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1 Introduction

The accurate modeling and theoretical understanding of the long-term dynamics
of a well-diversified equity index, e.g. the S&P500, have been challenging tasks.
No agreement has so far emerged in the literature what a reasonably accurate,
long-term index model should look like. The stock market index appears to evolve
in its own market time, as pointed out in Clark (1973): ‘On days when no new
information is available, trading is slow, and the price process evolves slowly. On
days when new information violates old expectations, trading is brisk, and the
price process evolves much faster’. New information is typically causing index
moves and the challenge is to capture the feedback to such moves in a parsimo-
nious model that explains the observed index dynamics and with it the model
volatility.

The traditional focus on modeling volatility as a separate stochastic process seems
to have hindered an early solution of this modeling challenge. It encounters the
difficulty that the model volatility is somehow hidden and only observed indirectly
through the estimated volatility. Moreover, when using estimated volatility for a
given observation frequency as input, it is extremely difficult to infer the depen-
dence between the hidden model volatility and the index. In Ait-Sahalia, Fan & Li
(2013) these modeling difficulties have been labeled as the leverage effect puzzle.
Moreover, volatility estimated from high-frequency data revealed that volatility
paths are rough with many spikes; see e.g. Bayer, Friz & Gatheral (2016) and
Gatheral, Thibault & Rosenbaum (2018). The estimated rough volatility requests
accurate parsimonious modeling based on a proper understanding of the index
dynamics.

‘Ad hoc’ models, typically chosen for tractability, dominate the literature. Adding
another ‘ad hoc’ model to reflect, for instance, the observed roughness of volatil-
ity would not provide much progress in the understanding of the dynamics of
well-diversified stock indexes. We aim to change this unsatisfactory situation by
deriving a new class of models based on three crucial properties that stock indexes
can be expected to have. These properties involve the notion of a growth optimal
portfolio (GP), which is the portfolio maximizing expected logarithmic utility;
see Kelly (1956) and Merton (1992). Furthermore, they exploit for the first time
in the literature some similarity between well-diversified wealth dynamics and
population size dynamics of birth-and-death-processes, also known as branching
processes; see Feller (1971). We list below the three properties which turn out to
hold the key to the understanding of well-diversified index dynamics:

• A well-diversified total return stock index is a proxy of the respective growth
optimal portfolio.

• In some market time the index evolves similarly to the continuous time limit
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of the population size of a birth-and-death process.

• The derivative of the market time is a function of the derivative of a moving
average of a proxy of the single driving Brownian motion.

The first two properties determine the ‘normal’ dynamics of the index, which
concerns its evolution in some market time. The third property characterizes the
market time, which accelerates the ‘normal’ index dynamics when the Brownian
motion, and thus the index, moves further away from its recent levels. The third
property leaves deliberately some freedom for the specification of the function
determining the derivative of market time, the market activity, which can be ex-
pected to vary slightly for different markets and over time.
From the above three properties we derive a new class of parsimonious models,
which is nested in continuous time finance, pioneered by Merton (1973). The
models of this class are highly tractable. Noteably, they lead beyond classical
finance assumptions and are, therefore, derived under the benchmark approach;
see Platen (2002) and Platen & Heath (2010).

To be directly applicable and comparable with other index models, the current
paper focuses on modeling the long-term dynamics of the real value, total return
S&P500. We use an in early years in Shiller (2015) constructed version of the
S&P500, which is arguably the best studied stock index and appears to have the
above mentioned three properties. The paper discovers the fact that the market
activity is for the S&P500 close to a linear function of the square of the derivative
of a moving average of a proxy of the driving Brownian motion. This crucial fact
allows us to fit well the derived model to monthly observed S&P500 data. It per-
mits also the extraction of the paths of hidden model components, in particular,
those of the market activity, the model volatility and the single driving Brownian
motion.
A challenge represents the control of the impact of numerical errors in the extrac-
tion of hidden model components when using monthly observed data. Employ-
ing higher-order, implicit Wagner-Platen expansions, see Chapter 4 in Platen &
Bruti-Liberati (2010) and Chapter 5 in Kloeden & Platen (1999), for approximat-
ing increments of components of the solution of the model’s stochastic differential
equation (SDE) is shown to numerically stabilize the extraction of hidden paths.

The proposed inference of the model parameters and extraction of the hidden
Brownian motion path ‘inverts’ the well-known scenario simulation for an SDE,
e.g. described in Chapter 12 in Kloeden & Platen (1999), where the Brownian
motion is the input. In the current paper the model postulates a potential Brow-
nian motion path, which becomes the output and is extracted using stochastic
expansions of increments of observed components. It is then a question whether
the extracted path cannot be rejected as that of a true Brownian motion.
The proposed new model class generates naturally the well-known leverage ef-
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fect; see e.g. Black (1976). It also predicts and explains the general roughness
of volatility, which so far has been observed for volatility paths estimated from
high-frequency data but becomes now also apparent for monthly data.

Additionally to the derivation of the proposed model class, the paper studies
the appropriateness of other popular volatility model classes for capturing the
long-term dynamics of a stock index when interpreted as GP. This leads to the
discovery of a novel volatility drift condition, which the considered volatilities
have to satisfy.

As shown in Platen & Rendek (2008), the log-return distribution of well-diversified
stock indexes is with high significance close to that of a Student-t distribution
with four degrees of freedom. Among the volatility model classes considered in
this paper only the derived model class matches this property together with other
empirical stylized properties of stock indexes.

The paper is organized as follows: Section 2 describes, illustrates and fits the
derived model to the S&P500. Section 3 briefly reviews the literature on volatility
and index modeling from the perspective of the proposed model. Section 4 derives
the proposed model by assuming the earlier mentioned three properties. Finally,
several popular volatility model classes applied to GP dynamics are discussed in
Section 5.

2 Long-Term Index Model

2.1 Model

In this section we present the proposed model, where we defer the discussion of
its links to the literature to Section 3 and its derivation to Section 4. The real
(in units of the consumer price index denominated) value Sτt at calendar time t
of a well-diversified total return (dividends reinvested) stock index is modeled by
the product

Sτt = AτtYτt , (2.1)

for t ≥ 0. The normalized index Yτt follows in some market time τ = {τt, t ≥ 0}
a square root process of dimension four, see Revuz & Yor (1999), with SDE

dYτt = (1− Yτt)dτt +
√
YτtdWτt , (2.2)

for t ≥ 0 with Y0 = S0

A0
> 0. Here W = {Wτ , τ ≥ 0} is the single driving Brownian

motion that models the uncertainty of the index dynamics in some market time
τ . The normalization Aτt is defined at time t as

Aτt = A exp(τt + lt), (2.3)
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where we call l the excess growth rate and A > 0 the normalization parameter.

The market time

τt =

∫ t

0

Msds (2.4)

at calendar time t ≥ 0 equals the integrated market activity. The market activity

Mt = ξ
(
U
′

t

)2

+ ε (2.5)

is modeled as a linear function of the square of the derivative

U
′

t =
dUt
dt

= λ(2Y 1/2
τt − Ut) (2.6)

with U0 = 2Y
1/2
τ0 of the (by (2.6) determined) moving average Ut of twice the

square root of the normalized index Yτt .

The three state variables of the above proposed model are the normalized in-
dex Yτt , the normalization Aτt and the moving average Ut. The normalization
parameter A brings the normalized index dynamics to its standard level, as we
will see later on. The moving average Ut can be interpreted by (2.6) and later
on by (2.24) locally as a smoothed proxy for the single driving Brownian motion
W . The three parameters characterizing the market activity, consist of the base
activity ε > 0, the activity scale ξ > 0 and the speed of adjustment λ ≥ 0. These
parameters are all economically meaningful, as becomes clear when deriving the
model in Section 4.

Setting the market activity Mt = m > 0 constant, yields an in calendar time
linear market time τt = mt for a stylized version of the proposed model. By
modifying the function (2.5) to model varying properties of market activity one
obtains other models, which we interpret as models from the new in the current
paper proposed model class.

2.2 Fitting the Model in Market Time

By employing monthly observed real value S&P500 total return index data, we
illustrate in the following key features of the above proposed model. The monthly
data from January 1871 until February 2020 we use is for the early years con-
structed analogously to the S&P500 and taken from Shiller’s web site; see Shiller
(2015). To fix the in units of the consumer price index denominated S&P500
total return price index Sτt , t ≥ 0, we scale the index such that it starts at the
beginning of January 1871 with the value Sτ0 = 1.0. This scaling does not create
any loss of generality because starting with another initial value would simply
change the normalization parameter A accordingly.
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We fit in this subsection the model in market time by estimating the excess growth
rate l and the normalization parameter A. Both have to be interpreted as drift
parameters, which are notoriously difficult to estimate. The available observa-
tion windows for estimating parameters in drift coefficients of SDEs for financial
securities are often too short to provide useful estimates; see e.g. DeMiguel, Gar-
lappi & Uppal (2009). However we will see, the above long-term model can be
meaningfully fitted to the S&P500 by using an observation window of at least 70
years, which is rather long but not as long as what Black-Scholes type models
would require. This practically important property emerges because the normal-
ized index appears to be realistically modeled by an ergodic process, which makes
the estimation of the excess growth rate possible.
One may ask, why do we model the dynamics of the real value of the total return
index? The reason is that real prices can be expected to revert in the long-term
to respective hidden underlying fundamental values, which can be assumed to be
reasonably stable. Interest rates, inflation rates and currencies can be influenced
by the Souvereign to control the respective economy. Studying price evolutions
in currency or savings account denomination can significantly distort over long
periods of time the natural reversion of a price process to its underlying hidden
fundamental value. In some sense, the normalization Aτt can be interpreted as
a proxy for the fundamental value of the index. In the absence of information
beyond the one provided by the real total return index price, where its logarithm
appears to mean-revert around a straight line (see Figure 2.2), setting the hidden
excess growth rate to a constant appears to be a reasonable approximation.

2.2.1 Estimating the Excess Growth Rate

For convenience, we introduce the standardized index value

S̃τt =
Sτt

A exp(lt)
= Yτt exp(τt). (2.7)

Its logarithm satisfies by (2.2) and the Itô formula the SDE

d ln(S̃τt) =
1

2

exp(τt)

S̃τt
dτt +

√
exp(τt)

S̃τt
dWτt . (2.8)

We notice that the integrated expected growth rate of the logarithm of the stan-
dardized index equals half its quadratic variation. Furthermore, this quadratic
variation equals that of the logarithm of the index. This means, the average drift
m̄(t) of the logarithm of the standardized index can be estimated via the formula

m̄(t) =
0.5

t
[ln(Sτ.)]t (2.9)

for t > 0. Here [X·]t denotes the quadratic variation of a process X = {Xt, t ≥ 0},
which is approximated by the sum of the squares of the increments of X when
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the time step size converges to zero.
As indicated above, the logarithm of the standardized index ln(S̃τt) and half the
quadratic variation of the logarithm of the index evolve similarly in the long-
term. Hence, the excess growth rate l can be estimated as the extra average
growth rate that the index achieves beyond that of its standardized dynamics.
Therefore, over a sufficiently long observation window the excess growth rate l is
approximated by the time average of the growth rate of the index minus the time
average of the growth rate of the standardized index m̄(t). Thus, for a sufficiently
long observation window [0, t] the excess growth rate of the index can be captured
approximately via the formula

l̂(t) =
1

t
ln(St/S0)− m̄(t). (2.10)

Note that this estimate does only require the observation of the logarithm of
the index and its quadratic variation. We emphasize that a particular volatility
dynamic is here not exploited or assumed. Thus, for all volatility model classes
we consider later on in Section 5, the above estimator for the excess growth rate
can be applied. We show in Figure 2.1 the estimate l̂(t) in dependence on t
and notice that it stabilizes after 70 years of observation. By using the entire
available observation window we obtain for the assumed constant l the estimate
l̂(149) ≈ 0.057.

Figure 2.1: Excess growth rate estimate l̂(t) in dependence on time t.

2.2.2 Estimating the Normalization Parameter

By application of the Itô formula to (2.8) we obtain for
√
S̃τt the SDE

d

√
S̃τt =

3

8

exp(τt)√
S̃τt

dτt +
1

2

√
exp(τt)dWτt . (2.11)
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The market time τt satisfies for t > 0 the formula

τt = ln

(
4[

√
S̃·]τt + 1

)
. (2.12)

Figure 2.2: Logarithm ln(S̃τt) of the standardized index and estimated market
time τ̂t.

We can approximate the quadratic variation on the right hand side of (2.12) by
the sum

[

√
S̃·]τti ≈

i∑
k=1

(√
S̃τtk −

√
S̃τtk−1

)2

(2.13)

for i = 1, 2, . . . , N . N is here the number of observations and 0 = t0 < t1 <
· · · < ti < · · · < tN are the observation times. For the monthly observations of
the S&P500 we set ti = ti−1 + 1

12
. The estimated market time τ̂ti at the calendar

time ti is then by (2.12) and (2.13) obtained via the formula

τ̂ti = ln

(
4

i∑
k=1

(√
S̃τtk −

√
S̃τtk−1

)2

+ 1

)
. (2.14)

We display in Figure 2.2 the logarithm ln(S̃τt) of the standardized index together
with the estimated market time τ̂t. We emphasize that Figure 2.2 confirms visu-
ally the remarkable theoretical fact that due to (2.7) we have ln(S̃τt) = ln(Yτt)+τt,
which means that the logarithm of the standardized index increases under the
derived model in the long-term, on average, analogous to the market time.

The average slope

m̂(t) =
1

t
τ̂t (2.15)
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of the market time can, thus, be interpreted for large enough t as an estimate
for the average market activity. By equating m̂(t) and m̄(t) using the estimators
(2.15) and (2.9), respectively, one can solve for a given observation window [0, t]
the resulting equation to obtain for the normalization parameter A the estimator

Â(t) =
4
[√

Sτ.
exp(l.)

]
t

exp(0.5[ln(Sτ.)]t)− 1
, (2.16)

where its value is shown in Figure 2.3 as it evolves over time. Also here we see
that the estimate stabilizes after about 70 years. By using the entire available

Figure 2.3: Normalization parameter estimate Â(t) in dependence on time t.

observation window we obtain the estimate Â(149) ≈ 1.8.

With these estimated parameters we extract according to (2.14) the estimated
market time τ̂t, which we display in Figure 2.2. Finally, we calculate the average
market activity m̂(149) ≈ 0.01 using (2.15) for the entire available observation
window. This estimate together with l̂(149) and Â(149) provides a fit for the
stylized version of the model.

2.3 ‘Normal’ Volatility

We have fitted the excess growth rate l and the normalization parameter A and
estimated the market time shown in Figure 2.2. This allows us to observe the
‘normal’ volatility θτt as the volatility with respect to market time, given by (2.8)
and (2.7) as

θτt =

(
A exp(lt+ τt)

Sτt

) 1
2

=
1√
Yτt

. (2.17)

This is the ‘normal’ volatility of the normalized index but also the ‘normal’ volatil-
ity of the standardized index and the index itself.
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Figure 2.4: ‘Normal’ volatility θτt (black) and logarithm of standardized index
ln(S̃τt) (red) .

We include in Figure 2.4 not only the ‘normal’ volatility θτt (in black on top) but
also the logarithm of the standardized index ln(S̃τt) (in red). One observes that
the ‘normal’ volatility increases when the index decreases and vice versa, which
models naturally the well-known leverage effect, an extremely important stylized
empirical fact; see Black (1976). More precisely, the squared ‘normal’ volatility
(θτt)

2 equals by (2.17) the inverse of the normalized index, which satisfies by (2.2)
and application of the Itô formula the SDE

d (θτt)
2 = (θτt)

2 dτt − ((θτt)
2)

3
2dWτt . (2.18)

One notes in the diffusion coefficient of this SDE the power 3/2, which iden-
tifies the ‘normal’ volatility dynamics as those of a 3/2-volatility model. The
3/2-volatility model was originally proposed in Platen (1997) as an early step
in the development of the benchmark approach. It was independently suggested
in Heston (1997) because of its tractability as inverse of a square root process.
Key features of a 3/2-volatility model are the rather high power of 3/2 in the
diffusion coefficient of the SDE (2.18), which can reduce or increase rapidly the
heteroscedasticity of volatility. Note that the above 3/2-volatility model is the
volatility dynamics of the stylized version of the proposed model with constant
market activity Mt = m.

The SDE (2.2) for the normalized index Yτt is that of a square root process (CIR
process) of dimension four in τ -time with reference level 1.0; see Revuz & Yor
(1999). The mean-reversion rate or speed of adjustment parameter of the nor-
malized index with respect to market time has in the SDE (2.2) the value 1.0,
which indicates in market time a half-life time of ln(2) ≈ 0.693 for shocks to the
normalized index. When taking into account the average market activity of about
m̂(149) ≈ 0.01, this translates into a half-life time of about ln(2)/m̂(149) ≈ 70
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calendar years. This means that the normalized index evolves very slowly with a
half-life time of shocks of more than the length of a working life. This hints at the
fact that it may be unreasonable to expect meaningful estimates for the excess
growth rate and the normalization parameter from data covering an observation
window of less than 70 years.
Furthermore, the stationary density of the normalized index is that of a gamma
density with four degrees of freedom; see Revuz & Yor (1999). Thus, when esti-
mating the density of log-returns of the index, these log-returns would appear to
generate a normal mixture density where the mixing random variance is that of
the inverse of a gamma distributed random variable. This is yielding a Student-t
density of four degrees of freedom as normal-mixture density for estimated log-
returns; see e.g. Platen & Rendek (2008). Empirical evidence, e.g. in Markowitz
& Usmen (1996a), Markowitz & Usmen (1996b), Hurst & Platen (1997), Fer-
gusson & Platen (2006) and Platen & Rendek (2008), shows that well-diversified
stock indexes have log-returns that with high significance cannot be rejected as
being Student-t distributed with about four degrees of freedom. Thus, the pro-
posed model generates the leptokurtic log-return distribution that is observed in
reality.

2.4 Model Market Activity

To complete the model fit we need to model the dynamics of the market time
τt, see (2.4), which requires estimating the speed of adjustment λ, the activity
scale ξ and the base activity ε. The formula (2.5) for the market activity em-
ploys the moving average Ut, determined by the differential equation (2.6). For
extracting the model market activity the increments of the solution of this differ-
ential equation can be approximated via Wagner-Platen expansions; see Platen
& Bruti-Liberati (2010).
As pointed out in Chapter 12 of Kloeden & Platen (1999) and Chapter 14 of
Platen & Bruti-Liberati (2010), substantial numerical errors may arise when em-
ploying for large time step sizes explicit Wagner-Platen expansions. For the
rather large time step size of monthly observed S&P500 data this appears to be
the case. To control these numerical errors, the semi-drift-implicit Wagner-Platen
expansion

Uti ≈
(
Uti−1

(
1− λ

2
∆

)
+ λ∆

(
Y

1
2
τti + Y

1
2
τti−1

))(
1 +

λ

2
∆

)−1

(2.19)

for ∆ = ti − ti−1, i ∈ {1, 2, . . . , N}, with Ut0 = 2Y
1
2
τt0 is employed, suggested for

scenario simulation in Section 12.2 of Kloeden & Platen (1999). Since the market
activity can move extremely fast, such an implicit stochastic expansion was found
to be necessary when using monthly observed S&P500 data.

In Figure 2.5 we display the trajectory of the quantity 2Y
1
2
τt (black) together with
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its moving average Ut (red). We notice visually almost no difference between
both trajectories. Only when extreme index moves arise, the moving average lags
slightly behind and does not reach the extreme values.

Figure 2.5: 2Y
1
2
τt (black) and its moving average Ut (red).

Now, we can calculate according to (2.5) and (2.6) the model market activity

Mti = ξλ2(2Y 1/2
τti
− Uti)2 + ε (2.20)

to form the approximate integrated model market activity

τ̃ti ≈
i∑

k=1

Mtk∆, (2.21)

which we call model market time, where ∆ = tk − tk−1 for k = 1, . . . , N , with N
denoting the number of observations. We note from (2.20) that the market time
accelerates significantly when the index moves substantially.

For estimating the parameters for the speed of adjustment λ, the activity scale ξ
and the base activity ε, we form the least squares distance

min
λ,ξ,ε

1

N

N∑
i=1

(τ̃ti − τ̂ti)
2 (2.22)

between the above model market time τ̃ti and the previously extracted estimated
market time τ̂ti ; see (2.12). We obtain for monthly observed data the least squares

parameter estimates λ̂ = 8.1, ξ̂ = 0.14 and ε̂ = 0.0028, respectively.
The resulting model market activity Mt is exhibited in Figure 2.6. It can be seen
from formula (2.5) that it is the square of the derivative U ′t which causes the
clearly visible spikes in the market activity shown in Figure 2.6. These spikes
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Figure 2.6: Model market activity Mt.

and the obvious roughness of the market activity Mt are consequences of the fact
that U ′t is the derivative of Ut, which is smoothing the non-differentiable path of

2Y
1
2
τt . As we will see later on in (2.24), the fluctuations of this non-differentiable

path are those of the driving Brownian motion. Only the drift in the SDE for

2Y
1
2
τt deviates from zero and 2Y

1
2 is in τ -time an ergodic process, whereas W is

in τ -time a martingale. Note that over shorter time periods the paths of 2Y
1
2

and W look almost identical. However, over longer periods the mean-reversion
of 2Y

1
2 pulls this process back to a long-term average level. On the other hand,

the best forecast for future values of W is always its current value.

We note in Figure 2.6 that the market activity becomes sometimes rather high
when it spikes, e.g. at the dramatic drawdown during the Great Depression after
August 1929. Consequently, for the logarithm of the standardized index in Figure
2.2 this drawdown occurs extremely fast, a feature that is difficult to capture with
a scalar diffusion. Figure 2.7 shows the model market time τ̃t (black) together
with the estimated market time τ̂t (red). The estimated market time τ̂t uses
the observed approximate quadratic variation in (2.13), whereas τ̃t is calculated
according to the derived model equations. We note a good fit of both trajectories
over the entire 149 year period.
It is clear that the activity scale can be expected to change slightly over time
due to changes in general trading activity triggered, e.g., by extreme drawdowns.
Indeed, the slight differences between both trajectories in Figure 2.7 almost vanish
when allowing the activity scale to switch in September 1929 and in June 1942.
More precisely, the activity scale during the Great Depression seems to have
moved slightly up from about ξ̂ ≈ 0.14 to a level of about ξ̂ ≈ 0.16 and seems to
have fallen after June 1942 to a level of about ξ̂ ≈ 0.11. Thus, one can improve
models in the proposed model class by making the activity scale (and if necessary
other parameters) time dependent. This opens an interesting area of research for
modeling the dynamics of stock indexes, which is of particular importance for data
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observed with higher frequencies. Forthcoming work will study more frequently
observed stock index data, where it turns out that the above estimated parameters
provide already a good fit for daily observed S&P500 data, which then can be
improved by making the activity scale change after major extreme drawdowns.

Figure 2.7: Approximate integrated model market activity τ̃t (black) and esti-
mated market time τ̂t (red).

2.5 Model Volatility

According to (2.8) and (2.4) we calculate the model volatility via the formula

σt =
√
Mtθt (2.23)

and display σt for the S&P500 in Figure 2.8. The path of the usually hidden model
volatility has spikes. Its visible roughness is explained through the roughness of
the model market activity shown in Figure 2.6. Thus, the proposed model offers
a natural explanation for the in recent years intensily investigated phenomenon of
rough volatility, see e.g. Bayer, Friz & Gatheral (2016) and Gatheral, Thibault &
Rosenbaum (2018), which became visible when estimated volatility was obtained
from high-frequency data. We emphasize that the model volatility extracted from
monthly data exhibits already the typical roughness of volatility and one has not
to use high-frequency data to observe the roughness of volatility. Moreover, it
becomes clear that it is the roughness of the market activity, which is obviously
linked to that of trading activity, that causes the roughness of volatility.

In the earlier literature one focuses typically on modeling the estimated volatility
σ̂t, which we obtain in this paper by standard volatility estimation, that is, via
exponential smoothing of squared observed index log-returns, see e.g. RiskMet-
rics (1996), with decay parameter 0.94. When estimating σ̂t, the randomness of
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squared log-returns and the delay effect caused by exponential smoothing cre-
ate major differences between the estimated volatility σ̂t and the with the fitted
parameters calculated model volatility σt, which we both display in Figure 2.8.
Visually one notes that whenever the model volatility (shown in black) spikes,
the estimated volatility (shown in red) jumps up and declines slowly afterwards
until the next major spike occurs. In this sense the estimated volatility is similar
to some by a moving average smoothed model volatility, which is explained by
the way the estimated volatility is calculated.
The correlation between the estimated volatility and the normalized index is quite
different to the one between the ‘normal’ volatility and the normalized index. The
latter two processes are by (2.18) and (2.2) perfectly negatively correlated, which
models the leverage effect, whereas the other correlation is strongly influenced by
the exponential smoothing that generates the estimated volatility. Through the
proposed class of models the earlier mentioned leverage effect puzzle, pointed out
in Ait-Sahalia, Fan & Li (2013), becomes explained.
Instead of comparing the trajectories of estimated volatility and model volatility
it seems better to compare those of the integrated squared volatility, which equals
the quadratic variation of the logarithm of the index, and the integrated squared
model volatility. The respective trajectories turn out to be close to each other,
similar to those of the estimated market time τ̂t and the integrated model market
activity τ̃t, shown in Figure 2.7.

Figure 2.8: Model volatility σt (black) and estimated volatility σ̂t (red)

2.6 Extracting the Postulated Brownian Motion Path

The following explicit formula for the Brownian motion value

Wτt = 2
(
Y

1
2
τt − Y

1
2

0

)
−
∫ τt

0

(
3

4
Y
− 1

2
τ − Y

1
2
τ

)
dτ (2.24)
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follows from the SDE (2.2) via an application of the Itô formula. The equations
(2.24) and (2.4) allow us to extract the increments of the by the model postulated
Brownian motion W by approximating numerically the integral on the right-hand
side of (2.24) using a drift-implicit Wagner-Platen expansion yielding

Wτti
−Wτti−1

≈ 2
(
Y

1
2
τti − Y

1
2
τti−1

)
−
(

3

4
Y
− 1

2
τti − Y

1
2
τti

)
Mti(ti − ti−1). (2.25)

We show in Figure 2.9 the resulting estimated path of the postulated Brownian

Figure 2.9: Estimated postulated Brownian motion path W in model market time
τ̃ .

Figure 2.10: Quadratic variation [W.]τ̃ in model market time τ̃ .

motion Wτ in with fitted parameters calculated model market time τ̃ . Note that
there are periods in market time where we have only a few observations, e.g. near
τ̃ ≈ 0.6, because the market activity is extremely high at that time during the
Great Depression. To check whether the path in Figure 2.9 is possibly that of
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a Brownian motion with respect to τ̃ -time, we plot in Figure 2.10 its quadratic
variation [W·]τ̃ in τ̃ -time. It appears to be almost a straight line with average
slope of about 1.0. Only close to τ̃ ≈ 0.6 the graph curves up during the Great
Depression and is then followed by a period with slightly lower than theoretically
predicted slope until the end of the observation period. Most of these deviations
from a straight line with slope 1.0 are a consequence of the assumed constant
activity scale. When making the parameter ξ time dependent in the way as
indicated at the end of Subsection 2.4, then the quadratic variation [W·]τ̃ in τ̃ -
time becomes visually almost indistinguishable from a straight line with slope
1.0.

Given the increments of the postulated Brownian motion with respect to mar-
ket time, W , we can extract its standardized increments W̃ti − W̃ti−1

via the
approximate formula

W̃ti − W̃ti−1
≈ 0.5(

1√
Mti/12

+
1√

Mti−1
/12

)(Wτti
−Wτti−1

), (2.26)

which reduces the impact of numerical errors by standardizing with a symmetric
average for each observation interval. We display in Figure 2.11 the autocorrela-

Figure 2.11: Autocorrelation function for the standardized inrements of W .

tion function for up to 10 lags for the standardized increments of the postulated
Brownian motion W , where we note that these increments do not show major
correlations despite using for the given monthly data approximations which can
be expected to cause, due to their construction, some dependency between neigh-
boring increments. Forthcoming work will demonstrate by using daily data that
the respective autocorrelation function shows significantly smaller correlation be-
tween neighboring increments and practically no correlation between monthly
increments. Additionally, we calculated the kurtosis for the above standardized
increments and obtained the estimate 3.9, which is close to the kurtosis of stan-
dard Gaussian distributed random variables. Since a Brownian motion is defined
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as a process with independent Gaussian increments, it appears that the postulated
Brownian motion path is most likely difficult to reject as that of a true Brownian
motion. It is beyond the scope of this paper to perform rigorous statistical testing
in this respect. However, forthcoming work will use daily S&P500 data for show-
ing with high significance that with approximately the same parameters that we
estimated in the current paper from monthly data one cannot easily reject the
hypothesis that the extracted daily observed path of the postulated Brownian
motion is that of a true Brownian motion.

3 Links to the Literature

Historically, the standard continuous time market model for a stock index has
been the Black-Scholes model; see Black & Scholes (1973). Its popularity is
mostly due to its excellent tractability, however in reality, volatility is stochastic
and log-returns have leptokurtic distributions; see e.g. Ghysels, Harvey & Re-
nault (1996). As long-term index model the Black-Scholes model and many of its
generalizations are not well-suited because the variance of the logarithm of the
index grows linearly, whereas in reality, it appears to remain somehow bounded,
as visually indicated by Figure 2.2. Various models have been proposed for the
pricing and hedging of index derivatives with maturities of up to about three
years. In the following we refer to a few strands of this rich literature to point at
links to the proposed new model class.
Engle (1982) initiated extensive research on autoregressive conditional hetero-
scedastic time series models, with parameters typically depending on the given
observation frequency. Continuous time models, characterized by stochastic dif-
ferential equations (SDEs), avoid this dependency and remain meaningful under
different observation frequencies. They can be conveniently handled via the rules
of stochastic calculus. Some time series models have similarities with the pro-
posed model for market activity. In particular, squares of ‘innovations’ and their
moving average appear as elements in some time series volatility models.
Nelson (1990) shows that some continuous time limit of an ARCH model yields
a volatility process that is driven by a Brownian motion which turns out to be
independent of the one driving the index fluctuations. This independence is the
opposite to what the proposed model suggests, where only one single Brownian
motion is driving the index value and also its volatility. The above fitted proposed
model shows perfect negative correlation between the Brownian motions driving
the index and its volatility. Under the proposed model the index fluctuations act
as signals for the changes in market activity, which makes economic sense because
investors reallocate stock holdings according to their strategies when the index
changes its value. Furthermore, the well-known leverage effect of equity indexes,
see Black (1976), is in many papers artificially introduced and not endogenously
generated, whereas the ‘normal’ volatility emerges endogenously under the pro-
posed model and generates in a natural manner a leverage effect.
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The literature suggests a wide range of continuous time stochastic volatility mod-
els, where a systematic overview is given, e.g., in Cont (2010). The proposed
model can be interpreted as a stochastic volatility model. Its stylized version, the
3/2 model, emerges when the market activity is set to a constant. This is then
a local volatility function model because the volatility is here a function of in-
dex value and time. Local volatility function models played an important role in
the development of quantitative methods for derivatives; see e.g. Dupire (1993).
More precisely, the stylized version of the proposed model can be interpreted as
a constant elasticity of variance (CEV) model, which belongs to a class of models
that goes probably back to Cox (1975).

Due to its random market time, the proposed model is also related to the wide
class of subordinated models, which can be traced back to Bochner (1955) and
Clark (1973). Here the dynamics of the index evolve in some transformed time,
generalizing the Black & Scholes (1973) model.

The proposed model is different to most models that aim directly at modeling
stochastic volatility, e.g. the widely used Heston (1993) model. The Heston
model became popular due to its excellent tractability. However, over time seri-
ous shortcomings were observed, detailed e.g. in Cont (2010). As a consequence,
other models became popular among traders, in particular the SABR model; see
Hagan et al. (2002). This model evolved among practitioners who aimed for bet-
ter calibration to market observed derivative prices while maintaining reasonable
tractability.
The SABR model is deemed to reflect better volatility effects encapsulated in
observed index derivative prices than the Heston model does. Not by chance has
the popular SABR model similarities with the model proposed in the current pa-
per. Both models can be interpreted as CEV models that evolve in some random
time. Different to the proposed model, the ‘market activity’ of the SABR model
is a geometric Brownian motion. Consequently, the variance of this ‘market ac-
tivity’ and the resulting squared volatility grow approximately proportionally to
time, which is not what one observes when studying index data over long time
periods; see e.g. Figure 2.2. In reality, one observes some mean-reverting behav-
ior of squared volatility. The SABR model remains an ‘ad hoc’ model, designed
for pricing and hedging short-dated derivatives. It is not suitable for realistic
long-term modeling of stock indexes.
Most versions of the CEV model make the volatility a function of the underlying,
which is in the long-run not realistic because a stock index grows in the long-run
and with it under a typical CEV model also the squared volatility, which is not
observed in reality. The stylized version of the proposed model (subordinated by
deterministic market time with constant market activity) is equivalent to the 3/2
volatility model; see Platen (1997) and Heston (1997).
Many of the above mentioned stochastic volatility models, including the SABR
model, assume correlated Brownian motions driving the index and its volatil-
ity. As mentioned earlier, Ait-Sahalia, Fan & Li (2013) point at the difficulties
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in estimating the correlation between these two Brownian motions, which they
call the leverage effect puzzle. The reason is that, in reality, one usually does
not observe directly the volatility and only the estimated volatility. When the
hidden volatility value is linked to an observable quantity, like the normalized
index in the proposed model, there is a chance to extract the hidden volatility.
The proposed model resolves the leverage effect puzzle by making the usually
hidden volatility observable as a function of the normalized index and the mar-
ket activity. Moreover, it is demonstrating that only one Brownian motion is
needed to explain the paths of the index and its hidden volatility, which makes
the proposed model class parsimonious. To place index volatility modeling into a
more general context, broader than the one considered so far, Section 5 discusses
below various alternative volatility models where the usually hidden volatility is
made observable as a consequence of the model design similar to the one of the
proposed model.

In recent years variance swaps and derivatives on the volatility index (VIX) of
the S&P500 became heavily traded, which revealed shortcomings in popular in-
dex models; see e.g. Grünbichler & Longstaff (1996), Mencia & Sentana (2013)
and Detemple & Kitapbaev (2018). As a consequence, versions of the 3/2 volatil-
ity model became popular, which are close to the stylized version of the proposed
model; see e.g. Carr & Sun (2007). Moreover, Goard & Mazur (2013) show that a
3/2 volatility model provides a better fit to traded VIX and volatility derivatives
than most popular models. Furthermore, Mencia & Sentana (2013) point out that
a 3/2 volatility model reproduces naturally the observed positive skew of implied
volatilities of VIX options, which is considered to be the most relevant stylized
empirical feature of VIX derivatives that has been puzzling traders. Since the
proposed model is, in market time, a 3/2 volatility model, this important feature
is consistent with the proposed model.
In Baldeaux, Ignatieva & Platen (2014) a time dependent constant elasticity of
variance model has been proposed, which generalizes the 3/2 model. By com-
bining the 3/2 and the Heston model, Grasselli (2017) developed an even more
general model, the 4/2 volatility model, which has high tractability and fits well
derivative data; see Baldeaux, Grasselli & Platen (2014). Moreover, there has
been an increasing literature evolving on the theoretical understanding and quan-
titative methods for the 1/2 (see Heston (1993)), 3/2 and 4/2 models, where we
refer to Detemple & Kitapbaev (2018) for important results.
In recent years the availability of high-frequency data revealed that with high-
frequency estimated index volatility shows trajectories that appear to be much
rougher than typical diffusion models would be able to produce; see e.g. Bayer,
Friz & Gatheral (2016) and Gatheral, Thibault & Rosenbaum (2018). The pro-
posed model offers an answer to the question how the roughness of volatility
emerges. It suggests that rough volatility is a natural consequence of rough mar-
ket activity, which can be interpreted as a behavioral response in trading activity
to observed fluctuations of the index. More precisely, the proposed model sug-
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gests that the index dynamics evolves in market time as that of a diffusion, where
in periods of major index moves the market activity (and with it the volatility)
spikes when viewed in calendar time because the market time evolves during these
periods significantly faster.
Under the proposed model there is no need for introducing any long- or short-
range dependence using fractional Brownian motion, which would make the devel-
opment of practicable quantitative methods extremely challenging. Fortunately,
the proposed model is a one-factor, three-component diffusion model in some
market time. The market time is accelerated when the index moves. When
viewing the diffusion dynamics in calendar time this acceleration appears to cap-
ture realistically the roughness of volatility. When estimating the Hurst exponent
from rough volatility data for a potential Brownian motion that drives a volatility
model in calendar time, then an estimated value can be expected that is clearly
different to 0.5, the typical value for a Brownian motion. However, this does not
mean that one has to model volatility using some respective fractional Brownian
motion which would make respective quantitative methods rather challenging and
create potentially some theoretical form of arbitrage.

There exists extensive work on volatility models that involve fast and slow mov-
ing components; see Fouque, Papanicolau & Sircar (2000). The proposed model
generates fast and slow moving volatility components endogenously. The slow
moving component is the ‘normal’ volatility, which results from the movements
of the normalized index in market time. The fast moving component is the market
activity, which is a linear function of the square of the derivative of the moving
average of a proxy of the driving Brownian motion. Since the Brownian motion
path is not differentiable, the market activity can raise to extremely high values
at periods when the Brownian motion moves dramatically.
The literature provides a wide range of models that allow for jumps, including
exponential Lévy process models and jump diffusion models; see e.g. Barndorff-
Nielsen & Shephard (2001) and Bakshi, Cao & Chen (1997). We demonstrate
with the proposed model that many movements that one may believe to observe
as jumps in estimated volatilities can be explained as being endogenously gener-
ated through spikes of market activity. Such sudden spikes are naturally caused
by major moves of the driving Brownian motion and the resulting acceleration
of market time. Straightforward extensions of the proposed model can easily ac-
commodate jumps caused by particular events, e.g. similarly as in Bakshi, Cao
& Chen (1997). Non-decreasing Lévy processes can be incorporated as substitute
for the t-time in the proposed model class, making a time transformed driving
Brownian motion a Lévy process martingale similar as in Barndorff-Nielsen &
Shephard (2001).

Most models in the literature assume the existence of an equivalent risk-neutral
probability measure under classical no-arbitrage assumptions; see e.g. Ross (1976),
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Harrison & Kreps (1979) and Delbaen & Schachermayer (1994). These assump-
tions become too restrictive when modeling long-term stock index dynamics, as
argued in Platen (2002), Platen & Heath (2010) and Baldeaux, Ignatieva & Platen
(2018). The benchmark approach avoids these restrictive assumptions. It re-
quires instead only the existence of the growth optimal portfolio (GP), which is
the portfolio that maximizes expected logarithmic utility and goes back to Kelly
(1956). The benchmark approach uses the GP as benchmark and numeraire.
All benchmarked (in units of the GP denominated) nonnegative securities form
supermartingales under the real-world probability measure. Under the stylized
version of the proposed model the Radon-Nikodym derivative of the putative
risk-neutral measure (the benchmarked savings account) emerges as the inverse
of a time transformed squared Bessel process of dimension four, which is an ex-
ample for a non-negative local martingale that is not a true martingale and, thus,
a strict supermartingale; see Revuz & Yor (1999) and Baldeaux, Ignatieva &
Platen (2018). Therefore, it is not a true martingale, which the classical risk-
neutral assumptions would require. In the sense of Loewenstein & Willard (2000)
this causes a money market bubble, see Baldeaux, Ignatieva & Platen (2018),
which constitutes a weak form of classical arbitrage. Under the proposed model
there is no economically meaningful arbitrage in the pathwise sense that the in
the long-run best performing portfolio, the GP, has a finite value at any finite
time. Thus, no market participant can generate infinite wealth over any finite
time period from finite initial capital.

Under the benchmark approach, see Platen & Heath (2010), which generalizes
the classical no-arbitrage approach, one can perform consistently pricing, hedging,
portfolio optimization, expected utility maximization and other risk-management
tasks. Under the proposed model new effects appear in the financial market dy-
namics, which can be exploited and are not captured under classical risk-neutral
assumptions. In particular, payoffs for long-term pension and life-insurance con-
tracts can be less expensively produced than is possible under the classical no-
arbitrage approach using the stylized version of the proposed model; see Platen
& Heath (2010).

4 Derivation of the Proposed Model

Within this section we derive the proposed model based on three well-founded
assumptions. We emphasize that this model is not another ‘ad hoc’ model that
is chosen for tractability. Due to its derivation from ‘first principles’ it becomes
parsimonious and a rather accurate reflection of reality.
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4.1 Index as Growth Optimal Portfolio

We deliberately model the dynamics of a well-diversified stock index and not that
of a stock price or an exchange rate because such an exchange price depends on
two underlyings, reflecting both sides of the exchanged securities. The diversifica-
tion that is taking place when forming a well-diversified stock index removes the
specific or idiosyncratic uncertainties of stocks. For increasing number of stocks
it remains asymptotically the nondiversifiable uncertainty of the respective stock
market that drives the value of the stock index.

Diversification theorems have been established in Platen (2005), Platen & Heath
(2010) and Platen & Rendek (2012). These allow us to conclude under extremely
weak assumptions that a well-diversified stock index with a large number of
constituents approximates the GP. This model independent property of well-
diversified stock indexes can be interpreted as a consequence of the Law of Large
Numbers; see Platen & Rendek (2012). It provides the crucial link between risk
and reward, typical for the GP, for the index dynamics.
For a continuous stock market model, where we do not include the locally risk-free
asset in the investment universe, it follows by a combination of Theorem 5.1 and
Theorem 3.1 in Filipović & Platen (2009) that the value Sτt of the GP satisfies
an SDE of the form

dSτt
Sτt

= `tdt+ θτt(θτtdτt + dWτt) (4.1)

t ≥ 0, S0 > 0. Here W = {Wτ , τ ≥ 0} is a Brownian motion with respect
to some strictly increasing market time process τ = {τt, t ≥ 0} on a filtered
probability space (Ω,F ,F , P ). F = (Ft)t≥0 is a filtration, modeling the evolution
of information, satisfying the usual conditions; see Karatzas & Shreve (1998). P
denotes the real-world probability measure. The ‘normal’ volatility θt is the
volatility with respect to market time and forms an adapted process. The excess
growth rate `t forms another adapted process, representing a Lagrange multiplier
process.

Since real (inflation adjusted) values matter economically most in the long-term,
we consider the index value Sτt , which is the value at time t of the real-value total
return index where the consumer price index is used for denomination. When dis-
playing in Figure 2.2 the logarithm of the standardized real-value S&P500 total
return index one notes that it fluctuates around a seemingly straight line, which
supports assuming `t to be constant. This is important, since any drift parameter
in an SDE needs an extremely long observation window to become estimated rea-
sonably accurately. To have a realistic chance to estimate the long-term average
of the excess growth rate with some accuracy it is helpful to substitute in the
proposed model the excess growth rate `t by its time average denoted by `. This
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leads us to our first assumption:

Assumption 4.1 A well-diversified real-value index follows the dynamics of the
respective GP, satisfying the SDE (4.1), where we assume a constant excess
growth rate.

Note that the SDE (4.1) for the GP shows a crucial link between its drift and its
diffusion coefficient which relates risk and reward. This link guides us to form
the normalized index as

Yτt =
Sτt
Aτt

=
S̃τt
eτt
, (4.2)

where we use for normalization the exponential function

Aτt = A exp{τt + `t} (4.3)

for t ≥ 0, with A > 0, which gives equation (1.2) of the model. On the far right
of (4.2) appears the standardized index

S̃τt =
Sτt
A

exp{−`t}, (4.4)

satisfying by the Itô formula the SDE

dS̃τ

S̃τ
= θτ (θτdτ + dWτ ) (4.5)

for τ ≥ 0. We note that when θ is in τ -time a given process, then the normalized
index Yτ = S̃τe

−τ , see (4.2), emerges as a process in τ -time satisfying by the Itô
formula the SDE

dYτ = Yτ (θ
2
τ − 1)dτ + YτθτdWτ (4.6)

for τ ≥ 0. This provides us with a model structure where the index value is the
product of some process value Yτ and some exponential type function Aτ that
captures the average index growth when Y is ergodic. Note, by modeling θτ one
is not only modeling the volatility of Yτ with respect to the market time τ but
also those of the real-value index and the currency denominated index.
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4.2 Variance of Well-Diversified Wealth Increments

The challenge is now to understand the nature of the ‘normal’ volatility θτ in
(4.6), which is the volatility of a normalized, well-diversified index with respect
to market time. This leads us to the question: What is the natural evolution of
the variance of the increments of a normalized, well-diversified index? We make
the crucial observation that the value of a normalized, well-diversified portfolio
evolves similarly to the size of a normalized population where the individuals
give independently birth from time to time or die. This powerful interpretation
of diversified wealth evolution appears to be new and is for the first time exploited
in this paper.

Birth-and-death processes, also called branching processes, and their diffusion
limits are well studied in the literature; see e.g. Feller (1971). To illustrate
the similarity between the evolution of the population size of a birth-and-death
process and that of a well-diversified index, let us invest at the beginning of a
short investment period the index value (the population size) in wealth units of
standard size (the individuals). Each of these wealth units generates independent
wealth increments (births and deaths). Due to the independence of these wealth
increments the variance of the increment of the total wealth (the population size)
equals the sum of the variances of the individual wealth increments. Hence, the
variance of the increment of the total wealth turns out to be proportional to the
number of wealth units invested at the beginning of the short investment period.
This means, the variance of the index increments is proportional to the index
value itself. At the end of each short time period wealth becomes reallocated
such that the total wealth is portioned again into standard wealth units that
then evolve independently. This reallocation of wealth represents an activity
that one could call diversification. We will see that diversification is not only
crucial for the approximation of the GP, see Platen & Rendek (2012), but also
for the generation of the feedback effect in the variance of short-term increments
of well-diversified wealth. One can deduce the diffusion coefficient of the SDE
for the respective continuous time diffusion limit for the normalized index using,
e.g., Theorem 14.1.5 in Kloeden & Platen (1999). Since the variance of the index
increments is proportional to the index value, the diffusion coefficient of the SDE
for the index is proportional to the square root of the index value. This insight
leads us to the following assumption:

Assumption 4.2 The squared diffusion coefficient of a normalized, well-diversified
index evolves, in some market time, proportional to the normalized index value.

Since the market time has so far not been fixed, the diffusion coefficient in (4.6)
can be set, without loss of generality, to Yτθτ =

√
Yτ . Therefore, the ‘normal’

volatility θτ , which is the volatility with respect to the market time τ , emerges
as

θτ = Y
− 1

2
τ (4.7)
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for τ ≥ 0. By using (4.6) this derives the SDE (2.2) for the normalized index.

4.3 Feedback in Market Activity

The changes of the market time τt are captured by its derivative, the market
activity Mt = dτt

dt
; see equation (2.4). From (4.5) we obtain by application of

the Itô formula the market time τt for t ≥ 0 as given in (2.12). We show in
Figure 2.2 the estimated market time τ̂t and note that the market activity Mt

is fluctuating considerably in periods of major index moves, as those during the
Great Depression around 1929. More precisely, we observe that when Wτt deviates
markedly from its recent average level, the market activity increases. Intuitively,
this happens because the typical trading behavior of market participants is such
that they adjust their holdings according to their respective investment strategies
when the index moves, which is typically due to some incoming information.

According to (2.24), Wτt fluctuates like 2Y
1
2
τt and we can approximate the recent

average level of these fluctuations by the moving average Ut of 2Y
1
2
τt , where

U
′

t =
dUt
dt

= λ(2Y
1
2
τt − Ut) (4.8)

for t ≥ 0, with U0 = 2Y
1
2

0 , λ > 0. This provides equation (2.6) of the proposed
model.
The derivative U

′
t is an indicator for the magnitude of changes in W . The chal-

lenge is now to capture the typical feedback effect in market activity, preferably as
a function of the derivative U

′
t . Straightforward empirical studies, using polyno-

mials of U
′
t as functions for Mt, reveal that the market activity is approximately a

linear function of the square of the derivative U
′
t . The discovery of this remarkable

fact leads us to the following assumption:

Assumption 4.3 The market activity Mt is a linear function of the square (U
′
t )

2

of the derivative of the moving average of 2Y
1
2
τt .

Under Assumption 4.3 we obtain for the proposed model the market activity in
the form given in (2.5).
From a quantitative perspective one may ask for some intuitive explanation for
the surprisingly good fit between the integrated model market activity (the model
market time) and the estimated market time in Figure 2.7. Why are the move-
ments of the estimated market time almost all reflected by movements of the
model market time? Note that the estimated market time is close to the quadratic

variation of 2Y
1
2
τt . The latter is approximated by the sum over the squared differ-

ences (2Y
1
2
τti
− 2Y

1
2
τti−1

)2. This sum evolves similarly to the sum over the squared

differences (2Y
1
2
τti
−Uti)2, which yields approximately the integrated model market
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activity when neglecting the base activity. In some sense Uti plays here the role

that 2Y
1
2
τti−1

plays in the approximate quadratic variation.

One may ask whether there exist more accurate functional relationships for the
dependence of Mt on U

′
t? This can be indeed expected to be the case, as al-

ready indicated towards the end of Subsection 2.4 and will be demonstrated in
forthcoming work. We propose in the current paper a simple linear functional
relationship for the market activity on U

′
t as a starting point. It gives us a first

understanding of the origins of stochastic volatility and its roughness. This func-
tional relationship can be refined and modified for different indexes and time
periods depending on the average aggregate trading behavior of the respective
market participants as a response to index moves. The derived model class opens
a direction for interesting future research.

4.4 Existence and Uniqueness

Finally, we conclude the derivation of the model by ensuring the existence and
uniqueness of a strong solution of the system of SDEs characterizing the model:
The existence and uniqueness of a strong solution of the SDE (2.2) for the nor-
malized index in market time follows by using the well-known Yamada-condition;
see Ikeda & Watanabe (1989). The differential equation (2.6) for the moving av-
erage U can be shown to have in market time a continuous solution with bounded
derivative of its drift function. Thus, it satisfies a Lipschitz condition and has,
therefore, a unique, strong solution in τ -time; see Ikeda & Watanabe (1989). Con-
sequently, the system of model SDEs with respect to market time has a unique,
strong solution. Since the market activity in equation (2.5) is strictly positive
and by (2.6) a function of U , the calendar time t is uniquely determined in the
strong sense of Ikeda & Watanabe (1989). Thus, the proposed system of model
SDEs, when evolving in t-time, has a unique, strong solution because t-time and
τ -time are uniquely linked by the market activity; see (2.4).
The above discussion makes also clear that the evolution of the normalized index
in τ -time forms the core of the model dynamics. The market activity and with it
the t-time can be interpreted as a ‘consequence’ of this evolution. This may seem
a bit surprising. However, when recalling that a diversified wealth evolution has
deep similarities with that of a birth and death process, then it becomes clear
that in times when more births and deaths occur, which means in our setting
trading is more active, the dynamics run faster. The market participants speed
up or slow down market time through their response in trading activity to fluc-
tuations of the index. This response causes the observed spikes and roughness in
volatility, which are a result of the accelerated, much faster market evolution in
periods when new information arrives that moves the stock prices and, thus, the
driving Brownian motion away from its recent average level. Interesting is here
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that the average response in market activity to Brownian motion fluctuations
seems to be rather stable over long periods of time, which allows us to extract a
simple functional relationship for the market activity. Forthcoming research will
show that the time dependent modeling of intraday, seasonal and business cycle
driven changes of the activity scale improves the fit of the model market time
to the estimated market time. Such time dependence, when sensibly modeled,
does not jeopardize the existence and uniqueness of the model dynamics of the
proposed model class.

5 Various Volatility Models

Let us now consider a broader range of volatility models than the one derived
above. This section discusses modifications of various popular volatility models
for modeling in some market time the normalized index dynamics. We employ in
this section only one Brownian motion to keep the model classes we consider par-
simonious. We consider below models analogous to the derived model, where we
substitute the ‘normal’ volatility dynamics by those of popular volatility models.
We then check whether any of the alternative model classes could reflect realisti-
cally stylized empirical facts observed for stock indexes. We will see that in our
setting, where we model the dynamics of a GP driven by one Brownian motion,
the respective ‘normal’ volatility has to satisfy an important drift condition.

5.1 Drift Condition for ‘Normal’ Volatility

By keeping in the remainder of this section our Assumption 4.1 valid we obtain
for the following classes of alternative models the equations (4.2) to (4.6). In-
stead of imposing Assumption 4.2, let us specify more generally the dynamics of
the ‘normal’ volatility θτ in a way that accommodates various popular volatility
models. We assume for the ‘normal’ volatility θτ the SDE

dθτ = µ (θτ ) dτ + ψ (θτ ) dWτ , (5.9)

where Wτ denotes the value of the single driving Brownian motion in τ -time. Fur-
thermore, the drift coefficient function µ(.) and the diffusion coefficient function
ψ(.) in (5.9) are assumed to be suitable differentiable functions of the ‘normal’
volatility θτ so that a unique strong solution for the SDE (5.9) exists and the
manipulations we perform below are well-defined.
In the special case when we have ψ(.) = 0 the ‘normal’ volatility is a deterministic
function of τ -time and we end up with a Black & Scholes (1973) type dynamics
for the GP in τ -time. Note that other models with deterministic volatility in-
clude those employed in Föllmer & Schweizer (1993), Platen & Rebolledo (1996)
and Fleming & Sheu (1999). Since for nonvanishing θτ > ε̃ > 0 the variance of
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the logarithm of the GP increases with τ , which is not the case in reality and
can be seen in Figure 2.2, we can dismiss the above mentioned type of models
as suitable long-term models for the GP and assume for the remainder of this
section ψ(.) > 0.

As is the case for the derived model, we consider only models where the normal-
ized GP Yτ = Y (θτ ) is a function of the ‘normal’ volatility θτ and vice versa. The
following theorem reveals that this restricts the class of possible models consid-
erably:

Theorem 5.1 (Normalized GP Formula) For a differentiable diffusion coef-
ficient function ψ(θ) of the ‘normal’ volatility the corresponding normalized GP
value is given by the formula

Y (θ) = exp

{∫ θ

θ̄

uψ(u)−1du

}
(5.10)

for some θ̄ > 0 and every θ > 0, assuming θψ(θ)−1 to be integrable with respect
to θ, and Y (.) strictly positive and twice differentiable.

Proof: For a function a(.) let a′(.) and a′′(.) denote its derivative and second
derivative, respectively. It follows by the Itô formula for the normalized GP the
SDE

dYτ = Y ′(θτ )dθτ +
1

2
Y ′′(θτ )d[θ.]τ . (5.11)

By comparing the diffusion term in (5.11) with that in (4.6) we obtain the equa-
tion

Y ′(θ)ψ(θ) = Y (θ)θ (5.12)

for all θ > 0. Thus, we have
Y ′(θ)

Y (θ)
=

θ

ψ(θ)
, (5.13)

which proves formula (5.10). Note that the function θψ(θ)−1 is assumed to be
integrable with respect to θ. 2

The above result is a consequence of the fact that the diffusion coefficient of the
normalized GP in the SDE (4.6) is linked to its drift coefficient in a way that
only involves the ‘normal’ volatility.

Another consequence of the above revealed link is a surprising volatility drift
condition for the ‘normal’ volatility, which we provide in the following theorem:

Theorem 5.2 (Volatility Drift Condition) Under the assumptions of Theo-
rem 5.1 the drift coefficient function of the SDE (5.9) is fully determined and
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given by the formula

µ(θ) =
ψ(θ)

2θ
(θ2 − 2− ψ(θ) + θψ′(θ)) (5.14)

for θ > 0.

Proof: From (5.12) and (5.10) it follows the first derivative of Y (θ) in the form

Y ′(θ) = Y (θ)θψ(θ)−1 (5.15)

for θ > 0. Thus, the second derivative of Y (θ) equals

Y ′′(θ) = Y ′(θ)θψ(θ)−1 + Y (θ)ψ(θ)−1 − Y (θ)θψ(θ)−2ψ′(θ). (5.16)

For the SDE (5.11) we obtain with (5.12), (5.16) and (5.11) according to (4.6) its
drift function, satisfying the equality

Y (θ)(θ2 − 1) = Y (θ)θψ(θ)−1µ(θ) +
1

2
(Y (θ)θ2 + Y (θ)ψ(θ)− Y (θ)θψ′(θ)). (5.17)

Thus, the drift function for the SDE of the ‘normal’ volatility has the form

µ(θ) = ψ(θ)θ−1(θ2 − 1− 1

2
(θ2 + ψ(θ)− θψ′(θ))), (5.18)

which confirms formula (5.14). 2

The above drift condition is somehow surprising when recalling that most of
the literature does not impose restricions in the drifts of volatility dynamics.
Still, the above volatility drift condition seems to have some similarity with the
seminal Heath-Jarrow-Morton drift condition for forward rates. The latter was
derived under an assumed risk-neutral probability measure; see Heath, Jarrow
& Morton (1992). In Section 10.4 of Platen & Heath (2010) a similar condition
was derived for forward rates under the real-world probability measure. The
above volatility drift condition follows under the real-world probability measure.
It is a drift condition for the volatility of the index dynamics, more precisely,
the GP dynamics with respect to market time. By chosing a respective diffusion
coefficient function for the SDE of the ‘normal’ volatility, one can cover a wide
range of popular Markovian ‘normal’ volatility models.

5.2 p-Volatility Models

A large group of classes of volatility models proposed in the literature, which
we call here p-volatility models, can be classified by the exponent p of a power
function in the diffusion coefficient of the squared ‘normal’ volatility (θτ )

2. To
be precise, let us characterize the diffusion coefficient in the SDE (5.9) for the
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‘normal’ volatility by some finite exponent p and a scaling parameter γ 6= 0 in
the form

ψ(θ) = γθ2p−1. (5.19)

By application of the Itô formula we obtain from (5.9) with (5.19) and (5.14) for
the squared ‘normal’ volatility the SDE

d(θτ )
2 = γ((θτ )

2)p−
1
2

(
(θτ )

2 − 2 + γ(2p− 1)((θτ )
2)p−

1
2

)
dτ + 2γ

(
(θτ )

2
)p
dWτ

(5.20)
for τ ≥ 0 with (θ0)2 > 0.

1/2-Volatility Model

By setting p = 1/2 we obtain from (5.20) for the squared ‘normal’ volatility the
1/2-volatility model with SDE

d(θτ )
2 = γ

(
(θτ )

2 − 2
)
dτ + 2γ

(
(θτ )

2
) 1

2 dWτ . (5.21)

This model makes sense in the long-term when one sets γ < 0, which generates a
leverage effect as observed in reality. The drift is then also linear mean-reverting,
which is generating stable long-term dynamics. The model can be identified as
a Heston model, where (θτ )

2 follows a square root process of dimension −2/γ.
Since only models are suitable for long-term modeling when the squared ‘normal’
volatility remains strictly positive, the dimension of this square root process has
to be greater than 2 and, thus, γ needs to be between −1 and 0, which is an
important restriction.

By Theorem 5.1, for the 1/2-volatility model the normalized GP is a function of
the ‘normal’ volatility given by the formula

Y (θ) = exp

{
1

2γ
(θ2 − θ̄2)

}
(5.22)

for θ > 0. By inverting the above function Y (θ) we obtain from (4.6) for Yτ the
SDE

dYτ = Yτ (2γ ln(Yτ ) + θ̄2 − 1)dτ + Yτ (2γ ln(Yτ ) + θ̄2)
1
2dWτ . (5.23)

This SDE reveals that the model can be interpreted as a local volatility function
model with local volatility function

θ(Y ) = (2γ ln(Y ) + θ̄2)
1
2 (5.24)

for Y > 0. It would be not appropriate for a long-term model to make the local
volatility a function of the underlying index. Instead, we obtain it it here more
realistically as a function of the normalized GP Yτ . What makes the Heston
model tractable is the fact that the squared volatility of the GP forms a square
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root process and the normalized GP value is a function of this process; see (5.22).
The square root process θ2 for the squared ‘normal’ volatility has as stationary
density a gamma density with −2/γ degrees of freedom. When estimating the
distribution of short-term log-returns, then one can expect to observe under the
1/2-volatility model the effect of a normal mixture distribution, where the vari-
ance of the returns is gamma distributed with −2/γ degrees of freedom. Thus,
under the Heston model one would observe variance gamma distributed returns.
This is not what one observes in reality; see e.g. Platen & Rendek (2008). The
1/2-volatility or Heston model does not match this important stylized empirical
fact.

1.0-Volatility Model

For the exponent parameter p = 1 the squared volatility has a multiplicative
diffusion coefficient as it arises, e.g., for a geometric Brownian motion. This type
of diffusion coefficient for squared volatility is typical when modeling squared
volatility as exponential of an Ornstein-Uhlenbeck process; see e.g. Wiggins
(1987), Chesney & Scott (1989) and Melino & Turnbull (1990). Furthermore,
the continuous time limit of some ARCH models yield multiplicative diffusion
coefficients for the squared volatility; see e.g. Nelson (1990) and Frey (1997).
However, in Nelson (1990) the Brownian motion driving the volatility turns out
to be independent from the one driving the underlying index, whereas for the
derived model it is perfectly negatively correlated.

For the choice p = 1 we obtain from (5.20) for the squared ‘normal’ volatility the
SDE

d(θτ )
2 = γ((θτ )

2)
1
2

(
(θτ )

2 − 2 + γ((θτ )
2)

1
2

)
dτ + 2γ(θτ )

2dWτ . (5.25)

By formula (5.10) we can express the normalized index value as

Y (θ) = exp

{
1

γ
(θ − θ̄)

}
. (5.26)

Inverting the above function yields the local volatility function

θ(Y ) = (γ ln(Y ) + θ̄)
1
2 (5.27)

for Y > 0. Thus, from (4.6) we obtain for Yτ the non-linear SDE

dYτ = Yτ (γ ln(Yτ ) + θ̄ − 1)dτ + Yτ (γ ln(Yτ ) + θ̄)
1
2dWτ . (5.28)

One notes that the 1.0-volatility model has a stationary density for (θτ )
2 that is

clearly different to an inverse gamma density and, thus, generates returns that
in their tails cannot be expected to match well the tails of historical stock index
returns.
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3/2-Volatility Models

The derived model relates to the exponent p = 3/2. We obtain for this choice
from (5.20) for the squared ‘normal’ volatility the SDE

d(θτ )
2 = γ(θτ )

2
(
(2γ + 1)(θτ )

2 − 2
)
dτ + 2γ

(
(θτ )

2
) 3

2 dWτ . (5.29)

Since the scaling parameter γ is still a free parameter, we have here obtained
a family of 3/2-volatility models. Note that the inverse of the squared ‘normal’
volatility satisfies the SDE

d(θτ )
−2 =

(
γ(2γ − 1) + 2γ(θτ )

−2
)
dτ − 2γ

(
(θτ )

−2
) 1

2 dWτ , (5.30)

which is that of a square root process of dimension 2 − 1
γ
. To avoid volatility

explosion we have to keep the dimension of this square root process beyond 2
and, thus, γ < 0. This negative scaling parameter γ generates a leverage effect.
We obtain by (5.10) the value of the normalized index as a function of the ‘normal’
volatility in the form

Y (θ) =

(
θ

θ̄

) 1
γ

. (5.31)

The inverse function of (5.31) provides the respective local volatility function

θ(Y ) = θ̄Y γ. (5.32)

This yields for the class of 3/2-volatility models by (4.6) for the normalized index
the SDE

dYτ = (θ̄2Y 2γ+1
τ − Yτ )dτ + θ̄Y γ+1

τ dWτ . (5.33)

We can interpret this class as part of the constant elasticity of variance (CEV)
model class; see e.g. Cox (1975), Cox (1996), Schroder (1989), Heath & Platen
(2002) and Delbaen & Shirakawa (2002). The stationary density of the normal-
ized index is a gamma density with 2− 1

γ
degrees of freedom. Since the modeling

of rare, extreme returns is highly relevant for long-term risk management, the
appropriate choice for the parameter γ is paramount. To obtain a stationary
density of about four degrees of freedom, which would yield estimated returns as
observed in reality, one has to set γ ≈ −1

2
. However, this yields the above derived

model when starting the index with an initial value that yields θ̄ ≈ 1; see (2.17).

If one considers the popular SABR model in its time scale, see Hagan, Kumar,
Lesniewski & Woodward (2002), then it can be interpreted as a CEV-type model.
For short-term modeling such CEV-type model has similarities with the derived
model, as mentioned earlier. However, for long-term index modeling the SABR
model and most CEV-type models proposed in the literature are not well-suited
when specifying the local volatility function for the ‘normal’ volatility as a time
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homogenous function of the index value and not as a function of a normalized in-
dex value. The volatility needs to exhibit some stationary behavior as it appears
to be the case in reality.

2.0-Volatility Model

The choice p = 2 for the exponent yields the 2.0-volatility model. By (5.20) one
obtains for its squared ‘normal’ volatility the SDE

d(θτ )
2 = γ

(
((θτ )

2)
5
2 − 2((θτ )

2)
3
2 + 3γ((θτ )

2)3
)
dτ + 2γ

(
(θτ )

2
)2
dWτ . (5.34)

We obtain by (5.10) for the normalized index value the formula

Y (θ) = exp

{
1

γ
(θ̄−1 − θ−1)

}
. (5.35)

Inverting this function yields the respective local volatility function

θ(Y ) = (θ̄−1 − γ ln(Y ))−1 (5.36)

for Y > 0. Thus, by (4.6) the normalized index satisfies the SDE

dYτ = Yτ (θ̄
−1 − γ ln(Y ))−2dτ + Yτ (θ̄

−1 − γ ln(Y ))−1dWτ . (5.37)

Also here, the stationary density for (θτ )
2 is clearly different to that of the inverse

of a gamma distributed random variable. This means, the log-returns that the
model generates are different to Student-t distributed log-returns with about four
degrees of freedom and, thus, different to those observed in reality.

4/2-Volatility Model

By suggesting a mixture of 1/2- and 3/2-volatility models, Grasselli suggested
the highly tractable 4/2-volatility model; see e.g. Grasselli (2017) and Baldeaux,
Grasselli & Platen (2014). It is constructed using a scalar diffusion process V
satisfying an SDE of the form

dVτ = κ(Vτ )dτ + ρV
1
2
τ dWτ (5.38)

with constant ρ > 0, where κ(Vτ ) is in Grasselli (2017) assumed to be a linear
function of Vτ such that V becomes a square root process. The ‘normal’ volatility
is then set to

θτ = aV
1
2
τ + bV

− 1
2

τ , (5.39)

where for b = 0 one obtains a 1/2-volatility model and for a = 0 a 3/2-volatility
model. When assuming Yτ = Ỹ (Vτ ) to be a twice differentiable function of Vτ ,
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its derivative follows by application of the Itô formula and comparison of the
diffusion coefficient with the diffusion coefficient in the SDE (4.6) gives

Ỹ ′(V ) = Ỹ (V )(a+ bV −1)
1

ρ
. (5.40)

This yields the second derivative of the function Y (V ) in the form

Ỹ ′′(V ) = Ỹ (V )

(
(
a

ρ
+
b

ρ
V −1)2 − b

ρ
V −2

)
. (5.41)

By application of the Itô formula to Ỹ (Vτ ) and comparison of the drift coefficient
with the drift coefficient in the SDE (4.6) it follows that the drift coefficient
function in the SDE (5.38) for Vτ has to be of the form

κ(V ) =
ρ

2

(
aV + b+ (bρV −

1
2 − V

1
2 )(aV

1
2 + bV −

1
2 )−1

)
. (5.42)

Note that we have here again a drift condition in analogy to the volatility drift
condition we derived earlier. When modeling the normalized GP dynamics, only
in the already previously discussed cases a = 0 or b = 0, respectively, the function
κ(V ) turns out to be a linear function. In the other cases it becomes non-linear
and the in Grasselli (2017) presented 4/2-volatility model is, unfortunately, not
adding a new dynamics to the considered broader model class. For a = 0, b = 1
and κ(V ) = ρ2(1− V ) the derived model emerges.

Generalized 1/2- and 3/2-Volatility Models

Another interesting work on volatility modeling in Detemple & Kitapbaev (2018)
suggested and studied generalized model classes that include the highly tractable
1/2- and 3/2-volatility models. The construction of the models starts similarly
to the one in Grasselli (2017) by assuming a square root process V of dimension
δ > 2 as a factor process given by the SDE

dVτ = (
δ

4
ρ2 − ωVτ )dτ + ρV

1
2
τ dWτ (5.43)

for τ ≥ 0 with V0 > 0, ρ 6= 0 and ω > 0. The volatility θτ = θ(Vτ ) is then
assumed to be a function of the factor Vτ such that an inverse function g(.) of the
function θ(.) exists, where g(θ(V )) = V and all manipulations performed below
make sense.
When applied to our broader setting, by Theorem 5.1 the normalized GP becomes
a function of the volatility θτ and a function of the factor Vτ . Similarly as in the
proof of Theorem 5.1 the normalized index value satisfies then the formula

Yτ = Ȳ (Vτ ) = exp

{
1

ρ

∫ Vτ

V̄

θ(v)v−
1
2dv

}
(5.44)
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for some V̄ > 0. By steps analogous to those in the proof of Theorem 5.2, this
leads for the SDE (5.43) to the respective drift condition

δ

4
ρ2 − ωV =

ρ

θ
V

1
2

(
θ2

2
− 1− ρ

2
θ′V

1
2 +

ρ

4
V −

1
2 θ

)
, (5.45)

which is analogous to the previously derived volatility drift condition.
It is beyond the scope of this paper to search for functions θ(.) solving the above
differential equation. However, we already know that the class of 1/2-volatility

models provides such solutions: More precisiely, when setting θ(V ) = ξV
1
2 the

above drift condition requires for ρ < 0, 0 < ω < 1 and δ = 2
ω

to set ξ = −2ω
ρ

for

obtaining a 1/2-volatility model.
Another family of solutions for the differential equation (5.45) relates to the class
that contains the derived model, the class of 3/2-volatility models: When setting

θ(V ) = φV −
1
2 , the drift condition (5.45) requests for ρ > 0, ω > 0 and δ = 2( 1

ω
+1)

to set φ = ρ
ω

for obtaining a 3/2-volatility model. The choice ω = 1 yields the
derived model, which among the alternative volatility models considered in this
section matches best the empirical evidence provided in Platen & Rendek (2008)
on the tail behavior of log-returns.

Conclusion

Based on well-founded assumptions, the paper derives a new model class for the
long-term dynamics of well-diversified stock indexes. It proposes a model that
fits surprisingly well monthly observed real value S&P500 total return data. The
model is driven by only one single Brownian motion, which makes the model
parsimonious and captures the non-diversifiable uncertainty of the stock market.
The normalized index is modeled as a square root process that evolves in some
market time. When viewed in calendar time, the derivative of market time, the
market activity, is rough and shows spikes during periods of high market activity.
The index is the product of the normalized index and some exponential function
of time and market time. The derived model explains naturally rough volatility
as a consequence of rough market activity. Moreover, it generates the leverage
effect and Student-t distributed log-returns with about four degrees of freedom, as
observed in reality. Various alternative popular volatility models do not capture
jointly these stylized empirical index properties.
The proposed model class leads beyond the classical risk-neutral approach and
is derived under the benchmark approach. The proposed model volatility with
respect to market time has perfect negative correlation with the index. Through
the proposed model class the, so called, leverage effect puzzle has been resolved,
where the correlation between volatility and index seemed inaccessible. Higher-
order, implicit stochastic expansions for increments of observed and hidden model
components turn out to be necessary for fitting the model to monthly observed
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data, extracting the rough market activity and the path of the driving Brownian
motion.
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