{23}
\end{equation*}
$$

Hence, (21) does hold under the assumption that the function $\varphi(u)$ has a root $u^{*}>0$.
Consider now the alternative case when $\varphi(u) \leq 0$ for all $u>0$. Then we may choose $u=1$ and similar to (22) we get

$$
\begin{equation*}
E I\left\{\tau_{\varepsilon}<\infty\right\} \exp \left\{Q_{\tau_{\varepsilon}}+m \tau_{\varepsilon}-\tau_{\varepsilon} \varphi(1)\right\} \leq 1 \tag{24}
\end{equation*}
$$

Since $\varphi(1) \leq 0$ and $Q_{\tau_{\varepsilon}}+m \tau_{\varepsilon} \geq \varepsilon$ on the set $\left\{\tau_{\varepsilon}<\infty\right\}$, this inequality implies (23) with $u^{*}=1$ and so (21) does hold for all possible cases.

Next, we show that for any constant $m>E\left(R_{1}\right) \geq 0$ and any $\varepsilon>0$

$$
\begin{equation*}
P\left\{\sup _{t \geq 0}\left(R_{t}-m t\right)<\varepsilon\right\}>0 \tag{25}
\end{equation*}
$$

This estimate is, actually, a consequence of the fact (19) and the estimate (23) proved above. Recall that $\left(R_{t}\right)$ is a compound Poisson process generated by jumps of $\left(X_{t}\right)$ which are greater than 1 and so it has the representation

$$
R_{t}=\sum_{k=1}^{N_{t}} \xi_{k}
$$

where $\left(N_{t}\right)$ is a Poisson process with the rate $\lambda \geq 0, \xi_{k}$ are independent identically distributed (iid) random variables, $\xi_{k}>1,\left\{\xi_{k}\right\}$ and N_{t} are independent. Assume further $\lambda>0$ (otherwise $P\left\{\sup _{t \geq 0}\left(R_{t}-m t\right)<\varepsilon\right\}=1$), choose b such that

$$
E\left(R_{1}\right)=\lambda E\left(\xi_{1}\right)<\lambda b<m
$$

and note

$$
P\left\{\sup _{t \geq 0}\left(R_{t}-m t\right)<\varepsilon\right\} \geq P\left\{\sup _{t \geq 0}\left(R_{t}-b N_{t}\right)=0, \sup _{t \geq 0}\left(b N_{t}-m t\right)<\varepsilon\right\} .
$$

Here $R_{t}-b N_{t}=\sum_{k=1}^{N_{t}}\left(\xi_{k}-b\right)$ and so

$$
\begin{equation*}
\sup _{t \geq 0}\left(R_{t}-b N_{t}\right)=\sup _{k \geq 1} S_{k}^{+}, \tag{26}
\end{equation*}
$$

where $\left(S_{k}\right)$ is a random walk with negative drift as $E\left(S_{1}\right)=E\left(\xi_{k}-b\right)<0$. This implies

$$
P\left\{\sup _{t \geq 0}\left(R_{t}-b N_{t}\right)=0\right\}=P\left\{\sup _{k \geq 1} S_{k}^{+}=0\right\}>0
$$

(see the step 1).
Since the set $\left\{\sup _{k \geq 1} S_{k}^{+}=0\right\}$ and the process $\left(N_{t}\right)$ are independent we get

$$
P\left\{\sup _{t \geq 0}\left(R_{t}-m t\right)<\varepsilon\right\} \geq P\left\{\sup _{k \geq 1} S_{k}^{+}=0\right\} P\left\{\sup _{t \geq 0}\left(N_{t}-t m / b\right)<\varepsilon / b\right\}
$$

Now we need just to note that the inequality

$$
P\left\{\sup _{t \geq 0}\left(N_{t}-t m / b\right)<\varepsilon\right\}>0
$$

is a particular case of (23) because $\left(N_{t}\right)$ is a Poisson process with unit jumps and $E\left(N_{1}\right)=\lambda<m / b$.

To complete the proof of Lemma 2 we need just to note that under the choice of m indicated above we have shown that the lower bound in (20) $\varepsilon>0$.
4) For the case $t \in \mathbf{R}^{+}$and $q>0$ note that due to independency of $\left(R_{t}\right)$ and $\left(Q_{t}\right)$ we have for any $\varepsilon>0$

$$
P\left\{M_{\theta, q}<\varepsilon\right\} \geq P\left\{\sup _{0 \leq t<\theta} R_{t}<\varepsilon / 2\right\} P\left\{\sup _{0 \leq t<\theta} Q_{t}<\varepsilon / 2\right\}
$$

Due to independency of θ and $\sup _{0 \leq s \leq t} R_{s}$ we have

$$
P\left\{\sup _{0 \leq s<\theta} R_{s}<\varepsilon / 2\right\} \geq P\left\{\sup _{0 \leq s \leq 1} R_{s}<\varepsilon / 2\right\} P\{\theta<1\}
$$

where $P\{\theta<1\}=1-e^{-q}>0$ and so, obviously,

$$
P\left\{\sup _{0 \leq s \leq 1} R_{s}<\varepsilon / 2\right\} \geq P\left\{\sup _{0 \leq s \leq 1} R_{s}=0\right\}>0
$$

for any $\varepsilon>0$.
To estimate from below $P\left\{\sup _{0 \leq t<\theta} Q_{t}<\varepsilon\right\}$ we can use the consideration from the previous step 3) in the part related to the process Q_{t}. At first note

$$
P\left\{\sup _{0 \leq s<\theta} Q_{s}<\varepsilon\right\} \geq P\left\{\sup _{0 \leq s \leq t} Q_{s}<\varepsilon\right\} P\{\theta<t\}
$$

Consider the exponential martingale $Z_{t}(u)=\exp \left\{u Q_{t}-t \varphi(u)\right\}, u>0$. Applying the optional stopping theorem for the stopping time $\tau_{\varepsilon}=\inf \left\{t: Q_{t}>\varepsilon\right\}$ we get

$$
E\left(I\left\{\tau_{\varepsilon}<t\right\} e^{u Q_{\tau_{\varepsilon}}-\tau_{\varepsilon} \varphi(u)}\right) \leq 1
$$

Then due to the estimate $Q_{\tau_{\varepsilon}} \geq \varepsilon$ we get

$$
P\left\{\tau_{\varepsilon}<t\right\} \leq e^{-u \varepsilon+t \varphi(u)}
$$

and so

$$
P\left\{\sup _{0 \leq s \leq t}\left(Q_{s}\right)<\varepsilon\right\}=1-P\left\{\tau_{\varepsilon}<t\right\} \geq 1-e^{-u \varepsilon+t \varphi(u)}
$$

Fixing $\varepsilon>0$ we can find small t such that $u \varepsilon>t \varphi(u)$ and this implies the required fact that for any $\varepsilon>0$

$$
P\left\{\sup _{0 \leq s<\theta}\left(Q_{s}\right)<\varepsilon\right\}>0 .
$$

The proof of Lemma 2 is completed.
Lemma 3. Let $\nu>0$,

$$
q=0, \quad E\left(X_{1}\right)<0, \quad E\left(\left(X_{1}^{+}\right)^{\nu+1}\right)<\infty
$$

or

$$
q>0, \quad E\left(\left(X_{1}^{+}\right)^{\nu}\right)<\infty .
$$

Then

$$
\begin{equation*}
E\left(M_{\theta, q}^{\nu}\right)<\infty \tag{27}
\end{equation*}
$$

Proof. 1) For the case $t \in \mathbf{Z}^{+}$and $q=0$ this result is well know, see e.g. [3, pp. 91-92].
2) Consider here the case $t \in \mathbf{Z}^{+}$and $q>0$. At first note that

$$
M_{\theta, q} \leq \sum_{k=1}^{\theta}\left(\Delta X_{k}\right)^{+}
$$

where ΔX_{k} are iid r.v. For the case $0<\nu \leq 1$ by Hölder inequality and Wald's identity

$$
\left.E\left(M_{\theta}^{\nu}\right) \leq E\left(\sum_{k=1}^{\theta}\left(\left(\Delta X_{k}\right)^{+}\right)^{\nu}\right)=E(\theta) E\left(\left(\Delta X_{k}\right)^{+}\right)^{\nu}\right)<\infty .
$$

For the case $1<\nu \leq 2$ we note that

$$
\begin{equation*}
Z_{t}=\sum_{k=1}^{t}\left[\left(\Delta X_{k}\right)^{+}-E\left(\Delta X_{k}\right)^{+}\right] \tag{28}
\end{equation*}
$$

is a martingale and so we can use well-known martingale inequalities (see e.g. [5]) which lead to the estimate

$$
E\left(M_{\theta}^{\nu}\right) \leq C_{\nu}\left(E\left(\left|Z_{\theta}\right|^{\nu}\right)+C_{\nu} E\left(\theta^{\nu}\right)\left(E\left(\left(\Delta X_{k}\right)^{+}\right)^{\nu}\right)\right)
$$

and

$$
\left.E\left(\left|Z_{\theta}\right|^{\nu}\right) \leq C_{\nu} E\left(\theta^{\nu}\right) E\left(\left(\Delta X_{k}\right)^{+}\right)^{\nu}\right)<\infty
$$

with some finite constants C_{ν}.
For $\nu \geq 2$ the process $\left(Z_{t}\right)$ from (28) is a square integrable martingale and with help of the same martingale inequalities from [5] we get

$$
E\left(M_{\theta}^{\nu}\right) \leq C_{\nu}\left(E\left(\left|Z_{\theta}\right|^{2}\right)^{\nu / 2}+C_{\nu} E\left(\theta^{\nu}\right) E\left(\left(\Delta X_{k}\right)^{+}\right)^{\nu}\right)
$$

and

$$
\left.E\left(\left|Z_{\theta}\right|^{2}\right) \leq C_{\nu} E\left(\theta^{\nu}\right) E\left(\left(\Delta X_{k}\right)^{+}\right)^{\nu}\right)<\infty
$$

with some finite constants C_{ν}.
So, (27) is proved for the case $t \in \mathbf{Z}^{+}$and $q>0$.
3) Consider now the case $t \in \mathbf{R}^{+}$and $q=0$. We may use considerations which are similar to the proof of Lemma 2. With the same choice of constants m and b as in the proof of Lemma 2 (step 3) we have for any $x>0$

$$
\begin{aligned}
P\left\{M_{\infty}>x\right\} \leq & P\left\{\sup _{t \geq 0}\left(R_{t}-b N_{t}\right)>\frac{x}{3}\right\}+P\left\{\sup _{t \geq 0}\left(Q_{t}+m t\right)>\frac{x}{3}\right\} \\
& +P\left\{\sup _{t \geq 0}\left(N_{t}-t m / b\right)>\frac{x}{3 b}\right\}
\end{aligned}
$$

Integrating both sides of this inequality with respect to the measure

$$
I\{x>0\} \nu x^{\nu-1} d x
$$

we get

$$
\begin{align*}
E\left(M_{\infty}^{\nu}\right) \leq & 3^{\nu} E\left(\sup _{t \geq 0}\left(R_{t}-b N_{t}\right)^{\nu}\right)+3^{\nu} E\left(\sup _{t \geq 0}\left(Q_{t}+m t\right)^{\nu}\right) \tag{29}\\
& +(3 b)^{\nu} E\left(\sup _{t \geq 0}(N-t m / b)^{\nu}\right) .
\end{align*}
$$

Note that due to the relation (26)

$$
E\left(\sup _{t \geq 0}\left(R_{t}-b N_{t}\right)^{\nu}\right)=E\left(\sup _{k \geq 1}\left(S_{k}^{+}\right)^{\nu}\right)
$$

and so this term in (29) is finite because we have assumed that $E\left(X_{1}^{+}\right)^{\nu+1}<\infty$ (see step 1) above).

Now we show that for any $\nu>0$

$$
\begin{equation*}
E\left(\sup _{t \geq 0}\left(Q_{t}+m t\right)^{\nu}\right)<\infty \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(\sup _{t \geq 0}(N-t m / b)^{\nu}\right)<\infty \tag{31}
\end{equation*}
$$

To prove these facts we can use again the exponential martingale $Z_{t}\left(u^{*}\right)=$ $=\exp \left\{u^{*}\left(Q_{t}+m t\right)\right\}$ and apply the optional stopping theorem with the stopping time

$$
\tau_{x}=\inf \left\{t: Q_{t}+m t>x\right\}
$$

With some standard considerations involving uniform integrability we get the identity

$$
E\left(I\left\{\tau_{x}<\infty\right\} \exp \left\{u^{*}\left(Q_{\tau_{x}}+m \tau_{x}\right)\right\}\right)=1
$$

Since $Q_{\tau_{\varepsilon}} \geq x$ it implies that $P\left\{\tau_{x}<\infty\right\} \leq e^{-u^{*} x}$ and so

$$
P\left\{\sup _{t \geq 0}\left(Q_{t}+m t\right)>x\right\}=P\left\{\tau_{x}<\infty\right\} \leq e^{-u^{*} x}
$$

and so (30) does hold. To complete the step 3) we need just note that the inequality (31) is a particular case of (30).
4) The result of this part of Lemma 3 was proved in [8]. We would like to mention here that, actually, it is a simple consequence of general martingale inequalities proved originally in [10].

Lemma 4.

(a) Let $\tau_{a}=\inf \left\{t \geq 0: X_{t} \geq a\right\}, a \geq x$. Then for all $u \leq 0$

$$
\begin{equation*}
E\left(I\left\{\tau_{a}<\infty\right\} e^{u X_{\tau_{a}}} e^{-q \tau_{a}}\right)=\frac{E\left(I\left\{M_{\theta}+x \geq a\right\} e^{u\left(M_{\theta}+x\right)}\right)}{E\left(e^{u M_{\theta}}\right)} \tag{32}
\end{equation*}
$$

(b) Let the conditions of Lemma 3 hold. Then for all $a \geq x$ and ν

$$
\begin{equation*}
E\left(I\left\{\tau_{a}<\infty\right\} X_{\tau_{a}}^{\nu} e^{-q \tau_{a}}\right)=E\left(I\left\{M_{\theta}+x \geq a\right\} Q_{\nu}\left(M_{\theta}+x ; M_{\theta}\right)\right) \tag{33}
\end{equation*}
$$

Proof. (a) This result for the case $t \in \mathbf{Z}^{+}$and $q=0$ was proved in [11]. For the case $t \in \mathbf{Z}^{+}$with $q>0$ the proof needs just some minor modifications by taking into account, in particular, the memoryless property of geometric distribution. We need to note that on the set $\left\{M_{\theta}+x \geq a\right\}=\left\{\tau_{a}<\theta\right\}$

$$
\widehat{M}_{\theta}:=M_{\theta}-\left(X_{\tau_{a}}-x\right) \stackrel{l a w}{=} M_{\theta}
$$

and \widehat{M}_{θ} is independent of $X_{\tau_{a}}$ on the event $\left\{\tau_{a}<\theta\right\}$. Here we show details of the proof for the case $t \in \mathbf{Z}^{+}$and $q>0$ only.

We have $P(\theta=k)=e^{-k q}\left(e^{q}-1\right)$ for $k=1,2, \ldots$ and so

$$
E\left(e^{u M_{\theta}}\right)=\sum_{k=1}^{\infty} E\left(I\{\theta=k\} e^{u M_{k-1}}\right)=\sum_{k=1}^{\infty} e^{-k q}\left(e^{q}-1\right) E\left(e^{u M_{k-1}}\right)
$$

Note also that $X_{\tau_{a}}=x+M_{\tau_{a}}$ and so

$$
\begin{aligned}
& E\left(I\left\{M_{\theta}+x \geq a\right\} e^{u\left(M_{\theta}+x\right)}\right)=E\left(I\left\{\tau_{a}<\theta\right\} e^{u\left(M_{\theta}+x-X_{\tau_{a}}\right)} e^{u X_{\tau_{a}}}\right) \\
& \quad=\sum_{k=1}^{\infty} E\left(I\left\{\tau_{a}=k\right\} I\{k<\theta\} e^{u\left(M_{\theta}-M_{k}\right)} e^{u X_{k}}\right) \\
& \quad=E\left(\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} I\left\{\tau_{a}=k\right\} I\{k<n\} I\{\theta=n\} e^{u\left(M_{n-1}-M_{k}\right)} e^{u X_{k}}\right) \\
& \quad=E\left(\sum_{k=1}^{\infty} I\left\{\tau_{a}=k\right\} e^{u X_{k}} I\{k<n\} \sum_{n=k+1}^{\infty} E\left(I\{\theta=n\} e^{u \hat{M}_{n-1-k}} \mid \mathcal{F}_{k}\right)\right)=
\end{aligned}
$$

(setting $n=k+i$ and taking into account that both θ and \hat{M}_{i-1} are independent and also independent of \mathcal{F}_{k})

$$
\begin{aligned}
& =E\left[\sum_{k=1}^{\infty} I\left\{\tau_{a}=k\right\} e^{u X_{k}} \sum_{i=1}^{\infty} P\{\theta=i+k\} E e^{u \hat{M}_{i-1}}\right] \\
& =\sum_{k=1}^{\infty} E\left(I\left\{\tau_{a}=k\right\} e^{u X_{k}} e^{-k q} \sum_{i=1}^{\infty} e^{-i q}\left(e^{q}-1\right) E e^{u \hat{M}_{i}}\right) \\
& =\sum_{k=1}^{\infty} E\left(I\left\{\tau_{a}=k\right\} e^{u X_{k}} e^{-k q} E e^{u M_{\theta}}\right)=E\left(e^{u X_{\tau_{a}}} I\left\{\tau_{a}<\infty\right\} e^{u X_{\tau_{a}}} e^{-q \tau_{a}}\right) E\left(e^{u M_{\theta}}\right) .
\end{aligned}
$$

For the case $t \in R^{+}$considerations are similar (see [8] for more details).
(b). Relation (33) for $\nu<0$ is obtained by integrating of both sides of (32) with respect to the measure

$$
I\{u>0\} u^{-\nu-1} d u / \Gamma(-\nu), \quad \nu<0 .
$$

Then use relation (12) for $\nu \in(0,1)$ and so on.
Lemma 5. Let $t \in \mathbf{Z}^{+}, q \geq 0$ and let $f(x)$ and $g(x)$ be nonnegative functions such that for all x

$$
\begin{equation*}
f(x) \geq g(x) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x) \geq e^{-q} E f\left(X_{1}\right) \tag{35}
\end{equation*}
$$

Then for all x

$$
\begin{equation*}
f(x) \geq \sup _{\tau \in M} E I\{\tau<\infty\} e^{-q \tau} g\left(X_{\tau}\right) \tag{36}
\end{equation*}
$$

Proof. Condition (35) implies the fact that the process $e^{-q t}\left(X_{t}\right)$ is a nonnegative supermartingale and, hence, by the supermartingale property we have for any stopping time τ

$$
f(x) \geq E I\{\tau<\infty\} e^{-q \tau} f\left(X_{\tau}\right)
$$

Now one can see that inequality (36) is a consequence of condition (34).
Remark. Lemma 5 is just a slight generalisation of Lemma 7 from [11] (see also [2]).
4. Main result

Theorem 1. Let $g(x)=\left(x^{+}\right)^{\nu}, \nu>0$, the conditions of Lemma 3 hold and let a_{ν} be the positive root of the equation

$$
\begin{equation*}
Q_{\nu}\left(y ; M_{\theta}\right)=0 \tag{37}
\end{equation*}
$$

Then the stopping time $\tau_{a_{\nu}}$ is optimal and

$$
\nu(x)=E\left(e^{-q \tau_{a}} X_{\tau_{a_{\nu}}} I\left\{\tau_{a_{\nu}}<\infty\right\}\right)=E\left(Q_{\nu}\left(M_{\theta}+x ; M_{\theta}\right) I\left\{M_{\theta}+x \geq a_{\nu}\right\}\right)
$$

Proof. For integer $\nu=1,2, \ldots$ the proof was given for the case $t \in \mathbf{Z}^{+}$and $q=0$ in [11] and for the case $t \in \mathbf{R}^{+}$and $q \geq 0$ in [8]. (Note that the condition of Theorem 2 in [8] for the case $q=0$ should be changed as we formulated in Lemma 3 above.) The proof for real $\nu>0$, actually, coincides with the lines of the proof in the mentioned papers. By this reason we just outline it here, omitting obvious details.

At first we show that the function $E\left(X_{\tau_{a}}^{\nu} I\left\{\tau_{a}<\infty\right\}\right)$ achieves its maximum at the point $a=a_{\nu}$ where a_{ν} is the positive root of the equation (37) and so by Lemma 4

$$
\widehat{\nu}(x)=E\left(X_{\tau_{a_{\nu}}}^{\nu} I\left\{\tau_{a_{\nu}}<\infty\right\}\right)=E\left(Q_{\nu}(M+x ; M) I\left\{M+x \geq a_{\nu}\right\}\right)
$$

This fact is a direct consequence of Lemmas $1,3,4(\mathrm{~b})$ and (15).
Next, we note that, obviously,

$$
\hat{V}(x) \leq V(x)
$$

At the final step we show that

$$
\begin{equation*}
\hat{V}(x) \geq \nu(x) \tag{38}
\end{equation*}
$$

and conclude that the optimal stopping time is $\tau=\tau_{a_{\nu}}$.
The proof of (38) for the case $t \in \mathbf{Z}^{+}$and $q=0$ follows the lines of the proof from the paper [11] given there for integer ν; for the case $t \in \mathbf{R}^{+}$and $q \geq 0$ it follows the lines of the paper [8].

Here we present some details of the proof for (38) only for the case $t \in \mathbf{Z}^{+}$and $q>0$. The idea of our proof is similar to that one used in [6] and [11] and it is based on Lemma 5 and the following fact known as Lindley recursion:

$$
\hat{M}_{\theta}=\left(\gamma \hat{M}_{\theta}+\xi\right)^{+} \quad(\text { by law })
$$

where \hat{M}_{θ}, γ, and ξ are independent r.v.'s,

$$
\xi=X_{1}-x, \quad P(\gamma=1)=e^{-q}=1-P(\gamma=0)
$$

Using this equation we check that the function

$$
f(x)=\nu(x)=E\left(Q_{\nu}\left(M_{\theta}+x ; M_{\theta}\right) I\left\{M_{\theta}+x \geq a_{\nu}\right\}\right)
$$

satisfies conditions (35) and (34) with $g(x)=\left(x^{+}\right)^{\nu}$ and so by Lemma 5 it implies the required inequality (38).

Condition (35) holds because the function $f(x)=\widehat{\nu}(x)$ is nonnegative increasing function as x increases and, therefore,

$$
\begin{aligned}
f(x)= & E\left(I\left\{\left(\gamma M_{\theta}+\xi\right)^{+}+x \geq a_{\nu}\right\} Q_{\nu}\left(\left(\gamma M_{\theta}+\xi\right)^{+}+x\right)\right) \\
= & e^{-q} E\left(I\left\{\left(M_{\theta}+\xi\right)^{+}+x \geq a_{\nu}\right\} Q_{\nu}\left(\left(M_{\theta}+\xi\right)^{+}+x\right)\right) \\
\geq & e^{-q} E\left(I\left\{x \geq a^{*}, M+\xi<0\right\} Q_{\nu}(M+\xi+x)\right) \\
& +e^{-q} E\left(I\left\{M+\xi+x \geq a^{*}, M+\xi \geq 0\right\} Q_{\nu}(M+\xi+x)\right) \\
= & e^{-q} E(f(x+\xi)) .
\end{aligned}
$$

Condition (34) holds because for any $x>0 \quad f(x)=E\left(Q_{\nu}\left(M_{\theta}+x ; M_{\theta}\right)^{+}\right.$and so by Jensen's inequality and Lemma 4

$$
f(x) \geq\left(E\left(Q_{\nu}\left(M_{\theta}+x ; M_{\theta}\right)\right)^{+}=\left(x^{+}\right)^{\nu}\right)=g(x) .
$$

5. Examples.

(1) Discrete time case. Let ξ_{1}^{+}have the density $p e^{-\lambda x}, x>0 ; p>0,0<\lambda<\infty$, $E\left(\xi_{1}\right)<0$. Then using martingale considerations like in the proof of Lemma 3 we can show that

$$
P\left(M_{\infty}>a\right)=\frac{\lambda e^{-u_{0} a}}{\lambda+u_{0}}, \quad P\left(M_{\infty}=0\right)=\frac{u_{0}}{\lambda+u_{0}}
$$

where u_{0} is a positive root of the equation

$$
E\left(e^{u \xi_{1}}\right)=1 .
$$

By direct calculations one can get that for any ν and $y>0$

$$
Q_{\nu}(y ; \eta)=(2 / 3)^{\nu} \exp (3 y / 2)(-3 \nu \Gamma[\nu, y / 2]+\Gamma[1+\nu, 3 y / 2])
$$

where $\Gamma[z, y]$ is the incomplete Gamma function.
(2) Brownian Motion case. Let $L_{t}=W_{t}-m t, g(x)=\left(x^{+}\right)^{\nu}, \nu>0$.

If $m>0$ then $M_{\infty}=\sup _{t \geq 0}\left(W_{t}-m t\right) \sim \operatorname{Exp}(2 m)$ and the Appell function for any ν and $y>0$ is

$$
Q_{\nu}(y ; M)=y^{\nu-1}\left(y-\frac{\nu}{2 m}\right)
$$

So, the optimal threshold is

$$
a_{\nu}=\frac{\nu}{2 m} .
$$

If $q>0, \quad m=0$ then $M_{\theta}=\sup _{s \leq \theta}\left(W_{s}\right)=\left|W_{\theta}\right|$ (by distribution), where $\theta \sim$ $\operatorname{Exp}(q)$. We get

$$
\begin{gathered}
a_{1}=E\left(\left|W_{\theta}\right|\right)=\sqrt{\frac{1}{2 q}} \\
a_{2}=E\left(\left|W_{\theta}\right|\right)+\sqrt{\operatorname{var}\left(W_{\theta}\right)}=\sqrt{\frac{1}{2 q}}(1+\sqrt{2}),
\end{gathered}
$$

and so on.

REFERENCES

[1] M. Beibel (1998) Generalised parking problems for Levy processes. Sequential Anal., 17(2), 151-171.
[2] D. Blackwell, On optimal systems, Ann. Math. Statist., 1954, v. 25, p. 394-397.
[3] A. Borovkov, Stochastic processes in queueing theory, Applications of Mathematics, No 4, Springer-Verlag, New York, Berlin, 1976.
[4] Y. S. Chow, H. Robbins, and D. Siegmund, The Theory of Optimal Stopping, Dover, New York, 1991.
[5] Y. S. Chow and T. Teicher, Probability Theory Independence, Interchangeability, Martingales, Springer-Verlag, New York, 1997.
[6] D. A. Darling, T. Liggett, and H. M. Taylor, Optimal stopping for partial sums, Ann. Math. Statist., 43 (1972), pp. 1363-1368.
[7] L. Dubins and T.Teicher, Ann. Math. Statist., 43 (1972), pp. 1363-1368.
[8] A. Kyprianou and B. Surya, (2005) On the Novikov-Shiryaev optimal stopping problems in continuous time. Electron. Comm. Probab. 10, 146-154.
[9] E. Mordecki, Optimal stopping and perpetual options for Lévy processes, Finance Stoch., 6 (2002), pp. 473-493.
[10] A. Novikov, (1975) On discontinuous martingales. (Russian) Teor. Veroyatn. Primen. 20 (1975), no. 1, 13-28; translation in Theory Probab. Appl. 20 (1975), no. 1, 11-26.
[11] A. Novikov and A. Shiryaev, (2004) On an effective case of the solution of the optimal stopping problem for random walks. (Russian) Teor. Veroyatn. Primen. 49 (2004), no. 2, 373-382; translation in Theory Probab. Appl. 49 (2005), no. 2, 344-354.
[12] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Springer-Verlag, New York, 2000.

[^0]: ${ }^{1}$ University of Technology, Sydney, Department of Mathematical Sciences, University of Technology, PO Box 123, Broadway, Sydney, NSW 2007, Australia; supported by ARC Discovery grant DP0559879.
 ${ }^{2}$ Mathematical Institute, 8 ul. Gubkina, 119991, Moscow, Russia; supported by INTAS grant 03-51-50-18

