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Abstract: The need for the management of risks related to the COVID-19
epidemic in health, economics, finance and insurance became obvious after its
outbreak. As a basis for respective quantitative methods, the paper models in
a novel manner the dynamics of an epidemic via a four-dimensional stochastic
differential equation. Crucial time dependent input parameters include the
reproduction number, the average number of externally new infected and the
average number of new vaccinations. The proposed model is driven by a single
Brownian motion. When fitted to COVID-19 data it generates the typically
observed features. In particular, it captures widely noticed fluctuations in
the number of newly infected. Fundamental probabilistic properties of the
dynamics of an epidemic can be deduced from the proposed model. These
form a basis for managing successfully an epidemic and related economic and
financial risks. As a general tool for quantitative studies a simulation algo-
rithm is provided. A case study illustrates the model and discusses strategies
for reopening the Australian economy during the COVID-19 epidemic.
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1 Introduction

The COVID-19 pandemic has demonstrated that there exist risks that have not
been accounted for. There is an urgent need to assess quantitatively the risks
related to an epidemic or pandemic with similar rigour as is common, e.g., for
derivatives in quantitative finance. Given the way that viruses are known to
mutate and move from animals to humans, it was not a question whether a pan-
demic could occur, it was only a question when this may happen. Also in future,
new epidemics could emerge at any time and require appropriate long-term risk
management. To provide a basis for accurate quantitative risk management for
an epidemic or pandemic one needs an accurate understanding of its dynamics.
This paper aims to provide such an understanding, suitable for risk management
in areas such as health, economics, finance and insurance. It proposes a gen-
eral stochastic model for the COVID-19 and similar epidemics. Fundamental
probabilistic properties of the model are deduced and a simulation algorithm is
provided.
A particular challenge in modelling epidemics emerges when the proportion of
newly infected in the population is not too large, which is typically the case when
an epidemic is managed. The challenge in such a situation is to keep a delicate
balance between the number of newly infected and the imposed degrees of social
distancing and travel restrictions, to allow finally the reopening of the economy.
The understanding of the stochastic nature of widely observed fluctuations in
the number of newly infected is critically important for decision making in an
epidemic like COVID-19, which has relative high mortality and infection rates.
Important questions that typically arise are: How much can one relax social
distancing to keep with given probability the number of newly infected under a
critical level? How important are severe travel restrictions? How many externally
new infected are on average permitted to keep with given probability the num-
ber of newly infected under a critical threshold? How many susceptibles have to
be vaccinated per day to reopen at a targeted date an economy? The proposed
model provides in a unified and transparent manner a quantitative basis for an-
swering these and other questions, which will be demonstrated in a case study.

The novel model has the ability to capture the stochastic dynamics of an epidemic
in all stages of its evolution, in particular, when the number of newly infected is
not too large and the number of newly infected fluctuates considerably. As will
be explained in this paper, the key to the understanding of the stochastic nature
of an epidemic is the insight that the evolution of the number of newly infected
is captured by a generalized, time transformed squared Bessel process; see e.g.
Revuz & Yor (1999), Platen & Heath (2010) and Feller (1971).

The proposed model characterizes the dynamics of an epidemic via a four-dimen-
sional system of stochastic differential equations (SDEs) with time and state de-

2



pendent drift and diffusion coefficient functions. An introduction into the theory
of SDEs and methods for their numerical solution can be found in Kloeden &
Platen (1999). SDE solutions can be discretized with different time step sizes
without changing parameters. A discrete time approximation for the solution
of the system of SDEs describing the model is provided in the paper. This al-
gorithm represents a flexible tool that can be generally applied for quantitative
risk management related to epidemics using scenario simulation or Monte Carlo
simulation.

The literature on epidemic modelling is very rich. Widely used and rather popular
are variants of the SIR (Suceptible-Infectious-Recovered) model using determin-
istic ordinary differential equations; see Katriel (2010) and references therein.
Other models employ Markov chains; see e.g. Chang, Harding, Zachreson, Cli &
Prokopenko (2020) and references therein. Markov chain models for state vari-
ables of an epidemic can become extremely complex, in particular, when many
geographical and network details are incorporated. As we show in this paper,
a reasonably accurate model needs to consider about four evolving state vari-
ables. The complexity of Markov chain models, in particular the characterization
of transition probabilities, makes it difficult to obtain on an aggregate level a
deeper understanding of the modelled stochastic dynamics.
There exists some literature on the modelling of epidemics with SDEs, in some
papers with time delay, where we may refer to Chunyan & Jiang (2014) and ref-
erences therein, see also Küchler & Platen (2000). An advantage of SDE models
is that these aggregate many unimportant minor details that average out when
studying in continuous time evolving state variables, e.g. the number of infected.
What remains are the core dynamics, characterized locally in time and space via
the drift and diffusion coefficient functions. As in the case of the proposed model,
SDE models can be often transformed into a standardized form that reveals well-
understood fundamental probabilistic properties. These properties give access to
accurate qualitative statements and valuations of quantities of interest that would
not be possible without the deeper understanding of the underlying standardized
dynamics. Beyond that, the modelling with SDEs is not only parsimonious, it
provides also elegant access to the machinery of stochastic analysis, which has
been the key to accurate quantitative methods in many areas, in particular in
quantitative finance.

The paper is organized as follows: Section 2 describes a time discrete model. Sec-
tion 3 provides the continuous time limit of the model. Fundamental properties
of the proposed model are discussed in Section 4. Section 5 fits the model to
Australian COVID-19 data and discusses in a case study managing an epidemic
and assessing related risks.
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2 Discrete Time Model for Simulation

This section presents a discrete time model for the evolution of the key state vari-
ables that characterize the dynamics of an epidemic. The discrete time model
is designed in a way that permits the simulation of scenarios for studying the
dynamic properties of an epidemic. The algorithm can also be employed to cal-
culate flexibly via Monte-Carlo simulation quantities of interest.
One time unit is set to one day because most reported data during the outbreak
of the COVID-19 epidemic have been provided on a daily basis. Let us introduce
the equidistant time points ti, i = 0, 1, 2, ..., where ti+1 − ti = 1 such that ti = i
is counting the days from the initial time point t0 = 0. We consider a population
of size n0 > 0 at the initial time t0 = 0 that experiences an epidemic outbreak,
similar to the COVID-19 epidemic, with time dependent reproduction number Ri

at time i ≥ 0. This number can be interpreted as the expected number of infec-
tions directly generated by one infected person during the full time the person is
infectious if all individuals in the population are susceptible to infection. For the
COVID-19 epidemic various sources etimated Rt ≈ 2.25 when no social distanc-
ing measures were implemented; see e.g. Roser & Ritchie (2020). Strong social
distancing, with only essential services working and staying at home, achieves
typically a reproduction number of about Rt ≈ 0.5. For simplicity, we assume
that a person can only get infected once and when recovered the infected person
becomes immune. The parameter σ ≥ 1 characterizes the average number of
days during which a person infects other people. Various studies show that for
COVID-19 one finds most likely a value of about σ ≈ 4.5; see Roser & Ritchie
(2020). The infection variance ν ≥ 0 is proportional to the variance of the num-
ber of individuals that an infected infects when there are only susceptibles and
the reproduction number equals 1.0. The case study at the end of this paper finds
that ν = 6 generates the magnitude of fluctuations that one typically observes.
When the entire population were susceptible, the average number of persons at
time i that would become externally infected per day is denoted by εi ≥ 0 .
Our main state variable Yi denotes the number of persons that become at the i-th
day newly infected. The second state variable Xi counts the number of new deaths
at the i-th day. Our third state variable, denoted by Zi, is capturing the number
of non-susceptibles at time i. The latter includes the persons who had the disease
and recovered, and also those who became immune through vaccination. Finally,
the changing size ni of the population represents our fourth state variable.
Let the number of newly infected individuals start at time t0 = 0 with 0 ≤ Y0 ≤ n0

and satisfy at time i+ 1, i = 0, 1, 2, ..., the relation

Yi+1 = Yi +

(
Yi
σ

(Ri(1− Zi/ni)− 1) + εi(1− Zi/ni)
)

+

√
νYi
σ
Ri(1− Zi/ni)Ui,

(2.1)
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if the right hand side of (2.1) is nonnegative and less than ni−Zi. We set Yi+1 = 0
if the right hand side of (2.1) is negative, and we set Yi+1 = ni − Zi if the right
hand side of (2.1) is greater than ni−Zi. Here Ui, i = 0, 1, 2, ..., are independent
standard Gaussian distributed random variables.

The second summand (in large round brackets) on the right hand side of (2.1)
models the trend of the number of newly infected. As long as no external in-
fections occur in the population, the number of newly infected is on average
exponentially increasing (decreasing) with growth rate

gi =
1

σ
(Ri(1− Zi/ni)− 1) (2.2)

when Ri(1 − Zi/ni) is greater (smaller) than 1.0. Social distancing reduces the
reproduction number Ri and, thus, the growth rate. An increased number of sus-
ceptibles ni − Zi also decreases the growth rate. There is an additional increase
in the average number of newly infected if there are susceptibles and external
infections, that is, when 1 − Zi/ni > 0 and εi > 0. Travel restrictions between
populations reduce εi. When the proportion of susceptibles 1 − Zi/ni has de-
creased so that Ri(1 − Zi/ni) < 1, then the average number of newly infected
fluctuates around the reference level

Ȳi =
σεi(1− Zi/ni)

1−Ri(1− Zi/ni)
. (2.3)

This level is proportional to the average number of new externally infected and
increases when the reproduction number increases. This means, relaxing travel
restrictions and/or reducing social distancing raises the average number of newly
infected.

So far, the average dynamics modelled reflects what typical deterministic SIR-
type models capture. However, when the number of infected is not too large, as
it is when an epidemic is managed, one observes in reality substantial fluctua-
tions in the trajectory of the number of newly infected. These fluctuations are
not primarily due to reporting errors. They represent an important stochastic
feature of the dynamics of an epidemic. The proposed model captures this phe-
nomenon. More precisely, the fluctuations of the number of newly infected Yi are
modelled in the third summand of relation (2.1). In particular, the variance of
the increment of the number of newly infected is proportional to the number of
newly infected.
To understand the reasoning behind this fundamental property of the fluctuations
of the number of newly infected, assume that all infected individuals infect each
an independent, identically distributed random number of individuals during a
given day. Then due to the assumed independence, the variance of the incre-
ment of the total number of newly infected equals the sum of the variances of the
newly infected caused by each individual that was infected at the beginning of the
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day. Thus, the variance of the increment of the total number of newly infected is
proportional to the number of individuals that were infected at the beginning of
the day. This is a fundamental phenomenon that determines the feedback in the
fluctuations of the number of newly infected in an epidemic.
The variance of the number of newly infected in (2.1) turns out to be proportional
to the contact intensity, which is the product of the infection variance ν, the re-
production number Ri, the proportion of susceptibles 1 − Zi/ni and the inverse
of the average number of days σ that an infected person infects others. This
means, one observes larger fluctuations of the number of newly infected when the
reproduction number is higher or the proportion of non-susceptibles is lower, and
vice versa.

For simplicity, we do not consider the cases where individuals move between pop-
ulations and do not account for births or for deaths that are not caused by an
epidemic infection. We also do not consider the possibility that non-susceptibles
can become susceptible again. However, immigration, emigration, births, deaths
not caused by infection and the possibility that non-susceptibles can become sus-
ceptible again could be easily included in the model. Important is that we allow
for the possibility that a vaccine becomes available that permits us to immunize
susceptibles. We denote by ξi the per day newly vaccinated susceptibles at time
i.
Unfortunately, an epidemic as that of COVID-19 causes a relatively high propor-
tion of deaths among the infected. To model the number of deaths we introduce
the mortality rate λi ≥ 0, which captures the proportion of persons that pass
away at time i as a result of an epidemic infection. We make the mortality rate
time-dependent because this rate may change over time in a population, for in-
stance, when more and more vulnerable become isolated from the majority of the
population. In the case of COVID-19 these are elderly and those with prior health
conditions. In some developed countries with a good health system a mortality
rate of about λ ≈ 0.01 has been observed; see Roser & Ritchie (2020). However,
this may vary considerably.
Let ψ > 0 denote the average lag time (in days) between infection and death. A
realistic number for this average time seems to be about ψ ≈ 17; see Roser &
Ritchie (2020). It is reasonable to assume that when there was no infection in
the population before the time t0 = 0 that the number Xi of daily new deaths in
the population at time i = ψ, ψ + 1, ψ + 2, ... takes the form

Xi = λiYi−ψ. (2.4)

With these notations, the number Zi+1 of non-susceptibles at time i+ 1 equals

Zi+1 = Zi + Yi + ξi −Xi, (2.5)

as long as the right hand side of (2.5) remains nonnegative and not greater than
ni. We set Zi+1 = ni in case the right hand side of (2.5) becomes larger than ni,
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and we set Zi+1 = 0 should it become negative. We start with an initial value in
the interval 0 ≤ Z0 ≤ n0. Note that equation (2.5) is different to similar equations
in the literature that uses SIR-type models; see e.g. Chunyan & Jiang (2014).
This difference turns out to be crucial for modelling realistically the stochastic
dynamics of an epidemic.
When non-susceptible individuals pass away at time i, caused by an epidemic
infection, this reduces the total size ni of the population to

ni+1 = ni −Xi. (2.6)

The four state variables Yi, Xi, Zi and ni evolve jointly over time according to
the system of equations (2.1), (2.4), (2.5) and (2.6).

Often reported quantities that can be easily derived from the model include the
total number of deaths until time i :

Vi =
i∑

k=0

Xk. (2.7)

The total number of persons that become infected until time i :

Mi =
i∑

k=0

Yk. (2.8)

The total number of recovered follows simply as the difference between the total
number of those who became infected and the total number of deaths.

It is straightforward to simulate scenarios of the above modelled dynamics. These
scenarios can help to compare the impact of alternative variants of strategies in
the management of an epidemic. Furthermore, the above algorithm can be used
to evaluate almost any quantity of interest via Monte-Carlo simulation; see e.g.
Kloeden & Platen (1999). To gain a deeper understanding of the stochastic
dynamics under the model it is extremely beneficial to study the probabilistic
properties of the continuous time limit of the above dynamics, which emerges
when letting the time step size tend to zero. The respective weak convergence
can be secured by theorems given in Chapter 14 of Kloeden & Platen (1999).

3 Continuous Time Model

This section presents the continuous time model that follows by weak convergence
from the above described discrete time model. The continuous time model is given
in the form of a four-dimensional stochastic differential equation (SDE). We keep
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the notations and interpretations of the previous section for the parameters of the
continuous time model. From the mathematical perspective it is advantageous
to normalize the number of newly infected and the number of non-susceptibles
by the actual size of the population because the respective normalized quantities
become uniformly bounded, which allows us to apply existence and uniqueness
theorems for the solutions of the resulting system of SDEs. Therefore, our main
state variable yt ≈ Yt/nt becomes the proportion of the population that is newly
infected at time t. Our second state variable, denoted by zt ≈ Zt/nt, captures
the proportion of the population that is not susceptible at time t ≥ 0.

Under the proposed model the proportion of the currently infected population yt
satisfies the SDE

dyt =

(
yt
σ

(Rt(1− zt)− 1) +
εt
nt

(1− zt)
)
dt+

√
νytRt

σnt
(1− zt)dWt, (3.9)

for t ≥ 0 with y0 ≥ 0. Here W = {Wt, t ≥ 0} is the standard Brownian motion
that models the uncertainty in the dynamics of the epidemic in t-time. This
uncertainty is driving the fluctuations of the number of the newly infected in the
population. Note that when the size of the population is large and the number
of infected is so large that one is interested in studying the proportion of newly
infected in the population, then the diffusion coefficient in (3.9) can be neglected
and there is almost no randomness in the trajectory of the proportion of infected.
However, in the case of a managed epidemic the number of newly infected is
not too large. This number fluctuates in this case considerably in reality, as can
be explained through the SDE (3.9) of the proposed model. Such fluctuations
observed in COVID-19 data are often misinterpreted as observation errors. The
proposed model gives a clear understanding of these fluctuations, which is impor-
tant for proper decision making in an epidemic, e.g. when aiming at reopening
an economy after a lockdown. For instance, it allows to calculate the probability
for upward excursions of the number of newly infected reaching a critical level,
as we demonstrate later on.

According to (2.4), the expected proportion of new deaths E(xt) = E(Xt)
nt

(per
day) at time t satisfies the differential equation with time delay

dE(xt) = λtdE(yt−ψ). (3.10)

Note that with constant mortality rate λt = λ > 0 the SDE for E(xt) follows by
(3.9) approximately in the form

dE(xt) ≈
(
E(xt)

σ
(Rt−ψ(1− E(zt−ψ))− 1) + λ

εt−ψ
nt−ψ

(1− E(zt−ψ))

)
dt. (3.11)

It reveals that the expected proportion of new deaths has, with some time delay
ψ, the same growth rate as the proportion of newly infected. More precisely,
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one can estimate the by the time ψ delayed growth rate of newly infected from
the growth rate of the number of new deaths. This gives often more accurate
estimates for the reproduction number than the reliance on the reported number
of newly infected, which is often missing a large number of cases.

The differential equation for the proportion zt = Zt/nt of non-susceptibles in the
population starting with 0 ≤ z0 ≤ 1 is given as

dzt = (yt +
ξt
nt
− xt)dt (3.12)

for t ≥ 0, as long as zt stays in the interval [0, 1]. The proportion of non-
susceptibles zt is pulled back to the boundaries of this interval when the right
hand side of (3.12) pushes zt beyond these boundaries, analogous to the boundary
behaviour in (2.5).
Finally, we get from (2.6) a differential equation for nt in the form

dnt = −xtntdt (3.13)

for t ≥ 0 with n0 > 0.

The fluctuations of the proportion of currently infected y(t) are modelled in the
SDE (3.9) via the diffusion coefficient. We emphasize the crucial modelling fea-
ture that the variance of the increments of the proportion of the infected in the
population is proportional to the proportion of the infected in the population.
This for the stochastic evolution of the number of newly infected crucial feature
of the proposed model reflects the fundamental fact that we model the continuous
time limit of a generalized birth process. Recall that we explained in Section 2
why the variance of the increments of the number of newly infected evolves pro-
portionally to this number; see Feller (1971) for a similar property. Explanations
for the form of the drift and diffusion coefficient functions of the four-dimensional
system of SDEs (3.9), (3.10), (3.12) and (3.13) remain analogous to those given
in Section 2 for the respective equations.

The four state variables at time t of the above model are the proportion yt of
the newly infected individuals in the population, the proportion of new deaths
xt, the proportion zt of susceptible individuals in the population and the size
nt of the population. These quantities evolve jointly together according to the
above four-dimensional system of SDEs. The existence and uniqueness of a strong
solution of this system of SDEs can be secured by a combination of respective
theorems in Ikeda & Watanabe (1989) and Küchler & Platen (2000). What makes
this possible is that the key state variables are bounded, a Yamada condition for
the diffusion coefficient of (3.9) is satisfied and the delayed proportion of deaths
can be captured as an extra evolving component in a respective five-dimensional
Markovian SDE, which satisfies the existene and uniqueness theorem given in
Ikeda & Watanabe (1989).
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4 Fundamental Properties and Strategies

The dynamics of yt in (3.9) is that of a generalized, time transformed squared
Bessel process; see e.g. Revuz & Yor (1999) and Section 8.4 in Platen & Heath
(2010). To deduce fundamental probabilistic properties from its dynamics, we
introduce its intrinsic time τt with derivative

dτt
dt

=
νRt

4σnt
(1− zt) (4.14)

for t ≥ 0 with τ0 = 0. The intrinsic time runs faster when the reproduction
number is higher and the proportion of non-susceptibles is smaller. It evolves
slower for larger populations, which reveals a fundamental probabilistic property
of epidemics. Furthermore, we have the crucially important dimension δt of the
underlying generalized squared Bessel process given by the formula

δt =
4σεt
νRt

. (4.15)

Finally, we introduce the intrinsic growth rate ηt in the form

ηt =
4nt
ν

(1− 1

Rt(1− zt)
). (4.16)

These notations allow us to rewrite the SDE (3.9) as

dyt = (δt + ηtyt)dτt + 2
√
ytdW̃τt . (4.17)

Here W̃ denotes a standard Brownian motion that evolves in the intrinsic time
τt. It aggregates in a canonical form the randomness driving the dynamics of an
epidemic.
Due to the standardized form of the SDE (4.17), we can conveniently deduce
below several fundamental probabilistic properties of the dynamics of the pro-
portion of the infected population from well-studied properties of generalized
squared Bessel processes to be found e.g. in Revuz & Yor (1999) and Section 8.4
in Platen & Heath (2010):

Eradicating the Disease

When the dimension δt is less than two, then yt becomes absorbed at zero with
probability one at some random future time. This is an important feature be-
cause it tells us due to (4.15) that the ratio εt

Rt
has to be less than 1

2σ
to eradicate

infections. This quantifies the average number of new externally infected εt that
one can allow to emerge in the population and still eradicate infections at some
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future time. As mentioned earlier, a realistic choice is σ ≈ 4.5, which yields the
inequality εt < 0.11Rt. Without social distancing measures taken, that is with
Rt ≈ 2.25, this allows on average one externally infected person every four days.
Anything more would not keep the epidemic on a path where its infections be-
come eradicated if no new external infections occur.
Interestingly, the number of new externally infected allowed for eradicating infec-
tions becomes smaller when social distancing is in place. Say, for social distancing
equivalent to a reproduction number of Rt ≈ 0.5, one can only allow on average
one externally infected every nine days to achieve eradication of infections. Unfor-
tunately, these are extremely small numbers and they suggest to keep, in practice,
the number of externally infected as close as possible to zero, which makes y a
generalized squared Bessel process of dimension close to zero. If one does not
respect this fundamental property of an epidemic and allows too many new ex-
ternal infections to occur, then one faces under the model the grim reality that
the epidemic may randomly and forcefully break out again. Such outbreak is
not too difficult to bring under control when strict social distancing measures
are in place. However, when these are too early relaxed or not effective enough
implemented, then one has a growing epidemic.

When the dimension δt is greater than two, then the transmission will never be
eradicated because yt will never reach zero with probability one. The disease will
continue to circulate in the population, supported from time to time by new exter-
nal infections until there are no susceptibles in the population anymore. This also
means that, finally, almost the entire population has the disease when assuming
that no vaccine arrives. According to the mortality rate, a respective proportion
of the population will in this scenario pass away as a result of the epidemic, which
is, unfortunately, a rather large proportion in the case of COVID-19 and should
be avoided if possible.

In summary, a real possibility to manage an epidemic successfully is to keep the
dimension of the above generalized squared Bessel process extremely close to zero
through strong travel restrictions. If one imposes additionally strong social dis-
tancing, this makes the growth rate of the newly infected negative, as we will see
in the next subsection, and reduces dramatically the average time until eradica-
tion. When the eradication is achieved, one can even relax social distancing but
has to continue to keep the number of new external infections at zero. Other-
wise, a new outbreak emerges almost certainly from new externally infected. It
needs to be emphasized that those populations that eradicate the disease have to
remain isolated until a vaccine arrives or until all other populations they connect
with have also eradicated the disease.

11



Flattening the Curve

When the intrinsic growth rate ηt in (4.16) is positive and the impact of externally
infected can be neglected, then the number of infected rises due to (4.16) and
(4.14) on average exponentially with the growth rate gt (with respect to t-time)
according to the formula

gt =
1

σ
(Rt(1− zt)− 1). (4.18)

This growth rate is typically used to estimate the reproductive number from the
smoothed version of a visibly exponentially growing trajectory of the number of
newly infected. Of strategic importance in managing an epidemic at any of its
stages is the ‘flattening of the curve’ of newly infected, which is typically achieved
by two measures: First, by imposing strong travel restrictions so that these re-
duce εt to such a low level that the term εt

nt
(1− zt) in the drift of the SDE (3.9)

can be neglected. Second, by social distancing that reduces the product of the
reproductive number Rt and the proportion of the susceptibles 1 − zt to a level
clearly below 1.0 so that the growth rate (4.18) becomes clearly negative.

Note that after a first outbreak of an epidemic the proportion of non-susceptibles,
zt, can be approximately set to zero. When the epidemic is managed reasonably
well, this proportion can be also later on neglected until a vaccine is used to
immunise the majority of the population. Thus, at the beginning of an epidemic,
with social distancing in place that achieves a reproduction number Rt of about
0.5, one has for σ = 4.5 a growth rate of about gt ≈ −0.11. With such a strategy
one can expect the curve of the average number of newly infected exponentially to
flatten according to this negative growth rate. The curve of newly infected will,
by its stochastic nature, fluctuate visibly when the number of newly infected is in
the typical range where epidemics are managed. On the other hand, when there
would be no social distancing, the growth rate would be about gt ≈ 0.28, which
yields the typically observed extremely fast exponential growth of a COVID-19
epidemic when not managed through social distancing.
To provide some information about the average number of newly infected, denote
by µt = E(Yt) the expectation of the number of newly infected. Note that yt fluc-
tuates and moves rather independently from the proportion of non-susceptibles
zt, which is not fluctuating and is growing extremely slowly and almost deter-
ministic. By (3.9) it follows approximately that

dµt ≈
(µt
σ

(Rt(1− E(zt))− 1) + εt(1− E(zt))
)
dt (4.19)

for t ≥ 0 with µ0 = Y0. Similarly, we can calculate by using the Ito formula
the variance of the number of newly infected, which satisfies approximately the
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formula

E((Yt−µt)2) ≈ Y0
4nt
ηt

(exp(2

∫ t

0

ηsdτs)−exp(

∫ t

0

ηsdτs))+
2δtn

2
t

η2t
(1−exp(

∫ t

0

ηsdτs))
2

(4.20)
for t ≥ 0. It turns out that both equations are very useful and provide valuable
predictions for the average value and variance of Yt, as can be confirmed via
scenario simulation.

Newly Infected in Local Equilibrium

When the growth rate in (4.18) becomes negative through social distancing
and/or increased proportion of non-susceptibles, that is Rt(1 − zt) < 1, then
a local (in time) equilibrium emerges for the number of infected Yt. As already
mentioned in (2.3), this number fluctuates around the reference level

Ȳt =
σεt(1− zt)

1−Rt(1− zt)
, (4.21)

which does not depend on nt. This reference level is lower when εt is lower
through stronger travel restrictions or when the reproduction number Rt is re-
duced through further social distancing. It is also lower when the proportion of
non-susceptibles is higher. Note that when Rt(1− zt) approaches 1.0 from below,
then the reference level of the local equilibrium goes to infinity.
The fluctuations around the above reference level occur by (4.20) with the vari-
ance

E((Yt − µt)2) ≈
σεtν

2Rt

(
Rt(1− zt)

1−Rt(1− zt)

)2

, (4.22)

which is not depending on nt. This variance increases proportionally to εt, σ, ν
and approximately proportionally to Rt and the proportion of susceptibles 1−zt.
When the proportion of non-susceptibles reaches 1.0, then there are no longer any
fluctuations. Note that when Rt(1 − zt) approaches 1.0 from below, then major
fluctuations of the number of newly infected are likely. This also means, that
when one relaxes social distancing and comes close to 1.0 with Rt(1 − zt), one
has a warning sign when relaxing social distancing measures: When the number
of newly infected fluctuates significantly, then one is most likely rather close to
‘reversing the flattening of the curve’ and should tighten social distancing mea-
sures again to go safely bak in a local equilibrium. In this way one can ride the
curve. These and other properties of the model dynamics, when properly taken
into account, can support the management of an epidemic.

In a local equilibrium the number of currently infected Yt can be kept with some
probability below a critial level Ct. This critical level may be chosen, for instance,
to be proportional to the number of newly infected with severe disease that the
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health system could just handle. To calculate the above mentioned probability,
one can exploit another fundamental probabilistic property of the model, which
is the shape of the stationary density for the number of newly infected. This
density is in the discussed local equilibrium a gamma density with its mean given
by (4.21) and its variance characterized by (4.22).

The respective gamma density is given by the formula

pt(Y ) =
Y α−1

βαΓ(α)
exp(−Y

β
), (4.23)

with α = δt
2

and

β = 0.5ν(
1

Rt(1− zt)
− 1)−1, (4.24)

where

Γ(α) =

∫ ∞
0

sα−1e−sds (4.25)

is the gamma function for α > 0. Thus in a local equilibrium, the probability
P (Yt < Ct) to keep at time t the number of infected people Yt below a critial level
Ct is about

P (Yt < Ct) ≈
∫ Ct

0

pt(Y )dY. (4.26)

The calculation of this probability can be very useful in assessing social distancing
measures for controlling the risk of overloading the health system through random
upward excursions of the number of newly infected. By relying on the above
gamma distribution it is straightforward to calulate for a targeted probability
P (Yt < Ct) the respective critical level Ct, and vice versa. For a given proportion
of non-susceptibles zt and a number of on average per day externally infected
εt, one can via the above relations also identify the level permissible for the
reproduction number Rt. This then translates into the required level of social
distancing that has to be imposed to keep the fluctuations below the critical
threshold Ct.

Achieving Herd Immunity

When managing the epidemic by keeping the number of infected in a local equi-
librium with a large probability P (Yt < Ct) that avoids overloading the health
system, it takes a long time to get the, so called, ‘herd immunity’ to a level that
allows removing social distancing and travel restrictions. This is the case when
the number of newly infected reaches a local equilibrium where Rt(1−zt) is clearly
less than 1.0. This means with Rt ≈ 2.25 for no social distancing, one needs a
proportion of about 60% of non-susceptibles to remove all social distancing mea-
sures and still have a local equilibrium. Note that this theoretical proportion
is a critical borderline and we will refer to it several times later on. Even if a
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population has such a high level of non-susceptibles reached, it has, according to
formula (4.21), to be very cautious about relaxing travel restrictions because these
increase εt. In particular, as pointed out, the average number of newly infected
is proportional to the number εt of per day new externally infected. Similarly, by
formula (4.22) also the variance of the number of infected is proportional to εt.
As described above, one can calculate the probability P (Yt < Ct) of staying with
Yt below a critical level Ct and enforce travel restrictions and social distancing
measures that keep this probability on a targeted level.
To reach the critical border line of 60% of non-susceptibles through immunization
by infection and recovery, one has to let a proportion of more than 60% of the
population to become infected. This means, for a population of about 25 Million
and a mortality rate of 1%, a toll of about 150,000 deaths would be the conse-
quence of that strategy, which would be tragic. Even if the health system could
handle about Ct = 100, 000 newly infected per day (a large number of infected
may show only mild symptoms but at the same time about 1000 infected would
pass away each day), then it would take about five months to reach the proportion
of non-susceptibles necessary to remove social distancing measures. This would
be a horror scenario for the population. Since social distancing would have to be
rather strict, parts of the economy would suffer dramatically and large parts of
the population would become unemployed. One can clearly see the risks for the
vulnerable, the economy and its financial market. The entire society, in the way
as it has evolved and as it has been functioning, is here at risk.
If one opens the economy too early, then there would be an explosion of new
cases and the epidemic would force its way through the entire population until
a high level of non-susceptibles is reached. After that the epidemic would slow
down, come into some local equilibrium again and would finally stop the spread
of newly infected because there would be finally almost no susceptibles anymore.
Many infected would in such scenario pass away without a chance for obtaining
reasonable medical care because the health system would not have enough capac-
ity. As a consequence, the mortality rate for infected would be much higher due
to the lack of medical care.

Delaying Flattening the Curve

As mentioned earlier, to get the economy going again without a vaccine and with
a low death toll, the leadership of a population has to act ‘hard and fast’ from
the very beginning of the epidemic by imposing as soon as possible strict travel
restrictions and social distancing measures, aiming at a low number of infections
and a fast eradication of the disease. This strategy is realistic and permits to
achieve over a rather short period of time the eradication of the disease within
an isolated population. However, it requires living conditions, leadership and
discipline of the population in implementing social distancing that keeps for a
sufficiently long time the reproduction number clearly below 1.0 and excludes
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new external infections. In case one cannot avoid a few new external infections,
the above strategy does not lead to eradication but keeps the number of newly
infected extremely low, which allows to isolate emerging clusters of new infections
to keep the overall reproduction number sufficiently low.
If a population does not act as ‘fast and hard’ as above indicated, then it allows
the number of newly infected exponentially to grow and many avoidable deaths.
Still, even when acting late, through the exponential decline of the number of
newly infected under strong social distancing the population can manage and
even eradicate the disease. Unfortunately, this takes longer and the total number
of deaths may be rather high due to the late response to the arrival of the epi-
demic. If after controlling the number of newly infected by ‘flattening the curve’
the social distancing measures would be relaxed too early, then another avoid-
able death toll would arise caused by the then exponentially growing number of
newly infected. One would have then to impose stronger social distancing again
to control the epidemic again or give this up and let the epidemic force its way
through the population, which would be catastrophic.
In a population, as the one of Australia when no new externally infected are
assumed, respective calculations indicate that eradication of the disease could be
achieved in about two to three weeks after the peak of new deaths with strict
social distancing measures in place, equivalent to about Rt ≈ 0.5, and about cur-
rently 7 new deaths per day. If one would have instead currently about 700 new
deaths, then it would take about two to three months to achieve the eradication
of the disease. Important is to note that the second scenario would cause more
than hundred times the number of deaths than the first scenario. It should be
emphasized that the social distancing could have been practically removed after
less than half the time, which would make the economic damage much lower. It
should be emphasized that this is not the end state of an epidemic. Even when
the disease seems to be eradicated in a population, the vulnerable should be very
cautious because the epidemic could still have been unobserved circulated and
unexpected new externally infected may appear. Wide, almost complete regular
testing and new case tracking would be essential to safeguard the vulnerable and
monitor the epidemic. From the above discussion one can clearly see how respon-
sible leadership based on a scientific, quantitatively supported understanding of
the epidemic can avoid large numbers of deaths and also signifiant economic dam-
age.

No Possibility for Sufficient Social Distancing

For populations that are living under conditions that do not allow social distanc-
ing at a level where the reproduction number is low enough for a sufficiently long
period of time, the arrival of an epidemic like COVID-19 can be catastrophic.
When the epidemic begins it may not look so serious because social distancing
and travel bans are often implemented, which reduces the growth rate of the num-
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ber of newly infected but may not sustainably ‘flatten the curve’. For instance,
in many countries a large part of the population needs to continue to work and
socialise when performing economic activities needed to survive. Additionally,
the individual living conditions for the just mentioned populations do even often
not allow sufficient social distancing. For such a population it is very difficult
to manage an epidemic successfully because it does not have the main weapon
to fight the epidemic, which is social distancing for bringing the reproduction
number sufficiently down. The insufficient level of social distancing, when imple-
mented, would only slow the epidemic down, which may give infected with severe
disease access to medical care that may reduce the mortality rate. Otherwise, it
lengthens the time that the epidemic is evolving.
One possibility for such a population may be to isolate almost totally the vulner-
able and let the epidemic take its course with some or without social distancing
by providing medical care as much as possible. There is then not much need
for travel restrictions from the perspective of this population. The number of
non-susceptibles will exponentially rise through the large number of infected and
then recovered. The dynamics continues until the proportion of non-susceptibles
is so high that there is only a small chance that vulnerable individuals would
become infected. This strategy, which may not even have to enforce any social
distancing or travel restrictions, could become very painful for the population
if the vulnerable would be not well enough protected so that a high death toll
would arise.

In the case of COVID-19 the mortality rate may be not so high for on average
young populations living in a clean environment. If a young population cannot
afford to implement sufficently long strong social distancing, it can still protect
well its vulnerable. This gives it a chance to get through the COVID-19 epidemic
fast via ‘herd immunization’ without too many deaths and without major eco-
nomic damage. Furthermore, no vaccine is needed for this scenario. In this case,
a long period of social distancing would most likely harm the economy and could
even create a famine or some social uprising.

It is extremely unfortunate that those populations that cannot implement social
distancing on a sufficient level and for a sufficiently long period of time, have not
many options in the absence of a vaccine.

Reopening with Vaccination

Let us finally discuss the possibility that a vaccine becomes available that provides
immunization towards infections. We denoted by ξt the number of vaccinations
per day at time t. Then the SDE (3.12) captures the evolution of the proportion
of non-susceptibles. At the beginning of the epidemic one has almost no non-
susceptibles. When managing the epidemic with a low number of new deaths,
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then there is for a long time only a rather small proportion of non-susceptibles
in the population and one can almost neglect this proportion at the time when a
vaccine becomes available. The number of vaccinations per day determines when
the critical borderline of about 60% of non-susceptibles will be reached, where
another major outbreak is unlikely because the number of newly infected evolves
in a local equilibrium even without social distancing. One could at this point
slowly start to remove some of the travel restrictions because one woud be in a
local equilibrium. However, new externally infected would increase the number
of newly infected and the number of new externally infected should remain rather
small compared to the per day vaccinated.

Assume for the moment again a population of 25 Million. To reach the critical
borderline of a level of non-susceptibles of 60% in about one month, one needs to
immunize approximately 500,000 susceptibles per day. As the proportion of no-
susceptibles increases during the vaccination campaign, the reproduction number
can be increased accordingly so that the number of newly infected remains still in
equilibrium on a low level. This means, during the vaccination campaign one can
step by step relax social distancing. When aiming during the vaccination cam-
paign for a product of reproduction number and proportion of non-susceptibles
close to Φ < 1.0, one can relax more and more the social distancing because of
the then possible higher reproduction number given by the formula

Rt =
Φ

1− zt
. (4.27)

In summary, the most likely mistakes that the leadership of a population could
make in managing an epidemic like COVID-19 are as follows:
(i) Not acting ‘hard and fast’ through delay in implementing social distancing
and delay in travel restrictions because one wants to keep the economy as long
as possible open.
(ii) Relaxing too early social distancing because one wants to reopen the economy
as soon as possible.
(iii) Underestimating the number of externally infected that may emerge in the
population because one needs external workers or has to let some travellers in.
(iv) Not protecting enough the vulnerables because it seems expensive or is con-
sidered to be too restrictive.

Aggregation of Epidemics in a Pandemic

After closing borders one observes in the COVID-19 pandemic epidemics evolving
independently with their own fluctuations in the number of newly infected in
different countries. One may ask the question: What is the nature of the dynamics
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for the entire pandemic? The somehow surprising and for our understanding
important result will be derived below that the stochastic dynamic of a pandemic
is of the same nature as each of its epidemics.
Let for the k-th population ykt denote the proportion of newly infected, zkt the
proportion of non-susceptibles, nkt its size, Rk

t its reproduction number and W k
t

its independent driving Brownian motion at time t ≥ 0, k = 1, 2, ..., d with d > 1.
For simplicity, assume that the proportion of new externally infected per day
in each population can be neglected because most travel between populations is
severely restricted in a pandemic. Then for the total number Ŷt of the at time
t ≥ 0 newly infected in the d independently evolving epidemics we obtain from
the SDE (3.9) the SDE

dŶt =
d∑

k=1

(
(
nkt y

k
t

σ
(Rk

t (1− zkt )− 1))dt+

√
nkt y

k
t

σ
Rk
t (1− zkt )dW k

t

)
, (4.28)

with

Ŷt =
d∑

k=1

nkt y
k
t . (4.29)

Thus, with average reproduction number

R̂t =
d∑

k=1

nkt y
k
t

Ŷt
Rk
t (4.30)

and average proportion of non-susceptibles

ẑt =
d∑

k=1

nkt y
k
tR

k
t

ŶtR̂t

zkt (4.31)

we obtain for the proportion of newly infected ŷt = Ŷt/n̂t the SDE

dŷt =
ŷt
σ

(R̂t(1− ẑt)− 1)dt+

√
νŷt
n̂tσ

R̂t(1− ẑt)dŴt, (4.32)

with total population size

n̂t =
d∑

k=1

nkt . (4.33)

Here Ŵ denotes a new standard Brownian motion with respect to t-time. One
notes that this type of dynamics is the same as that we had before obtained for
the epidemic in a single population. Thus, it turns out that one can aggregate
the numbers of infected of different populations and still remain in the same
stochastic continuous time model class. This is a remarkable fundamental fact
for the aggregation of epidemics. The dynamics of the newly infected of an entire
pandemic is, therefore, again that of a generalized, time transformed squared
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Bessel process. This squared Bessel process is of dimension zero if there are no
new externally infected. Thus, we can eradicate the pandemic, if we do not get
new externally infected through, e.g., transmission from animals.
Interestingly, it follows from (4.14) that the intrinsic time for the pandemic runs
slower than those of most of the epidemics that form part of it. In particular, its
derivative dτ̂t

dt
follows by (4.14) in the form

dτ̂t
dt

=
R̂t

4σn̂t
(1− ẑt). (4.34)

This means that the COVID-19 pandemic, as it forces its way through the world
population, evolves much slower than each epidemic in a country. When the
dimension δ̂t of the squared Bessel process ŷ is zero, the disease will be eradi-
cated with probability one in a finite random time. Unfortunately, this random
time period can be extremely long because the size of the world population is
extremely large and the respective time scale in which the pandemic evolves is
proportional to the inverse of this size. If hundred years ago a pandemic raged
in about two years through the world population and was not much managed,
then a similar pandemic would take today about eight years. Therefore, a better
strategy to manage the pandemic is to let each population eradicate its epidemic
before it opens itself up to other populations that have done the same. Smaller
self-sustained island populations have an advantage because they can better iso-
late themselves than populations that are close to neighbouring populations with
many natural ties. This predicts that small islands will be the first to eradicate
the epidemic. Large populations will take more time to eradicate the disease.
They may consider to subdivide their population into smaller parts that can be
isolated and eradicate in each part the disease first before opening these up. This
would make the process of eradication faster.

A possibility that we may have to face in future is that after a while the gained
immunity gets lost. One can easily capture this feature by an obvious extension
of the model, which leads to some SDE with an extra time delay.

5 A Case Study

It is critical to fit the proposed model to observed data. There exist various
sources capturing the evolution of the COVID-19 epidemic in different countries.
We rely on the web site of Roser & Ritchie (2020) for the employed Australian
data and check whether the evolution of the observed data makes sense under
the proposed model.
The reported number of newly infected at the beginning of an epidemic is rather

unreliable and underestimates often significantly the number of newly infected.
A more informative number is the number of new deaths, which also may not
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Figure 5.1: Number of new deaths in Australia (blue) and its expectation under
the model (red).

be perfectly accurate. Therefore, we display in Figure 5.1 (in blue) the number
of new deaths reported in Australia, where we set t0 to 0 at 25 January 2020,
the day when the first case of a COVID-19 infection was reported in Australia.
By using the equations (3.10) and (4.19) and the average time delay between
infection and death of ψ = 17 days, as well as, a mortality rate of λ = 0.01, we
calculate the expected number of deaths under the model, also shown in Figure
5.1 (in red), with the parameters chosen as explained below.
A key parameter is the average number εt of per day new externally infected.
Since Australia detected externally infected over several months and still after
the ‘curve became flattened’ around the beginning of April, we assume, for sim-
plicity, this parameter to be constant with one external infection every ten days.
This seems to be an extremely small number. However, it is sufficient to generate
the number of infected observed in Australia. Moreover, the model shows that
any number much higher than εt = 0.1 seems not to allow fitting the observed
data well. This means, it was extremely important to close the borders of Aus-
tralia soon after the outbreak to avoid larger numbers of external new infections.

Australia has a population with a high proportion of elderly and a respective
high mortality rate. Therefore, it aimed at avoiding the high death toll of the
‘herd immunization’ strategy by managing the epidemic with a low number of
infections. Fortunately, Australia has a developed health system with significant
capacity, can afford to isolate the vulnerable and also an economy that can hope-
fully sustain a longer partial lockdown. Thus, when managing the epidemic under
these circumstances, it comes down to the timing of travel restrictions and social
distancing measures and their removal.
After controlling the new external infections through travel restrictions, Australia
needed to bring the exponential growth of newly infected rapidly under control.
The model clearly shows, to achieve this Australia had to reduce the reproduction
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number Rt below 1.0. Recall that reducing the reproduction number is the pri-
mary tool to manage successfuly an epidemic. It governs the exponential increase
or decrease of the number of newly infected Yt.
The latter is determining through the mortality rate λ the number of new deaths
Xt, which we exhibit in Figure 5.1. Under the model the expected number of new
deaths E(Xt) is by (3.10) proportional to the mortality rate λt = 0.01 and to
the by ψ delayed expected number of newly infected E(Yt−ψ). This allows us to
deduce from the expected number of new deaths the expected number of newly
infected

E(Yt) ≈ E(Xt+ψ)/λt. (5.1)

When using an average time span of σ = 4.5 days that an infected infects others,
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Figure 5.2: Reproduction number for Australia.

the data fitted to the number of observed daily new deaths suggest an approxi-
mate evolution of the reproduction number Rt as displayed in Figure 5.2 in the
first part until about t = 89. The reproduction number starts from a high level of
about 2.0, which is only slightly below the level of 2.25 where no social distancing
measures would be in place. At that end of January already some social distanc-
ing had been implemented in Australia. From that time onward, with every day,
social distancing became more and more implemented and practiced. The simpli-
fied, steady decrease in the reproduction number during the first period shown in
Figure 5.2 is most likely a reasonable reflection of the impact of social distancing
on the reproduction number in Australia for March and April in 2020, that is until
about t = 100. It is interesting to note that even a minor increase or decrease in
the general level of the fitted declining line in Figure 5.2 for the observed period
until about 21 April 2020, that is t = 89, would change substantially the expected
number of new deaths predicted under the model, which is also shown in Figure
5.1. It should be emphasized that in this case study the reported number of new
deaths has been used to fit the time dependent reproduction number in the first
part of Figure 5.2.
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The model allows us to calculate via the differential equation (4.19) the expected
number of newly infected µt. The trajectory of µt and the reported number of
newly infected in Australia are shown in Figure 5.3. One notes that the number
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Figure 5.3: Number of newly infected (blue) and its expectation (red).

of reported newly infected (in blue) and its theoretical expected number (in red)
evolve approximately similarly in shape what concerns the right hand part from
the peak. However, the reported number of newly infected evolves on a lower
level. Before its peak the reported number of newly infected appears to be even
signifcantly smaller than what the model would have expected. This is plausi-
ble because many newly infected have only mild or no symptoms and were not
reported. After some initial time around the time of the peak in Figure 5.3, the
public awareness towards COVID-19 became with every day stronger so that the
reporting became more accurate but may still not fully reflect the true number
of newly infected. Testing became also more widely used, which provided over
time a more and more accurate number of newly infected.

Let us now position ourselves at the end of the observed data set on 21 April
2020, that is t = 89. By using its properties, the model allows us to describe
probabilistically the future evolution of the epidemic under the model using an
assumed parameter set. Due to the small number of newly infected the numbers
of new deaths and newly infected fluctuate strongly. As we explained, this is a
property of the underlying stochastic dynamics and causes no problem because
we can use our theoretical understanding of the evolution of the epidemic to pre-
dict probabilistially its path under given assumptions.
As indicated in the previous section, a recommendable strategy would be to
leave the increased implementation of social distancing in place until, say, about
2 May 2020, that is t = 100, which is three weeks after the peak of the new
deaths has passed. An on average further decreasing but fluctuating number of
new deaths and daily new infections can be expected during the time interval
[89,100]. Around 3 May of 2020, that is t = 101, it should then be safe to move
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into the by the model predicted equilibrium regime.
It is clear from our discussions in the previous section, to secure the equilibrium
regime the product Rt(1 − zt) of the reproduction number and the proportion
of susceptibles has to remain clearly below 1.0. Therefore, it should be possible
around 3 May 2020 to ease the social distancing rules so that they still ensure
a reproduction number of, say, about Rt = 0.9 < 1.0. This number can be
confirmed as a suitable number through scenario simulation for the given set of
parameters, which includes the parameter ν = 6. We assume in Figure 5.2 that
a reproduction number of 0.9 has been achieved for the period from t = 101
until t = 365. The easing of social distancing after t = 101 should be slowly and
carefully excecuted to make sure that one does not reach a reproduction number
too close to 1.0 or even above. As we pointed out, a warning sign would be a
strongly fluctuating number of newly infected. This should raise an alarm and
tougher social distancing would have to be implemented again.
As discussed in the previous section, what would be a severe mistake is the eas-
ing of travel restrictions with countries that have still infections circulating. One
can see from equation (4.21), the average number of newly infected rises propor-
tionally to the average number of per day new externally infected. This means,
even when keeping social distancing on a level where one remains in a local equi-
librium, the number of newly infected can become rather large when removing
travel restrictions.
In a local equilibrium it is important to know accurately how large the number
of newly infected may become when it goes through an upward excursion. The
gamma distribution, as stationary distribution for the equilibrium dynamic, is
given in (4.26) and allows us to charaterize the probability for the number of
newly infected to be found below a given threshold Ct at a time t. For the pa-
rameters we assume for the equilibrium regime after t = 101 and until t = 365,
the respective gamma distribution is shown in Figure 5.4. We note that the prob-
ability to have at a day less than than 55 newly infected is above 0.99. Just as a
side note, the average number of daily new infected Yt is here by (4.21) around
Ȳt ≈ 4.5 and its deviation is by (4.22) about

√
(E((Yt − µt)2) ≈ 11. Recall that

Ȳt is the average that the number of newly infected approaches asymptotically,
when we still allow one new externally infected every ten days. In case we would
have no new externally infected, the number of newly infected would soon drop
to zero and the desease would be eradicated for the moment in Australia.

Some equilibrium regime, as the one described, is likely to become for several
months the new normal until a vaccine becomes available, unless the Australian
population succeeds through strong social distancing and isolation of new cases
to eradicate the disease. This scenario seems to be preferable but requires strong
social distancing and trackingand isolation of new cases. Once the desease would
be eradicated many social and economic activities could go back to ‘normal’. Still
it would be wise for the vulnerable to remain very cautious until a vaccine arrives
and they would become vaccinated.
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Figure 5.4: Stationary distribution of newly infected.

Assume that a vaccine could be rolled out to the population about one year after
the first infected was reported in Australia, which we set hypothetically for our
case study to be on 22 January 2021, that is t = 363. Then it depends on how
fast the immunization could be achieved. Until that date the proportion of non-
susceptibles would be still almost negligible.
As indicate in the previous section, when vaccinating fast one can take advan-
tage of the increasing proportion of non-susceptibles. When aiming during the
vaccination campaign for a product of reproduction number and proportion of
non-susceptibles close to 0.9, one can relax more and more social distancing equiv-
alent to a level of

Rt =
0.9

1− zt
(5.2)

for the reproduction number. For instance, when starting vaccinating on 24 Jan-
uary 2021 (t = 365) with a daily number of immunizations of about ξ = 100, 000,
Figure 5.2 shows the increase of the respective reproduction number after t = 365.
It takes then about 156 days until the level of 2.25 for the reproduction number
is reached. This means that no more social distancing is required after t = 521.
The vaccination campaign would take about 5 months, however, it could end
much earlier if the number of vaccinations per day would be much higher. Still,
only about 60% of the population would be non-susceptible at that time t = 521
and it would take several more months to vaccinate the entire population. If the
vulnerables would be vaccinated first, then one would have fewer potential deaths.

To round up the case study for the Australian COVID-19 epidemic, we use sce-
nario simulation to generate a path of an approximate solution of the SDE (3.9)
by using the algorithm described in equation (2.1) and related equations. Figure
5.5 shows a path of the simulated number of per day newly infected (in blue) and
its expectation (in red). We see the similarity between both paths and also some
upward excursions of the newly infected that randomly occur but do not lead
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far away from the expected number. The probability for the number of newly
infected to remain during the period from t = 101 until t = 365 below a cer-
tain level C is captured in Figure 5.4. An interesting feature shown by formula
(4.22) is that after t = 101 the variance of the number of newly infected decreases
more and more as the proportion of non-susceptibles comes closer to 1.0. The
scenario simulation confirms that at the time t = 628, when the proportion of
non-susceptibles reaches 1.0, the variance of newly infected declines to zero, as
predicted by formula (4.22).
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Figure 5.5: Simulated scenario of newly infected (blue) and its expectation (red).

Conclusions

The proposed model provides an accurate and efficient tool for managing, in a
quantitative manner, an epidemic but also related risks. The provided algorithm
for scenario simulation is widely applicable. Furthermore, the revealed fundamen-
tal probabilistic properties of the dynamics of the model give important insights
into the quantitative stochastic behaviour of an epidemic. In particular, they
allow the calculation of quantities that are critical for strategies that aim to man-
age an epidemic. The model covers realistically the dynamics of small numbers
of newly infected, which fluctuate in reality. It is the power of the exponen-
tial growth that makes the epidemic a deadly enemy. However, the exponential
growth is also the only strategic weapon that can be used, when there is no vac-
cine available. An epidemic can be brought under control by making the growth
rate negative through social distancing. It is shown that under severe travel re-
strictions and with strong social distancing one can bring the number of newly
infected to an extremely low level or even eradicate the disease in a relatively
short time. It is the responsibility of the leadership of a population to harness
this exponential power to beat an epidemic. The quantitative relationships that
this paper outlines generalize widely used results, known for popular SIR-type
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models, to a new level of reliability. They capture realistically, in a unified manner
the different possible regimes of the stochastic dynamics of an epidemic. The pro-
posed model reveals through its probabilistic properties a deeper understanding
of an epidemic. These properties can be accurately quantified and exploited to
support the managing of an epidemic or perform quantitative risk management in
health, finance, economics or insurance. Forthcoming studies of the COVID-19
epidemic for different populations will demonstrate that the model reflects ex-
tremely well reality and can provide crucial support for decision making to save
lifes and economic value.
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