
Bayesian Inference for Logistic Regression Models
using Sequential Posterior Simulation

John Geweke∗, Garland Durham†and Huaxin Xu‡

February 6, 2014

Abstract

The logistic specification has been used extensively in non-Bayesian statistics
to model the dependence of discrete outcomes on the values of specified covari-
ates. Because the likelihood function is globally weakly concave estimation by
maximum likelihood is generally straightforward even in commonly arising appli-
cations with scores or hundreds of parameters. In contrast Bayesian inference has
proven awkward, requiring normal approximations to the likelihood or specialized
adaptations of existing Markov chain Monte Carlo and data augmentation meth-
ods. This paper approaches Bayesian inference in logistic models using recently
developed generic sequential posterior simulaton (SPS) methods that require little
more than the ability to evaluate the likelihood function. Compared with exist-
ing alternatives SPS is much simpler, and provides numerical standard errors and
accurate approximations of marginal likelihoods as by-products. The SPS algo-
rithm for Bayesian inference is amenable to massively parallel implementation,
and when implemented using graphical processing units it compares well with the
best existing alternative. The paper demonstrates these points by means of several
examples.

∗University of Technology Sydney (Australia), Erasmus University (The Netherlands) and Colorado
State University (US). Support from Australian Research Council grant 130103356 is gratefully ac-
knowledged. Corresponding author: John.Geweke@uts.edu.au
†Quantos Analytics
‡University of Technology Sydney

1

1 Introduction

The multinomial logistic regression model, hereafter “logit model,” is one of the most
widely used models in applied statistics. It provides a straightforward link from covari-
ates to the probabilities of discrete outcomes. More generally, it provides a workable
probability distribution for discrete events, whether directly observed or not, as a func-
tion of covariates. In the latter, more general, setting it is a key component of condi-
tional mixture models including the mixture of experts models introduced by Jacobs et
al. (1991) and studied by Jiang and Tanner (1999).
The logit model likelihood function is unimodal and globally concave, and conse-

quently estimation by maximum likelihood is practical and reliable even in models with
many outcomes and many covariates. However, it has proven less tractable in a Bayesian
context, where effective posterior simulation has been a challenge. Because it also arises
frequently in more complex contexts like mixture models, this is a significant imped-
iment to the penetration of posterior simulation methods. Indeed, the multinomial
probit model has proven more amenable to posterior simulation methods (Albert and
Chib, 1993; Geweke et al., 1994) and has sometimes been used in lieu of the logit model
in conditional mixture models (Geweke and Keane, 2007). Thus there is a need for
simple and reliable posterior simulation methods for logit models.
State-of-the-art approaches to posterior simulation for logit models use combinations

of likelihood function approximation and data augmentation in the context of Markov
chainMonte Carlo (MCMC) algorithms: see Holmes and Held (2006), Frühwirth-Schnatter
and Frühwirth (2007), Scott (2011), Gramacy and Polson (2012) and Polson et al.
(2013). The last paper uses a novel representation of latent variables based on Polya-
Gamma distributions that can be applied in logit and related models, and uses this
representation to develop posterior simulators that are reliable and substantially dom-
inate alternatives with respect to computational effi ciency. Going forward, we refer to
the method of Polson et al. (2013) as the PSW algorithm.
This paper implements a sequential posterior simulator (SPS) using ideas developed

in Durham and Geweke (2013). Unlike MCMC this algorithm is especially well-suited to
massively parallel computation using graphics processing units (GPUs). The algorithm
is highly generic; that is, the coding effort required to adapt it to a specific model
is typically minimal. In particular, the algorithm is far simpler to implement for the
logit models considered here than the existing MCMC algorithms mentioned in the
previous paragraph. When implemented on GPUs the computational effi ciency of SPS
compares well with the best existing MCMC method. Moreover, SPS yields an accurate
approximation of log marginal likelihood, as well as reliable and systematic indications
of the accuracy of posterior moment approximations, which existing MCMC methods
do not.
Section 2 of the paper describes the SPS algorithm and its implementation on GPUs.

Section 3 provides the background for the examples take up subsequently: specifics of
the models and prior distributions, the datasets, and the various hardware and software
environments used. Section 4 documents some of the features of models and datasets

2

that influence computation time. Section 5 studies several applications of the logit
model using benchmark datasets from the logit posterior simulation literature. Section
6 concludes with some more general observations. A quick first reading of the paper
might skim Section 2 and skip Section 4.

2 Sequential posterior simulation algorithms for Bayesian
inference

Sequential posterior simulation (SPS) grows out of sequential Monte Carlo (SMC) meth-
ods developed over the past twenty years for state space models, in particular particle
filters. Contributions leading up to the development here include Baker (1985, 1987),
Gordon et al. (1993), Kong et al. (1994), Liu and Chen (1995, 1998), Chopin (2002,
2004), Andrieu et al. (2010), Chopin et al. (2011), and Del Moral et al. (2012). De-
spite its name, SPS is amenable to massively parallel implementation. It is well suited
to graphics processing units, which provide massively parallel desktop computing at a
cost of well under one dollar (US) per processing core. For further background on these
details see Durham and Geweke (2013).

2.1 Notation and Conditions

The vectors y1, . . . , yT denote the data and y1:t = {y1, . . . , yt}. The model specifies the
joint densities

p (yt | y1:t−1, θ) (t = 1, . . . , T)

in which the functional form p is specified and θ is a vector of unobservable parameters.
The likelihood function is

p (y1:T | θ) =
T∏
t=1

p (yt | y1:t−1, θ) . (1)

The model also specifies a prior density p (θ). The notation suppresses conditioning on
the covariates xt and treats all distributions as continuous to avoid notational clutter.
The SPS algorithm, like all posterior simulators, approximates posterior moments of

the form
g = E [g (θ) | y1:T] . (2)

The following conditions are suffi cient for the properties of the algorithm stated here.

1. The likelihood function (1) is bounded.

2. The likelihood function can be evaluated directly to machine accuracy. In partic-
ular, evaluation does not entail simulation.

3. The prior distribution is proper and i.i.d. simulation of θ from this distribution is
practical.

3

4. The prior moment E
[
g (θ)2+δ

]
is finite for some δ > 0.

These conditions are typically easy to check and they suffi ce for the purposes of
this paper. Except for condition 3 they can be weakened, but verifying these weaker
conditions when the stronger stated conditions do not hold can be diffi cult.
Like all posterior simulation methods the SPS algorithm generates a set of random

values of θ that approximate the posterior distribution. Reflecting the evolution of the
SMC literature these random vectors are termed particles. It will prove convenient to
organize the particles into J groups of N particles each, and for this reason to denote the
particles θjn (j = 1, . . . , J ;n = 1, . . . , N) . Evaluating a function of interest then leads to
the J ·N random values gjn = g (θjn). The numerical approximation of (2) is

g(J,N) = (JN)−1
J∑
j=1

N∑
n=1

gjn. (3)

Reliable assessment of the numerical accuracy of this approximation is essential for
SPS just as it is for all posterior simulation methods. As detailed in Sections 2.2 through
2.4 the SPS algorithm produces particles θjn that are identically distributed, independent
across groups and dependent within groups. Within each group denote

gNj = N−1

N∑
n=1

gjn (j = 1, . . . , J) . (4)

The underlying SMC theory discussed in Section 2.2 guarantees

N1/2
(
gNj − g

) d−→ N (0, v) (j = 1, . . . , J) . (5)

The convergence (5) implies immediately that the numerical reliability of the SPS
algorithm could be assessed based on repeated executions. But this multiplies the com-
putational requirements many-fold. An alternative is to seek an approximation vN of v
that can be computed effi ciently as a by-product of the algorithm, having the property
vN

a.s.−→ v. This strategy has proven straightforward in some posterior simulation meth-
ods like importance sampling (Geweke, 1989) but less so in others like MCMC (Flegal
and Jones, 2010).
The independence of particles across groups in the SPS algorithm implies means that

the reliability of the approximation g(J,N) can be assessed using the same elementary
approach as with repeated executions of the algorithm many-fold but without incurring
the extra computational requirements. The natural approximation of v is

v̂(J,N) (g) = [N/ (J − 1)]

J∑
j=1

(
gNj − g(J,N)

)2
.

Define the numerical standard error of g(J,N)

NSE
(
g(J,N)

)
=
[
J−1v̂(J,N) (g)

]1/2
, (6)

4

which provides a measure of the variability of the moment approximation (3) across
replications of the algorithm with fixed data. As N →∞

(J − 1) v̂(J,N) (g) /v
d→ χ2 (J − 1) (7)

and
g(J,N) − g

NSE
(
g(J,N)

) d→ t (J − 1) . (8)

The relative numerical effi ciency (RNE; Geweke, 1989), which approximates the pop-
ulation moment ratio var (g (θ) | y1:T) /v, can be obtained in a similar manner,

RNE
(
g(J,N)

)
= (JN)−1

J∑
j=1

N∑
n=1

(
gjn − g(J,N)

)2
/v̂(J,N) (g) . (9)

RNE close to one indicates that there is little dependence amongst the particles, and
that the moment approximations (4) and (3) approach the effi ciency of the unattainable
ideal, an iid sample from the posterior. RNE less than one indicates dependence. In
this case, the moment approximations (4) and (3) are less precise than one would obtain
with a hypothetical iid sample of the same size.
The detailed discussion of the SPS algorithm in sections 2.2 through 2.4 will show

that this procedure is not simply J repetitions of the algorithm with N particles each. In
fact information is shared across groups, but in such a way that the independence across
groups critical for (8) is preserved. The end of Section 2.4 returns to this discussion after
establishing the requisite theory. A complementary practical consideration is that when
the algorithm is implemented on graphics processing units there are substantial returns
to scale —so that, for example, a single execution with 10n particles typically requires
substantially less time than than ten successive executions each with 10n−1 particles for
n in the range of 4 to 6.

2.2 Non-adaptive SPS algorithms

We start from the SMC algorithm as detailed in Chopin (2004). The algorithm gen-
erates and modifies the particles θjn, with superscripts used for further specificity at
various points in the algorithm. To make the notation compact, let J = {1, . . . , J} and
N = {1, . . . , N}. The algorithm is an implementation of Bayesian learning, providing
simulations from θ | y1:t for t = 1, 2, . . . , T . It processes observations, in order and in
successive batches, each batch constituting a cycle of the algorithm.
The global structure of the algorithm is therefore iterative, proceeding through the

sample. But it operates on many particles in exactly the same way at almost every
stage, and it is this feature of the algorithm that makes it amenable to massively parallel
implementations. On conventional quadcore machines and samples of typical size one
might set up the algorithm with J = 10 groups of 1000 particles each, and using GPUs
J = 40 groups of 2500 particles each. (The numbers are just illustrations, to fix ideas.)

5

Algorithm 1 (Nonadaptive) Let t0, . . . , tL be fixed integers with 0 = t0 < t1 < . . . <
tL = T ; these define the cycles of the algorithm. Let λ1, . . . , λL be fixed vectors that
parameterize transition distributions as indicated below.

1. Initialize ` = 0 and let θ(`)
jn

iid∼ p (θ) (j ∈ J, n ∈ N)

2. For ` = 1, . . . , L

(a) Correction (C) phase, for all j ∈ J and n ∈ N :
i. wjn (t`−1) = 1

ii. For s = t`−1 + 1, . . . , t`

wjn (s) = wjn (s− 1) · p
(
ys | y1:s−1, θ

(`−1)
jn

)
(10)

iii. w(`−1)
jn := wjn (t`)

(b) Selection (S) phase, applied independently to each group j ∈ J : Using
multinomial or residual sampling based on

{
w

(`−1)
jn (n ∈ N)

}
, select{

θ
(`,0)
jn (n ∈ N)

}
from

{
θ

(`−1)
jn (n ∈ N)

}
(c) Mutation (M) phase, applied independently across j ∈ J, n ∈ N :

θ
(`)
jn ∼ k

(
θ | y1:t` , θ

(`,0)
jn , λ`

)
(11)

where the drawings are independent and the p.d.f. (11) satisfies the invariance
condition ∫

Θ

k (θ | y1:t` , θ
∗, λ`) p (θ∗ | y1:t`) dν(θ∗) = p (θ | y1:t`)

3. θjn := θ
(L)
jn (j ∈ J, n ∈ N)

The algorithm is nonadaptive because t0, . . . , tL and λ1, . . . , λL are fixed before the
algorithm starts. Going forward it will be convenient to denote the cycle indices by
L = {1, . . . , L}. At the conclusion of the algorithm, the simulation approximation of a
generic posterior moment is (3).
The only communication between particles is in the S phase. In the C andM phases

exactly the same computations are made for each particle, with no communication. This
situation is ideal for GPUs, as detailed in Durham and Geweke (2013). In the S phase
there is communication between particles within, but not across, the J groups. This
keeps the particles in the J groups independent. Typically the fraction of computation
time devoted to the S phase is minute.
For each group, j ∈ J, the four regularity conditions in the previous section imply the

assumptions of Chopin (2004), Theorem 1 (for multinomial resampling) and Theorem 2
(for residual resampling). Therefore a central limit theorem (5) applies.

6

2.3 Adaptive SPS algorithms

In Algorithm 1 neither the cycles, defined by t1, . . . , tL−1, nor the hyperparameters λ`
of the transition processes (11) depend on the particles {θjn}. With respect to the
random processes that generate these particles, these hyperparameters are fixed — in
econometric terminology, they are predetermined with respect to {θjn}. As a practical
matter, however, one must use the knowledge of the posterior distribution inherent in
the particles to choose the transition from the C phase to the S phase, and to design an
effective transition distribution in theM phase. Without this feedback it is impossible to
obtain any reasonably accurate approximation g(J,N) of g; indeed, in all but the simplest
models and smallest datasets g(J,N) will otherwise be pure noise, for all intents and
purposes.
The following procedure illustrates how the particles themselves can be used to choose

the cycles defined by t1, . . . , tL−1 and the hyperparameters λ` of the transition processes.
It is a minor modification of a procedure described in Durham and Geweke (2013), that
has proved effective in a number of models. It is also effective in the logit model. The
algorithm requires that the user choose the number of groups, J , and the number of
particles in each group, N .

Algorithm 2 (Adaptive)

1. Determine the value of t` in the C phase of cycle ` (` ∈ L) as follows.

(a) At each step s compute the effective sample size

ESS (s) =

[∑J
j=1

∑N
n=1wjn (s)

]2

∑J
j=1

∑N
n=1wjn (s)2

(12)

immediately after computing (10).

(b) If ESS (s) / (J ·N) < 0.5 or if s = T set t` = s and proceed to the S phase.
Otherwise increment s and recompute (12).

2. The transition density (11) in theM phase of each cycle ` is a Metropolis Gaussian
random walk, executed in steps r = 1, 2,

(a) Initializations:

i. r = 1.
ii. If ` = 1 then the step size scaling factor h11 = 0.5.

(b) Set RNE termination criteria:

i. If s < T , K = 0.35

ii. If s = T , K = 0.9

7

(c) Execute the next Metropolis Gaussian random walk step.

i. Compute the sample variance V`r of the particles

θ
(`,r−1)
jn (j = 1, . . . , J ;n = 1, . . . , N) ,

define Σ`r = h`r · V`r, and execute step r using a random walk Gaussian
proposal density with variance matrix Σ`r to produce a new collection of
particles θ(`,r)

jn (j = 1, . . . , J ; n = 1, . . . , N). Let α`r denote the Metropo-
lis acceptance rate across all particles in this step.

ii. Set

h`,r+1 = min (h`r + 0.01, 1.0) if a`r > 0.25,

h`,r+1 = min (h`r − 0.01, 1.0) if a`r ≤ 0.25.

iii. Compute the RNE of the numerical approximation g(J,N) to a test func-
tion g∗ (θ). If RNE < K then set r = r + 1 and return to step 2c;
otherwise set h`+1,1 = h`,r+1, define R` = r, and return to step 1.

(d) Set θ(`)
jn = θ

(`,r)
jn . If s < T then set h`+1,1 = h`,r+1 and return to step 1;

otherwise set θjn = θ
(`)
jn , define L = `, and terminate.

At every step of the algorithm particles are identically but not independently dis-
tributed. As the number of particles in each group N → ∞ the common distribution
coincides with the posterior distribution. As the number of Metropolis steps, r, in the
M phase increases, dependence amongst particles decreases. The M phase terminates
when the RNE criterion is satisfied, implying a specified degree of independence for the
particles at the end of each cycle. The RNE criterion K assures a specified degree of
independence at the end of each cycle. The assessment of numerical accuracy is based
on the comparison of different approximations in J groups of particles, and larger values
of J make this assessment more reliable.
At the conclusion of the algorithm, the posterior moments of interest E (g (θ) | y1:t)

are approximated by (3). The asymptotic (in N) variance of the approximation is pro-
portional to (JN)−1, and becauseK = 0.9 in the last cycle L the factor of proportionality
is approximately the posterior variance var (g (θ) | y1:T).
The division of a given posterior sample size into a number of groups J and particles

within groups N should be guided by the trade-off implied by (7) and the fact that values
of N suffi ciently small will give misleading representations of the posterior distribution.
From (7) notice that the ratio of squared NSE from one simulation to another has an
asymptotic (in N) F (J − 1, J − 1) distribution. For J = 8, the ratio of NSE in two
simulations will be less than 2 with probability 0.95. A good benchmark for serviceable
approximation of posterior moments is J = 10, N = 1000. With implementation on
GPUs much larger values can be practical, for example J = 40, N = 2500 used in
Sections 4 and 5.

8

2.4 The two-pass SPS algorithm

Algorithm 2 is practical and reliable in a very wide array of applications. This includes
situations in which MCMC is ineffective, as illustrated in Herbst and Schorfheide (2012).
However, there is an important drawback: the algorithm has no supporting central limit
theorem.
The effectiveness of the algorithm is due in no small part to the fact that the cycle

definitions {t`} and parameters λ` of the M phase transition distributions are based on
the particles themselves. This creates a structure of dependence amongst particles that
is extremely complicated. The degree of complication stemming from the use of effective
sample size in step 1b can be managed: see Del Moral et al. (2012). But the degree of
complication introduced in theM phase, step 2c, is much greater. This is not addressed
by any of the relevant literature, and in our view this problem is not likely to be resolved
by attacking it directly anytime in the foreseeable future.
Fortunately, the problem can be solved at the cost of roughly doubling the compu-

tational burden in the following manner as proposed in Durham and Geweke (2013).

Algorithm 3 (Two pass)

1. Execute the adaptive Algorithm 2. Discard the particles {θjn}. Retain the number
of cycles L, values t0, . . . , tL that define the cycles, the number of iterations R`

executed in each M phase, and the variance matrices λ` = {Σ`r} from each M
phase.

2. Execute algorithm 2 using t`, R` and λ` (` = 1, . . . , L).

Notice that in step 2 the cycle break points t0, . . . , tL and the variance matrices Σ`r

are predetermined with respect to the particles generated in that step. Because they
are fixed with respect to the process of random particle generation, step 2 is a specific
version of Algorithm 1. The only change is in the notation: λ` in Algorithm 1 is the
sequence of matrices {Σ`r} indexed by r in step 2 of Algorithm 3. The results in Chopin
(2004), and other results for SMC algorithms with fixed design parameters, now apply
directly.
The software used for the work in this paper makes it convenient to execute the

two-pass algorithm. In a variety of models and applications results using Algorithms 2
and 3 have always been similar, as illustrated in Section 4.1. Thus it is not necessary to
use the two-pass algorithm exclusively, and we do not recommend doing so throughout a
research project. It is prudent when SPS is first applied to a new model, because there is
no central limit theorem for the one-pass algorithm (Algorithm 2), and one should check
early for the possibility that this algorithm might be inadequate. Given that Algorithm
3 is available in generic SPS software, and the modest computational cost involved, it
is also probably a wise step in the final stage of research before public presentation of
findings.
The discussion of assessing numerical accuracy stated, in its conclusion at the end

of Section 2.1, that the method proposed there was not equivalent to J independent

9

repetitions of the algorithm with N particles each. The reason is that Algorithm 1 uses
all J ·N particles to construct the algorithm hyperparameters: the number of cycles L,
values t0, . . . , tL that define the cycles, the number of iterations R` executed in each M
phase, and the variance matrices λ` = {Σ`r} from each M phase. It is more effi cient
and effective to construct these hyperparameters with the larger number of particles,
J ·N , than with the N particles that would be available in J independent repetitions of
the algorithm with N particles each. The same argument that justifies the application
of SMC theory in Algorithm 3 guarantees independence across groups and thereby the
claims for numerical standard errors in Section 2.1.

3 Models, data and software

The balance of this paper studies the performance of the PSW and SPS algorithms
in instances from the literature that have been used to assess posterior simulation ap-
proaches to Bayesian inference in the logit model. This section provides the full logit
model specification, in Section 3.1, and describes the datasets used in Section 3.2. Sec-
tion 3.3 provides the details of the hardware and software used subsequently in Sections
4 and 5 to document the performance of the PSW and SPS algorithms.

3.1 The multinomial logit model

The multinomial logit model assigns probabilities to random variables Yt ∈ {1, 2, . . . , C}
as functions of observed k × 1 covariate vectors xt and a parameter vector θ. In the
standard setup θ′ = (θ′1, . . . , θ

′
C) and

P (Yt = c | xt, θ) =
exp (θ′cxt)∑C
i=1 exp (θ′ixt)

(c = 1, . . . , C; t = 1, . . . , T) . (13)

There is typically a normalization θc = 0 for some c ∈ {1, 2, . . . , C}, and there could be
further restrictions on θ, but these details are not important to the main points of this
section.
We use the specification (13) of the multinomial logit model throughout. The bi-

nomial logit model is the special case C = 2. Going forward, denote the observed
outcomes yt = (y1, . . . , yT) and the full set of covariates X = [x1, . . . , xT]′. The log odds
ratio

log

[
P (Yt = i | xt, θ)
P (Yt = j | xt, θ)

]
= (θi − θj)′ xt (14)

is linear in the parameter vector θ.
The prior distribution specifies independent components

θc ∼ N (µc,Σc) (c = 1, . . . , C) . (15)

10

It implies that the vectors θj − θc (j = 1, . . . , C; j 6= c) are jointly normally distributed,
with

E (θj − θc) = µj − µc, var (θj − θc) = Σj + Σc, cov (θj − θc, θi − θc) = Σc. (16)

This provides the prior distribution of the parameter vector when (13) is normalized
by setting θc = 0, that is, when θj is replaced by θj − θc and θc is omitted from the
parameter vector. So long as the constancy of the prior distribution (16) is respected,
all posterior moments of the form E [g (θ,X, y) | X, y] will be invariant with respect to
normalization. While it is entirely practical to simulate from the posterior distribution of
the unnormalized model, for computation it is more effi cient to use the normalized model
because the parameter vector is shorter, reducing both computing time and storage
requirements.
If the prior distribution (15) is exchangeable across c = 1, . . . , C then there is no

further loss of generality in specifying µc = 0 and Σc = Σ (c = 1, . . . , C). With one
minor exception the case studies in Section 5 further restrict Σ to the class proposed by
Zellner (1986),

Σ = (gT/k) (X ′X)
−1 . (17)

where k is the order of each covariate vector xt and g is a specified hyperparameter. To
interpret Σ, consider the conceptual experiment in which the prior distribution of θ is
augmented with a single xt drawn with probability T−1 from the set {x1, . . . , xT} and
then Y is generated by (13). Then the prior distribution of the log odds ratio (14) has
mean 0 and variance

1

T

T∑
t=1

x′t

[
2 (gT/k) (X ′X)

−1
]
xt =

1

T
tr

T∑
t=1

xtx
′
t

[
2 (gT/k) (X ′X)

−1
]

= 2g

and therefore standard deviation (2g)1/2.
The specification consisting of (13) and (15) satisfies conditions 1, 2 and 3 in Section

2.1 and then (14) is a function of interest that satisfies condition 4. Therefore the
properties of the SPS algorithm developed in Sections 2.2 through 2.4 apply here.

3.2 Data

We used eight different datasets to study and compare the performance of the PSW and
SPS algorithms. Table 1 summarizes some properties of these data. The notation in
the column headings is taken from Section 3.1, from which the number of parameters is
k · (C − 1).
For the binomial logit models (C = 2), we use the same four datasets as Polson et

al. (2013), Section 3.3. Data and documentation may be found at the University of
California - Irvine Machine Learning Repository1, using the links indicated.

1http://archive.ics.uci.edu/ml/datasets.html

11

Table 1: Characteristics of data sets
Data set Sample size T Covariates k Outcomes C Parameters
Diabetes 768 13 2 13
Heart 270 19 2 19

Australia 690 35 2 35
Germany 1000 42 2 42

Cars 263 4 3 8
Caesarean 1 251 8 3 16
Caesarean 2 251 4 3 8

Transportation 210 9 4 27

• Data set 1, “Diabetes.”The outcome variable is indication for diabetes usingWorld
Health Organization criteria, from a sample of individuals of Pima Indian heritage
living near Phoenix, Arizona, USA. Of the covariates, one is a constant and one is
a binary indicator. Link: Pima Indians Diabetes

• Data set 2, “Heart.”The outcome is presence of heart disease. Of the covariates,
one is a constant and 12 are binary indicators. T = 270. Link: Statlog (Heart)

• Data set 3, “Australia.”The outcome is approval or denial of an application for
a credit card. Of the covariates, one is a constant and 28 are binary indicators.
Link: Statlog (Australian Credit Approval)

• Data set 4, “Germany.” The outcome is approval or denial of credit. Of the
covariates, one is a constant and 42 are binary indicators. T = 1000. Link:
Statlog (German Credit Data)

For the multinomial logit models, we draw from three data sources. The first two
have been used in evaluating approaches to posterior simulation and the last is typical
of a simple econometric application.

• Data set 5, “Cars.”The outcome variable is the kind of car purchased (family,
work or sporty). Of the covariates, one is continuous and the remainder are binary
indicators. The data were used in Scott (2011) in the evaluation of latent variable
approaches to posterior simulation in logit models, and are taken from the data
appendix2 of Stine et al. (1998).

• The next two datasets derive from a common dataset described in Farhmeir and
Tutz, 2001, Table 1.1. The outcome variable is infection status at birth (none,
Type 1, Type 2). Covariates are constructed from three binary indicators. These
data (Farhmeir and Tutz, 2001, Table 1.1) have been a widely used test bed for the
performance posterior simulators given severely unbalanced contingency tables, for

2http://www-stat.wharton.upenn.edu/~waterman/ fsw/download.html

12

example Frühwirth-Schnatter and Frühwirth (2012) and references therein. The
data are distributed with the R statistical package.

—Data set 6, “Caesarean 1.”The model is fully saturated, thus 23 = 8 covari-
ates. This variant of the model has been widely studied because the implicit
design is severely unbalanced. One cell is empty. For the sole purpose of
constructing the g prior (17) we supplement the covariate matrix X with a
single row having an indicator in the empty cell. The likelihood function uses
the actual data.

—Data set 7, “Caesarean 2.”There are four covariates consisting of the three
binary indicators and a constant term.

• Data set 8, “Transportation.”The data is a choice-based sample of mode of trans-
portation choice (car, bus, train, air) between Sydney and Melbourne. The co-
variates are all continuous except for the intercept. The data (Table F21.2 of the
data appendix of Greene (2003)3) are widely used to illustrate logit choice models
in econometrics.

3.3 Hardware and software

The PSW algorithm described in Polson et al. (2013) is implemented in the R package
BayesLogit provided by the authors4. The R command transfers control to expertly
written C code and thus execution time reflects the effi ciency of fully compiled C code
and not the ineffi ciency of interpreted R code. Except as noted in Section 5.1, the
code executed flawlessly without intervention. To facilitate comparison with the GPU
implementation of the SPS algorithm the execution used a single CPU (Intel Xeon 5680)
and 24GB memory.
The SPS/CPU algorithm is coded in Matlab (Edition 2012b, with the Statistics

toolbox). The execution used a 12-core CPU (2× Intel Xeon E5645) and 24GB memory,
exploiting multiple cores with a ratio of CPU to wall clock time of about 5.
The SPS/GPU algorithm is coded C with the extension CUDA version 4.2 . The

execution used an Intel Core i7 860, 2.8 GHz CPU and one Nvidia GTX 570 GPU (480
cores).

4 Performance of the SPS algorithm

The SPS algorithm can be used routinely in any model that has a bounded and directly
computed likelihood function, accompanied by a proper prior distribution. It provides
numerical standard errors that are reliable in the sense that they indicate correctly the
likely outcome of a repeated, independent execution of the sequential posterior simulator.

3http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm
4http://cran.r-project.org/ web/packages/BayesLogit/BayesLogit.pdf

13

As a by-product, it also provides consistent (in N) approximations of log marginal
likelihood and associated numerical standard error; Section 4 of Durham and Geweke
(2013) explains the procedure. Section 4.1, below, illustrates these properties for the
case of the multinomial logit model. The frequency of transition from one cycle to a new
cycle as well as the number of steps taken in the M phase, and therefore the execution
time, depend on characteristics of the model and the data. Section 4.2 studies some
aspects of this dependence for the case of the multinomial logit model.

4.1 Reliability of the SPS algorithm

Numerical approximations of posterior moments must be accompanied by an indication
of their accuracy. Even if editorial constraints often preclude accompanying each moment
approximation with an indication of accuracy, decent scholarship demands that the
investigator be aware of the accuracy of reported moment approximations. Moreover,
the accuracy indications must themselves be interpretable and reliable.
The SPS methodology for the logit model described in Section 2 achieves this stan-

dard by means of a central limit theorem for posterior moment approximations accom-
panied by a scheme for grouping particles that leads to a simple simulation-consistent
approximation of the variance in the central limit theorem. The practical consequence of
these results is the numerical standard error (6). The underlying theory for SPS requires
the two-pass procedure of Algorithm 3.

Table 2: Reliability of one- and two-pass algorithms
E (θ′1x | Data) E (θ′2x | Data)

J = 10, N = 1000
Run A, Pass 1 0.6869 [.0017] -0.3836 [.0017]
Run A, Pass 2 0.6855 [.0012] -0.3856 [.0024]
Run B, Pass 1 0.6811 [.0014] -0.3920 [.0017]
Run B, Pass 2 0.6847 [.0018] -0.3877 [.0025]
Run C, Pass 1 0.6844 [.0016] -0.3892 [.0018]
Run C, Pass 2 0.6837 [.0019] -0.3875 [.0021]
J = 40, N = 2500
Run A, Pass 1 0.6850 [.0005] -0.3873 [.0006]
Run A, Pass 2 0.6857 [.0005] -0.3871 [.0008]
Run B, Pass 1 0.6844 [.0004] -0.3890 [.0006]
Run B, Pass 2 0.6849 [.0005] -0.3885 [.0006]
Run C, Pass 1 0.6853 [.0005] -0.3881 [.0006]
Run C, Pass 2 0.6847 [.0004] -0.3872 [.0005]

Table 2 provides some evidence on these points using the multinomial logit model,
the prior distribution (15) - (17) with g/k = 1, and the cars dataset described in Section
3.2. For both small and large SPS executions (upper and lower panels, respectively)

14

Table 2 indicates moment approximations for three independent executions (A, B and
C) of the two-pass algorithm, and for both the first and second pass of the algorithm.
The posterior moments used in the illustrations here, and subsequently, are the the log
odds ratio (with respect to the outcome Y = C), θ′cx (c = 1, . . . , C − 1), where x is the
sample mean of the covariates. For each posterior moment approximation in Table 2
the accompanying figure in brackets is the numerical standard error. As discussed in
Section 2.3, these will vary quite a bit more from one run to another when J = 10 than
the will when J = 40, and this is evident in Table 2.
Turning first to the comparison of results at the end of Pass 1 (no formal justification

for numerical standard errors) and at the end of Pass 2 (the established results for
the nonadaptive algorithm discussed in Section 2.2 apply) there are no unusually large
differences within any run, given the numerical standard errors. That is, there is no
evidence to suggest that if an investigator used Pass 1 results to anticipate what Pass 2
results would be, the investigator would be misled.
This still leaves the question of whether the numerical standard errors from a single

run are a reliable indication of what the distribution of Monte Carlo approximations
would be across independent runs. Comparing results for runs A, B and C, Table 2
provides no indication of diffi culty for the large SPS executions. For the small SPS
executions, there is some suggestion that variation across runs at the end of the first
pass is larger than numerical standard error suggests (E (θ′1x | Data) for runs A and B).
These suggestions could be investigated more critically with scores or hundreds of

runs of the SPS algorithm, but we conjecture the returns would be low and in any event
there is no basis for extrapolating results across models and datasets. Most important,
one cannot resort to this tactic routinely in applied work. The results here support the
earlier recommendation (at the end of Section 2.4) that the investigator proceed mainly
using the one-pass algorithm, reserving the two-pass algorithm for checks at the start
and the end of a research project.

4.2 Adaptation in the SPS algorithm

The SPS algorithm approximates posterior distributions by mimicking the formal Bayesian
updating process, observation by observation, using (at least) thousands of particles si-
multaneously. It does so in a reliable and robust manner, with much less intervention,
problem-specific tailoring, or baby-sitting than is the case with other posterior simulation
methods. For example it does not require the investigator to tailor a source distribution
for importance sampling (which SPS uses in the C phase) nor does it require that the
investigator monitor a Markov chain (which SPS uses in the M phase) for stationarity
or serial correlation.
While SPS requires very little intervention by the user, a little insight into its me-

chanics helps to understand the computational demands of the algorithm. Table 3 and
Figures 1 and 2 break out some details of these mechanics, continuing to use the cars
data for illustration. Figure 1 and the upper panel of Table 3 pertain to the small SPS
execution, and Figure 2 and the lower panel of Table 3 pertain to the large SPS exe-

15

Table 3: Some features of the SPS algorithm for the cars data
g/k = 1/64 g/k = 1/16 g/k = 1/4 g/k = 1 g/k = 4

J = 10, N = 1000
Cycles 11 18 24 32 37
M phase iterations 80 186 189 257 330
Relative time 1.00 2.08 1.47 2.11 2.19
RNE, E (θ′1x | Data) 1.08 1.09 1.02 1.55 1.06
RNE, E (θ′2x | Data) 0.93 0.86 0.83 2.15 2.13
NSE(log ML) 0.088 0.052 0.069 0.075 0.089
J = 40, N = 2500
Cycles 11 18 24 33 37
M phase iterations 94 131 178 268 319
Relative time 1.00 1.09 1.32 1.76 1.92
RNE, E (θ′1x | Data) 1.00 0.94 1.12 1.17 1.03
RNE, E (θ′2x | Data) 1.12 0.99 1.19 1.23 1.01
NSE(log ML) 0.025 0.027 0.026 0.035 0.037

cution. They compare performance under all five prior distributions to illustrate some
central features of the algorithm.
Essentially by design, the algorithm achieves similar accuracy of approximation for

all five prior distributions. For moments, this is driven by the iterations in the final M
phase that terminate only when the RNE for all monitoring functions first exceeds 0.9.
The monitoring functions are not the same as the log odds ratio functions of interest, and
log marginal likelihood is not a posterior moment, but the principle that computation
goes on until a prescribed criterion of numerical accuracy is achieved is common to all
models and applications. Relative numerical effi ciencies show less variation across the
five cases for the large SPS executions for the usual reason: one learns more about
reliability from J = 40 particle groups than from J = 10 particle groups.
The most striking feature of Table 3 is that more diffuse prior distributions (e.g.,

g/k = 1, g/k = 4) lead to more cycles and total iterations in the M phase than do
tighter prior distributions (e.g. g/k = 1/64, g/k = 1/16). Indeed, the ratio of M phase
iterations to cycles remains roughly constant. The key to understanding this behavior
is the fact that the algorithm terminates the addition of information in the C phase,
thus defining a cycle, when the accumulation of new information has introduced enough
variation in particle weights that effective sample size drops below the threshold of half
the number of particles.
Figures 1 and 2 show the cycle breakpoints under each of the five prior distributions.

Breakpoints tend to be more frequent near the start of the sample and algorithm, when
the relative contribution of each observation to the posterior distribution is greatest.
This is true in all five cases. As the prior distribution becomes more diffuse the posterior
becomes more sensitive to each observation. This sensitivity is concentrated at the start

16

Figure 1: Some properties of the SPS algorithm in the cars example (J = 10, N = 1000)

of the sample and algorithm.
Later in the sample changes in the weight function are driven more by particular

observations that contribute more information. These are the observations that are less
likely conditional on previous observations, contributing to greater changes in the poste-
rior distribution and therefore increasing the variation in particle weights and triggering
new cycles. This is evident in breakpoints that are shared across prior distributions and
independent executions of the algorithm.
Consequently, the additional cycles and breakpoints arising from more diffuse priors

tend to be concentrated in the earlier part of the algorithm. Sample sizes are smaller
here than later, and the repeated evaluations of the likelihood function in the M phase
demand fewer computations. This is the main reason that relative computation time
increase by a factor of less than 2, in moving from the tightest to the most diffuse prior
in Table 3 , whereas the number of cycles and M phase iterations more than triples.
The limiting cases are simple and instructive. A dogmatic prior implies a uni-

form weight function and one cycle. For most likelihood functions, in the limit a
sequence of increasingly diffuse priors guarantees t1 = 1, the existence exactly one
unique particle in each group at the conclusion of the first S phase, and therefore
rank (V11) = min (J, dim (θ)) in the M phase, and the algorithm will fail at step 2(c)i.
While the theory requires only that the prior distribution be proper, in practice the

SPS algorithm functions better for prior distributions that are substantively subjective
—for example, the prior distribution developed in Section 3.1 —than for convenient but
quite diffuse prior distributions. This requirement arises from the representation of the

17

Figure 2: Some properties of the SPS algorithm in the cars example (J = 40, N = 2500)

Bayesian updating procedure by means of a finite number of particles. Our experience
in this and other models is that a proper prior distribution with a reasoned substantive
interpretation presents no problems for the SPS algorithm. The next section illustrates
this point.

5 Comparison of algorithms

We turn now to a systematic comparison of the effi ciency and reliability of the PSW
and SPS algorithms in the logit model.

5.1 The exercise

To this end, we simulated the posterior distribution for the Cartesian product of the
eight datasets described in Section 3.2 and Table 1, the five prior distributions utilized
in Section 4.2 and Table 3, and five approaches to simulation. The first approach to
posterior simulation is the PSW algorithm implemented as described in Section 3.3.
The second approach uses the small SPS simulation (J = 10, N = 1000) with the
CPU implementation described in Section 3.3, and the third approach uses the GPU
implementation. The fourth and fifth approaches are the same as the second and third
except that they use the large SPS simulation (J = 40, N = 2500).
To complete this exercise we had to modify the multinomial logit model (last four

datasets) for the PSW algorithm. The code that accompanies the algorithm requires

18

Table 4: Log marginal likelihoods, all data sets and models
g/k = 1/64 g/k = 1/16 g/k = 1/4 g/k = 1 g/k = 4

Diabetes -405.87 [0.04] -386.16 [0.03] -383.31 [0.03] -387.01 [0.04] -392.61 [0.04]
Heart -141.00 [0.04] -123.36 [0.03] -118.58 [0.04] -124.38 [0.06] -135.25 [0.11]

Australia -301.87 [0.04] -269.90 [0.05] -267.41 [0.06] -280.47 [0.07] -300.20 [0.12]
Germany -539.46 [0.06] -535.91 [0.08] -556.71 [0.00] -586.66 [0.00] -621.53 [0.00]

Cars -263.75 [0.02] -254.42 [0.03] -253.62 [0.03] -257.18 [0.03] -262.20 [0.04]
Caesarean 1 -214.50 [0.03] -187.19 [0.03] -176.96 [0.02] -177.29 [0.03] -181.66 [0.03]
Caesarean 2 -219.20 [0.03] -192.10 [0.03] -180.30 [0.02] -178.91 [0.02] -181.42 [0.02]

Transportation -234.58 [0.03] -197.07 [0.04] -176.14 [0.05] -173.97 [0.05] -184.24 [0.07]

that the vectors θc be independent in the prior distribution, and consequently (17) was
modified to specify cov (θj − θc, θi − θc) = 0. As a consequence, posterior moments
approximated by the PSW algorithm depend on the normalization employed and are
never the same as those approximated by the SPS algorithms. We utilized the same
normalization as in the SPS algorithms, except for the cars dataset, for which the code
would not execute with this choice and we normalized instead on the second choice.
Since it is impractical to present results from all 8×5×5 = 200 posterior simulations,

we restrict attention to a single prior distribution for each dataset: the one producing
the highest marginal likelihood. Table 4 provides the log marginal likelihoods under
all five prior distributions for all eight datasets, as computed using the large SPS/GPU
algorithm.
Note that the accuracy of these approximations is very high, compared with existing

standards for posterior simulation. The accuracy of log-marginal likelihood approxima-
tion tends to decline with increasing sample size, as detailed in Durham and Geweke
(2013, Section 4) and this is evident in Table 4. Going forward, all results pertain to the
g-prior described in Section 3.1 with g/k = 1/16 for Germany, g/k = 1 for Caesarean 1
and transportation, and g/k = 1/4 for the other five datasets.

5.2 Reliability

We assess the reliability of the algorithms by comparing posterior moments and log
marginal likelihood approximations for the same model. Table 5 provides the posterior
moment approximations. The moments used are, again, the posterior expectation of
the log odds ratio(s) evaluated at the sample mean x, for each choice relative to the
last choice. (This corresponds to the normalization used in execution.) Thus there
is one moment for each of the four binomial logit datasets, two moments for the first
three multinomial logit datasets, and three moments for the last multinomial logit model
dataset.
The result for each moment and algorithm is presented in a block of four numbers.

The first line has the simulation approximation of the posterior expectation followed

19

Table 5: Posterior moments and numerical accuracy
(J = 10, N = 1000) J = 40, N = 2500)

PSW SPS/CPU SPS/GPU SPS/CPU SPS/GPU
Diabetes -0.853 (.096) -0.855 (.095) -0.852 (.096) -0.853 (.095) -0.853 (.095)

[.0008, 0.68] [.0009, 1.12] [.0009, 1.21] [.0003, 0.99] [.0003, 1.03]
Heart -0.250 (.192) -0.246 (.187) -0.251 (.191) -0.249 (.189) -0.250 (.189)

[.0021, 0.43] [.0019, 0.96] [.0019, 0.98] [.0006, 0.86] [.0006, 0.92]
Australia -0.438, .157) -0.438 (.157) -0.439 (.156) -0.440 (.156) -0.438 (.157)

[.0023, 0.23] [.0016, 0.96] [.0016, 0.98] [.0005, 0.97] [.0006, 0.60]
Germany -1.182 (.089) -1.180 (.089) -1.81 (.089) -1.182 (.089) -1.81 (.088)

[.0010, 0.36] [.0009, 1.00] [.0004, 0.94] [.0003, 0.91] [.0004, 0.94]
Cars -1.065 (.171) 0.684 (.156) 0.685 (.158) 0.685 (.156) 0.685 (.156)

[.0002, 0.46] [.0015, 1.03] [.0017, 0.98] [.0005, 1.12] [.0005, 0.97]
-0.665 (.156) -0.386 (.195) -0.388 (.195) -0.387 (.194) -0.388 (.193)
[.0009, 0.60] [.0021, 0.83] [.0017, 1.29] [.0006, 1.19] [.0007, 0.72]

Caesarean 1 -1.975 (.241) -2.049 (.245) -2.052 (.248) -2.052 (.246) -2.052 (.246)
[.0004, 0.26] [.0024, 1.09] [.0037, 0.45] [.0008, 0.91] [.0008, 0.96]
-1.607 (.211) -1.698 (.215) -1.694 (.217) -1.697 (.219) -1.698 (.219)
[.0003, 0.27] [.0018, 1.36] [.0024, 0.80] [.0007, 1.07] [.0006, 1.30]

Caesarean 2 -2.033 (.261) -2.057 (.264) -2.056 (.264) -2.056 (.262) -2.0534 (.262)
[.0004, 0.22] [.0027, 0.94] [.0025, 1.32] [.0008, 0.99] [.0009, 0.89]
-1.586 (.205) -1.597 (.210) -1.587 (.206) -1.593 (.206) -1.593 (.207)
[.0003, 1.30] [.0021, 0.98] [.0021, 0.99] [.0006, 1.02] [.0006, 1.03]

Transportation 0.091 (.316) 0.130 (.321) 0.119 (.322) 0.123 (.322) 0.123 (.323)
[.0006, 0.13] [.0031, 1.09] [.0030, 1.14] [.0010, 1.01] [.0010, 0.97]
-0.588 (.400) -0.416 (.380) -0.416 (.388) -0.421 (.386) -0.419 (.388)
[.0009, 0.09] [.0020, 3.52] [.0043, 0.82] [.0012, 1.04] [.0011, 1.29]
-1.915 (.524) -1.646 (.487) -1.642 (.490) -1.645 (.491) -1.647 (.492)
[.0013, 0.07] [.0036, 1.84] [.0044, 1.24] [.0016, 0.95] [.0019, 0.65]

by the simulation approximation of the posterior standard deviation. The second line
contains [in brackets] the numerical standard error and relative numerical effi ciency of
the approximation. For the multinomial logit model there are multiple blocks, one for
each posterior moment.
For the SPS algorithms the numerical standard error and relative numerical effi ciency

are the natural by-product of the results across the J groups of particles as described in
Section 2.1. For the PSW algorithm these are computed based on the 100 independent
executions of the algorithm. The PSW approximations of the posterior expectation and
standard deviation are based on a single execution.
Posterior moment approximations are consistent across the four implementations of

the SPS algorithm (columns 3 through 6 of Table 5). For the comparable cases (the

20

Table 6: Log marginal likelihoods and numerical accuracy
(J = 10, N = 1000) J = 40, N = 2500)

SPS/CPU SPS/GPU SPS/CPU SPS/GPU
Diabetes -383.15 [0.05] -383.14 [0.17] -383.31 [0.03] -383.25 [0.03]
Heart -118.29 [0.15] -118.73 [0.14] -118.58 [0.04] -118.61 [0.04]

Australia -267.25 [0.32] -267.35 [0.19] -267.41 [0.06] -267.35 [0.05]
Germany -536.05 [0.21] -536.10 [0.18] -535.91 [0.08] -535.89 [0.07]

Cars -253.57 [0.07] -253.46 [0.10] -253.62 [0.03] -253.61 [0.03]
Caesarean 1 -177.06 [0.08] -176.72 [0.13] -176.96 [0.02] -176.91 [0.03]
Caesarean 2 -178.89 [0.08] -178.95 [0.03] -178.91 [0.02] -178.83 [0.03]

Transportation -174.09 [0.12] -173.92 [0.19] -173.97 [0.05] -173.99 [0.05]

first four datasets) PSW and SPS moments are also consistent with each other. As
explained earlier in this section, the moments approximated by the PSW algorithm are
not exactly the same as those approximated by the SPS algorithms in the last four
datasets. Numerical standard errors depend on the number of iterations of the PSW
algorithm and the number of particles in the SPS algorithm. For the SPS algorithm
RNE clusters around 0.9 by design (Algorithm 2, RNE termination criterion Step 2(b)ii).
Median RNE for the PSW algorithm is 0.22.
Table 6 compares approximations of log marginal likelihoods across the four variants

of the SPS algorithm, and there are no anomalies. (The PSW algorithm does not yield
approximations of the log marginal likelihood.) There is no evidence of unreliability of
any of the algorithms in Tables 5 and 6.

5.3 Computational effi ciency

Our comparisons are based on a single run of each of the five algorithms (PSW and four
variants of SPS) for each of the eight datasets, using for each dataset one particular
prior distribution chosen as indicated in Section 5.1. In the case of the PSW algorithm,
we used 20,000 iterations for posterior moment approximation for the first four datasets,
and 21,000 for the latter four datasets. The entries in Table 7 show wall-clock time for
execution on the otherwise idle machine described in Section 3.3. Execution time for
the PSW algorithm includes 1,000 burn-in iterations in all cases except Australia and
Germany, which have 5,000 burn-in iterations. Times can very considerably, depending
on the particular hardware used: for example, the SPS/CPU algorithms were executed
using a 12-core machine that utilized about 5 cores, simultaneously, on average; and the
SPS/GPU algorithms used only a single GPU with 480 cores. The results here must
be qualified by these considerations. In practice returns to additional CPU cores or
additional GPUs are substantial but less than proportionate.
Execution time also depends on memory management, clearly evident in Table 7.

The ratio of execution time for the SPS/CPU algorithm in the large simulations (J =

21

Table 7: Clock execution time in seconds
(J = 10, N = 1000) J = 40, N = 2500)

PSW SPS/CPU SPS/GPU SPS/CPU SPS/GPU
Diabetes 14.90 106.7 6.00 739.9 26.9
Heart 9.53 140.8 13.7 923.4 73.6

Australia 41.60 1793.5 69.2 12449.9 448.7
Germany 125.59 5910.4 225.9 45263.2 1689.4

Cars 7.62 33.5 3.5 231.2 18.9
Caesarean 1 6.84 97.3 10.9 723.3 55.3
Caesarean 2 6.65 15.2 2.5 133.3 11.6

Transportation 15.10 569.7 39.7 3064.2 293.7

40, N = 2500) to that in the small simulations (J = 10, N = 1000) ranges from from
8.5 (Transportation) to 16.2 (Australia). There is no obvious pattern or source for this
variation. The same ratio for the SPS/GPU algorithm ranges from 4.48 (Diabetes) to
about 7.45 (Germany and Transportation). This reflects the fact that GPU computing is
more effi cient to the extent that the application is intensive in arithmetic logic as opposed
to flow control. Very small problems are relatively ineffi cient; as the number and size of
particles increases, the effi ciency of the SPS/GPU algorithm increases, approaching an
asymptotic ratio of number and size of particles to computing time from below.
Relevant comparisons of computing time t require that we correct for the number

M̃ of PSW iterations or SPS particles and the relative numerical effi ciency RÑE of the
algorithm. This produces an effi ciency-adjusted computing time t̃ = t/

(
M̃ ·RÑE

)
.

For RÑE we use the average of the relevant RNEs reported in Table 5: in the case
of SPS, the averages are taken across all four variants since population RNE does not
depend on the number of particles, hardware or software. This ignores variation in RNE
from moment to moment and one run to the next. In the case or PSW, it also ignores
dependence of RNE and number of burn-in iterations on the number of iterations used for
moment approximations that arises from both practical and theoretical considerations.
Therefore effi ciency comparisons should be taken as indicative rather than definitive:
they will vary from application to application in any event, and one will not undertake
these comparisons for every (if indeed any) substantive study.
Table 8 provides the ratio of t̃ for each of the SPS algorithms to t̃ for the PSW algo-

rithm, for each of the eight datasets. The SPS/CPU algorithm compares more favorably
with the PSW algorithm for the small simulation exercises than for the large simulation
exercises. The SPS/CPU algorithm is clearly slower than the PSW algorithm, and its
disadvantage becomes more pronounced the greater the number of parameters and ob-
servations. With a single exception (Germany) the SPS/GPU algorithm is faster than
the PSW algorithm for the large simulation exercises, and for the single exception it is
78% as effi cient.

22

Table 8: Computational ineffi ciency relative to PSW
(J = 10, N = 1000) J = 40, N = 2500)
SPS/CPU SPS/GPU SPS/CPU SPS/GPU

Diabetes 9.40 0.53 6.52 0.24
Heart 14.35 1.40 9.41 0.75

Australia 28.25 1.09 19.61 0.71
Germany 45.06 1.72 34.51 1.29

Cars 5.04 0.53 3.47 0.28
Caesarean 1 8.36 0.94 6.21 0.47
Caesarean 2 3.73 0.62 3.28 0.29

Transportation 6.19 0.43 3.33 0.32

6 Conclusion

Sequential posterior simulation algorithms complement earlier approaches to the simu-
lation approximation of posterior moments. Graphics processing units have become a
convenient and cost-effective platform for scientific computing, potentially accelerating
computing speed by orders of magnitude for parallel algorithms. One of the appealing
features of SPS is the fact that it is well suited to GPU computing. The work reported
here uses an SPS algorithm designed to exploit that potential.
The multinomial logistic regression model, the focus of this paper, is important in

applied statistics in its own right, and also as a component in mixture models, Bayesian
belief networks, and machine learning. The model presents a well conditioned likelihood
function that renders maximum likelihood methods straightforward, yet it has been
relatively diffi cult to attack with posterior simulators —and hence arguably a bit of an
embarrassment for applied Bayesian statisticians. Recent work by Frühwirth-Schnatter
and Frühwirth (2007, 2012), Holmes and Held (2006), Scott (2011) and, especially,
Polson et al. (2013) has improved this state of affairs substantially, using latent variable
representations specific to classes of models that include the multinomial logit.
The paper used 8 canonical datasets to compare the performance of the SPS algo-

rithm with the PSW algorithm of Polson et al. (2013). The SPS algorithm used a
single GPU, the PSW algorithm a single CPU. Both were coded in C. Comparisons of
effi ciency were made for each of the datasets and allow for differences in the accuracy of
posterior moment approximations as well as computing times. For 7 of the 8 datasets
the SPS algorithm was found to be more effi cient, and more than twice as effi cient for 5
of the 8 datasets. For the remaining dataset the SPS algorithm was 78% as effi cient.
The SPS algorithm has other attractions that are as significant as computational

effi ciency. These advantages are generic, but some are more specific to the logit model
than others.

1. SPS produces an accurate approximation of the log marginal likelihood as a by-
product. The latent variable algorithms, including all of those just mentioned, do

23

not. SPS also produces accurate approximations of log predictive likelihoods, a
significant factor in time series models.

2. SPS approximations have a firm foundation in distribution theory. The algorithm
produces a reliable approximation of the standard deviation in the applicable cen-
tral limit theorem —again, as a by-product in the approach developed in Durham
and Geweke (2013). Numerical accuracy in the latent variable methods for poste-
rior simulation do not do this, and we are not aware of procedures for ascertaining
reliable approximations of accuracy with the latent variable approaches that do
not entail a many-fold increase in computing time.

3. More generally, SPS is simple to implement when the likelihood function can be
evaluated in closed form. Indeed, in comparison with alternatives it can be trivial,
and this is the case for the logit model studied in this paper. By implication, the
time from conception to Bayesian implementation is greatly reduced for this class
of likelihood functions.

24

References

Albert JH, Chib S (1993). Bayesian analysis of binary and polychotomos response
data. Journal of the American Statistical Association 88: 669-679.

Andrieu C, Doucet A, Holenstein R (2010). Particle Markov chain Monte Carlo meth-
ods. Journal of the Royal Statistical Society, Series B 72: 269-342.

Baker JE (1985). Adaptive selection methods for genetic algorithms. In Grefenstette
J (ed.), Proceedings of the First International Conference on Genetic Algorithms
and Their Applications, 101-111. Hillsdale NJ: L. Earlbaum Associates, Inc..

Baker JE (1987). Reducing bias and ineffi ciency in the selection algorithm. In Grefen-
stette J (ed.) Proceedings of the Second International Conference on Genetic
Algorithms and Their Applications, 14—21. Hillsdale NJ: L. Earlbaum Associates,
Inc.

Chopin N (2002). A sequential particle filter method for static models. Biometrika 89:
539-551.

Chopin N (2004). Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference. Annals of Statistics 32: 2385-2411.

Chopin N, Jacob PE, Papaspiliopoulos O (2011). SMC2: A sequential Monte Carlo
algorithm with particle Markov chain Monte Carlo updates. Working paper.
http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.1528v2.pdf

Del Moral P, Doucet A, Jasra A (2012). On adaptive resampling strategies for sequen-
tial Monte Carlo methods. Bernoulli 18: 252-278.

Durham G, Geweke J (2013). Adaptive sequential posterior simulators for massively
parallel computing environments. http://arxiv.org/abs/1304.4334.

Fahrmeir L, Tutz G (2001). Multivariate Statistical Modelling based on Generalized
Linear Models. New York: Springer-Verlag.

Flegal JM, Jones GL (2010). Batch means and spectral variance estimators in Markov
chain Monte Carlo. Annals of Statistics 38: 1034-1070.

Frühwirth-Schnatter S, Frühwirth, R (2007). Auxiliary mixture sampling with ap-
plications to logistic models. Computational Statistics and Data Analysis 51:
3509-3528.

Frühwirth-Schnatter S, Frühwirth, R (2012). Bayesian inference in the multinomial
logit model. Austrian Journal of Statistics 41: 27-43.

25

Geweke J (1989). Bayesian inference in econometric models using Monte Carlo inte-
gration. Econometrica 57: 1317-1340.

Geweke J, Keane M (2007). Smoothly mixing regressions. Journal of Econometrics
138: 252-290.

Geweke J, Keane M, Runkle D (1994). Alternative computational approaches to in-
ference in the multinomial probit mdoel. Review of Economics and Statistics 76:
609-632.

Gordon NJ, Salmond DJ, Smith AFM (1993). Novel approach to nonlinear non-
Gaussian Bayesian state estimation. IEEE Proceedings F on Radar and Signal
Processing 140 (2): 107-113.

Gramacy RB, Polson NG (2012). Simulation-based regularized logistic regression.
Bayesian Analysis 7: 567-589.

Green WH (2003). Econometric Analysis. Fifth Edition. Prentice-Hall.

Herbst E, Schorfheide F (2012). Sequential Monte Carlo sampling for DSGE models.

http://www.philadelphiafed.org/research-and-data/publications/working-papers/2012/wp12-
27.pdf

Holmes C, Held L (2006). Bayesian auxiliary variable models for binary and multino-
mial regression. Bayesian Analysis 1: 145-168.

Jacobs RA, Jordan MI, Nowlan SJ (1991). Adaptive mixtures of local experts. Neural
Computation 3: 79-87.

Jiang WX, Tanner MA (1999). Hierarchical mixtures-of-experts for exponential family
regression models: Approximation and maximum likelihood estimation. Annals of
Statistics 27: 987-1011.

Kong A, Liu JS, Wong WH (1994). Sequential imputations and Bayesian missing data
problems. Journal of the American Statistical Association 89: 278-288.

Liu JS, Chen R (1995). Blind deconvolution via sequential imputations. Journal of the
American Statistical Association 90: 567-576.

Liu JS, Chen R (1998). Sequential Monte Carlo methods for dynamic systems. Journal
of the American Statistical Association 93: 1032-1044.

Polson NG, Scott JG, Windle J (2013). Bayesian inference for logistic models using
Polya-Gamma latent variables. Journal of the American Statistical Association
108: 1339-1349.

26

Scott SL (2011). Data augmentation, frequentist estimation, and the Bayesian analysis
of multinomial logit models. Statistical Papers 52; 87-109.

Stine RA, Foster DP, Waterman RP (1998). Business Analysis Using Regression. New
York: Springer-Verlag.

Zellner A (1986). On assessing prior distributions and Bayesian regression analysis
with g-prior distributions. In: Goel P, Zellner A (eds.), Bayesian Inference and
Decision Techniques: Essays in Honor of Bruno de Finetti. 233-243. Amsterdam:
North-Holland.

27

