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Abstract

There is a one-to-one mapping between the convenetional time series para-
meters of a third-order autoregression and the more interpretable parameters of
secular half-life, cyclical half-life and cycle period. The latter parameterization
is better suited to interpretation of results using both Bayesian and maximum
likelihood methods and to expression of a substantive prior distribution using
Bayesian methods. The paper demonstrates how to approach both problems us-
ing the sequentially adaptive Bayesian learnign algorithm and SABL software,
which eliminates virtually of the substantial technical overhead required in con-
ventional approaches and produces results quickly and reliably. The work utilizes
methodological innovations in SABL incuding optimization of irregular and multi-
modal functions and production of the coventional maximum likelihood asymptotic
variance matrix as a by-product.
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1 Introduction

This paper takes up a simple but nontrivial example of a situation that arises often
in econometrics. An econometric model takes the form p (y | x, β) where y is a vector
of outcomes, x is a vector or matrix of covariates or conditioning observables, β is an
unknown parameter vector, and the functional form of p is the model specification. Due
to the motivating economic theory, or by virtue of the interpretation of the model, β is
a function of a more fundamental parameter vector θ, so that β = β (θ). The function
need not be one-to-one. For purposes of motivation and interpretation θ is superior
to β; indeed, this typically can best be accomplished in terms of θ. Examples can be
found in most chapters of many econometrics textbooks, from the undergraduate to
postgraduate levels. A generic case is the one in which θ expresses the underlying taste
and/or technology state of a market or economy: neoclassical models of production and
consumption and structural simultaneous equation macroeconometric models are two
broad subcategories. The same is true in nonstructural settings like the many specific
variants of linear state space models and factor models. And it is also true in the effort
to provide economic interpretation of simple descriptive models like the one used here.
For a subjective Bayesian this point has added force because a prior distribution that

is substantive (by implication proper) must be expressed in terms of θ, not β. Bayesian
econometrics now has a set of tools to address these nonlinear models, the most widely
applied perhaps being Markov chain Monte Carlo (MCMC). This paper adds to this
collection of tools the sequentially adaptive Bayesian learning algorithm (SABL). Given
that there already exist multiple approaches, the question of why an additional approach
naturally arises.There are several good answers to this question. The objective of this
paper is to substantiate the answers, by both presenting the method and by illustrating
its application to nonlinear models.

1. SABL provides a generic and robust approach to the nonlinear model problem as
just stated. Compared with existing methods like MCMC it requires very little
tuning and experimentation with the exact form of the algorithm (for example,
specification of the variance matrix for the Metropolis random walk, burn-in and
convergence decisions). In many cases, like the illustration here, no tuning or
experimentation at all is required.

2. With a simple change of a single parameter, the SABL algorithm can be used for
optimization as well as Bayesian inference. Here, that feature is used to compute
maximum likelihood estimates and their associated asymptotic distribution. More
generally, SABL can be used to attack a wide variety of optimization problems in
economics.

3. SABL enables Bayesians to use almost any prior distribution and to modify con-
ventional distribution by imposing constraints (illustrated here) or mixing with
discrete distributions (not illustrated). It also provides numerical standard errors

2



and accurate log marginal likelihood (marginal data density) approximations as
by-products, neither of which is a focus of this paper.

4. In many cases SABL is faster and more accurate than any competing algorithm
when executed in a conventional multicore CPU environment. That is the case for
the illustration here.

5. The SABL algorithm is pleasingly parallel, and except for a computationally in-
significant portion of the algorithm it is embarrassingly parallel. It is therefore
well suited to execution on graphics processing units, and this facility is included
in SABL.

This list is not intended to be exhaustive, but rather as motivation for the reader
already steeped in Bayesian computational techniques to continue on.
The paper proceeds by introducing the nonlinear model used as a simple but realistic

example, Section 2. Section 3 then provides an overview of SABL used for Bayesian
inference, drawing on more extensive documentation for SABL that is readily available.1

This is followed by the illustrative example for Bayesian inference, Section 4. Section 5
takes up optimization in SABL, with a specific focus on maximum likelihood, and the
illustration follows in Section 6. There is a short concluding section.
The paper is written to convey an understanding of SABL and its application to the

problem set forth in the next section. For full development of the immediate theory,
refer to Geweke and Frischknect (2014) and Durham and Geweke (2015a, 2015b2). For
the underlying probability theory the single best self-contained reference is Douc and
Moulines (2008).

2 Interpretation of the third-order autoregression

The relationship of second-order stochastic difference equations to business cycle dy-
namics has been recognized at least since Samuelson (1939). In a model like

yt = γ0 + γ1yt−1 + γ2yt−2 + εt,

where εt is the innovation (shock) for the stationary time series {yt}, the associated
characteristic polynomial is γ (z) = 1 − γ1z − γz2. Let the roots of the polynomial be
r1 and r2. Stationoarity is equivalent to |r1| > 1, |r2| > 1. If, in addition, r1 and r2

are a complex conjugate pair then the time series exhibits characteristic cycles in which
the amplitude is α = |r1|−1 = |r2|−1 and the period is 2π/ tan−1 (Im (r1) /Re (r1)) where
tan−1 denotes the principle branch in (0, π). This is the technical essence of Samuleson
(1939) and now a standard part of graduate education.

1https://www.uts.edu.au/about/uts-business-school/economics/coe-acems/sabl-project-
acems/software

2In preparation, draft available late October 2015.

3



Geweke (1988) applied a similar interpretation to the third-order stochastic difference
equation (autogregression)

yt = β0 + β1yt−1 + β2yt−2 + β3yt−3 + εt, εt
iid∼ N

(
0, σ2

)
, (1)

taking up the case with one real root r1 and a pair of complex conjugate roots r2 and
r3 in the associated characteristic polynomial. That paper used the reparameterization

αs = |r1|−1 , αc = |r2|−1 , p = 2π/ tan−1 (Im (r2) /Re (r2)) , (2)

where the subscript s denotes “secular”and c denotes “cyclical.”It continued to impose
αc < 1, permitted αs > 1, αc−1 then being the explosive growth rate, as well as αc < 1,
the rate of dampening in the transmission of εt. The paper used a conventional improper
prior distribution for β and σ2 = var (εt) and data from 19 OECD countries 1957 - 1983.
It found posterior probabilities of explosive roots near 0, probabilities of complex pairs
exceeding one-half for all countries, and probabilities that |as| > |αc| over one-half for
most countries.
The application here works directly with parameters that are much closer to the way

that economists think about growth and business cycles than are the time series para-
meters β = (β0, β1, β2, β3)′ and σ. This enables the economist to construct a substantive
prior distribution and to readily understand the posterior distribution.
The work begins by replacing the amplitudes αs and αc with their corresponding

half-lives. A damping amplitude α ∈ (0, 1) generates the sequence 1, α, α2, equivalent
to the impulse response function in the first-order autoregression xt = αxt−1 + ηt. The
corresponding half-life is the value h for which∫ h

0
αudu∫∞

0
αudu

=
1

2
,

which implies h = log (1/2) / log (α). Thus for the secular and cyclical components we
have the inverse relations

αs = (1/2)1/hs , αc = (1/2)1/hc (3)

mapping the secular half-life hs to its amplitude αs and the cyclical half-life hc to its
amplitude αc. Writing the generating polynomial for the stochastic difference equation
(1)

1− β1z − β2z
2 − β3z

3 = (1− r1z) (1− r2z) (1− r3z)

with r3 = r2, we obtain from (2)

β1 = αs + 2αc cos (2π/p) , β2 = − (αsαc) cos (2π/p) + α2
c , β3 = αsα

2
c . (4)

The domains of αs and αc are (0,∞). The domain of p is (2,∞), the lower bound
corresponding to using the principal branch of the function tan−1 in (0, π) in (2). More
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fundamentally, there is an identification problem presented by aliasing: in any time
series with one time unit between observations periodicities p/ (1 + pj) (j = 0, 1, 2, . . .)
all exhibit as period p. A conventional way to resolve this problem is to require p > 2,
which also seems satisfactory for business cycles with annual data.
Thus, given the half-lives hs and hc and the period p, (3) followed by (4) provides

β1, β2, β3. The mapping is continuous and has continuous derivatives of all orders. The
other parameters of the model are σ, which has straightforward economic interpretation,
and β0, which does not but is of little interest.
It is natural to express independent prior distributions for hs, hc, p, and σ: most

economists could readily state some plausible and some implausible values for each —
unlike the case with β1, β2 and β3. The half-lives and periods are all measured in time
units and the supports of the respective prior distributions must each be (a subset of)
the positive half-line. Several well-known prior distributions qualify and can easily be
used in the approach taken here. We will use a log-normal prior distribution for each, the
distribution for log (p) being truncated below at log 2. There are also several well-known
prior distributions for σ; we again use a log normal prior. Finally, β0 will be given a
diffuse normal prior distribution.
Both the Bayesian approach (Sections 3 and 4) and the maximum likelihood approach

(Sections 5 and 6) thus use the 5× 1 parameter vector θ with

β1 = θ1, hs = exp (θ2) , hc = exp (θ3) , p = exp (θ4) , σ = exp (θ5) .

The components θ1, . . . , θ5 are mutually independent and normal in the prior distribu-
tion. Section 4 discusses the specific choice of the distribution. The prior distribution is
also used as a computational device for maximum likelihood, but the result is unaffected
by the choice of prior so long as its support includes the maximizing argument of the
likelihood function. Noting that the successive transformations (2) to (3) to (4) are
continuously differentiable of all orders, and considering the properties of the likelihood
function for (1), it is clear that if the likelihood function has a unique internal global
mode, then there is a neighborhood of the mode in which the log-likelihood function is
twice continuously differentiable with bounded third derivative. This familiar condition
is important to a deep verification of the properties of the SABL maximum likelihood
estimates in Sections 5 and 6.

3 Bayesian inference using SABL

The SABL algorithm is a procedure for the controlled introduction of new information.
It pertains to situations in which information can be represented as the probability dis-
tribution of a finite dimensional vector. SABL approximates this distribution by means
of many (typically on the order of 104 to 106) alternative versions of the vector. These
versions are called particles, reflecting some of SABL’s connections to the particle filter-
ing literature. In the SABL algorithm particles undergo a sequence of transformations
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as information is introduced. With minor exceptions accounting for a negligible frac-
tion of computing time in typical research applications, these transformations amount
to identical instructions that operate on each particle in isolation. SABL is therefore
a pleasingly parallel algorithm. This property is responsible for dramatic decreases in
computing time for many research applications with GPU execution of SABL.
At its highest level the SABL algorithm looks like this:

• Represent initial information

• While information not entirely incorporated

—Determine information increment and incorporate by weighting particles

—Remove the weights by resampling

—Modify the particles to represent the information more effi ciently

• End

In the sequential Monte Carlo literature each pass through the loop While ... End
is known as a cycle, and we will use ` to index cycles. The three steps in each cycle are
the correction (C) phase, the selection (S) phase, and the mutation (M) phase.
Let θ ∈ Θ ⊆ Rd denote the vector whose probability distribution represents infor-

mation. Denote the particles by θjn, the double subscripts indicating the J groups of
N particles each employed by SABL. Initially θ has probability density p0 (θ); extension
beyond absolutely continuous distributions is easy, and this streamlines the notation. In
SABL the particles initially are

θ
(0)
jn

iid∼ p(0) (θ) (j = 1, . . . , J ;n = 1, . . . , N) . (5)

In Bayesian inference p(0) (θ) is a proper prior density and in optimization it is the
probability density. It must be practical to sample from the initial distribution (5) and
to evaluate p(0) (θ).
Denote the density incorporating all the information by p∗ (θ). SABL requires that

it be possible to evaluate a kernel k (θ) with the properties

k (θ) ≥ 0 ∀ θ ∈ Θ,
∫

Θ

k (θ) dθ <∞, p∗ (θ) ∝ k∗ (θ) = p(0) (θ) k (θ) . (6)

In Bayesian inference the kernel k (θ) is the likelihood function,

k (θ) = p (y1:T | θ) , (7)

where T denotes sample size and y1:T = {y1, . . . , yT} denotes the data.
Cycle ` begins with the kernel k(`−1) and ends with the kernel k(`). In the first and

last cycles,
k(0) = 1 and k(L) (θ) = k (θ) ,
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respectively. Correspondingly define

k∗(`) (θ) = p(0) (θ) k(`) (θ) , (8)

implying
k∗(0) = p(0) (θ) and k∗(L) (θ) = k∗ (θ) . (9)

The particles change in each cycle, and reflecting this let θ(`)
jn denote the particles at

the end of cycle `. The initial particles θ(0)
jn have the common distribution (5) and are

independent. In succeeding cycles the particles θ(`)
jn continue to be identically distributed

but they are not independent. The theory underlying SABL, discussed further in this
section and developed in detail by Durham and Geweke (2015a, 2015b) drawing on

sequential Monte Carlo theory, assures that the final particles θjn = θ
(L)
jn

d−→ p∗ (θ).
This convergence in distribution takes place in N , the number of particles per group.
The result is actually stronger: the particles are ergodic in N , meaning that for any
function g for which E [g (θ)] =

∫
Θ
g (θ) p∗ (θ) dθ exists,

lim
N→∞

N−1

N∑
n=1

g (θjn) = E [g (θ)] (10)

with probability 1 in each group j = 1, . . . , J .
A leading technical challenge in practical sequential Monte Carlo algorithms, which

of course work with finite N , is to limit the dependence amongst particles, and in
particular to keep dependence from increasing from one cycle to the next to the point
that the final distribution of particles is an unreliable representation of any distribution
at all. A further technical challenge is to provide a measure of the accuracy of the
approximation implicit in the left side of (10) for finite N that is itself reliable. The
SABL algorithm and toolbox do both in a way that makes minimal demands on users.
The remainder of this section provides some details.

3.1 C phase

For each cycle ` define the weight function

w(`) (θ) = k(`) (θ) /k(`−1) (θ) .

The theory underlying the SABL algorithm requires that there exist an upper bound
w(`), that is,

w(`) (θ) < w(`) <∞ ∀ θ ∈ Θ.

The C phase determines w(`) (θ) explicitly and thereby defines

k(`) (θ) = w(`) (θ) · k(`−1) (θ) (11)
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and

p∗(`) (θ) = k∗(`) (θ) dθ/

∫
Θ

k∗(`) (θ) dθ.

Thus (8) and (11) imply k∗(`) (θ) = w(`) (θ) · k∗(`−1) (θ) as well. In SABL the weight
functions w(`) (θ) are designed so that there exists L < ∞ for which k(L) (θ) = k (θ),
although the value of L is in general not known at the outset.
One approach in designing the weight function is to use the functional form w(`) (θ) =

k (θ)∆` and determine a sequence of positive increments {∆`} with
∑L

`=1 ∆` = 1. Thus
at the end of cycle `, k(`) (θ) = k (θ)r` where r` =

∑`
s=1 ∆s. This variant of the C phase

is known as power tempering. The term originates in the simulated annealing literature
in which T` = r−1

` is known as temperature and {T`} as the cooling schedule. Another
approach originates in particle filtering and Bayesian inference: k(`) (θ) = p (y1:t` | θ),
where 0 < t1 . . . < tL = T for a sample of size T . The increments are therefore
w(`) (θ) = p

(
yt`−1+1:t` | y1:t`−1 , θ

)
. This variant of the C phase is known as data tempering.

The C phase can be motivated informally by analogy to importance sampling, a
long-established Monte Carlo simulation method, interpreting k∗(`−1) (θ) as the kernel
of the source density and k∗(`) (θ) as the kernel of the target density. If it were the case
that the particles θ(`−1)

jn were independent and had common distribution indicated by
the kernel density k∗(`−1) (θ), then∑J

j=1

∑N
n=1 w

(
θ

(`−1)
jn

)
g
(
θ

(`−1)
jn

)
∑J

j=1

∑N
n=1w

(
θ

(`−1)
jn

) a.s.−→
∫

Θ
k∗(`) (θ) g (θ) dθ∫
Θ
k∗(`) (θ) dθ

=

∫
Θ

p∗(`) (θ) g (θ) dθ = E(`) [g (θ)] (12)

so long as E(`) [g (θ)] exists. The convergence is in N , the number of particles per group.
The core of the argument for importance sampling is∫

Θ

p∗(`) (θ) g (θ) dθ =

∫
Θ
w(`) (θ) k∗(`−1) (θ) g (θ) dθ∫
Θ
w(`) (θ) k∗(`−1) (θ) dθ

=

∫
Θ
w(`) (θ) p∗(`−1)g (θ) dθ∫

Θ
w(`) (θ) p∗(`−1) (θ) dθ

.

This result does not apply strictly, here, because while the particles θ(`−1)
jn are identically

distributed, they are not independent and k∗(`−1) (θ) is at best an approximation of
the kernel density of the true common distribution of the particles θ(`−1)

jn so long as
N < ∞ (as it must be in practice). But many of the practical concerns in importance
sampling carry over. In particular, success lies in w (θ) being “well-conditioned”—loosely
speaking, variation in w (θjn) must not be too great. For example, diffi culties arise when
just a few weights w (θjn) account for most of the sum. In this case the target density
kernel k∗(`) (θ) is represented almost entirely by a small number of particles and the
approximation of E(`) [g (θ)] implicit in the left side of (12) is poor.
TheC phase directly confronts the key question of howmuch information to introduce

in cycle `: too little and L will be larger than it need be; too much, and it becomes
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diffi cult for the other phases to convert ill-weighted particles from cycle `−1 into particles
from cycle ` suffi ciently independent that the representation of the distribution does not
deteriorate from one cycle to the next into a state of gross unreliability. A conventional
and effective way to monitor the quality of the weight function is by means of relative
effective sample size

RESS(`) =
ESS(`)

JN
=

[∑J
j=1

∑N
n=1w

(`)
(
θ

(`−1)
jn

)]2

JN
∑J

j=1

∑N
n=1w

(`)
(
θ

(`−1)
jn

)2 . (13)

The effective sample size ESS(`) is an adjustment to the sample size (number of particles,
JN) that accounts for lack of balance in the weights, and relative effective size is its
ratio to sample size.
In general RESS(`) is lower the more information is introduced in the C phase. This

is always true for power tempering and as a practical matter is nearly always the case
for data tempering. It suggests a strategy of introducing no further information after
RESS(`) has attained or fallen below a target value RESS∗. The target RESS∗ = 0.5
is usually reasonable. Practical experience shows that somewhat higher RESS∗ leads
to more cycles but faster execution in the M phase, lower RESS∗ to fewer cycles but
slowerM phase execution, and as a result there is not much difference in execution time
over the interval (0.1, 0.9) for RESS∗.
Before any new information is introduced in the C phase w(`) (θ) = 1. Data tempering

entails iterations s = 1, 2, . . . in which iteration s introduces yt`−1+s, updates

w(`)
(
θ

(`−1)
jn

)
= w(`)

(
θ

(`−1)
jn

)
· p
(
yt`−1+s | yt`−1+s−1, θ

(`−1)
jn

)
,

and computes the correspondingRESS(`). Iterations terminate the first timeRESS(`) <
RESS∗. This procedure is well established, though much of the sequential Monte Carlo
particle filtering literature introduces exactly one new observation per cycle. In neither
approach does the algorithm control the amount of information introduced in the C
phase and therefore in each cycle. Indeed, routine applications of SABL demonstrate
that unusual or outlying observations (e.g., asset returns for days or periods marked
by financial crisis) can produce RESS(`) with values much smaller than RESS∗, imply
poor performance in the S and M phases, and generally compromise the effi ciency of
the algorithm.
Power tempering, discussed briefly at the start of this section, makes it possible in

principle for the algorithm to control the introduction of information through the choice
of the sequence of increments {∆`}. Precisely the same problem arises in simulated
annealing approaches to optimization, which uses temperature, the inverse of power,
and the problem is known as choice of the temperature reduction schedule. We return
to this problem in Section 5, because it has some closely related aspects that apply to
optimization but not Bayesian inference. The solution developed there is subsequently
used for both Bayesian inference and maximum likelihood estimation in Sections 4 and
6.
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3.2 S phase

The rest of cycle ` starts with the weighted particles θ(`−1)
jn from the end of the C phase

and produces unweighted particles θ(`)
jn that that meet or exceed a mixing condition —

a measure of lack of dependence described in the next section —at the end of the M
phase. The S phase begins this process, removing weights by means of resampling.
The principle behind resampling is to regard the weight function as the kernel of a
discrete probability function defined over the particles and draw from this distribution
with replacement. Hence the name selection phase. SABL performs this operation on
each group of particles separately —that is, particles are always selected within groups
and never across groups. This independence between the groups j = 1, . . . , J is essential
in (1) proving the convergence of the algorithm, (2) assessing the mixing condition in
the M phase, and (3) providing a numerical standard error for the approximation as
discussed in Section 3.4. Resampling produces unweighted particles denoted θ(`,0)

jn .
The most elementary resampling method is to make N independent and identically

distributed draws from the multinomial distribution with argument N and probabilities

pjn = w(`)
(
θ

(`−1)
jn

)
/

N∑
i=1

w(`)
(
θ

(`−1)
ji

)
(n = 1, . . . , N) .

This method is known as multinomial resampling. An alternative method, known as
residual resampling, is to compute the same probabilities and collect an initial subsample
of size N∗ ≤ N consisting of [N · pjn] copies of each particle θjn, where the function [·]
is standard notation for what is variously known as the greatest whole integer, greatest
integer not greater than, or floor function. Then draw the remaining N −N∗ particles
by means of multinomial resampling with probabilities p∗JN ∝ Npjn− [N · pjn]. Residual
resampling results in lower dependence amongst the particles θ(`,0)

jn (n = 1, . . . , N) than
does multinomial resampling. For both methods there are central limit theorems that
are essential to demonstrating convergence and interpreting numerical standard errors.
There are other resampling methods that lead to even less dependence amongst the
particles, but for these methods central limit theorems do not apply. These methods are
all described in Douc et al. (2005).
The S phase is a simple but key part of the SABL algorithm. Resampling is also

a key part of evolutionary (or, genetic) algorithms where it plays much the same role.
The particles θ(`,0)

jn (n = 1, . . . , N) are for this reason sometimes called the children of the

parent particles
{
θ

(`−1)
jn

}
(n = 1, . . . , N), and also to emphasize the fact that for each

child θ(`,0)
jn there is a parent θ(`−1)

jn′ . Parents with larger weights are likely to have more
children —it is not hard to work out the exact distribution of the number of children
of a given parent for any one parent for multinomial resampling and then again for
residual resampling. With both, the expected number of children, or fertility, of the
parent θ(`−1)

jn is proportional to w
(
θ

(`−1)
jn

)
, a measure of the parent’s “success” in the

environment of the information introduced in cycle `.
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3.3 M phase

If the algorithm were to continue in this way, the number of unique children would never
increase and in general would decrease from cycle to cycle. Indeed, in the context of
Bayesian inference it can be shown under mild regularity conditions that the number of
unique particles converges almost surely to 1 as the number of observations increases.
The M phase addresses this problem by creating diversity amongst sibling particles

in a way that is faithful to the information kernel k∗(`) (θ). It does so using the same
principle of invariance that is central to Markov chain Monte Carlo (MCMC) algorithms,
drawing particles from a transition density dQ(`) (θ | θ∗) with the invariance property∫

Θ

k∗(`) (θ∗) dQ(`) (θ | θ∗) dθ∗ = k∗(`) (θ) ∀ θ ∈ Θ. (14)

The universe of invariant transition densities is large and manifest in the MCMC litera-
ture. Many of these transitions are model-specific, for example Gibbs sampling variants
of MCMC. On the other hand a number of families of Metropolis-Hastings transitions
apply quite generally and with problem-specific tuning of parameters can be computa-
tionally effi cient.
SABL incorporates one of these variants, the Metropolis Gaussian random walk.

The M phase applies the Metropolis random walk repeatedly in steps s = 1, 2, . . ., each
step generating a new set of particles θ(`,s)

jn from the previous set θ(`,s−1)
jn . Following the

familiar arithmetic, candidate new particles are generated θ∗(`,s)jn ∼ N
(
θ

(`,s−1)
jn ,Σ(`,s−1)

)
and accepted with probability

min

 k∗(`)
(
θ
∗(`,s)
jn

)
k∗(`)

(
θ

(`,s−1)
jn

) , 1

 .
In SABL Σ(`,s) is proportional to the sample variance of θ(`,0)

jn computed using all the
particles. The factor of proportionality increases when the rate of candidate acceptance
in the previous step exceeds a specified threshold and is decreased otherwise. This draws
on established practice in MCMC and works well in this context. SABL incorporates
variants of the basic Metropolis Gaussian random walk, as well, drawing on experience
in the MCMC literature.
The objective of the M phase is to attain a degree of independence of the particles

θ
(`)
jn at the end of each cycle suffi cient to render the final set of particles θjn = θ

(L)
jn a

reliable representation of the distribution implied by the probability density function
p∗ (θ). The idea behind M phase termination in SABL is to measure the degree of
mixing (lack of dependence) amongst the particles at the end of each Metropolis step s
of cycle `, and terminate when this measure meets or exceeds a certain threshold.
In SABL mixing is measured by the average relative numerical effi ciency (RNE)

of a group of functions chosen specifically for this purpose in each model. The RNE
of the SABL approximation of a posterior moment E [g (θ)] =

∫
Θ
g (θ) p∗ (θ) dθ is a
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measure of its numerical accuracy relative to that achieved by a hypothetical simulation
θij

iid∼ p∗ (θ). The next section explains how this measure is constructed. In theM phase

the RNE of the particles
{
θ(`,s)

}
tends to increase with the number of steps s, though

not monotonically.
A simple stopping rule for theM phase is to terminate the iterations of the Metropolis

random walk when the average RNE of a group of functions first exceeds a stated
threshold. In any application there are practical limits to the average RNE that can
be achieved through these iterations, and so SABL imposes a limit on their number.
Achieving greater independence of particles is especially important in the last cycle,
because at the end of theM phase in that cycle the particles constitute the representation
of p∗ (θ). The SABL core default criterion is average RNE 0.4 with 100 maximum
iterations in cycles 1, . . . , L − 1 and average RNE 0.9 with 300 maximum iterations in
the final cycle L.
Mixing thoroughly is not the objective of the M phase. In MCMC that is essential

in providing a workable representation of the distribution with kernel k∗ (θ). In SABL
the C and S phases take on this important task, whereas the function of the M phase
is to place a lower bound on the dependence amongst particles.

3.4 Convergence and the two-pass variant of SABL

Durham and Geweke (2015a) shows that bounded likelihood and existence of the relevant
prior moment together suffi cient for ergodicity. In all posterior simulators the assessment
of numerical accuracy is based on a central limit theorem, which in this context takes
the form

N1/2
(
g(J,N) − g

) d−→ N
(
0, σ2

g

)
(15)

where

g =

∫
Θ

g (θ) p∗ (θ) dθ and g(J,N) = N−1

N∑
n=1

g (θjn) .

By itself (15) is not enough: it is essential to compute or approximation σ2
g as well.

The theory developed in the sequential Monte Carlo literature provides a start. It
posits a fixed pre-specified sequence of kernels k(1), . . . , k(L) (see (11)) and a fixed pre-
specified sequence of M phase transition densities dQ(`) (see (14)), together with side
conditions (implied by bounded likelihood and the existence of prior moments), and
proves (15). For example, this is the framework set up in the early work of Chopin (2004)
as well as the careful treatment by Douc et al. (2008). But in any practical application
the kernels k(`) and transition densities dQ(`) are adaptive, relying on information in the
particles θ(`−1)

jn or θ(`,s−1)
jn , rather than fixed. The theory does not apply then because

the kernels and transitions depend on the random particles, and the structure of this
dependence is so complex as to preclude extension of the existing theory to this case
—especially for the transition kernels dQ(`). Thus, this literature provides a theory of
sequential Bayesian learning but not a theory of sequentially adaptive Bayesian learning.
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It is universally recognized that some form of adaptation is required, for it is impossible to
pre-specify kernels k(`) and transition densities dQ(`) that provide reliable approximations
in tolerable time without knowing a great deal about the posterior distribution —which,
of course, is the goal and not the starting point.
Durham and Geweke (2015a) deals with this issue by creating the two-pass variant

of the algorithm. The first pass is exactly as described in this section, with the addition
that the kernels k(`) and transitions dQ(`) are saved. For the specific variants described
in Sections 3.1 and 3.3, this amounts to saving the sequence {r`} or {t`} from the C
phase and the doubly-indexed sequence of variance matrices Σ(`,s−1) from the M phase,
but the idea generalizes to other variants of the C and M phases. The second pass
re-executes the algorithm (with different seeds for the random number generator) and
uses the kernels k(`) and transitions dQ(`) computed in the first pass, skipping the work
required to compute these objects from the particles. The theory developed in the
sequential Monte Carlo literature then applies directly to the second pass, because the
kernels k(`) and transitions dQ(`) are in fact fixed in the second pass.
Experience thus far is that substantial differences between the first and second passes

do not arise, and can only be made to do so by specifying imprudently small values of
N . Thus in practice it suffi ces to use the two-pass algorithm only occasionally —perhaps
at the inception of a research project when the general character of the model(s), data
and sample size are known, and then again prior to communicating findings.
The sequential Monte Carlo literature provides abstract expressions for σ2

g in (15)
but no means of evaluating or approximating σ2

g. SABL provides the approximation
using the particle groups. Consider the second pass of the two-pass algorithm where
the convergence theory fully applies. In this setting there is no dependence of particles
across groups. The M phase and the C phase are perfectly parallel: exactly the same
operations applied to all the particles with no communication between particles. Re-
sampling in the S phase, which introduces dependence amongst particles, takes place
entirely within groups so as not to compromise independence across groups. Therefore
the approximations gjN = N−1

∑N
n=1 g (θjn) of g = E [g (θ)] are independent across the

groups j = 1, . . . , J . A central limit theorem (15) applies within each group so long as
g (θ) has finite second moment. Computing the cross-group mean gJ,N = J−1

∑J
j=1 gjN ,

a conventional estimate of σ2
g in (15) is

σ̂2
g = N · (J − 1)−1

J∑
j=1

(
gjN − gJ,N

)2
(16)

and
(J − 1) σ̂2

g/σ
2
g

d−→ χ2 (J − 1) , (17)

the convergence in (17) being in particles per group N . In the limit N → ∞, gJ,N and
σ̂2
g are independent.
The corresponding numerical variance estimate for gJ,N is

σ̂2
g,JN = (JN)−1 σ̂2

g. (18)
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This should not be confused with the approximation of the posterior variance vâr (g) =

(JN)−1∑J
j=1

∑N
n=1

[
g (θjn)− gJ,N

]2
. The numerical standard error corresponding to

(18) is σ̂g,JN =
[
σ̂2
g,JN

]1/2
. This is the measure of accuracy used in SABL. From (17) the

formal interpretation of numerical standard error is
(
gJ,N − g

)
/σ̂g,JN

d−→ t (J − 1). If
particles within groups are independent then σ̂2

g u vâr (g), whereas if they are not then
usually σ̂2

g > vâr (g), although σ̂2
g < vâr (g) may occur and is more likely with smaller

numbers of particle groups J . The relative numerical effi ciency of the approximation
gJ,N is

RNEg = vâr (g) /σ̂2
g. (19)

A useful interpretation of (19) is that a hypothetical simulator with θjn
iid∼ p∗ (θ) would

achieve the same accuracy with RNEg · JN particles.
This argument does not apply directly in the first pass because of the adaptation.

In particular, recall that RNE is used in the M phase to assess mixing and determine
the end of the sequence of iterations of the Metropolis random walk. This is an example
of the complex feedback between particles and adaptation in the algorithm that has
frustrated central limit theorems. This shortfall in theory is likely to persist. The
two-pass procedure overcomes the problem and, moreover, provides the foundation for
future variants of the algorithm without the overhead of establishing convergence for
each variant.

4 Posterior distributions of half-lives, periods and
shocks

With the SABL infrastructure in place drawing a posterior sample is very simple and
extremely fast.

4.1 Priors and data

The prior distributions used in the quantitative results presented here are

Parameter Distribution Centered 90% interval
Intercept β1 (1): β1 ∼ N (10, 52) β1 ∈ (1.77, 18.22)

Secular half-life hs: log (hs) ∼ N (log (25) , 1) hs ∈ (5.591, 111.9)
Cyclical half-life hc: log (hc) ∼ N (log (1) , 1) hc ∈ (0.2237, 22.36)

Period p: log (p) ∼ N (log (5) , 1), p > 2 p ∈ (2.316, 28.46)
Shock σ (1) log (σ) ∼ N (log 0.025, 1) σ ∈ (0.005591, 0.1118)

All the priors but the first are substantive, that is, grounded in consideration of what
is reasonable and what is not. The standard deviation 1 for these four corresponds to
change in the parameter (e.g., hs) by a factor of e = 2.718.
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Given the interpretation of the parameters, I think it unlikely that an economist
would claim as reasonable any values outside the stated 90% intervals. Indeed, many
would be comfortable with more concentrated prior distributions. As will be seen, while
the data contribute more to the posterior distributions than do the priors, the contribu-
tion of priors for half-lives and period is substantial. The effects of changing the prior
hyperparameters are not hard to assess because all five parameters are nearly indepen-
dent in the posterior distribution as well as in the prior.
The data used in this exercise are annual OECD per capital real GDP constant

purchasing power parity.3 Data for 26 countries are available from 1970 through 2014,
so given the three lags in (1) there are 42 annual observations. We concentrate on a more
detailed presentation for the US, UK and Japan rather than in drawing comparisons and
conclusions for all countries.

4.2 Computation

All of the results presented here were obtained using SABL Edition 2015a,4 a Mat-
lab toolbox that has many options including massively parallel execution on graphics
processing units as well as conventional muticore CPU execution. It has many options.
Some of those important to the work here are

1. Choice of Bayesian or maximum likelihood inference, depending on a single para-
meter setting;

2. A system for mapping fundamental parameters (here, the vector θ specified in
(2)) to the parameters of the normal model (here, β and σ in (1)) using a generic
mapping system that applies in all models (here, the map is given by (2), (3) and
(4));

3. A system for specifying different prior distributions, either conventional or cus-
tomized, for different components. In most cases there are options for truncation
of prior distributions, like that for log (p).

Using SABL entails writing a single Matlab function for which there are templates
included in the toolbox.
Table 1 provides the output from the computation of the posterior distribution for

the US data. It uses the same terminology as Section 3. All of the technical parameters
associated with the SABL algorithm are the default values; any of them can be changed
in the single function the user writes to interface with SABL. Execution with the default
number of particle groups (J = 8) and particles per group (N = 1024) required less than
6 seconds on a standard laptop with a quadcore CPU. Of this, almost half the time was
taken up generating the initial values from the truncated prior distribution for log (p).

3https://stats.oecd.org/index.aspx?queryid=60702
4https://www.uts.edu.au/about/uts-business-school/economics/coe-acems/sabl-project-

acems/software
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Notice that the relative effective sample size is exactly the target value in each cycle.
Each M phase continues until RNE 0.4 or greater has been achieved, but the last cycle
applies the higher standard of 0.9 in order to provide more information in the final set
of particles. Thus the 16, 384 particles are nearly independent. It is easy to access any
posterior moment along with its numerical standard error. Log marginal likelihood is
produced as a by-product.

4.3 Findings

Tables 2, 3 and 4 provide the first two posterior moments of the functions of interest
log (hz), log (hc), log (p) and log (σ). Two aspects of these results are striking. First,
the results for the three countries are quite similar. Given the integration of the global
economy in this period and the contemporaneous data, this is perhaps not surprising.
Second, in each case the four parameters are nearly uncorrelated in the posterior dis-
tribution. This is in marked contrast to the situation for the parameter vector β in
(1), where there is large correlation due the multicolinearity in (yt−1, y−2, yt−3). This
supports the effi cacy of working with the chosen parameterization.
Figures 1, 2 and 3 provide the posterior density for each parameter, computed using

a standard kernel smoothing algorithm optimized for normal distributions, together
with the normal prior distribution for each. (The truncation for the log (p) prior is not
shown.) Since all four parameters are transformed to logarithms, a common measure of
the information in prior plus data is available. From Table 2 , 3 and 4 and the northwest
panel in each figure, over a 90% posterior credible interval secular half-life hs changes by
a factor of about 12 to 15. For hc and p the range is about 8 to 9, and the factor is about
8 to 9, and for σ it is about 1.5 to 1.6. The relative confidence is not surprising: in a
sample of any given length there are fewer secular fluctuations (which take many years)
than there are cyclical fluctuations (which take a few years), whereas there is almost no
dependence across observations in the information provided for σ.
The mechanics of how the prior distribution influences the posterior are straight-

forward in this situation. Since there is no correlation between parameters in the data
and little in the posterior, by implication prior and data combine for each parameter
with little interaction. Given the standard deviations of the prior distribution and the
posterior distribution (Tables 2 - 4), data precision is only modestly higher than prior
precision. Thus a location shift of a prior distribution by v units will produce a shift of a
little less than v/2 units in the mean of the posterior distribution. Section 6 will compare
these posterior distributions with those that would be obtained using the “diffuse”prior
distribution in Geweke (1988).

5 Maximum likelihood using SABL

With minor modification of the C phase, SABL handles global optimization problems as
well as inference problems. This section provides a heuristic approach; for more formal
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motivation and technical details, see Geweke and Frischknecht (2014) and Durham and
Geweke (2015b).

5.1 The method

To begin, consider replacing the kernel k (θ) of Section 3 with the kernel k (θ)q with
q > 1. The corresponding probability density is now more concentrated than it was
originally. The Bayesian annealing algorithm could proceed in precisely the same way
but now terminating with rL = q rather than rL = 1. Of course, the particles at that
point would not correspond to a posterior distribution: such an interpretation would
amount to an erroneous replication of the sample and additional q − 1 times. But
everything stated in Section 3 about approximation of the distribution with kernel k (θ)
remains true for the distribution with kernel k (θ)q.
Next consider what happens as q moves to increasingly higher values, and to this

end two properties of k (θ) are useful:

1. The kernel k (θ) has a unique global mode θ∗;

2. log k (θ) is twice continuously differentiable with bounded third derivative in a
neighborhood of θ∗, and ∂2 log k (θ) /∂θ∂θ′ |θ=θ∗= H, a negative definite matrix.

In the applications in this paper k (θ) is the likelihood function and similar conditions
are invoked in standard limit theorems for posterior distributions and maximum likeli-
hood estimators. The difference is that here the limit is q → ∞ rather than increasing
sample size.
Recall that in cycle ` of the annealing variant of the SABL algorithm the exponent

of k (θ) becomes r`. Denote the variance matrix of particles at the end of this cycle by
V`.
The following four implications follow, the first from the first property and the others

from both. The first three are unsurprising given conventional results for the limits of
posterior distributions and maximum likelihood estimators.

1. The probability distribution corresponding to the kernel k (θ)q converges in distri-
bution to the point θ∗.

2. The probability distribution of q1/2 (θ − θ∗) converges in distribution N (0, H−1).

3. Taking the limit first as the number of particles N increases and then as the cycle
` increases,

r−1
` V`

a.s.−→ H−1, (20)

which is the asymptotic variance of the maximum likelihood estimator.
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4. Taking limits in the same way, the power increase ratio ρ` = (r` − r`−1) /r`−1

converges almost surely to

ρ = RESS∗−2/d − 1 +
[(
RESS∗−2/d − 1

)
·RESS∗−2/d

]1/2
, (21)

where d is the dimension of θ. Note that ρ, the asymptotic power increase ratio,
depends on k (θ) only through d. The appendix of the paper outlines the derivation
of this result for reviewers.

A strength of this approach is that there is no need to determine first and sec-
ond derivatives, either analytically or by means of numerical differentiation. The only
requirements are (a) verify properties 1 and 2 analytically, (b) derive the likelihood
function, (c) code the evaluation of the log-liklelihood function, and (d) code nonlinear
parameter transformations. For many applications these requirements become trivial if
one is using a nonlinear parameterization of an existing model, thus avoiding (b) and
(c). In particular this approach avoids analytical derivation and code testing for first
or second derivatives, or numerical evaluation of derivatives, both of which can be time
consuming, tedious and encounter arcane numerical problems.
The results are insensitive to the prior distribution so long as the prior distribution

provides support in a neighborhood of θ∗, the same condition invoked in the derivation
of the asymptotic properties of posterior distributions. A practical consideration, here,
is that as prior probability in this neighborhood decreases, r1 becomes smaller and the
number of cycles required to achieve a given concentration of particles becomes greater.

5.2 Convergence criteria

Important practical questions are SABL termination criteria and the cycle(s) ` whose
particles are used to approximate V = H−1 using V`. Clearly the cycles chosen to
approximate v must be cycles after the asymptotic power increase ratio has been closely
attained, evidenced by fluctuations above and below ρ over a sequence of successive
cycles. One may also wish to apply criteria for concentration of the distribution of the
particles θjn or the distribution of the objective log [k (θjn)]. There seems no reason to
continue beyond these points.
In fact, if cycles are allowed to continue, then eventually the algorithm encounters

the limits of 64-bit arithmetic in distinguishing between values of log k (θjn). The telltale
evidence of this condition is that the evaluation of log k (θjn) at different particles θjn
reflects the bits of the mantissa corresponding to lowest significance. Experience with
examples like the one in this paper strongly suggests that the sequence of power increase
ratios {ρ`} exhibits three episodes, going to the limits of 64-bit arithmetic.

1. In the early cycles ρ` differs substantially from ρ. The most common pattern
observed is that in the early cycles ρ` exceeds ρ, drifting downward toward ρ.
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2. In the middle cycles ρ` fluctuates around ρ, fluctuations being smaller the larger
the number of particles. With the default number of particles in the SABL software
(214) fluctuations are less than 10% and commonly less than 5%. In these cycles
the particles θ(`) have a distribution that is hard to distinguish from multivariate
normal.

3. In the later cycles ρ` drops well below ρ and fluctuates erratically. The reason is
that variation in the particles is no longer dominated by the asymptotics outlined
above: the limits of machine precision become increasingly important. (In the
limit the distribution can become bizarre, as detailed in Geweke and Firschknecht
(2014)). The random walk Gaussian Metropolis steps in the M phase are poorly
suited to the the objective function now dominated by lower-order bit arithmetic,
relative numerical effi ciency is poor, and the particle distribution provides a poor
source distribution in the C phase, leading to smaller increases in power in each
cycle.

These patterns are generally evident in a plot of log ρ` as a function of cycles `,
in which the middle cycles exhibit as a nearly flat portion of an otherwise generally
decreasing function of `. Any one of the middle cycles is a natural point to harvest the
asymptotic variance matrix of the maximum likelihood estimator, as described above. At
this point it is also natural to take as the MLE θ̂ = arg max`,j,n log k

(
θ

(`)
jn

)
. Experience

suggests that the accuracy of the MLE, so computed, is well beyond the number of digits
typically reported.

5.3 Relationship to the simulated annealing literature

The technique of simulated annealing was introduced over 30 years ago (Kirkpatrick et
al., 1983) and is now widely applied in science and engineering. Applications in statistics
and econometrics are very rare and most econometricians do not include it in their suite
of approaches to maximization problems. This is so despite the fact that Goffe et al.
(1994) demonstrated the method’s utility in that capacity in a Journal of Econometrics
paper that ranks 18th (out of thousands) by citation in the simulated annealing liter-
ature, and ninth in the citation rankings or articles in that journal. Almost all of the
citations come from the science and engineering literature, very few from economics or
statistics.
The simulated annealing literature also uses a sequence of increasing powers of the

objective function, but casts the sequence as its inverse r−1
` , known as temperature. Thus

temperature decreases as the algoirthm proceeds and this is responsible for its name. In
the original version, and indeed most applications since, it may be regarded as a simple
version of the SABL algorithm in which there is one particle and no S phase. Since
there is no distribution of particles, neither the sequence of increasing powers in the
C phase nor the variance in the Metropolis steps of the M phase can be constructed
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algorithmically as they are in SABL. Instead they must be provided directly by the user
in each application.
Choosing a sequence of increasing powers (decreasing temperatures) that results in

reasonable effi ciency —or even works at all —has been a challenge. Typical applications,
even by experienced practitioners, involve trial, error and tinkering with temperature
reduction schedules. The choice of the variance matrix for the Metropolis step similarly
must be tailored to each application, a procedure familiar to many Bayesian econo-
metricians and statisticians who have used the Metropolis random walk for Bayesian
inference. In simulated annealing, this variance matrix must be related systematcially
to temperature (power).
Very recently the simulated annealing literature has begun to adopt parallel chains

of arguments —particles, in the terminology of this paper. Zhou and Chen (2013) is
representative. I am not aware of any work in this literature that attempts to use
the parallel chains to address the temperature reduction problem and the Metropolis
variance matrix problem systematically. Thus the method still suffers from this very
substantial overhead in application. Once acceptable solutions to these problems have
been found by trial and error, none begins to approach the standard of computing the
maximizing argument to the limits of machine precision attained by SABL. Geweke
and Frischknecht (2014) draws an explicit comparison using the test problems in Zhou
and Chen (2013), showing that SABL achieves machine precision with about the same
number of floating point operations used in the methods of that paper, which in fact do
not even determine the optimizing values to even three significant figures in all cases.

6 Maximum likelihood estimation of half-lives and
periods

This section illustrates optimization in SABL for the case of maximum likelihood us-
ing the U.S. data. As with the posterior distribution results are quite similar across
countries.

6.1 Performance of the optimization algorithm

Figure 4 provides a global perspective on the behavior of the algorithm. The northwest
panel provides the power r (of the likelihood function in each cycle of the SABL algo-
rithm, and the south east panel displays the power increase ratio In the terminology
of the simulated annealing literature the temperature is the inverse of power, and the
analogue of temperature for the northwest panel would simply flip the graph about a
horizontal axis of rotation at 100. The temperature decay and power increase ratios
are identical. In both cases it is straightforward to identify the cycles over which the
geometric rate of increase is constant, roughly cycles 14 through 46. The power in-
crease (temperature decay) ratio fluctuates about the theoretical value ρ stated in (21)
and shown by the dotted line in the southeast panel. The last cycle in which the ratio
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exceeds ρ is ` = 44. Computation to this point required 44 seconds using the same
hardware and software used for the posterior distribution in Section 4. The difference is
due to the fact that Bayesian inference required only 5 cycles (Table 1).
The cycles of constant power increase ratio end when the limitations of floating point

arithmetic begin to disguise the true quadratic nature of the log-likelihood function in
the neighborhood of the maximum. Up to this point the Metropolis random walk is
effective in mixing particles in the M phase, which may be seen in the fact that at most
8 iteration are required to attain the RNE criterion of 0.4 that ends the M phase and the
cycle, whereas from iteration 49 onward the convergence criterion is never met and the
M phase goes to the default limit of 100 iterations. After iteration 48 (roughly) RNE
drops rapidly, the weight function in the C phase is poor, and the number of distinct
particles (southwest panel) deteriorates quickly. By iteration 60 there are only about
100 distinct particles.
The northeast panel provides a complimentary perspective on the limitations imposed

by machine arithmetic. So long as the power increase ratio is near ρ, the standard
deviation of the log-likelihood objective function is very nearly inversely proportional to
power. In all events differences between real numbers are multiples of what is known
as “machine epsilon”, which for conventional 64-bit floating point representation is ε =
2.22 × 10−16. This graininess becomes a factor beyond about iteration 48. Standard
deviation of the objective function, across particles, decreases toward ε, shown by the
dotted line in the northeast panel. Eventually the objective function behaves like a step
function and except for extremely simply objective functions the steps appear random
to the eye.
Figure 5 provides perspectives on the maximum likelihood estimates and asymptotic

standard errors in each cycle of the SABL algorithm. The maximum likelihood estimates
in the upper panel are constant (to the accuracy of the plot) beyond about cycle 20.
The complications of machine arithmetic affect only the evaluated shape of the surface,
not its location, and so these estimates remain unaffected. The deduction of asymptotic
standard errors from the distribution of the particles, on the other hand, is closely tied to
multivariate normal distribution of particles (20). It is constant over the same range that
the power increase ratio is constant, and exhibits about the same amplitude of relative
fluctuations. Beyond about cycle 54 it increases, due to the fact that the limitations of
64-bit arithmetic introduce variation in particles that is significant relative to the actual
value, meaning that it continues to increase. The lower panel of Figure 5 supports the
convergence criterion of last cycle (` = 46) in which the power decay ratio exceeds ρ.
Figure 6 supplements these perspectives by providing the distribution of the parame-

ter θ4 = log (p) in some cycles of interest. (Result for other parameters are qualitatively
similar.) The solid line provides the kernel smoothed estimate of the distribution of
particles, the dotted line the Gaussian distribution corresponding to particle mean and
variance. In all cases the deviation of values from the final maximum likelihood estimate
are shown to make the horizontal axis ticks readily interpretable. Prior to the cycles
of constant power increase ratio the shape of the distribution moves from the poste-
rior distribution portrayed in 1 (cycle 5 is very close) to the quadratic expansion of the
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log-likelihood about the maximum likelihood estimate, scaled by power. Beyond that
point the distribution becomes erratic as it is increasingly corrupted by the limitations
of machine arithmetic. The Metropolis step, with its Gaussian proposal is increasingly
ineffective; to appreciate this fully, recall that the Metropolis step is dealing with this
behavior in five dimensions at once.
These results support the idea that iteration to maximum likelihood can halt when

the power increase ratio begins to fall from the neighborhood of the value ρ implied
by a quadratic objective function of the relevant dimension. At the last cycle in which
this ratio exceeds ρ , the maximum likelihood estimate can be taken to be the particle
providing the highest log-likelihood and the asymptotic variance can be taken to be
particle variance multiplied by power r`.

6.2 Findings

It is straightforward to compute maximum likelihood estimates and their asymptotic
variance as just described. We compare these results with two other approaches. One
is the posterior distribution presented in Section 4. The other begins with the closed-
form maximum likelihood (least squares) estimate of (β, σ) in (1) and transforms the
estimate to (β0, log (hs) , log (hc) , log (p) , log (σ)) as described in that section. By the
invariance property of maximum likelihood estimates, these should be the same as those
obtained using the methods of Section 5. From the last procedure we also compute
the distribution of (β0, log (hs) , log (hc) , log (p) , log (σ)) obtained by mapping from the
asymptotic distribution of the maximum likelihood estimator of (β, σ2). This will not
be the same as asymptotic distribution the direct maximum likelihood estimates. But
it comes very close to the posterior distribution in Geweke (1988) because the prior
distribution in that work was p (β.σ) ∝ σ−1 subject to the constraints of stationarity
and two complex roots of the lag operator generating polynomial. (Those constraints
are satisfied in over 99% of the draws from the asymptotic normal distribution of (β, σ)
here.) Thus, this comparison enables us to examining the influence of two quite different
prior distributions for (β0, log (hs) , log (hc) , log (p) , log (σ)).
Table 5 provides the first two moments of each parameter for the three cases. Those

for the posterior distribution are the same as in Table 2. The maximum likelihood
estimates of log (hc) and log (p) differ from the posterior means, by more than one
standard error in the first case and by over two maximum likelihood standard errors
in the second (using the metric of the direct ML standard error in each case). Except
for log (p) the posterior standard deviation and the ML asymptotic standard errors are
similar. For log (p) the direct ML asymptotic standard error is smaller than the posterior
standard deviation by a factor of almost 4 and the indirect ML asymptotic standard error
by a factor of over 2. This gross divergence for log (p) is consistent with the posterior
density in the southwest panel of Figure 1, whose model is much more sharply defined
than is the mode of a normal distribution. The conventional local expansion of the
log-likelihood function is unrepresentative of its global behavior in the case of log (p).
Figure 7 provides another perspective on the comparison between the three ap-
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proaches to inference, for the joint distribution of secular and cyclical half-life (left
panels) and the joint distribution of period and cyclical half-life (right panels). To fa-
cilitate comparison the axes are identical in each column and were selected so as to
exclude the 0.25% smallest and 0.25% largest points out of 820 selected from the 16,348
particles in the posterior distribution. The number of points plotted in the last two rows
is almost 820 since the dispersions there are smaller. The horizontal and vertical lines
are the same in each column, intersecting at the maximum likelihood estimate, which is
indicated by the circle in the last two rows. In the top pair of panels the circle is the
mean of the posterior distribution and the cross is the median. The smaller dispersion of
the parameters under the asymptotic ML distributions, especially for log (p), is striking
in these figures. So, too, are the differences in shape. The joint distribution under the
direct ML asymptotic expansion is Gaussian by construction; as already documented
and well-understood, the posterior distribution is not; but the indirect ML distribution
is also non-Gaussian because the transformation from (β, σ) to θ is nonlinear.
The indirect ML asymptotic expansion is very close to the exact posterior distribution

using the conventional improper prior distribution p (β.σ) ∝ σ−1, sometimes called the
Jeffreys prior on (less precisely) “diffuse”or “uninformative.”uninformative prior. This is
in fact not a Jeffreys prior for linear regression except when it reduces to mean estimation.
Whereas the prior in β is flat, the implied prior for θ is not due to the Jacobian implied
by the nonlinear transformation (4) - (2). The fact that “diffuse”or “uninformative”
prior distribution can be vague, slippery or vacuous concepts is sometimes missed by
Bayesian econometricians, like Geweke (1988).

7 Conclusion

The utility of econometric models hinges in no small part on their direct connection to
the concepts economists use to create these models and interpret the results of inference.
In the example presented in this paper it was possible to replace almost all of the conven-
tional parameters that are convenient for statistical models with such concepts. In many
other cases this can be done to partial but significant degree: dynamic stochastic general
equilibrium models as utilized in central banks constitute an important class of such ex-
amples in macroeconomics. Similar examples in microeconomics and the business sector
are also common. If the econometrician is to interpret and communicate findings to the
decision-making client, this is important. For the Bayesian econometrician attempting
to elicit and incorporate client prior distributions it is even more compelling.
As a practical matter it is equally important for econometricians to be able to bring

models to data quickly, avoiding the need for case-by-case special treatments in deriving
auxiliary analytical results and tuning computational algorithms. These steps require
significant additional time and specialized skills that can place econometric approaches at
an overwhelming disadvantage in competition with alternatives (like machine learning)
that on their own may not serve the client as well.
The SABL algorithm illustrated in this paper is a tool that addresses these objectives.
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For a new application, and even for a new model, it presents much lower barriers to entry
than do most existing procedures in Bayesian and non-Bayesian econometrics. This is
a strong claim, and this paper is a small illustration in support of that claim. Further
such illustrations are forthcoming.

8 Appendix

This is a supplement to Section 5 for the benefit of reviewers. The points here are
convergence in Durham and Geweke (2015b), currently in completion. The appendix is
not intended to be part of the final paper.
The relevant equation is[

1

N

N∑
n=1

w(`)
(
θ(`−1)
n

)]2

− η∗ · 1

N

N∑
n=1

w(`)
(
θ(`−1)
n

)2

. (22)

where

w(`) (θ) =
k (θ)r`

k (θ)r`−1
= k (θ)r`−r`−1 .

The assumption that the log-likelihood is quadratic means k (θ) corresponds to θ ∼
N (θ∗, V ), so

w(`) (θ) =

{
(2π)−k/2 |V |−1/2 exp

[
−1

2
(θ − θ∗)′ V −1 (θ − θ∗)

]}r`−r`−1
= (2π)−(r`−r`−1)/2 |V |−(r`−r`−1)/2 exp

[
−(r` − r`−1)

2
(θ − θ∗)′ V −1 (θ − θ∗)

]
.(23)

In cycle `−1, θ(`−1) ∼ N
(
θ∗, r−1

`−1V
)
. Denote the corresponding expectation operator

by E`−1. corresponding to this distribution, the term in side the brackets on the left

side of (22) converges to E`−1

[
w(`)

(
θ(`−1)
n

)]
=∫

(2π)−(r`−r`−1)/2 |V |−(r`−r`−1)/2 exp

[
−(r` − r`−1)

2
(θ − θ∗)′ V −1 (θ − θ∗)

]
· (2π)−k/2 r

−k/2
`−1 |V |

−1/2 exp
[
−r`−1

2
(θ − θ∗)′ V −1 (θ − θ∗)

]
dθ.

To evaluate this expression make the standard change of variable z = r
1/2
`−1 · J (θ − θ∗) ∼

N (0, Ik) where JJ ′ = V . Then

E`−1

[
w(`)

(
θ(`−1)
n

)]
= (2π)−(r`−r`−1)/2 |V |−(r`−r`−1)/2 · EN(0,Ik)

{
exp

[
−(r` − r`−1)

2r`−1

· z′z
]}

=
k∏
i=1

EN(0,1) exp

[
−(r` − r`−1)

2r`−1

· z2
i

]
.
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The term inside the product is∫ ∞
−∞

exp

[
−(r` − r`−1)

2r`−1

· z2
i

]
(2π)−1/2 exp

(
−z

2
i

2

)
dzi

= (2π)−1/2

∫ ∞
−∞

[
−
(

1 +
(r` − r`−1)

r`−1

)
· z

2
i

2

]
dzi =

(
1 +

(r` − r`−1)

r`−1

)−1/2

.

Hence taking the limit on the left side of (22) we have

(2π)−(r`−r`−1)/2 |V |−(r`−r`−1) ·
(

1 +
(r` − r`−1)

r`−1

)−k
.

The limit on the right side of (22) is E`−1

[
w(`) (θ)2]. From (23)

w(`) (θ)2 = (2π)−(r`−r`−1) |V |−(r`−r`−1) exp
[
− (r` − r`−1) (θ − θ∗)′ V −1 (θ − θ∗)

]
.

Employing the same transformation to z as before, E`−1

[
w(`) (θ)2] =

EN(0,Ik)

[
exp

(
−r` − r`−1

r`−1

· z′z
)]

=
k∏
i=1

EN(0,1) exp

(
−r` − r`−1

r`−1

· z2
i

)

=

{∫ ∞
−∞

exp

[
−r` − r`−1

r`−1

· z2

]
(2π)−1/2 exp

(
−z

2

2

)
dz

}k
=

{∫ ∞
−∞

exp

[
−
(

1 +
2 (r` − r`−1)

r`

)
z2

2

]
dz

}k
=

(
1 +

2 (r` − r`−1)

r`

)−k/2
Thus the limit of (22) is(

1 +
(r` − r`−1)

r`−1

)−k
= η∗ ·

(
1 +

2 (r` − r`−1)

r`

)−k/2
,

implying that in the limit ρ` = (r` − r`−1) /r`−1 is the same for all `, and this common
value ρ is the solution of

(1 + ρ)−k = η∗ · (1 + 2ρ)−k/2 ,

equivalent to
ρ2 + 2

(
1− η∗−2/k

)
ρ+

(
1− η∗−2/k

)
.

The roots of this quadratic equation are

ρ = η∗−2/k − 1±
[(
η∗−2/k − 1

)2
+
(
η∗−2/k − 1

)]1/2

.

The RESS target η∗ < 1 and hence η∗−2/k − 1 > 0. Since ρ > 0,

ρ = η∗−2/k − 1±
[(
η∗−2/k − 1

)2
+
(
η∗−2/k − 1

)]1/2

= η∗−2/k − 1±
[(
η∗−2/k − 1

)
η∗−2/k

]1/2
.
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Table 1: SABL output, US posterior distribution
SABL normal model
SABL executing using CPU with 1 worker
C phase anneal_Bayes algorithm
Effective sample size criterion (C.Cstop.ress) = 0.500
C phase Cstop_unconditional algorithm
S phase residual resampling
M phase MGRW_simple algorithm
M phase Mstop_rne stopping algorithm

Simulating 16384 times from truncated prior... 2.5324 seconds
Cycle 1 Cphase: Likelihood function exponent 8.5448e-03, RESS 0.5000
Cycle 1 Sphase: 8565 particles out of 16384 unique (0.5228)
Cycle 1 Mphase: 1 iterations, mean RNE = 0.8175
Cycle 2 Cphase: Likelihood function exponent 7.1163e-02, RESS 0.5000
Cycle 2 Sphase: 7533 particles out of 16384 unique (0.4598)
Cycle 2 Mphase: 5 iterations, mean RNE = 0.4875
Cycle 3 Cphase: Likelihood function exponent 2.0704e-01, RESS 0.5000
Cycle 3 Sphase: 8374 particles out of 16384 unique (0.5111)
Cycle 3 Mphase: 1 iterations, mean RNE = 0.4208
Cycle 4 Cphase: Likelihood function exponent 4.9638e-01, RESS 0.5000
Cycle 4 Sphase: 5084 particles out of 16384 unique (0.3103)
Cycle 4 Mphase: 4 iterations, mean RNE = 0.4472
Cycle 5 Cphase: Likelihood function exponent 1.0000e+00, RESS 0.6051
Cycle 5 Sphase: 7471 particles out of 16384 unique (0.4560)
Cycle 5 Mphase: 14 iterations, mean RNE = 0.9179
Elapsed clock time 5.52 seconds

CPU time 7.71 seconds
Ratio 1.40

Table 2: US posterior moments
Parameter mean st. dev.
Secular log (hs) 4.056 0.667
Cyclical log (hc) -0.584 0.548
Period log (p) 2.045 0.565
Shock log (σ) -3.916 0.113

Correlation matrix:
1.000 0.010 -0.021 0.001
0.101 1.000 -0.366 -0.018
-0.021 -0.366 1.000 0.022
0.001 -0.018 0.022 1.000
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Table 3: UK posterior moments
Parameter mean st. dev.
Secular log (hs) 4.002 0.655
Cyclical log (hc) -0.292 0479
Period log (p) 2.041 0.502
Shock log (σ) -3.885 0.106

Correlation matrix:
1.000 0.027 -0.034 0.022
0.027 1.000 -0.515 -0.060
-0.034 -0.515 1.000 0.078
0.022 -0.060 0.078 1.000

Table 4: Japan posterior moments
Parameter mean st. dev.

Secular log (hs) 3.470 0.654
Cyclical log (hc) -0.951 0.543
Period log (p) 2.101 0.641
Shock log (σ) -3.806 0.111

Correlation matrix:
1.000 0.030 0.084 0.133
0.030 1.000 -0.200 0.041
0.084 -0.200 1.000 -0.003
0.133 0.041 -0.003 1.000

Table 5: US posterior moments and maximum likelihood estimates
Direct ML, θ OLS indirect ML

Parameter mean st. dev. MLE st. dev. MLE st. dev.
Secular log (hs) 4.056 0.667 3.646 0.767 3.646 0.866
Cyclical log (hc) -0.584 0.548 -0.096 0.457 -0.096 0.406
Period log (p) 2.045 0.565 1.621 0.148 1.621 0.231
Shock log (σ) -3.917 0.112 -3.984 0.109 -3.984 0.117

28



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
US:  log Secular half­life probability densities

log Secular half­life

D
en

si
ty

Posterior
Prior

­6 ­5 ­4 ­3 ­2 ­1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
US:  log Cyclical half­life probability densities

log Cyclical half­life

D
en

si
ty

Posterior
Prior

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
US:  log periodicity probability densities

log periodicity

D
en

si
ty

Posterior
Prior

­4.5 ­4 ­3.5 ­3
0

0.5

1

1.5

2

2.5

3

3.5

4
US:  log shock standard deviation probability densities

log shock standard deviation

D
en

si
ty

Posterior
Prior

Figure 1: Prior and posterior parameter distributions, US
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Figure 2: Prior and posterior parameter distributions, UK
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Figure 3: Prior and posterior parameter distributions, Japan
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