Sequentially Adaptive Bayesian Leaning Algorithms
for Inference and Optimization®

Garland Durham and John Geweke!
October, 2015

Abstract

The sequentially adaptive Bayesian leaning algorithm is an extension and com-
bination of sequential particle filters for a static target and simulated annealing.
A key distinction between SABL and these approaches is that the introduction
of information in SABL is adaptive and controlled, with control guaranteeing that
the algorithm performs reliably and efficiently in a wide variety of settings without
any specific further attention. This avoids the need for tedious tuning, tinkering,
trial and error. The algorithm is pleasingly parallel and when executed using one
or more graphics processing units is much faster than competing algorithms, many
of which are not pleasingly parallel and unable to exploit the massively parallel
architecture of GPUs. This paper describes the algorithm, provides theoretical
foundations more self-contained than those in the existing literature, provides
applications to Bayesian inference and optimization problems illustrating many
advantages of the algorithm, and briefly describes the nonproprietary SABL soft-
ware.

*Incomplete version prepared for European Seminar on Bayesian Econometrics 2015 Conference,
October 29-30, Study Center Gerzensee. Please do not cite without permission.

"Durham, California Polytechnic Institute, gbdurham@calpoly.edu; Geweke, Univeristy of Technol-
ogy Sydney and Amazon, John.Geweke@uts.edu.au.The Australian Research Council provided finan-
cial support through grant DP130103356 and through the ARC Centre of Excellence for Mathematical
and Statistical Frontiers of Big Data, Big Models, New Insights, grant CD140100049. The Australian
Research Council provided financial support through grant DP130103356 and through the ARC Centre
of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights, grant
CD140100049. The team resonsible for the SABL software consists of John Geweke, Distinguished Pro-
fessor; Huaxin Xu, Senior Scientific Programmer; Bin Peng, Postdoctoral Research Fellow; and Simon
Yin, Scientific Programmer, all at the UTS School of Business. We acknowledge useful discussions with
William C. McCausland and Bart Frischkecht in the course of developing SABL.

Contents
1 Introduction

2 The SABL algorithm for Bayesian inference

2.1 Overview of the SABL algorithm and computing environment

2.2 The correction (C') phase
2.3 The selection (S) phase.
2.4 The mutation (M) phase

3 Foundations of the SABL algorithm
3.1 The two-pass algorithm

4 Bayesian inference with SABL

4.1 Example: The EGARCH model of asset returns
4.2 Secular and cyclical behavior of GDP in an AR(3) model

5 The SABL algorithm for optimization
5.1 The optimization problem
5.2 Convergence of SABL to the global mode . . .
5.3 Rates of convergence

6 Optimization with SABL: Examples

6.1 Test functions from the global optimization literature

6.2 Maximum likelihood in the AR(3) GDP model
7 SABL toolbox

8 Proofs of propositions

11
11

12
12
16

20
20
22
24

25
25
31

34

37

1 Introduction

Sequentially adaptive Bayesian learning is an algorithm that constructs a finite sequence
of distributions converging to a stated posterior distribution. At each step the approx-
imation is constructed based on what has already been learned in the previous step in
such a way that the next iteration will be able to do the same: thus the approximations
adapt to the specifics of what has already been learned. The procedure is Bayesian
because at each step in the sequence it conditions on what is known at the end of the
last one to assure that the current step will be effective. SABL addresses optimization
by recasting it as a sequence of Bayesian inference problems.

This global strategy has been used in some approaches to Bayesian inference and to
optimization over the past three decades. For Bayesian inference it has much in common
with sequential particle filters for a static target (e.g. Chopin 2002). For optimization
it has much in common with simulated annealing (Kirkpatrick et al., 1983; Goffe et
al., 1994). A key distinction between SABL and these approaches is that in SABL the
introduction of information is adaptive and controlled, guaranteeing that the algorithm
performs reliably and efficiently in a wide variety of settings without any specific further
attention. This avoids the need for tedious tuning, tinkering, trial and error familiar
to anyone who has tried to use sequential particle filters or simulated annealing in a
real application (as opposed to a textbook problem). SABL fully and automatically
addresses issues like the particle depletion problem in sequential particle filters and the
temperature reduction problem in simulated annealing. This paper states the procedures
involved, derives their properties, and demonstrates their effectiveness.

A further innovation in SABL is that it fully exploits the fact that most of the al-
gorithm is embarrassingly parallel. The observation that sequential particle filters have
this property is commonplace, but exploitation of the property is quite another mat-
ter, requiring that a host of important technical issues be addressed, and so far as we
are aware there is no other implementation of the sequential particle filter that does so
as effectively as SABL. Importance sampling is also embarrassingly parallel and this is
trivial to exploit, but there is no adaptation. Similarly some MCMC procedures, like
the Metropolis random walk, are embarrassingly parallel and this has been exploited in
some recent work but again there is no adaptation; other MCMC procedures, like Gibbs
sampling, are not parallel. Not coincidentally importance sampling and the Metropolis
random walk are the computationally intensive part of SABL and account for its em-
barrassingly parallel properties. The remaining portions account for a trivial proportion
of computing time.

The pleasingly parallel nature of the SABL algorithm means that it is well posi-
tioned for computing environments with multiple processors — especially the inexpensive
massively parallel platforms provided by GPU installations available through most uni-
versities and clouds like Amazon EC2. Since these environments have supplanted the
single processor as the venue for increasing computational efficiency and will continue
to do so for at least another decade, pleasingly parallel algorithms like SABL will be-
come increasingly important components of the technical infrastructure in statistics,

econometrics and economics. Scientific computing with GPUs became possible with the
CUDA and OpenCL extensions of C, but the learning curve for most economists and
statisticians is still very steep, witnessed in a number of published papers and failed at-
tempts in large institutions like central banks. All of the important technical difficulties
are solved in SABL!, with the consequence that experienced researchers and programmers
— for example, anyone who has contributed an R module — can overcome what barriers
remain in about a day. SABL also provides substantial leverage in CPU environments
with dozens of cores, which are becoming more commonplace in linux clusters as Moore’s
law has ceased to apply to single processors.

Section 2 provides an outline of the SABL algorithm sufficient for the rest of the pa-
per and refers to more complete and detailed discussions. It also develops the controlled
introduction of information that is unique to SABL and key to its robustness for a wide
variety of models and in many different applications Section 3 develops the foundations
of SABL in probability theory. Section 4 provides several examples that illustrate dif-
ferent aspects of Bayesian inference with SABL. Section 5 develops the features and
properties of SABL specific to optimization, providing solutions of impediments that
have long compromised the application of simulated annealing, a related approach, and
demonstrating an intimate relationship to maximum likelihood theory. Section 6 demon-
strates the relevance of this theory and the attendant advantages in several illustrations.
Section 7 provides a quick introduction to the SABL Matlab toolbox, which incorporates
numerous advantages for research and application beyond those developed elsewhere in
the paper. Proofs of propositions appear in Section 8.

2 The SABL algorithm for Bayesian inference

Fundamental to SABL is the vector § € © C R¥, which is a parameter vector in Bayesian
inference and the maximand in optimization. All functions in this paper should be
presumed Riemann integrable on ©. While for many purposes this could be weakened
to Lebesgue integrability, we use that condition here because (1) it is rarely violated in
applications and practical problems and (2) it is required in work that relies on digital
representation of functions. In what follows all functions should be presumed Riemann
integrable. A function f(0) : © — R is a kernel if f(0) >0V 6 € © and [, f () df <
oo. The initial kernel is p© (9), k (0) is the information kernel, k* (0) = p© (0) k (0)
is the target kernel, and ¢ (0):© — R is the function of interest. It is implicit that
Jo P (0) k() dd < oo and we further require that [, p@ (0) k (0)[g (0)|d§ < co. A
leading problem addressed by SABL is to approximate

g= /@ g (0)p® (0) (6) o/ /@ PO (6) k (6) do

!Throughout, SABL refers specifically to the software described briefly in Section 7, whereas SABL
refers to the algorithm.

and to assess its accuracy by means of an associated numerical standard error and central
limit theorem. It goes without saying that this should be done in a computationally
efficient manner and with little need for problem-specific tedious tuning, tinkering, trial
and error relative to alternative approaches to the problem.

This forms a common environment for addressing

1. Problems of Bayesian inference: p(®) is the kernel of the proper prior density; & (6) is
(proportional to) the likelihood function p (y | €) for stated density p and observed
outcomes y; k* (6) is the posterior kernel; and the problem is to approximate the
posterior moment E (g (0) | y) = g. Sections 2 through 4 take up matters specific
to Bayesian inference.

2. Problems of optimization: For any objective function h () < h, let k(0) =
exp [rh ()], the Boltzman transformation,® where r is large; p(® is the kernel
of the instrumental distribution; and let g (f) = 6;. If h has a unique mode 6*
then g — 0] as r — oo given reasonable side conditions. Sections 5 and 6 address
matters specific to optimization.

This section as well as Section 3 also deals with matters specific to Bayesian inference
in a manner that provides a starting point for the treatment of optimization in Section

D.

2.1 Overview of the SABL algorithm and computing environ-
ment

When used for Bayesian inference SABL is a posterior simulator. Like all posterior simu-
lators, including importance sampling and Markov chain Monte Carlo, these algorithms
represent the posterior distribution by means of a random distribution of arguments 6,
that approximate the posterior distribution and can represent it arbitrarily well. Mature
posterior simulation theory, like that for importance sampling (IS) and Markov chain
Monte Carlo (MCMC), characterizes precisely the approximation error and the ways in
which it can be made arbitrarily small. The focus is, first, on conditions under which
the sequence {6;} is ergodic and, a close second, conditions under which {g (6;)} has a
limiting normal distribution with mean g.

SABL may be regarded as another member of a family of algorithms discussed in
the statistics literature variously known as sequential Monte Carlo (filters, samplers),
recursive Monte Carlo filters, or (sequential) particle filters, and we refer to these col-
lectively as sequential Monte Carlo (SMC) algorithms. The literature is quite extensive
with dozens of major contributors; Creal (2012) is a useful survey, and for references
most closely related to SABL see Durham and Geweke (2015). Most SMC algorithms
use ideas and techniques from IS and MCMC but none is a special case. For historical

2This term, as well as the term instrumental distribution, are used in the simulated annealing
literature.

reasons the random arguments 6; are known as particles. The mode of convergence in
SMC algorithms is the number of particles.
For reasons explained shortly the particles in SABL are doubly-indexed,

0n(i=1,....Jin=1,...,N)

and the mode of convergence is in N. As in all SMC algorithms the particles evolve over
the course of the algorithm through a sequence of L transformations. Index the trans-
formations by ¢ and denote the particles in cycle ¢ by 0%). As in all SMC algorithms the

particles 91(5) are drawn independently from the initial distribution. The transformation
in cycle ¢ targets a distribution with kernel density £ (6), with k() (9) = k* () so
that the final particles represent the posterior distribution. Each cycle ¢ corresponds to
a change in information because k) changes, and in all SMC variants (for compelling
theoretical and practical reasons) this change can be characterized as the introduction
of additional information.

Variants in SMC algorithms may be distinguished primarily in two broad dimensions:
(a) the selection of the intermediate kernels &), and (b) the methods by which particles
evolve from a distribution with kernel density k“~!) to one with kernel density k). For
the most part the SMC literature has taken (a) for granted and concentrated on (b).

With respect to dimension (a), the SMC literature has addressed inference but not
optimization, and for a sample y1, . . . , yr has taken k) (0) o p (yl, Y | 0) with L =
T. But a common variant is to take k() (8) p (yl, oY) | 0), t, monotone increasing
with ¢, = T, for reasons of computational efficiency. The sequence {t,} can be specified
at the outset. Alternatively, the SMC algorithm can use the distribution of the particles
to determine the value of ¢, early in cycle ¢. This is a simple example of an adaptive
algorithm, and it exerts partial control over the introduction of information. But it does
not exert full control, because in a time series context some observations introduce a
great deal more information than others, and this can lead to substantial inefficiency in
SMC algorithms, so much so that the entire enterprise is compromised. (This becomes
abundantly clear for crises like market collapses or the great recession of 2008 - 2009.)
Applications of SMC outside time series contexts are less common, and we are not aware
of any SMC literature dealing with the problem of ordering the observations. (It can
make a great deal of difference.) Section 2.1 shows how SABL exerts full control over
the introduction of information in each cycle.

With respect to dimension (b), the developed theoretical foundations of SMC have
generally ignored adaptation entirely, assuming that there is no feedback from particles
to choice of the sequence {t,} and to the mutation that is critical to avoid the particle
depletion problem. A notable exception is Del Moral et al. (2012), which incorporates
the common use of effective sample size as the basis for choosing {t,}. This is not a
simple oversight: everyone who as even tried to implement a SMC algorithm is quite
aware that effective adaptation is critical to success, and that if one adheres strictly
to the inflexibility in the mathematical foundations of SMC then practical work is pre-
cluded. The problem is that the challenges to development of theory are daunting for

6

any one stated method of adaptation: feedback from the particles to the parameters of
the algorithm raises complications that are similar to but an order of magnitude more
complex than those that arise from the fact that adaptive Markov chain Monte Carlo
implies that the algorithm is no longer Markov.

The global outline of SABL is as follows. The innovations in SABL that do not
appear elsewhere are in italics.

e Represent initial information by 01(»?) ud @ ()
e For a sequence of cycles / = 1,2, ...

— Correction (C') phase: Determine k™ (#) and find weights for each of the

particles 9%71) that correctly represent k().

- Selection (S) phase: Use multinomial or residual resampling to remove
the weights, resulting in unweighted particles Hgf’o) that represent k().

— Mutation (M) phase: Use the particles to construct a variance matriz for
a Metropolis random walk, and then execute steps in the random walk rescal-
ing the variance to maintain a target acceptance ratio in each step. Conclude
the steps when the particles are sufficiently independent.

o If k¥ (0) = k() then L = ¢ and the algorithm terminates.

The S phase is well-established in the SMC literature. Residual resampling is more
efficient than multinomial resampling, and the alternatives of systematic and strati-
fied resampling do not lead to the central limit theorems critical to the mathematical
foundations of SMC. Residual resampling is the default choice in SABL. Resampling
is inherently nonparallel, and there seems to be an impression in some quarters that
this fatally compromises any attempt to exploit the embarrassingly parallel nature of
the other phases. That impression is incorrect: for all but very small problems where
execution is fast without exploiting the embarrassingly parallel characteristics of the C
and M phases anyway, the S phase accounts for a trivial portion of execution time.

The following three sections address the C', S and M phases, respectively, concen-
trating primarily on the innovations in SABL but also discussing their embarrassingly
parallel character. Greater detail can be found in Durham and Geweke (2015) and in
the SABL Handbook.?

2.2 The correction (C') phase

The correction phase determines the kernel k) and reweights the particles from cycle
¢ — 1 to reflect the updated kernel using standard importance sampling. The weight

SURL

function is w® (0) = kO (9) /k“~V (), applied to each particle. Thus the primary
computation task in the C' phase is

For likelihood functions that can be evaluated in essentially closed form this task is
embarrassingly parallel in the particles 0;;, of which there are 2'* = 16, 384 by default in
SABL (j = 2% n = 2!9). When SABL executes using one or more GPUs each particle is a
thread — that is, each particle corresponds to a single core of the GPU. The underlying
CUDA code declares the number of threads and coding proceeds for a virtual GPU
with as many cores as desired (J - N, in our case; things are not quite this simple but
the complications are transparent to the SABL user). The CUDA compiler handles the
assignment to physical cores in a highly efficient manner through a cascade of caches.

If the information introduced in each cycle is the one next observation, that is the end
of the C' phase. If one or more observations are being introduced, then the widespread
practice in SMC is, beginning with w(()g) (f) =1and j=1,is to compute the candidate
weight function

wj@ (0) = wj('é_)1 (0) - (Ytos | Y1, Ytoj1,0)

and then evaluate the effective sample size

J N 2 J N)
pss =[S0 52 (o)) 1S Sw (i)
Jj=1 n=1 j=1 n=1

developed by Liu and Chen (1998) and other contributors to the SMC literature. (Ob-
serve that if all weights were identical then £SS = JN whereas if only one is positive
then £SS = 1.) A closely related score is relative effective sample size RESS =
ESS/JN. The addition of observations, j = 1,2, ... continues until RESS first drops
below a target value RESS*. Del Moral et al (2012) extends the existing probability-
theoretic foundations of SMC to include this case. Experience suggests that execution
time does not vary much for RESS* € [0.1,0.9]: higher (lower) values imply more
(fewer) cycles but fewer (more) iterations in the M phase. The computation of ESS is
not parallel because it involves all particles and is therefore not particle specific. But
these computations are trivial compared with likelihood function evaluation and Matlab
harvests the w (#;;) from the respective threads efficiently.

This introduction of information by moving through the sample has been termed
data tempering. The literature also mentions power tempering (e.g. Duan and Fulop,
2015) but it is not widely used. In power tempering information is introduced by means
of a monotone increasing sequence r, with 7, > 0 and r; = 1. Indeed one can simply
specify such a sequence like r, = ¢/10, all the underlying theory applies, and the result
will be disastrous except perhaps for an isolated case or two. (Linear increase is much
too fast at the beginning, much too slow at the end, and particle depletion will be nearly
complete after one or two cycles.)

The relative effective sample size for power tempering in cycle ¢ is

8

S ey T

2(re—re—1) "
NS Sk (o)

This expression merely evaluates the quality of the weight function in cycle ¢ implied
by the power increment r, — r,_;. But this criterion can also be used to introduce
information — that is, to choose r, given 7,_; — in completely controlled fashion. The
foundation for this approach is the following result.

RESS = f(r) = (1)

Proposition 1 Solving for power increment. The function f (r;) in (1) is monotone
decreasing for vy € [ry_1,00). Let m be the number of (i,j) for which k (9%71)> =

max; ; k <9§f_l)>. If RESS* € (m/JN,1) then f (r;) = RESS* has ezactly one solution

re € (re-1,00); otherwise it has none.

Proof. Section 8§ m

Proposition 1 implies that f (r,) = RESS* can be solved to machine accuracy using
successive bifurcation in 52 or fewer iterations (52 being the number of mantissa bits
in standard 64-bit floating point arithmetic). The computation time is negligible. The
result is that the target RESS* is met exactly in each cycle — whereas data tempering
can (and often does) end with a final observation ¢, for which RESS falls substantially
below target; and, especially in larger models and/or more diffuse priors, RESS can
be impractically small for the early observations. (These problems with data tempering
become evident in a very unbalanced weight function, very few unique particles — perhaps
only one — following the S phase, and a great many iterations of the Metropolis random
walk algorithm in the M phase to recover.)

Power tempering is the default variant of the C' phase in SABL, and the default value
of RESS* is 0.5.

2.3 The selection (S5) phase

The S phase is well-established in the SMC literature. Residual resampling is more
efficient than multinomial resampling, and the alternatives of systematic and stratified
resampling do not lead to the central limit theorems critical to the mathematical foun-
dations of SMC. SABL uses residual resampling by default. Resampling is inherently
nonparallel, and there seems to be an impression in some quarters that this fatally com-
promises any attempt to exploit the embarrassingly parallel nature of the other phases.
The second observation is incorrect: for all but very small problems where execution
is fast without exploiting these characteristics of the C' and M phases anyway, the S
phase accounts for a trivial portion of execution time even after fully exploiting the
embarrassingly parallel structure of the C' and M phases.

In SABL the particles are organized into J groups of N particles each. The selection
phase proceeds independently in each group: that is, particles are resampled from within
and never across groups. In a non-adaptive SMC context this renders the particle groups
independent. We then have the independent approximations

N
g_j:N_1Zg(9§f3> (G=1,...,J)
n=1

and these can be used in the obvious way to assess the accuracy of the grand approx-
imation g = J~! ijl gj; details are in Durham and Geweke (2015) and the SABL
Handbook. The result is a numerical variance and standard error for the SABL approx-
imation of any posterior moment. Posterior variance is simply the sample variance of
g (0;;) across all groups and particles, and relative numerical efficiency (Geweke, 1989)
is then the ratio of posterior variance to numerical variance. Numerical accuracy is also
implicit in the central limit theorems of the SMC literature, but we are unaware of any
practical utilization of these abstract expressions.

Of course, the adaptive nature of SABL creates dependence across groups, and so
the foregoing reasoning does not apply. This is but one consequence of a much deeper
problem with the existing probability theoretic foundations of SMC for the adaptive
variants of SMC that are essential to practical application. Section 3.1 returns to the
way SABL removes this problem.

2.4 The mutation (M) phase

At the conclusion of the S phase the particles are dependent due to the fact that some
are repeated while others have been eliminated. If the algorithm had no mutation phase
then the number of distinct particles would be weakly monotonically decreasing. In
the application of SMC to Bayesian inference it is easy to verify that for any given
number of particles and under mild regularity conditions for the likelihood function the
number of distinct particles would diminish to one as sample size increases. It is widely
recognized that the M phase is critical to any practical application of SMC algorithms
and, furthermore, that the M phase must be adaptive — in particular it must use the
distribution of particles to derive an effective variance matrix for the Metropolis random
walk. (A similar situation can arise in MCMC with Metropolis-Hastings algorithms.)
A flexible adaptive scheme is essential to effective application of SMC that obviates the
need for tedious tuning, tinkering, trial and error. Moreover, computational intensity
tends to concentrate more and more in the M phase as the scale and complexity of the
problem increases. An efficient M phase is essential to practical SMC algorithms.

The M phase is a Metropolis random walk. In each step s of the random walk the
proposal is N (eij, E(Z’S)), where £(%*) is proportional to the sample variance of 9%’0)
computed using all the particles. The factor of proportionality increases when the rate
of candidate acceptance in the previous step exceeds a specified threshold and decreases
otherwise. This draws on established practice in MCMC and works well in this context.

10

SABL again incorporates variants of the basic Metropolis Gaussian random walk, as
well, drawing on experience in the MCMC literature. In SABL the default sets acceptance
goal at 0.25, proportionality factors are incremented or decremented by 0.1 with a lower
bound of 0.1 and an upper bound of 2.0. The initial value of the proportionality factor is
0.5 at the start of cycle £ = 1 and subsequently factors carry through from one cycle to
the next. Any or all of these values can changed. They can be made model-specific, in
which case they become the default when the model is applied. They can also be changed
for a specific application. SABL also incorporates a variant of this process in which 6 is
partitioned and the Metropolis random walk is applied to each partition separately, and
there are a number of variants of fixed and random partitions.

The M phase should terminate when the dependence among particles following the S
phase has been sufficiently broken — a condition often referred to as “sufficient mixing”.
This is important to efficient and effective implementation of SMC algorithms but to
our knowledge has not been discussed in the literature. SABL accomplishes this by
tracking the relative numerical efficiency of some simple, model-specific functions of the
particles at the end of each step s of the Metropolis random walk. Typically relative
numerical efficiency increases, with some noise, as the steps proceed. The M phase
and the cycle terminates when the average RNE across the tracking functions reaches a
specified target. SABL uses one target for all cycles except the last (default value 0.4),
which has its own target (default value, 0.9). The higher target in the final cycle results
in more iterations of the M phase in that cycle, but a value close to 1 results in particles
that are weakly correlated at the end of the algorithm. Default values can again be
made model or application specific. The M phase also terminates if the number of cycles
becomes excessive without attaining the target relative numerical efficiency; details are

in the SABL Handbook.

3 Foundations of the SABL algorithm

Material and subsections to be inserted.

3.1 The two-pass algorithm

As described in the previous Section the SABL algorithm builds the kernels &) in the

C phase of successive cycles using information in the particles 6’%_1) and the Metropolis

random walk in the M phase using information in the succession of particles 9%{5_1)

(s=1,2,...). These critical adaptations, especially in the M phase, are precluded
by the theorems for sequential Monte Carlo, a key underpinning of SABL. Indeed, all
practical implementations of sequential Monte Carlo are subject to this limitation.
SABL resolves this problem and achieves analytical integrity by utilizing two passes.
The first pass is the adaptive variant in which the algorithm is self-modifying. The second
pass fixes the design emerging from the first pass and then executes the fixed Bayesian
learning algorithm to which the theorems in the sequential Monte Carlo literature di-

11

rectly apply. Experience strongly suggests that the second pass leads to qualitatively the
same results as the first pass — in particular, to similar simulated posterior moments and
associated numerical standard errors. Differences in posterior moment approximations,
between the two passes, are typically consistent with numerical standard errors. Yet
this is simply an observation, and it is prudent to check this condition occasionally in
the course of a research project.

4 Bayesian inference with SABL

This section takes up some selected applications of Bayesian inference with the objective
of illustrating different aspects of the SABL algorithm and its execution using the SABL
toolbox (Section 7).

4.1 Example: The EGARCH model of asset returns

This example uses a model from Durham and Geweke (2015) with updated data to illus-
trate the facility of SABL in model comparison and document execution time on several
GPU and CPU platforms. The data are the log daily returns y; for the S&P 500 index
beginning January 3, 1990 and ending October 9, 2015, a total of 6493 observations. The
EGARCH model for a sequence of asset returns combines a mixture model for volatility
vyt (volatility in state k on day ¢) with a normal mixture model for the shocks to asset
returns €;. The model for volatility is

Vgt = QpUk3—1 + ﬁk (|€t—1\ - (2/7T)1/2> + Vi€t—1 (k? =1,..., K)-

where

Conditional on volatility the model for the asset return is

K
Y = Uy + oy exp <kat/2> Et.

k=1

The normal mixture model for the shock to asset returns is
I
p(e) =Y pio (e 07)
i=1

where ¢ (; 11, 0?) is the Gaussian density with mean p € R and variance 02 > 0 evaluated
at x and
with

ZP@ =1 (4)

12

This model is included in SABL.

The model as stated is not identified in the classical sense that a continuum of
alternative parameter values implies exactly the same p.d.f. The problems are (1) py
can be replaced by p, —c and p,; by p;+c (i = 1,...,1) and (2) v, can be replaced by d-,
and 3, by dB,, (k =1,...,K) and 02 by d*0? (i = 1,...,I). This is not a formal problem
for Bayesian inference with a proper prior distribution, but if one wishes to interpret the
posterior distribution of parameters then formal identification is helpful; moreover, the
M phase of the SABL algorithm may take longer without classical identification, so the
problem merits interest even if one is solely interested in predictive distributions, which
is often the case with asset return models. The normalization

E(e Zp,ul—O var (&) Zpl p+o7) =1 (5)
=1
achieves classical identification. The constraints (4) and (5) need to be enforced, which
can be accomplished by means of p! > 0, uf, oF > 0 (il =,...,n) followed by

Lopi=p;/ Y50y (i=1,....J)

*k *

I *
20 W =y — Zj:l PiH;

—-1/2

3. o= {Thim i + 0]

4. p, = c(pi —Z;}:lpj,u;) and 0; =co} (i=1,...,J)

One way to handle the inequality constraints is to begin with the parameter vector
6 € © =R where k =2+ 3(K+1), 0 = <0(1)', e ,6’(8)'> where 8% and 0 are
scalars, 0(3), 0™ and 6 are each K x 1, and 6, 6" and 6® are each I x 1. Then

iy = 00 /1000, oy = exp <9<2>) i} (6)
and for k=1,..., K,

ay, = tanh (9,&3)) , [Br=exp (9,@) . Ve = 9;25), (7)

and for:=1,...,1,
p; = tanh (956)) +1, u = 057), o; = exp (0§8)> : (8)
The prior distribution is proper with support ©® = RF. With the exception of 6

the parameters are classically identified, and the proper prior assures that all of 6 is
identified in the posterior distribution.

13

The normalizations just described are not the only ones that might be used, and
the support © need not be R¥. For example, (pi,...,p;) might have a Dirichlet prior
distribution, reducing the elements of § by 1, and (oy,...,0;) might have identical
independent gamma prior distributions. Both prior distributions are available in SABL.
Situations like this arise regularly in complex models and two features of SABL deal with
them.

1. The first feature is a mapping system for parameters. SABL distinguishes be-
tween the algorithm parameter vector # and the model-specific parameter vec-
tor, which here consists of the parameters puy-, oy, (ax, 8;,7;) (k=1,...,K) and
(pi, pb;504) (i =1,...,1). SABL incorporates a generic parameter mapping structure
that transforms 0 to the vector of model parameters. Most models* in SABL have
default parameter maps, which for the EGARCH model is the one just described.
The user may substitute a different parameter map, which would be done here to
incorporate the alternatives described in the previous paragraph. New users need
not even be aware of the parameter mapping feature to get started, especially with
simple models.

2. The second feature is a system for combining prior distributions to build up a
complete proper prior distribution for 6. In the example just provided, the prior
distribution has one component, the multivariate normal distribution with scalar
variance matrix for 6. In the alternative prior distribution mentioned there would
be one component for the Dirichlet prior distribution with parameter vector 0(6),
K components for the gamma distribution for each element of #® accompanied
by the parameter map o, = 9,(43) (k=1,...,K), and a final component for the
remaining elements of 6 jointly. Most models have default prior distributions, and
that for the EGARCH model is the one just presented.

SABL provides log marginal likelihood as a by-product; for details, see Durham and
Geweke (2015), Algorithm 3.3, Section 3.3. This ability stems from the importance
sampling in the C' phase, and the fact that the average weight in importance sampling
provides the marginal likelihood when the source distribution is the prior, the numerator
of the weight function is the properly normalized likelihood function and the denominator
of the weight function is the properly normalized prior density (Geweke, 2005, Section
8.2.2). The J groups of particles then facilitate the computation of numerical standard
errors in the same way that they do for posterior moments.

Using the SABL default values of all algorithm parameters, including J = 16 groups
of N = 1024 particles each, Bayesian inference for EGARCH models for all combinations
Ke{l,...,4} and I € {1,...,6} was conducted using SABL. For the EGARCH model

4Exceptions are very flexible models like the full linear simultaenous equation model, which always
incoporates application-specific zero, cross-parameter and/or cross-equation restrictions. In these cases
there is no useful default parameter map. The same qualification applies to the default prior distribu-
tions discussed in the next paragraph.

14

with the data described and given I € {1,...,6} marginal likelihood is greater for K = 2
than for any other K € {1,...,4}. Given any K € {1,...,4} marginal likelihood is
greater for I = 6 than for any other I € {1,...,6}. Resultsfor K =2and I € {7,...,12}
yield marginal likelihoods not significantly (in the metric of numerical standard error)
different from that for K = 2, I = 6. At the latter values the log marginal likelihood
approximation is 21,430.53 and the accompanying numerical standard error is 0.16.
Table 1 provides the difference between this value and log marginal likelihood for all
other elements (K,I) € {1,...,4} x {1,...,6}, together with their numerical standard
€ITOors.

Table 1: Difference in log marginal likelihood, EGARCH(2,6) versus alternatives

K=1 K =2 K=3 K=1

I=1]-146.60 (0.22) -103.20 (0.34) -105.03 (0.29) -104.10 (0.24)
I=2]| -48.35(0.21) -850 (0.22) -8.85 (0.22) -10.45 (0.32)
I=3]| -43.03(0.21) -5.11(0.23) -5.48 (0.23) -6.86 (0.38)
[=4] -39.83(0.23) -2.40 (0.20) -3.62 (0.20) -4.80 (0.25)
[=5]| -3842(0.22) -0.86 (0.25) -1.43(0.34) -3.06 0.36)
I=6]| -37.23(0.29) 0.00 -0.86 (0.24) -2.08 (0.22)

Except for the choice of GPU processor all algorithm parameters were SABL default
values. Table 2 provides information about wallclock execution time in seconds. The
left part of the panel shows how time varies with the complexity of the model. The
relationship is very nearly (E2 = 0.94) log linear in [and K, the elasticity with respect
to I is 0.37 and with respect to K is 0.76. Total execution time for all 24 models was
3.24 hours and produced a posterior sample of 16,384 nearly uncorrelated particles in
each case.

All algorithm parameters were SABL default values, except for those governing the
hardware configuration and utilization. The results in Table 1 all used a single NVIDIA
K80 processor, which was state-of-the-art in late 2014. The left panel of Table 2 shows
the wallclock execution time (elapsed time from start to finish) for the 24 combinations

of I and K in Table 2. The relationship is very nearly (E2 = 0.94) log linear in I and
K, the elasticity with respect to [is 0.37 and with respect to K is 0.76. Total execution
time for all 24 models was 3.24 hours and produced a posterior sample of 16,384 nearly
uncorrelated particles in each case.

The right panel of Table 2 documents wallclock execution time for some alternative
hardware configuration and utilization. The configuration in instance (1) is a single
GPU on the Amazon EC2 cloud, evidently of an earlier generation — it is about four
times slower. In view of the rapid increase in number of cores in successive generations
of GPU chips this is not surprising. The other three instances use CPU cores. In
this environment all code executed is written in Matlab, using vector arithmetic across
particles. Instance (2) is the SABL default, which does not require the Matlab Parallel
Toolbox, particles are not explicitly allocated across cores; however, the Matlab compiler

15

Table 2: Wallclock execution time for various EGARCH models, various processors

NVIDIA K80 AWS* K =2,1=6
K=1 K=2 K=3 K=4|| Type Instance Time
I=1 122 249 388 615 || 1 GPU (1) g2.2xlarge 1939

I =2 195 355 485 612
I=3 239 435 560 687 || CPU quadcore (2) “l-core” 37,711
I=4 304 483 614 736 || CPU quadcore (3) 2-core 39,741
I=5 333 474 657 740 | CPU quadcore (4) 4-core 19,944
I =6 345 536 699 804

*Amazon Web Services EC2, US East (Virginia) zone

still seeks to take advantage of the presence of four CPU cores when code is compiled.
Execution takes 70 times as long as the K80 GPU and almost 20 times as long as the
AWS GPU. SABL provides the option to explicitly allocate particles to CPU cores, by
changing a single default parameter. Declaring two parallel streams (instance 3) leads to
slightly slower execution, but declaring four streams reduces execution time by almost
half from the default instance (2).

In this example (1) evaluation of the likelihood function is not trivial (though even
more complicated cases are common), (2) there are no sufficient statistics, (3) there
are thousands of observations and (4) likelihood function evaluation is embarrassingly
parallel. This combination of characteristics, entailing well over a billion floating point
operations over all 16,384 particles, is the kind that provides the greatest leverage for
GPU computation. In less computationally intensive cases, including almost all textbook
examples and even those in some published papers demonstrating posterior simulation
and numerical optimization, GPU computation provides no real advantage, and indeed
can be substantially slower than common CPU platforms due to the overhead entailed
in GPU use. (Section 7 provides some more detail.) All of the other examples in this
paper are in this latter category, and utilize CPU execution without explicit declaration
of parallel streams — computation time for these examples is never more than 5 minutes.

4.2 Secular and cyclical behavior of GDP in an AR(3) model

This example is taken from Geweke (2015) and utilizes the SABL normal model in
which the outcomes y; (t =1,...,7T) are mutually independent conditional on (x, 2;)

(t=1,...,7):
yr ~ N (8w, exp (Y'z)) (9)
where z; and z; are vectors of covariates and y; is the corresponding outcome. The model

parameter vector is (/3,7). More specifically, in this example there is no heteroscedas-
ticity and the econometric model is a straightforward third-order autoregression

iid
Y = Bo + B1Ye—1+ BoYi—2 + Bsyr-—3 + &, e~ N (07 02)) (10)

16

The entire analysis conditions on the initial values y_», y_; and yo making the likelihood
function is a specific case of the likelihood function for (9) with z; = (1, y;—1, Yi—2, Yi—3)
and z; = 1.

The individual components of 3 have no substantive interpretation and little if any
interesting statistical interpretation. Geweke (1988) considered the case where the gen-
erating polylnomial 1 — 3,2 — 3,2% — 3323 has one real root r; and a conjugate pair of
complex roots (r3,73), and then transformed

ag = |r|™", ae=|reo| ™, p=2r/tan"t (Im (r3) / Re (r2)), (11)
with an interpretation motivated by Samuelson (1939): «y is the secular amplitude, a,
is the cyclical amplitude, and p is the periodicity. In (11) tan™! is the principle branch
with range [0, 7), and (11) restricts (10) by requiring that the characteristic polynomial
1-— 22:1 (27 have a complex conjugate pair of roots. The application in Geweke (1988)
is to OECD annual real GDP series for quite a few countries for the period 1957 - 1983.

14

06

04

alpha\S

alphac

12+ |

08
|

18

16

14

12

1

08

06

04

I

035

025

0.1

period

Al
03 | |

\ /
02 005 \
02 // 1 ’ \

0 0= 0
0 02 04 06 08 1 0 02 04 06 08 1 5 10 15 20

Figure 1: Implicit prior distributions in Geweke (1988)

Geweke (1988) used a conventional improper prior distribution p (3,0) € o~! and
reported the posterior distributions of the parameters of interest oy, «., p, 0. Un-
recognized in Geweke (1988) is the fact that this prior distribution is informative for 5.
Figure 1 shows prior densities for ay and for «ag, each over the range (0,1) and for p
over the range (2,20), p = 2 being the minimum possible. While “uninformative” is not
a precisely defined property, few investigators would ascribe that characteristic to these
distributions. (Moreover, the prior distribution for period is strikingly similar to the
posterior distributions for this parameter reported in Geweke (1988).) The mechanics
are well understood: since the transformations are nonlinear, the Jacobian varies with
and o; of greater substantive importance is the fact that loose characterizations of prior
distributions as “uninformative,” if made as an escape from formulating a substantive
prior distribution, are intellectually indefensible.

As a constructive alternative, restate the model exclusively in terms of parameters
that have ready substantive interpretation and then apply a substantive proper prior

17

distribution in each case. The alternative parameterization uses the half-life of the
secular component, hy, = log(1/2) /log (ay), the half-life of the cyclical component,
h. =log (1/2) /log (c.), the period p and the shock standard deviation 0. The mapping
from (hg, he,p) to 3 is

By = (1/2)"" +2(1/2)"" cos (27/p),
By = = (/27" (1/2)") cos (2r/p) + o2,
By = (1/2)V" (1/2)%"
The mapping from the algorithm parameter vector 6 to the substantive parameters is
Bo =01,hs = exp (02) , he = exp (03) ,p = exp (04) ,0 = exp (05) .

The prior distribution is

Parameter Distribution Centered 90% interval
Intercept 3, (10): 6, = 5, ~ N (10, 5?) By € (1.77,18.22)
Secular half-life h: 92 log (hs) ~ N (log (25),1) hs € (5.591,111.9)
Cyclical half-life ho: 65 = log (he) ~ N (log (1), 1) he € (0.2237, 22.36)
Period p: =log(p) ~ N (log (5),1),p>2 p € (2.316,28.46)
Shock ¢ (10) =log (o) ~ N (log (0.025) , 1) o € (0.005591,0.1118)

Setting up the map from the algorithm parameter vector # to the model parameter vector
(B,0) is straightforward in SABL as described in Section 4.1. The prior distribution in
this case has a single component, the multivariate normal prior distribution subject to
the linear constraint log (p) > log (2) is also straightforward, as noted in Section 4.1, and
also utilizing the SABL feature that provides for truncation of many prior distributions.

Geweke (2015) uses this model with OECD annual time series 1973 - 2014 (range of
outcome variable) for real GDP converted to US dollars by means of purchasing power
parity corrected exchange rates for a number of countries. Posterior distributions are
strikingly similar across countries. Table 4 provides the posterior moments of log (hy),
log (h.), log (p) and log (o) for the United States and Figure 6.2 shows their posterior
and prior distributions. (It would have been a simple matter to work with hg, h., p and
o directly. The presentation chosen provides better scaling and also proves convenient
in Section 6.2, which provides corresponding maximum likelihood estimates and asymp-
totic standard errors using the SABL algorithm for optimization.) Several features are
notable.

1. Except for o(for which the prior density is close to the horizontal axis), the prior
distribution contributes substantial information to the posterior despite the fact
that it is less precise than the subjective priors of many economists would likely
be. The prior information is not as great as that in the data, but the difference

18

US: log Secular half-life probability densities US: log Cyclical half-life probability densities

07 T T T 08 T T T
—— Posterior /\ —— Posterior
06} Prior 07r Prior it
06 [\ 1
05 4 | \
|
051 |
204 1 2 |
2 \ 204 |
@ / By \ @ |
003t / 1 a |
S A 03 /
; / . \ [-
2 B / \
0 \ 02 \
01 / o\ B
S\ 01
/ . J |
o) \ . o . P . N
0 1 2 3 4 5 6 7 8 -6 -5 -4 -3 -2 -1 0 1 2
log Secular half-life log Cyclical half-life

US: log periodicity probability densities US: log shock standard deviation probability densities

14 . . . 4
—— Posterior —— Posterior
12r N Prior 35 ~ Prior |
[[
I | [\ |
i I 1 : s‘/
[/
\ 251 / \
zosf [1 S /
Q06 |\ 1 o /
| 15 / \
| \ \
04t I \ 1 \
o 1 \
\“ \\ // \\
02 ANy 1 05 /
% S~ \
0 — . . e . . 0 - ~
0 1 2 3 4 5 6 7 8 -45 -4 -35 -3
log periodicity log shock standard deviation

Figure 2: Posterior and prior distributions for four parameters

is small. This is not surprising in view of the fact that h, is in the range 20 to
150 years, the period is in the range of 4 to 20 years, and there are only 42 years
in the sample. On the other hand, under the model specification there are 42
independent observations to inform o.

The four parameters are only weakly correlated in the posterior distribution. This
is in marked contrast to the situation for the parameter vector S in (10), where
there is large correlation due to multicollinearity in (v;_1, %2, ¥¢—3). This supports
the efficacy of thinking about and working with the chosen parameterization.

Except for log (o) the posterior distributions are more diffuse than the local be-
havior near the mode implies for a normal distribution. This is quite pronounced
in the case of log (p). This feature, in turn, suggests that the classical asymptotic
confidence regions for maximum likelihood estimates of these parameters might
be considerably more concentrated than is the posterior distribution. Section 6.2
returns to this comparison.

19

5 The SABL algorithm for optimization

The SMC literature has recognized that those algorithms can be applied to optimization
problems by concentrating what otherwise would be the likelihood function more and
more tightly about its mode (Del Moral et al., 2006). Indeed, if the objective function
is the likelihood function itself, the result would be a distribution of particles near the
likelihood function mode. A straightforward way to do this is to apply power tempering
in the C' phase, but continue with cycles increasing the power r, well beyond the value
rr, = 1 that defines the likelihood function itself. The principle (the inspiration) is sound,
but like many principles working out the details and engineering for routine applications
(the perspiration) is the greater challenge. To the best of our knowledge this latter
agenda has not been pursued in the literature. This section sets for the details and
engineering and the result is incorporated in the SABL toolbox.

5.1 The optimization problem

This section changes the notation slightly to conform with that of the global optimization
literature, and specifically the simulated annealing literature that has taken a similar
approach and upon which SABL provides a very substantial improvement. Adopting the
notation of much of the global optimization literature the objective function is h (z) :
X — R, x replacing the vector 6§ and X replacing © in the notation of Section 2. We
require that h (z) be Riemann integrable on X. Then the associated Boltzman kernel
for the optimization problem is

K (a h,p©, r) = PO () exp (- h(z))

and this takes the place of the target kernel £* (6) from Section 2.

The initial density p®) (z) is a technical device required for SABL as it is for simulated
annealing and steepest ascent algorithms, but the final result of these algorithms, if they
are successful, does not depend on p(®) whereas the posterior distribution clearly depends
on the prior distribution. In the optimization literature p(® (z) is sometimes called the
instrumental distribution. Borel measure is denoted by .

Fundamental to the both the details and the engineering is the upper contour set
X (g, h) defined for all € > 0:

1. If h=supy h(z) < oo, X (e;h) = {z:h(z) > h—c};
2. If h =00, X (e;h) = {x: h(x) > 1/e}.
Closely related to h is the modal set X = lim. o X (¢;h).

Condition 1 Three conditions are basic to the procedure:
(a) p[X (g;h)] >0V e>0;
(b) 0 < p=inf.cx p0 (2) < SUP, ¢ x pO (x) =P < oo;
(c¢) For all r € [0,00), k* (a:; h, p©, r) is finitely integrable on X .

20

Departures from Condition 1(a) are possible if one tailors SABL to the particular
attributes of h that violate this condition: for example, determine a set X C R™, m < k,
for which the upper contour set X* (g;h) satisfies Condition 1(a); and for all z ¢ S*
and some € > 0, h(z) < h —e. A requirement similar to Condition 1(a) accompanies
other numerical methods for optimization, for example steepest ascent, evolutionary and
simulated annealing algorithms. These special treatments may be necessary for some
applications but they are unusual and by definition cannot be addressed at the level of
generality of this paper.

It seems unlikely that the instrumental distribution would not have a finite upper
bound. That is used here solely as a technical device in one of the proofs and perhaps
could be weakened but there is no compelling case for doing so. Condition 1(b) is also
used as a technical device but might be more difficult to avoid and imposes practical
constraints. The issue does not arise in the standard global optimization problem, which
imposes 1 (X) < 0o. In econometrics it is familiar as a constraint that often appears in
maximum likelihood theory (and often ignored in practice).The situation here is similar
to the latter context, in that clearly p(X) = oo is inconsistent with p > 0, and so
formally one has to impose 1 (X) < oo. This situation is not entirely satisfactory, but
at least it is familiar. Once y(X) < oo,Condition 1(c) is satisfied trivially if h < oo,
a further condition commonly imposed in the global optimization and M-estimation
literature.

These conditions are easy to violate when the optimization problem is maximum
likelihood. A classic example is maximum likelihood estimation in a full mixture of
normals model in which the likelihood function is unbounded when one component of
the mean is exactly equal to one of the data points and the variance of that component
approaches zero. This is not merely an academic nicety because when SABL is applied
to optimization problems it really does isolate multiple modes and modes that are un-
bounded. (These problems are avoided in some approaches to optimization, including
many implementations of the EM algorithm, precisely because those approaches do not
successfully find the true modes.) More generally, this section carefully develops these
and other conditions because they are essential to fully understanding what happens
when SABL successfully maximizes objective functions that violate standard textbook
assumptions but arise quite regularly in economics and econometrics.

Any system of equations of the form e(x) = 0 can be converted trivially to an
optimization problem by taking & (x) to be a monotone increasing transformation of
—e(z) e(z), eg. h(z) = —logle(z) e(x)] or h(z) = —e(x) e(zx). For example,
one can use this approach to study general equilibrium and in this context SABL is
especially well suited to multiple, countable and uncountable equilibria compared with
other approaches.

A few more definitions are required before stating the basic result and proceeding
further. These definitions presume Condition 1. Associated with the objective function
h (x), its Boltzman transformation, and the initial density p(®,

1. The Boltzman density is p (z; h,p'”,7) = k* (z;h,p©, 1) / [k* (25 h,p©, 1) dz;

21

2. The Boltzman probability is P (S; h,p'”,r) = [, p (z;h, p'»,r) d for all Borel sets
S CX;

3. The Boltzman random variable is T (h,p®), r) with P (Z (h,p»,r) € S) = P (S; h,p?,

for all Borel sets S C X.
The basic result is:

Proposition 2 Limiting particle concentration. Given Condition 1,

TILIEOPT (X (e;h)] =1V e>0.

Proof. See Section 8. =

In interpreting the results of the SABL algorithm in situations that do not satisfy
the standard conditions of a bounded continuous objective function with a unique global
mode discretely greater than the value of h (z) at the most competitive local mode it
is important to keep Proposition 2 in mind precisely. For example it does not address
the distribution across multiple global modes or neighborhoods of those modes, be they
finite, countable or uncountable. It identifies precisely the subsets of X that will be
identified in the limit; the relationship of these subsets to the global mode(s) themselves
is a separate matter and many possibilities are left open under Condition 1. This is
intentional: SABL succeeds in these situations when other approaches can fail, but the
definition of success — which is Proposition 2 — is critical.

5.2 Convergence of SABL to the global mode

This section turns to conditions under which SABL provides a sequence of particles
converging to the true mode. Basic to this enterprise is

Condition 2 Singleton global mode
(a) X = x*
(b) Forall6 >03e>0:X (e;h) C B(2%6) ={z: (z —2¥ (z — 2*) < §°)}

and

Proposition 3 Consistency of mode determination. Given Conditions 1 and 2,

Tli_)rglo P, [B(z*;0)] = 1¥6 > 0.
Proof. None required m
Condition 2(a) is essential to the possibility that lim, ., P (X h,p©), r) collapses
about a singleton z*. Given Condition 2(a) it is still possible that the competitors to
x* belong to a set far removed from z*; more technically, for all ¢ > 0 the closure of
{: h—e<h(x)< E} might not include z*. A simple example is X = (0,1), h(1/2) =
Lh(x)=1—|z—(1/2)|V 2z € (0,1/2) U (1/2,1).

22

r)

Condition 2(b) is not necessary for SABL to provide constructive information about
X. Indeed when X is not a singleton it performs smoothly whereas it is difficult to learn
about X using some alternative optimization methods. Here are two examples. In both
cases the consequences follow from Proposition 2.

1. Consider the family of functions & (x) = (z — 2*)' A (x — 2*), where k > 1 and A
is a negative semidefinite matrix of rank » < k. Then X is an entire Euclidean
space of dimension k — r. Particle variation orthogonal to this space vanishes as
r — 00, but the distribution of particles within this space depends on p(©® (x).

2. As another class of examples, suppose X = R¥ and h () = h(|z|) V 2 € X satisfies
Condition 2 on X+ = R**. The function h displays 2" reflected images and X is
the union of 2% points. The associated Boltzman distribution collapses about all
2 points, with the relative probabilities depending on p(® (). In particular, as
r — 0o the number of particles associated with the modes follows a multinomial
distribution with J - N trials and probabilities according to p(? () evaluated at
the modes if p(¥ () is continuous.

With additional regularity conditions familiar to any econometrician,

Condition 3 Mode properties:

(a) The initial kernel p® () is continuous at x = x*;

(b) There is an open set S such that z* € S C X ;;

(c) At all x € X, h(x) is three times differentiable and the third derivatives are
uniformly bounded on X ;

(d) At z = x*, Oh (z) /Ox = 0, H = 8?h (x) /0207’ is negative definite, and the third
derivatives of h (x) are continuous,

we have a result that, again, is perhaps unsurprising but has substantial practical
value.

Proposition 4 Asymptotic normality of particles. Given Conditions 1, 2 and 3, as
r— 00, U (h,p(o),r) = r1/2 [E (h,p(o),r) — x*} 4, N(0,—H™).

Proof. See Section 8. m

Denote the sample variance of the particles at power r by V.. Proposition 4 shows
that given Condition 3 lim,_,, V,, = —H!. For V;.n the corresponding sample variance of
particles, by ergodicity of the algorithm lim,, ., lim,_, ril‘A/m = —H!. The result has
significant practical implications for maximum likelihood estimation, because it provides
the asymptotic variance of the estimator as a costless by-product of the SABL algorithm.
Condition 3 and the classical conditions for the asymptotic variance of the maximum
likelihood estimator have much in common due to the similarity of the derivations, but
the results do not: whereas the classical conditions are sufficient for the properties of

23

the variance of the maximum likelihood estimator in the limit as sample size increases,
Condition 3 is sufficient for lim,,_, lim, .o 71V = —H ! regardless of sample size.

SABL requires fewer problem-specific investments than do competing methods like
steepest ascent. It requires the correct statement and coding of the objective function.
Steepest ascent requires, in addition, either the derivation and coding of an analytical
derivatives, the computation of numerical derivatives with sufficient accuracy for the pur-
poses at hand, or some combination of these two. (The number of function evaluations
for numerical second derivatives can be comparable to the number of function evaluations
in SABL when k£ is substantial, and steepest ascent with numerical derivatives cannot
attain the accuracy demonstrated in the examples of Section 6.1) In addition SABL is
robust to objective functions with pathologies like multiple modes and discontinuities,
whereas steepest ascent is not.

5.3 Rates of convergence

One can also determine the limiting (as ¢ — oo) properties of the power tempering
sequence {r;}. This requires no further conditions. The result shows that the sequence
of power increase ratios p, = (rg — ry_1) /re—1 converges to a limit that depends on k but
is otherwise independent of the optimization problem. Recall that x is a k x 1 vector.

Proposition 5 Given Condition 3, the limiting value of the power increase ratio p, for
the power tempering sequence defined by (1) and the equation f (r;) = n* for the RESS
criterion RESS = n* is

p= gli)rg) P = 7,’*72/]6 14+ [(n*fQ/k - 1) 77*72/k:| 1/2 . (12)

Proof. See Section 8. =

This result is key to determining whether the variance matrix of particles is a reliable
for the approximation —H ' & r,-V,,. Since the validity of this approximation also
implies p, = p, it is clearly not advisable to use it unless the latter condition is verified.
In applications where Condition 3 is satisfied this point is typically easy to identify by
successive cycles ¢ in which p, fluctuates around p: the approximation of —H ~'changes
little over these cycles. Thus for applications to which Conditions 1, 2 and 3 apply,
a generic convergence criterion for the approximation of the Hessian emerges as a by-
product of the algorithm.

A straightforward reading of Proposition 5 suggests these conditions will persist
as ¢ increases beyond the values where they are first verified. In fact this does not
happen: typically p, decreases substantially beyond a certain point with values of p, less
than (say) p/2 occurring after perhaps a dozen more cycles. This is due to the digital
evaluation of functions which is always noisy due to the finite number (usually 52)
of mantissa bits used in floating point representation. If x; and x, are sufficiently
close this becomes important in the comparison of h (z1) and h(z3), especially near
the mode z* of h since Oh (z) /0x |;—.+= 0. (The problem is compounded for second

24

derivatives — that is why machine approximation of the Hessian at the mode is not
straightforward and reliable algorithms and code have value.) As cycles proceed, function
evaluation is increasingly corrupted by digital noise because the particles are close, and
the discrepancy between the conditions set down here and those that exist in the machine
function evaluations at the particles increases. The underlying problem is that the digital
evaluation of the weights in the C' phase no longer adequately reflects the actual weights.

Fortunately, at the point where p, begins to depart from p the standard deviation
of particles is typically sufficiently small that the value of £* can be asserted reliably
to more significant figures than are generally reported — it is usually possible to obtain
at least 8 significant figures. When the units of h () have substantive interpretation —
like dollars — one can do even better by using the distribution of particles to determine
that the standard deviation of h (x) across particles is substantively trivial and further
iteration of SABL would be pointless. These considerations underlie the convergence
metrics provided as a by-product by SABL, from which the user may select for the
purpose at hand; and it is also easy for the user to construct a custom convergence
metric.

6 Optimization with SABL: Examples

6.1 Test functions from the global optimization literature

Irregular global optimization problems arise routinely in business and applied science.
The simulated annealing algorithm (Kirkpatrick et al., 1983; Cerny, 1985) has proved
competitive for many global optimization problems in R* (Cerny, 1984; Vanderbilt and
Louie, 1984; Geman and Hwang, 1986; Aluffi-Pentini et al., 1985; Dekkers and Aarts,
1991; Belisle, 1992). Variants of the algorithm using multiple values of the argument
vector x simultaneously emerged only slightly later (Aarts et al., 1986a, 1986b; Xue,
1994; Hamma et al., 2000). More recent contributions (Molvalioglu et al., 2007, 2009;
Zhou and Chen, 2013) use both multiple values of x and Metropolis steps.

The most recent work, including Zhou and Chen (2013) names the algorithm “sim-
ulated annealing / sequential Monte Carlo” (SA/SMC). This could be described as the
SABL algorithm without adaptation — in particular the power function {r,}; the vari-
ance matrix for the Metropolis random walk, the number of steps in the M phase, and
the number of cycles are all deterministic, with no formal feedback from particles. (The
sequence {r;l} is known as the temperature reduction schedule in the simulated an-
nealing literature, and declaring this series at the outset is well recognized as the key
problem in application.) There is some informal feedback in the sense that the first
specification of these constants is almost certain to produce quite poor results, setting
up an iteration between the results from the last attempt and revision of the constants
by the investigator — tedious tuning, tinkering, trial and error. Perhaps in order to limit

25

these iterations the SA /SMC algorithm confines attention to

10log (¢ + 2)
max;_1,_,h(z;) +1072log (¢ + 2)

101log (¢ 4 2)
maxi=1,..n |h ($Z>|

Tg:)\ A

12

(13)

in the C phase.” In the M phase the Metropolis random walk source distribution for
the candidate ¥ is
F~N (a: aﬁ*fﬂﬁk) (14)

and the random walk is not iterated. The number of particles n and the number of
cycles L are also set in advance. Thus the manual design task involves setting the five

parameters \, o, 3, n and L.%
-31 [———

-335 -33 -325 -32 -315 -31 -305 -30

-31.95

-319779 gz SN
-31978 /7/ \\‘
-31.9781 e ——

NN
-31.9782 g ~
-31.9783 / \

I /
-319784 W\ /)]
319785} NN ,//é'/

SN s J/
-31.9786 \\\ N ————— 7/
N

-31.9787 A\ NN /
-31.9788 NS —
32 -31.99 -3198 -3197 -31.96 -3195 -31.9788 -31.9786 -319784 -31.9782 -31.978

-31.96F

-31.97

-31.98

-31.99

-32

Figure 3: Contours of Dejong’s 5th function

Zhou and Chen (2013) presents results for six test problems from the global opti-
mization literature. That paper also demonstrates that their procedure provides results
superior to those achieved in existing variants of simulated annealing, which makes it
an attractive means for comparing SABL with simulated annealing more generally. The
first test problem is

"We do not understand the presence of the term max;—1,._, |k (z;)| in (13): addition of an abitrary
constant to h does not change the problem by can have a dramatic effect in (13).

6These details are not all in Zhou and Chen (2013). They are taken from the code for the work in
that paper, which the authors generously shared.

26

e Test Problem 1: Dejong’s 5! function with k = 2,

25

1
h(z) = — [0.002 + - ; (15)
-1 vt Zj:l (z; aw)G
X = [—50,50]2, a;. = e®v and ag. = v ® e, where e = (1,1,1,1,1) and v =

(—32,-16,0, 16, 32).

The function has 25 local modes, each near — but not exactly the same as — a point
of the form (v;,v;). The modes are not equal and the unique global mode is near the
point (—32, —32). Since this function has only two arguments, it is possible to study the
behavior of the SABL optimization algorithm graphically, whereas the other examples
have many more dimensions. Figure 3 (page 26) provides contours of h (x) on X, in the
upper left panel. Successive panels show the finer structure that emerges from reducing
¢ in the upper contour set X (h,) defined in Section 5.1.

The initial distribution is uniform on X, as it is in all of the six test problems both in
this paper and in Zhou and Chen (2013). The SABL optimization algorithm terminated
after 34 cycles. (This number is random, but varies little on re-execution.) Figure 4
(page 4) depicts the distribution of the particles at selected cycles. In each panel the axes
coincide with the full range of particles so all particles are shown. The particles in the
set X, = {xz :h (xl(@) =maxj—i_ ,h (xy))} are overplotted in red. The similarity of
the particle distributions in Figure 4 to the contour plots in Figure 3is apparent: cycles
2 and 4 evoke the upper left panel, cycle 8 is similar to the upper right panel, cycle 16
exhibits the shape shown in the lower left panel, cycle 24 the lower right panel.

By cycle 28 the objective function h (z) attains its maximum possible value h (to
machine precision) for some of the particles. These are the particles overplotted in red in
Figure 4 for cycles 28 and beyond. The remaining cycles gradually eliminate particles x;
for which h (x;) is less than this value. By cycle 34 they account for fewer than half the
particles and the algorithm terminates. These results are consistent across independent
executions of the algorithm, although the precise assortment of particles in X changes
because there are many more values of x consistent with h (expressed in 64-bit floating
point) than there are particles.

The other five test problems in Zhou and Chen (2013) are

e Test problem 2: Powel singular function (k = 20)

h (‘I) = — [(131'—1 + 101)31)2 + 5 (131'4,-1 — ZL'H_2>2

+ (xz - 2$i+1)4 + 10 (I@;1 — IIJZ‘+2>4} —0.01

27

Figure 4: Distribution of particles in selected cycles, Dejong’s 5th functino

Cycle2, T = 1.111e+02

Cycle 6, T = 7.751e-01

Cycle 4, T = 6.136e+00

50 - =
oW W W
20 k3 " & £ E S 20
w W oe W
0 E NN T NS Se Ofm - - - - 0
woe o ox w
- - - - -
%5 % W ® w -20 -20
50 - - - - - - - - =
-50 0 50 .20 0 20 -20 0 20
Cycle 8, T = 9.260e-03 Cycle 12, T = 1.621e-07 Cycle 16, T = 1.197e-10
31 -31.97
315 819
-3195 -3198
-31.99
.32 -32 32
-32.05 -3201
-325 321 3202
325 -32 315 -321-3205 -32 -3195 -319 3202 -32 -3198
Cycle 24, T = 7.135e-15 Cycle 28, T = 2.086e-16 Cycle 30, T = 9.590e-17
319782 319783 319783
319783 -31.9783
-31.9783
-319783 -319783
319784 319783 319783
310785 a10788 319783
-31.9783
319786 -319784
-31.97881.97851 97881 97831 9782 -319784 -319783 -319783 -31.9783 -31.9783 -31.978
Cycle 32, T = 5.316e-17 Cycle 33, T = 4.508e-17 Cycle 34, T = 2.804e-17
-31.9783 -31.9783 -31.9783
-31.9783 -31.9783 -31.9783
-31.9783 -319783 319783 pu
-31.9783 319783 -31.9783

-31.97831.97831.97831.9783

-31.97831.97831.97831.9783

e Test problem 3: Rosenbrock function (k = 20)

h(x)

k-1

=1

e Test problem 4: Griewank function (k = 20)

h(z)

e Test problem 5: Trigonometric function (k = 10)

h(z)

k

i=1

28

-31.97831.97831.97831.9783

- [100 (zip1 — 22)° + (2 — 1)2} 1

k k
1 2 —1/2
— —g xi—”cos(z xi)—l—l
4000 <= P

—1-) " [8sin® (7 (z; — 0.9)%) + 6sin® (14 (2; — 0.9)°) + (2; — 0.9)°]

e Test problem 6: Pintér’s function (k = 10)

k k
h(z) = — [Z ix? + Z 207 - sin? (z;_1 sin x; — x; + sin ;41
i=1 i=1
k
+ Zilogm (1 +1 (xf_l — 2x; + 3xi41 — cosT; + 1)2> — 1071
i=1
In all cases X = [—50,50]" and the initial distribution is uniform on this set. In

each case the global model is a singleton in (—50, 50)k, but the set of highly competitive
arguments and local modes is challenging to eliminate — that is why these test problems
have persisted in the global optimization literature. Yet all of these functions satisfy
Condition 3 and so Propositions 4 and 5 apply. The consequences are clear in Figure 5.
In every case the power increase ratio {p,} goes through three stages.

1. In the first stage r, is not sufficiently great that the particles are yet limited to a
neighborhood of the global mode in which the quadratic approximation is valid.

2. The second stage conforms with Proposition 5.

3. Consistent with the discussion in Section 5.3, in the third and final stage the ratio
drops below the asymptotic value p as the evaluation of the objective function is
increasingly dominated by the limitations of machine precision in evaluating h ().

In the case of Test Problem 1 (upper left panel of Figure 5) this interpretation can
be verified by comparison with Figure 77.

For each of the six test problems Table 3 (page 43) summarizes some aspects of the
problem (Rows 1-3), provides some characteristics of the SABL solution (Rows 4-11),
and records some aspects of the solution achieved by the SA/SMC algorithm (rows 12-
25). In Row 3 there is only one value for the solution because in each of these test
problems the maximizing arguments z; (i = 1,..., k) are all the same.

All of the results for SABL used the default number of particles, 16,384. With the
exception of test problem 5 the algorithm parameters (e.g. the relative effective sample
size in the C' phase and the target Metropolis acceptance rate in the M phase) were the
SABL default values. In test problem 5 the M phase used the default blocked Metropolis
algorithm mentioned in Section 4. SABL was executed using CPU cores, not a GPU,
because the function evaluations are so simple that there is little gain from moving to
GPU execution; run times are fast anyway, ranging from under a minute to about five
minutes. The results for SABL are taken from the last cycle L of the algorithm, in turn
defined by the condition that the maximum value of the objective function was the same
evaluated across at least half of the particles.

The results in row 4 can be explained readily using the fact that the ratio of any
two numbers is an integer multiple of 27°2 because the mantissa has 52 bits. In row

29

Problem1 Problem2 Problem3
15 2 15

|
| |
| |
| | 15
10 | | 1
| |
| 1
| | |
| \ ~
\ N
5 | | _ 05 \
“3\\ B “g\,,,,._,_“ . 05 N ey \‘\ ‘("’”""”"""'""“’ "‘*W‘h\
- i \\ \W\ N \
0 —— 0 = 0
5 100 15 20 25 30 50 100 150 200 50 100 150
Problem4 Problem5 Problem6
15 15 15
1 1 1
N
| [\ \
\ [\ (
| (. / \\;, ey \ AT~ M ~
05 051 \ Y o051 / l
| S | \/ i \/ |
W / N Wl
Wy ! i
U\)
0 0 0
20 40 60 80 100 120 20 40 60 80 100 50 100 150

Figure 5: Power increase ratio p, in the test problems (solid line) and the limiting value
p of Proposition 4 (horizontal dotted line)

4, the evaluation of h* is exact if it is wholly divisible by 2752 and otherwise it is less
than (27°2) h* in absolute value. The error bound in row 5 is the difference between
h* and the smallest value of h across all particles. From row 5 it may be deduced that
at the end of cycle L the objective function h had only two unique values h(Y) > h(2)
across all particles, and exp (hV)) /exp (h(®)) —1 2 2752, in each test problem. For each
test problem the range in row 6 is k~' 32% | [max (;) — min (z;)], where the minimum
and maximum are taken over all particles at the end of the last cycle. These values
are much larger than the h* error bound because h is locally quadratic at the maxi-
mum x*: a straightforward application of Taylor’s theorem shows that the evaluation
of h (:C{, U TN T A ,x,’;) is indiscernible from that of h (z*), in floating point
representation, if and only if |z; — 2*| Z 2752 [92h/022]"*. To a rough approximation
this implies that ranges on the order of the square root of the h* error bound might be
anticipated, and row 6 is consistent with this.

Rows 12 through 16 document the choices of the 5 free algorithm parameters made
for the SA//SMC algorithm for each test problem. Recall that the entire procedure
was repeated 100 times in each case. Rows 17 and 18 provide the mean and standard
deviation of the error in approximating h* over these 100 repetitions, and rows 20 and 21
do the same for the first argument of the objective function. The double asterisk (rows
19 and 22) denotes the single particle ** that produced the largest value h** of the
objective function over all cycles and repetitions. These results show that the SA/SMC
algorithm is grossly inaccurate compared with the SABL algorithm. The final rows for
each method, in Table 3, record the number of function evaluations entailed, a standard

30

method of comparing computational efficiency in the global optimization literature, and
the execution time on the same quadcore CPU for each. The geometric mean of the
ratio of SABL evaluations to SA/SMC evaluations across the six test problems is 0.275;
for execution times it is 0.240.

A major factor in the relatively quite poor performance of SA/SMC is the power
increase schedule in (13): the power increase ratio is approximately p, = (r¢ — 1,_1) /7¢ =
log (¢ + 1) /log (£) — 1 — 0, whereas in SABL the limiting value is p given in (12). The
consequences are evident in the final power r of the SA/SMC algorithm (row 23 of
Table 3): this, alone, precludes accurate determination of the mode. Another major
inefficiency in the SA/SMC algorithm is due to the fact that the Metropolis variance
matrix (14) collapses much faster than is warranted by the rate of power increase, with
the consequence that very quickly this step does not mix the particles that emerge
from resampling. An effective non-adaptive SA/SMC algorithm could not be designed
without first understanding the theory developed in Section 5.3. By employing a generic
sequentially adaptive strategy that applies to a wide set of problems of which global
optimization is only one, SABL achieves efficiency without the theory developed in
Section 5 — indeed, in our work the theory in Section 5 was motivated by the observed
ability of SABL to solve a variety of optimization problems to machine accuracy.

6.2 Maximum likelihood in the AR(3) GDP model

The section reviews the performance of the SABL optimization model as applied to
maximum likelihood for the model and data of Section 4.2. Recall from Section 5.2
that in this setting the asymptotic variance matrix of the maximum likelihood estimator
emerges as a by-product from SABL under the classical regularity conditions for the
likelihood function.

Figure 6 (page 32) documents the performance of SABL for this problem. The
top panel documents the same three different stages of the algorithm discussed in Sec-
tion 6.1. In the second stage, between cycles 18 and 50, the power increment ratio
pe = (pe — po_1) /pe—1 fluctuates about the asymptotic value p = 0.9688 (for k = 5) of
Proposition 5. From the middle panel, the maximum likelihood estimates are constant
up to pixellation. This condition persists through the third stage as well as particles
contract even more tightly about the mode (though at a slower rate than in the second
stage). The bottom panel provides the asymptotic standard errors — square roots of
the diagonal elements of r; - I//\'g at each iteration. These are also constant in the second
stage of cycles. They rise in the third stage as V; increasingly reflects noise due to the
limitations of floating point representation of likelihood function evaluations.

Figure 7 (page 33) tracks the distribution of particles through some representative
cycles. In the upper left panel r5 = 1 and so the distribution is very close to that in
Figure 2 (page 19), lower left panel. In the second stage of cycles inferred from p,, and
a very few adjacent ones as well, the density conforms very well with that inferred from
re- Ve (¢ =14, 30,46, 50). The deterioration due to the limitations of machine arithmetic
become apparent in the last two panels. Indeed, in the final panel (¢ = 70) one can

31

N Power increase ratio
10" pr—r—r— s T —————
E\

T =
——Ratio
Asymptotic rhgj

Ratio
[

10' —

P! P!
40 50 60 70
SABL cycle

Parameter value atlikelihood maximum

——log Secular half-life log periodicity- — —log Cyclical half-life log shock swan‘dev

Parameter value
2 N o N PO @

T
|
|
\
|

40 50 60 70
SABL cycle

Asymptotic standard deviation of ML estimate

——log Secular half-life- — -log Cyclical half-life log periodicity log shock swan‘dev

15 - B

Standar deviation
\

SABL cycle

Figure 6: Some aspects of SABL applied to maximum likelihood

discern the emergence of a step function, three different values of the likelihood function
reflecting changes in the two lowest order bits of floating point representation.

Table 4 (page 43) presents the maximum likelihood estimates of the four parameters
of interest and their asymptotic standard errors in the columns headed “direct ML”.
The two columns to the left provide the posterior means and standard deviations from
the Bayesian inference example in Section 4.2. The maximum likelihood results differ
substantially from the Bayesian inference results, especially for log (p): the posterior
mean has a classical p-value of 2.086 x 1073, whereas the MLE is well within a posterior
highest credible interval of any conventional size. The mechanics of this difference are
readily traced to the decidedly non-quadratic likelihood as a function of 6, = log (p)
evident in Figure 7, upper left panel, and Figure 2, lower left panel. The differences for
log (hs) and log (h.) have similar origins, though the contrast is not so marked as it is
for log (p).

Yet a third approach is to use the relatively quite simple AR(3) likelihood function
directly. The consequences of this approach appear in the two far right columns in Table
4. Mapping the OLS estimate of 3 and the corresponding estimation of o2 into 6 by
means of (11) then provides the MLE, which of course must be the same as the estimate
found by the SABL optimization algorithm. Just what “the” asymptotic standard errors
are for this procedure is a matter of definition. These could be based on the gradients of
the mapping from [to 6 at the MLE. Those in the last column of Table 4 are obtained by
transforming values of 3 and o, simulated from the asymptotic normal distribution, to
f and then computing the sample variance matrix. On the whole, they are much closer

32

Cycle 5,power 1.1690e+00 Cycle 8,power 7.9414e+00

2 \ 2
1) \ o 4F
< c
8 os A\ 1 3
] s :
/ —
. I e R . ‘
1 05 o o5 1 15 2 25 3 35 4 05 1 15 2
Log periodicity centered atlimit Log periodicity centered atlimit
Cycle 14, power 3.9276e+02 Cycle 30,power 1.8531e+07
50+ -] p
/ N 10000 / \\ R
20 / 1 = \
2 30f 7/ 4 A
8 2t / \ 1 2 sooof]
J N]
0 L L L - o ,//‘ . , .
-0.03 -0.02 -0.01 o 0.01 0.02 0.03 0.04 0.05 -15 -1 05 o 0.5 1 15
Log periodicity centered atlimit Log periodicity centered atlimit x10*
% 10° Cycle 46,power 8.6280e+11 % 10° Cycle 50,power 6.7037e+12

=2 " [T /,;,
2t \\ 1 6 .
2. /\ , 3. /
g \] 3 /
S . .

~

05 // \\ 4 2r \
o . P o . . .
-1 08 06 0.4 0.2 o 0.2 0.4 0.6 08 1 25 2 -15 -1 05 o 05 1 15 2 25
Log periodicity centered atlimit x10° Log periodicity centered atlimit x107
% 10° Cycle 60,power 5.6144e+13 ¥ 10" Cycle 70,power 1.2763e+14
15f 1 A
2F [\
"\ [\
2 E\ 2 /
2. y | 215l |
/ \ / \ L |
a / Y \ a [
5F / \ A\ 1 e
/ \/\\/ \ o5t WA
-15 -1 05 o 05 1 -15 -1 05 o 05 1
Log periodicity centered atlimit x107 Log periodicity centered atlimit X107

Figure 7: Distribution of 63 (period) particles in selected cycles ¢ (solid line). The
normal density consistent with standard deviation is the dotted line. The horizontal
axis is #3 + 0.09623196009.

to the direct ML asymptotic standard errors than to the posterior standard deviations.

Figure 6.2 provides another perspective on the comparison between the three ap-
proaches to inference, for the joint distribution of secular and cyclical half-life (left
panels) and the joint distribution of period and cyclical half-life (right panels). To fa-
cilitate comparison the axes are identical in each column and were selected so as to
exclude the 0.25% smallest and 0.25% largest points out of 820 selected from the 16,348
particles in the posterior distribution. The number of points plotted in the last two rows
is almost 820 since the dispersions there are smaller. The horizontal and vertical lines
are the same in each column, intersecting at the maximum likelihood estimate, which is
indicated by the circle in the last two rows. In the top pair of panels the circle is the
mean of the posterior distribution and the cross is the median. The smaller dispersion of
the parameters under the asymptotic ML distributions, especially for log (p), is striking
in these figures. So, too, are the differences in shape. The joint distribution under the
direct ML asymptotic expansion is Gaussian by construction; as already documented
and well-understood, the posterior distribution is not; but the indirect ML distribution
is also non-Gaussian because the transformation from (3, o) to 6 is nonlinear.

The indirect ML asymptotic expansion is very close to the exact posterior distribution
using the conventional improper prior distribution p (5.0) o 0!, sometimes called the

33

US DirectBayes US DirectBayes

e 10° 2 10°
% IR "—; o o
= =
< ©
L Q
= £
S S
9 3
10 10
10° 10"
Secular half-life Periodicity
US DirectML US DirectML
T T
210° b Siie 210t e
5 £ :
= =
< ©
L L2
° o
> >
[§) 8
107 1 10"
10° 10"
Secular half-life Periodicity
US IndirectML US IndirectML
gm"—, . : & gw“— b s
3 %
= =
© ©
o Q
© °
> =
[§) O
10M 1 10%}
10° 10"
Secular half-life Periodicity

Jeffreys prior on (less precisely) “diffuse” or “uninformative.” This is in fact not a Jeffreys
prior for linear regression except when it reduces to mean estimation. Whereas the prior
in 3 is flat, the implied prior for # is not due to the Jacobian implied by the nonlinear
transformation. The fact that “diffuse” or “uninformative” prior distribution can be

vague, slippery or vacuous concepts is sometimes missed by Bayesian econometricians,
like Geweke (1988).

7 SABL toolbox

Matlab is proprietary software developed and leased by The Mathworks. It is widely
used in industry and academia. For academics interested in an individual license sub-
stantial academic discounts are available. Many research universities have site licenses
for Matlab and in many cases it is freely available to university staff. Matlab operates
under Linux, OS and Windows operating systems. Matlab has constantly improved and
expanded since its inception almost 30 years ago and this continues. The Mathworks
has a large PhD staff including several substantial contributors to scientific computing
with independent academic reputations.

Matlab supports a wide variety of basic mathematical operations in is core soft-
ware. This core is supplemented by over fifty proprietary Matlab toolboxes with spe-
cialized capabilities, for example Statistics and Machine Learning, Parallel Computing,
and Econometrics. Third parties have developed hundreds of additional toolboxes, most

34

of them nonproprietary. After installation toolboxes become an intimate part of Mat-
lab, extending its capabilities by anything from a few functions to provision of entire
platforms specific kinds of work.

SABL is a third-party nonproprietary toolbox developed at the University of Tech-
nology Sydney, Australia. It provides an entire platform that makes it straightforward
for users to apply the SABL algorithm to problems in Bayesian inference and optimiza-
tion, and for third parties to contribute new models or variations on the SABL algorithm
presented in this paper. SABL requires the Matlab Statistics and Machine Learning Tool-
box, and for GPU computing or explicitly parallel CPU computing it requires the Matlab
Parallel Toolbox as well. For GPU computing it is also necessary to have the C/CUDA
compiler installed. Matlab and SABL support GPU computing only with Nvidia chips,
which are commonly found in university linux clusters and many clouds. SABL can be
installed under the same operating systems as Matlab; currently, however, GPUs cannot
be installed on Macs. The SABL Handbook provides details on all of these matters.

SABL is designed to meet several objectives

1. Permit users whose objective is to solve a particular problem at hand to exploit the
power of the SABL algorithm and inexpensive, fast, massive parallel computing
easily, without having to involve themselves in the arcane difficulties of GPU com-
putation or the tedious tuning, tinkering, trial and error that so often accompany
posterior simulation or optimization.

2. Provide a platform with ready ports of entry for new models and new objective
functions developed by third-party researchers.

3. Minimize the time and effort required to make future improvements in SMC algo-
rithms available for practical day-to-day work and expand the toolkit of researchers
addressing challenging problems in Bayesian inference and optimization.

SABL incorporates a wide variety of features in order to meet these objectives. Here
are some of the more important ones.

1. The specification of the algorithm is governed by 50 parameters (e.g., groups J
and number N of particles in each group, RESS criterion in the C phase, criteria
for termination of the Metropolis steps in the M phase). These parameters all
have default values that work well for most applications.

(a) In this respect SABL is “hands free”, avoiding the tedious tuning, tinkering,
trial and error that is so often encountered with new models or even new
applications using alternatives like importance sampling and Markov chain
Monte Carlo for Bayesian inference or steepest ascent and simulated annealing
for optimization.

35

(b) Modellers can set alternative default values for users and the user can change
any of the default values. It is the rare user who would need to know about
all of these parameters, much like most smart phone users remain unaware of
all of the options to tailor their device.

2. SABL exploits the fact that the SABL algorithm is embarrassingly parallel in the
C and M phases, and the S phase accounts for a tiny fraction of execution time.
The algorithm is pleasingly parallel overall.

(a) It is therefore well suited to execution using graphics processing units, which
provide massively parallel computing with thousands of cores at rates of well
under a dollar per hour for occasional users by means of cloud computing
and a few cents per hour for intensive users by means of local installation. It
is impossible to reduce the advantages of GPU to a single speed-up factor,
primarily because this varies greatly by application and the goal of the appli-
cation, but also because the number of installed cores per GPU is currently
increasing at rates exceeding Moore’s law. Spedup factors of 10 to 100 are
common, and there are specific instances in which alternatives with other
algorithms would require eons.

(b) SABL is also well suited to CPU environments with dozens of cores, which
are becoming more common. Because Matlab efficiently exploits options in
C for parallel loop execution, SABL can achieve speedup relative to single core
computing by a factor approaching the number of CPU cores even without
the Matlab Parallel Toolbox installed. This is not nearly as fast as GPU
execution but is still a substantial improvement on conventional quadcore
computing.

3. SABL is completely self-documenting, with an on-line help command system, an
extension of the Matalb help command system to documentation and the system
of global structures employed by SABL as well as the functions that comprise SABL.

4. SABL executes in both CPU and GPU environments, including multiple GPUs.
Users switch from one to the other using a single parameter. While many common
operations (e.g., allocating space for an array or computing standard deviation) are
sensitive to the type and number of processors, these differences are all managed by
an extensive set of SABL utilities. They are invisible to the modeller or user, who
can write a single set of code that executes efficiently in all of these environments.

5. SABL provides all of the common prior distributions, a systematic way to truncate
prior distributions, and a systematic way to mix a continuous prior distribution
with a discrete distribution. Augmenting this set of prior distributions is straight-
forward. Both modellers and users can provide customized prior distributions and
SABL will incorporate these for the model or application at hand in the same was
as the common prior distributions.

36

6. Because incorporation of incremental information is part and parcel of SABL and
all SMC algorithms, the work required to update the posterior distribution given
new information is incremental, unlike the case in IS or MCMC where the work
must be repeated almost in its entirety. Thus SMC algorithms are tailored to real-
time posterior updating in a way that other posterior simulators are not. SABL
makes this very simple for the user, who must only specify two file names, one for
the particles of the SABL algorithm without the updating information set and one
to record the particles after updating.

7. SABL incorporates the two-pass variant of the SABL algorithm discussed in Section
3.1, simply by the change of a single algorithm parameter.

8. Because the marginal likelihood is a generic by-product of the SABL algorithm,
SABL provides the approximation of the log marginal likelihood and its numeri-
cal standard error in all cases. The accuracy of these evaluations is excellent in
comparison with competitors.

9. SABL provides a great deal of additional information in the process of execution. For
example, with complete data tempering (one observation introduced each cycle)
one has access to every updated posterior distribution, which together with the
data make it possible to assess all predictive likelihoods in a single sweep. SABL
passes control to the user at many points in each cycle, where the user can harvest
this intermediate information for the purposes at hand. The basic SABL user need
not even be aware of this possibility, which provides a wide range of opportunities
for the more experienced Bayesian econometrician or statistician.

8 Proofs of propositions

Proposition 1. The function f (r;) in (1) is monotone decreasing for r, € [r,_1,00).
Let m be the number of (i,) for which k (9%‘”) — max;, k (9“‘”). If RESS* ¢

(4]

(m/JN,1) then f (r;) = RESS* has exactly one solution 7, € (r,_1,00); otherwise it
has none.

Proof: To simplify notation replace r, — r,_; with 7 > 0 and the arguments Qg-fl_l

with 0; (i =1,...,n), and write k (6;) = k;. Then (1) becomes

IO N (D S)
fr) = n> Lk Y R

i=1" 1=1"

)

By inspection f (0) = 1. Since only relative values of k; matter, any positive multiplica-
tive renormalization of the k; is permissible. Adopting the normalization max;—y,__, (ki) =

L,
2
limf(r):m—zﬂ,
n

r—00 nm

37

hence the requirement RESS* € (m/JN,1). Since f (r) is continuous this establishes
the existence of at least one solution ry € (r,_1, 00).

Suppose that there are u positive values of k;. Re-order the k; so that k; > 0
(t=1,...,u) and write

-1 y_ k: 2
rn =5 tokadl

1=1"

g(r)
h(r)

u
n

It suffices to show b’ (r) > ¢’ (r) > 0 V r > 0. For this purpose adopt the normalization
minizl u (kz) = 1. We have

.....

g(r)=2 (ul Z kf) : <u1 Z k! log /@) , W (r)=2u"" Z k2" log (k;)
i=1 i=1 i=1

and
B (r) — ¢ (r) = 2cov (K, k] log k;) > 0.
Proposition 2 (Limiting particle concentration) Given Condition 1,
lim P.[X (e;h)] =1V e > 0.
Proof: If y [z : h(z) <h] = 0 then the result is trivial. Otherwise there exists
e* > 0 such that for all ¢ € (0,*), P [X (g;h);h,p®,r] > 0. For all € € (0,£*) and for
h < o0,

PIX@ihpOr] _ PIX(E/20):h0] _ fewan?® @de explr (-

P[X (g;h);h,pO.] — P[X(e;h);h,pO, 7] — fX(ah)Cp(O) (z) da 'exp [(

fX(a/?;h) P (x) dz

For h = oo, replace exp [r - (h —£)] /exp [r- (h —¢)] with exp (r/ (£/2)) / exp (r/e).

Proposition 4. Asymptotic normality of particles. Given Condition 3, as r — oo,
u (h,p9,r) =r'2 [z (h,p©,r) — z*] AN (0,—H™1).

Proof. We show that the p.d.f. of u (h, p©), 7’) converges pointwise to the normal
density py (u;0, —H ') and the result then follows by Scheffe’s Lemma.

For any u € R¥ consider the sequence of points z, = z* + u - 7~ Applying
Taylor’s Theorem with the Lagrange form of the remainder, the corresponding sequence
of Boltzman kernels evaluated at z is

=
|
™
~—

~exp (r-e/2) — o0.

/2.

p© (x* + ur_1/2) - exp [rh (x* + ur_1/2)]
= pO (2" +wr ') -exp[rh (z*)] - exp (W Hu/2) - exp [r - ¢ (ur™/?)].

38

From condition ?? ¢ (ur™/2) = O (r=%?), so lim, oo 7 - ¢ (r,u) = 0. Hence the limiting
kernel, unique up to normalization, is

lim p@ (2 4+ u-r~12) exp [rh (z*)] exp (u'Hu/2)
= PO T exp [0]
(0) (* . —1/2
T A G T)) B /
= Tlggo 20 () exp (W' Hu/2) = exp (W' Hu/2).

Proposition 5. Given Condition 3, the limiting value of the power increase ratio
p, for the power tempering sequence defined by (1) and the equation f (ry) = n* for the
RESS criterion RESS =n* is
p= lim p, = 77*72/k 14+ [(n*72/k . 1) 77*72/16] 1/2
{—00 ¢ '

Proof. The power tempering sequence satisfies

2
1 n - (re—ro—1) 1 n _ 2(rg—re_1)
O e T
n 1 ni:l

S AN

= exp|(re—re_1) h(z*)] 2 {% i exp [(m —rp_1)h (xgz_l))] }
—n* - exp [(re — re_1) b (2*)] 2 i exp {2 (re—me—1)h (332@71))] = 0. (16)

Turning to the first term,
-1\ _ N
exp [(7“@ —1ro_1)h <xz ﬂ =exp[(re —ro—1) h (z")]

- exp {w (:IZ‘EZ) — x*)lH (:IZ‘EZ) — x*)} cexp [(re —re1) - O (rp_y)] - (17)

So long as limy_,« [(Tg — rg_l)/rg’fl} = 0 the last term can be ignored. Since the
proof goes through after imposing a positive upper bound on (r, — r,_1) /r7_; and since
limy o0 (rg — r¢_1) /r7_, = 0, this is harmless. The first term on the right side of (17)
vanishes in the re-normalization in (16), leaving just the middle term. Substituting

u = rl}ﬁ (a:(f) — :c*), this term is

7

exp {Mu’flu] =exp (p,u'Hu/2).
2rp_y

39

From Proposition 3

Jim By [exp (pe' Hu/2)] = Eyn(o,—m-1)[exp (pu'Hu/2)]
= Eyunou-) {exp [—pu' Hul} .
Using the Choleski decomposition J'.J = H~! make the standard transformation z =

Ju ~ N (0, I) and then

Eyn@,H1) {exp [—PZU/HU/2H = E. N5 {exp [_PZZ/Z/2]}
k

= HEN(O,l) exp [—p,2}/2] . (18)

i=1
The term inside the product is

2

o0

Since the particles are ergodic, we have for the first term in (16)

lim lim {% 2imt OXP [m —re)h (“"1@_1))} }2

n—00 f—00 exp (1o — r¢-1) b (2))?

=(14p)".

To deal with the other term proceed in exactly the same way, substituting 2 (r, — 7,_1)
for (r¢ — ro_1) in (17), which removes the division by 2 in (18), and then (1 + 2p,)~ />
is the last term in (8). Thus for the second term in (16) we have

—k/2

lim lim n* - %Z?:l P [2 (re=re) b <$’(é_1)>}

=n*(1+2
n—00 f—00 exp [2 (rg — re—1) h (z*)] T)

The limiting value p satisfies
L+p™" = - (1+2p) = (14p)° = (1+2p)
= 21— p+(1-n¥*) =0

— p= 77*72/19 14+ [(n*f2/k . 1)2 i (77*72/]{ _ 1)]

—k/2

1/2

The RESS target n* € (0,1) and hence 7*~2/¥ —1 > 0. Since p > 0 the pertinent branch
is

o=k _1 4 [(77*—2/13 _ 1)2 + (k- 1)] 1/2‘

40

/OO exp [—p,2° /2] (2m) "% exp <—%) dz = (2m)7Y/? /OO exp [— (1 + py) 2%/2] dz = (1 + p)) V2

References

Aarts, EHL, de Bont, FMJ., Habers, JHA. and van Laarhoven, PJM. 1986a. A
Parallel Statistical Cooling Algorithm. Proc. STACS 86, Springer Lecture Notes in
Computer Science, 210, 87-97.

Aarts, EHL., de Bont, FMJ., Habers, JHA. and van Laarhoven, PJM. 1986b. Parallel
Implementations of the Statistical Cooling Algorithm. Integration 4: 209-238.

Belisle CJP. 1992. Convergence theorems for a class of simulated annealing algo-
rithms on R¢. Journal of Applied Probability 29: 885 - 895.

Cerny V. 1984. Minimization of Continuous Functions by Simulated Annealing,
Research Institute for Theoretical Physics, University of Helsinki, preprint No. HU-
TFT-84-51.

Cerny V. 1985. Thermodynamical approach to the travelling salesman problem: An
efficient solution algorithm. Journal of Optimization Theory and Applications 45:41 -
51.

Chopin N. 2002. A sequential particle filter method for static models. Biometrika
89: 539 - 551.

Creal D. 2012. A survey of sequential Monte Carlo methods for economics and
finance. Econometric Reviewss 31: 245-296.

Dekkers A, Aarts E. 1991. Global optimization and simulated annealing. Mathe-
matical Programming 50: 367 - 393.

Del Moral P, Doucet A, Jasra A. 2006. Sequential Monte Carlo samplers. Journal
of the Royal Statistical Society Series B 68: 411 - 436.

Del Moral P, Doucet A, Jasra A. 2012. On adaptive resampling strategies for se-
quential Monte Carlo methods. Bernoulli 18: 252-278.

Douc R, Cappe P, Moulines E. 2005. Comparison of resampling schemes for particle
filtering. 4th International Symposium on Image and Signal Processing and Analysis
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.9118

Douc R, Moulines E. 2008. Limit theorems for weighted samples with applications
to sequential Monte Carlo methods. Annals of Statistics 36: 2344-2376.

Doucet A, Godsill S, Andrieu C. 2000. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing 10: 197 - 208.

Duan J, Fulop A. Density tempered marginalized sequential Monte Carlo samplers.
Journal of Business and Economic Sstatistics 33: 192-202.

Durham G, Geweke J. 2015. Adaptively sequential posterior simulators for massively
parallel computing environments. In: Ivan Jeliazkov , Dale J. Poirier (eds.) Bayesian
Model Comparison (Advances in Econometrics, Volume 34) Emerald Group Publishing
Limited, Chapter 1, 1-44.

Geman S, Hwang CR. 1986. Diffusions for global optimization. SIAM Journal on
Control and Optimization 24: 1031-1043.

Geweke J, 1988. The secular and cyclical behavior of real GDP in nineteen OECD
countries, 1957-1983. Journal of Business and Economic Statistics 6: 479-486.

41

Geweke J. 1989. Bayesian inference in econometric models using Monte Carlo inte-
gration. Econometrica 57:1317-1340.

Geweke J. 2005. Contemporary Bayesian Econometrics and Statistics. Wiley.

Geweke J. 2015. The secular and cyclical behavior or real GDP: Likelihood-based
inference in a nonlinear model using SABL.

Goffe WL, Ferrier GD, Rogers J. (1994). Global optimization of statistical functions
with simulated annealing. Journal of Econometrics 60: 65-99

Hamma B, Viitanen S, Torn A. 2000. Parallel continuous simulated annealing for
global optimization. Optimization Methods and Software 13: 95-116.

Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by simulated annealing.
Science 220: 671 - 680.

Liu JS, Chen R. 1998. Sequential Monte Carlo methods for dynamic systems. Journal
of the American Statistical Association 93: 1032 - 1044.

Molvalioglu O, Zabinsky ZB, Kohn W. 2007. Models and algorithms for global
optimization in: Optimization and its Applications, pp 215-222. New York: Springer.

Molvalioglu O, Zabinsky ZB, Kohn W. 2009. The interaction particle algorithm with
dynamic heating and cooling. Journal of Global Optimization 43: 329 - 356.

Samuelson PA (1939). Interactions between the multiplier analysis and the principle
of acceleration. The Review of Economics and Statistics 21: 75 - 78.

Vanderbilt, D, Louie SG. 1984. A Monte Carlo simulated annealing approach to
optimization over continuous variables. Journal of Computational Physics 36: 259-271.

Xue, G. 1994. Molecular conformation on the CM-5 by parallel two-level simulated
annealing. Journal of Global Optimization 4:187-208.

Zhou E, Chen X. 2013. Sequential Monte Carlo simulated annealing. Journal of
Global Optimization 55: 101 - 124.

42

Table 3: Performance of the SA/SMC and SABL optimization algorithms

Test problem 1 2 3 4) 6
1 k 2 20 20 20 10 10
2 h* ~ —0.998 -0.01 -1 0 -1 -le-15
3 ¥ ~ —-31.978 0.00 1 0 0.9 0
SABL optimization
4 h* error * 2e-19 0 0 0 8.0e-32
5 h* error bound 2.2e-16 1.7e-18 2.2e-16 2.2e-16 2.2e-16 2.0e-31
6 Max x] range 3.3e-6 5.7¢-9 3.3e-9 9.5e-7 18e-8 1.4e-16
7 L 33 232 201 139 104 264
8 1 4.3e-3 1.5e-9 3.3e-9 9.5e-7 1.8e-8 1.4e-16
9 rr 2.7e16 3.2e19 7.lel6 8.2¢16 2.4el6 6.8e32
10 Evaluations 1.4e7 5.4e7 8.0e7 3.6e7 3.4e7 4.4e7
11 Time 62.78 299.48 230.46 168.66 175.47 217.59
SA /SMC optimization
12 # particles 200 200 1000 200 1000 200
13 # cycles 200 2000 5000 5000 4000 20,000
14 Annealing A 0.1 0.001 0.001 0.001 0.001 0.001
15 Metropolis « 10 10 10 10 10 10
16 Metropolis 0.995 0.995 0.998 0.998 0.998 0.998
17 Mean h* error -1.2e-8 -0.0025 -3.657 -0.0010 -0.446 -0.648
18 Std hA* error 2.8¢-8 0.0016 0.768 0.0103 0.386 4.559
19 h** error <le-8 -0.0005 -0.0008 -1.1e-7 -0.0002 -3.8e-12
20 Mean x7 error -0.0181 -0.0091 -0.3589 -0.062 0.0205 -0.0003
21 Std x] error 0.0302 0.0703 0.7680 0.628 0.1776 0.0073
22 x7* error -0.0011 -0.0105 -0.0004 -0.0001 0.0066 6.6e-8
23 rr 53 5.9e3 1.6e3 4.6e8 57 9.6e9
24 Evaluations 4.0e6 4.0e7 5.0e8 1.0e8 4.0e8 4.0e8
25 Time 118.32 553.46 1289.1 540.27 1049.5 3011.4

*No exact (analytical) solution available for comparison

Table 4: Posterior moments and maximum likelihood estimates

Posterior Direct ML, # OLS indirect ML

Parameter mean st. dev. MLE st. err. MLE st. err.
Secular log (hs) 4.056 0.667 3.646 0.767 3.646 0.866
Cyclical log (h.) -0.584 0.548 -0.096 0.457 -0.096 0.406
Period log (p) 2.045 0.565 1.621 0.148 1.621 0.231
Shock log (o) -3.917 0.112 -3.984 0.109 -3.984 0.117

43

