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REPRESENTATION THEOREMS FOR PATH-INDEPENDENT
CHOICE RULES

KOJI YOKOTE, ISA E. HAFALIR, FUHITO KOJIMA, ANDM. BUMIN YENMEZ∗

Abstract. Path independence is arguably one of the most important choice rule

properties in economic theory. We show that a choice rule is path independent

if and only if it is rationalizable by a utility function satisfying ordinal concavity,

a concept closely related to concavity notions in discrete mathematics. We also

provide a representation result for choice rules that satisfy path independence and

the law of aggregate demand.

1. Introduction

Plott (1973) introduced path independence as a property of social choice formal-

izing an idea in Arrow’s book Social Choice and Individual Values. When a choice

rule is path independent, any set of alternatives can be divided into segments,

the rule applied first to each segment and then to the set of chosen alternatives

from all segments without changing the final outcome. It is a desirable property

in many contexts. For example, in college admissions, without path independence,

the set of admitted students can depend on the order in which applications are

reviewed, which can enable the malpractice of favoritism. Path independence is in-

timately related to other well-known properties: A choice rule is path independent
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2 YOKOTE, HAFALIR, KOJIMA, AND YENMEZ

if and only if it satisfies the substitutes condition and the irrelevance of rejected contracts

(Aizerman and Malishevski, 1981).1

Although originating in social choice, path independence has found applica-

tions in different areas of economic theory, such as market design and decision

theory. For example, in two-sided matching markets, when agents have path-

independent choice rules, a stable matching exists (Blair, 1988).2 In decision the-

ory, path independence and its stochastic versions have been studied extensively

(Kalai and Megiddo, 1980).3 Path independence has also been studied in other

fields, such as discrete mathematics, law, philosophy, and systems design.4

In economics, rational agents are usually modeled as utility maximizers: They

have a utility function over sets of alternatives and, when they face a set of alter-

natives, they choose the subset with the highest utility over all subsets that can be

selected. An alternative approach is to endow agents with choice rules, for exam-

ple, when agents do not necessarily have a well-defined utility function or when

the utility function is not observable.5 A fundamental question linking these two

approaches is whether a choice rule is rationalizable by a utility function so that the

choice from any set of alternatives is the subset with the highest utility among all

subsets. Results of this nature connecting choice rules with certain properties to

utility functions with corresponding properties are called representation theorems.6

Surprisingly, to the best of our knowledge, there is no representation theorem for

path-independent choice rules, even though they have been studied in different

1The substitutes condition is also called Chernoff or Sen’s α or heritage, and the irrelevance of
rejected contracts is also called outcast or the independence of irrelevant alternatives.

2The substitutes condition is not sufficient for the existence of a stable matching when choice
rules are the primitive of the model rather than utility functions or preferences. See the discussion
in Aygün and Sönmez (2013) and Chambers and Yenmez (2017).

3See also Machina and Parks (1981) and a recent treatment by Ahn et al. (2018)
4For discrete mathematics see Gratzer and Wehrung (2016), for law Chapman (1997) and

Hammond and Thomas (1989), for philosophy Rott (2001) and Stewart (2022), and for systems
design Levin (1998).

5For example, choice rules are used to model diversity policies of schools (Hafalir et al., 2013;
Ehlers et al., 2014; Echenique and Yenmez, 2015).

6See, for example, Chapter 1 of Mas-Colell et al. (1995).
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areas of economics since their introduction five decades ago. For concreteness, fol-

lowing the market-design literature, we call alternatives as contracts in the rest of

the paper.

In this paper, we provide two representation results for path-independent choice

rules. First, we show that a choice rule is path independent if and only if it is ra-

tionalizable by a utility function satisfying ordinal concavity (Theorem 1). Roughly,

ordinal concavity requires that when two sets of contracts are made closer to each

other, either the utility function increases on at least one side or remains unchanged

on both sides. In this context, getting closer may either mean adding or removing

a contract that we start with or the existence of a second contract such that we add

one of the contracts and remove the other one.

Ordinal concavity is weaker than M♮-concavity (Hafalir et al., 2022, Proposition

5), which is a standard notion of concavity used in the discrete convex analy-

sis literature. Fujishige and Yang (2003) show that the gross substitutes property of

Kelso and Crawford (1982) is equivalent to M♮-concavity. Therefore, one implica-

tion of our result is that the difference between the gross substitutes property and

the substitutes condition (or path independence) can be attributed to the differ-

ence betweenM♮-concavity and ordinal concavity.7 Submodularity is another well-

known condition that is often associated with a variety of substitutability notions.8

However, submodularity and ordinal concavity are logically unrelated, and in fact

rationalizability by a submodular function does not imply path independence.9 At

a high level, one of our contributions is to identify an appropriate condition on util-

ity functions that is tightly connected with path independence and the substitutes

condition.

7To be more precise, this statement holds for rationalizable choice functions that satisfy the
substitutes condition and for path-independent choice rules. In fact these two classes of choice
rules are the same.

8For instance, M♮-concavity, or equivalently the gross substitutes condition of
Kelso and Crawford (1982), implies submodularity (Murota and Shioura, 2001). See
Lehmann et al. (2001) for the relationship between different properties including the gross
substitutes and submodularity conditions.

9An example is available from the authors for each of these two claims.
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In the market-design literature, another choice rule property that plays a cru-

cial role is the law of aggregate demand (Hatfield and Milgrom, 2005). The law of

aggregate demand states that when more contracts become available, the num-

ber of chosen contracts weakly increases. The law of aggregate demand, together

with path independence, yields numerous results. It implies, for instance, the ru-

ral hospitals theorem in two-sided matching markets, which states that the number

of contracts an agent gets is the same across all stable matchings. In addition, in

the doctor-hospital matching problem, a generalization of the doctor-proposing

deferred-acceptance mechanism of Gale and Shapley (1962) is strategy-proof for

doctors (Hatfield and Milgrom, 2005).

In our second result, we show that a choice rule satisfies path independence and

the law of aggregate demand if and only if it is rationalizable by a utility func-

tion that satisfies ordinal concavity and size-restricted concavity (Theorem 2). Size-

restricted concavity can also be viewed as a version of discrete concavity with a

quantifier such that the implication is required only for sets of contracts with dif-

ferent sizes.

Themain difference between ourwork and the classical literature on social choice

is that we assume the utility function (or the preference relation) is over sets of

contracts, whereas in the classic setting, the utility function (or the preference re-

lation) is over individual contracts (see Moulin (1985) for a summary). Likewise,

our choice rule is combinatorial (see Echenique (2007)), whereas in the classical

setting, multiple contracts represent indecision of the agent, and the agent is even-

tually assigned only one contract. Therefore, our results are independent of the

social choice literature on rationalizability.

Ordinal concavity was recently introduced in Hafalir et al. (2022). Even though

their formulation differs from ours, it is easy to check that their definition reduces

to ours in the present paper’s setting. In another recent work, Yang (2020) shows

that path-independent choice rules are rationalizable, but he does not provide any

representation results for path-independent choice rules. Chambers and Yenmez

(2017) make a connection between the theory of path-independent choice rules

and matching theory and utilize this connection to advance both fields.
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One of the major contributions of our paper is to establish a close connection be-

tween choice rules in economics and concavity concepts in discrete mathematics.

This connection allows us to shed light on economic problems with techniques of

discrete optimization. For instance, in an abstract setting, Eguchi et al. (2003) and

Murota and Yokoi (2015) show choice rules that are rationalizable by M♮-concave

functions satisfy path independence and the law of aggregate demand. On an ap-

plied front, Kojima et al. (2018) build upon their results to find M♮-concave func-

tions that rationalize a variety of practically relevant choice rules and establish their

desirable properties including computational efficiency. In addition to introducing

ordinal concavity, Hafalir et al. (2022) establish connections between ordinal con-

cavity and choice rules in markets with dual objectives such as college admissions

where diversity and meritocracy are typical goals. While advancing this research

program further, the present paper is distinctive in that it provides conditions of

discrete concavity that are equivalent to rationalizability of desirable choice rules,

thus giving a final and complete answer to a foundational issue in this research

agenda.

The rest of the paper is organized as follows. We define choice rules and their

properties in Section 2, present our representation results in Section 3, discuss the

relationship with rationalizability by anM♮-concave function in Section 4, and con-

clude in Section 5. We provide all proofs in the Appendix.

2. Preliminaries

Let X denote a finite set of contracts. A choice rule is a function C : 2X → 2X

such that, for any X ⊆ X , we have C(X) ⊆ X . We study two key properties of

choice rules.

Definition 1 (Plott (1973)). A choice rule C satisfies path independence if, for any

X,X ′ ⊆ X ,

C(X ∪X ′) = C(C(X) ∪X ′).
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Path independence plays a fundamental role in social choice, market design, and

decision theory. It has also been used in different areas such as discrete mathemat-

ics, law, philosophy, and systems design.10

Definition 2 (Hatfield and Milgrom (2005)). A choice rule C satisfies the law of ag-

gregate demand if, for any X,X ′ ⊆ X ,

X ⊇ X ′ =⇒ |C(X)| ≥ |C(X ′)|.

The law of aggregate demand is a critical property inmarket design.11 The law of

aggregate demand, together with path independence, produces classic results such

as the rural hospitals theorem (Fleiner, 2003) and strategy-proofness of a general-

ization of the doctor-proposing Gale-Shapley deferred-acceptance mechanism for

doctors (Hatfield and Milgrom, 2005).

A utility function u : 2X → R assigns a value to every set of contracts.12 A choice

rule C is rationalizable by a utility function u if, for any X ⊆ X ,

u(C(X)) > u(X ′) for every X ′ ⊆ X with X ′ 6= C(X).

In words, when a choice rule is rationalizable by a utility function, from any set of

available contracts, the choice rule selects the unique subset with the highest utility.

3. Results

In this section, we provide two representation theorems using utility functions

that satisfy notions of discrete concavity. To define these notions, we introduce

some notation following the discrete convex analysis literature. For any X ⊆ X

and x ∈ X , letX + x = X ∪ {x} andX − x = X \ {x}. Likewise, for anyX ⊆ X , let

X + ∅ = X andX − ∅ = X .

Definition 3. A utility function u satisfies ordinal concavity if, for anyX,X ′ ⊆ X and

x ∈ X \X ′, there exists x′ ∈ (X ′ \X) ∪ {∅} such that

(i) u(X) < u(X − x+ x′), or

10See the references in the Introduction.
11Alkan and Gale (2003) call it size monotonicity in a matching context without contracts.
12R represents the set of real numbers.
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(ii) u(X ′) < u(X ′ + x− x′), or

(iii) u(X) = u(X − x+ x′) and u(X ′) = u(X ′ + x− x′).

In words, ordinal concavity requires that when X is made closer towards X ′ by

removing x and adding x′, and X ′ is made closer toward X by adding x and re-

moving x′, either at least one of the two function values strictly increases or both

values remain unchanged.

Hafalir et al. (2022) study ordinal concavity in a market-design context to study

agents with dual objectives such as administrators in college admissions who try

to maximize both merit and diversity of admitted classes. Chen and Li (2021)

study the same concavity notion in the context of operations research (calling

it SSQM♮-concavity).13 Ordinal concavity is a weaker notion than M♮-concavity

(Hafalir et al., 2022, Proposition 5), which we define in Section 4 where we discuss

their relationship in detail.

Our main result is a representation theorem for path-independent choice rules.

Theorem 1. A choice rule is path independent if and only if it is rationalizable by a utility

function satisfying ordinal concavity.

The if direction of this result follows from our previous work (Hafalir et al., 2022,

Theorem 2). The only-if direction is an existence result, and its proof is construc-

tive. In what follows, we give the main idea in our construction. Given a path-

independent choice rule C, our goal is to construct an ordinally concave utility

function u such that, for any X ⊆ X ,

u(C(X)) > u(X ′) for every X ′ ⊆ X with X ′ 6= C(X).

By path independence, for everyX ⊆ X , C(X) ⊇ X ∩C(X ).14 Therefore, from any

setX , we must at least choose contracts that it has inC(X ) unlessX ∩C(X ) = ∅. In

the first step of our construction, we add one to the utility function for every con-

tract in C(X ). In other words, our first step can be viewed as defining the following

utility function: for anyX ⊆ X , v(X) = |X∩C(X )|. Since v(C(X)) = |C(X)∩C(X )|

13See Section 6.14 of Murota (2003) for other concavity notions with an ordinal content.
14This implication also follows from the substitutes condition, see Proposition 2 in Appendix A.
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by definition and |C(X) ∩ C(X )| = |X ∩ C(X )| by path independence, it follows

that v(C(X)) = |X ∩ C(X )|. Hence, for any X ′ ⊆ X , v(C(X)) = |X ∩ C(X )| ≥

|X ′ ∩ C(X )| = v(X ′). Therefore, we obtain

v(C(X)) ≥ v(X ′) for every X ′ ⊆ X.

This displayed inequality is required for rationalizability, but it is not enough.

Specifically, we need the inequality to be strict when X ′ 6= C(X). In the proof,

for every X ⊆ X , we construct a sequence of shrinking sets {Ek
X}k∈{1,...} starting

with E1
X = X . We modify the utility function so that it increases linearly in the

number of contracts thatX has in C(Ek
X) for each k. Our proof establishes that this

function in fact makes the above inequality strict forX ′ 6= C(X), thus rationalizing

the given choice rule. This formulation is also useful for establishing ordinal con-

cavity because the cardinality of the intersection of sets is tractable when we add

or remove one contract from a set.

Next, we introduce another concavity notion that proves crucial for rationalizable

choice rules to satisfy the law of aggregate demand.

Definition 4. A utility function u satisfies size-restricted concavity if, for anyX,X ′ ⊆

X with |X| > |X ′|, there exists x ∈ X \X ′ such that

(i) u(X) < u(X − x), or

(ii) u(X ′) < u(X ′ + x), or

(iii) u(X) = u(X − x) and u(X ′) = u(X ′ + x).

Like ordinal concavity, this condition states that either the function value strictly

increases at least on one side or the function values remain unchanged on both

sideswhen two setsmove closer toward each other. Size-restricted concavity differs

from ordinal concavity in that it requiresX to have a strictly larger cardinality than

X ′ and, furthermore, only one contract is added or removed when sets are made

closer to each other. It is easy to see that size-restricted concavity is weaker than

M♮-concavity while logically independent of ordinal concavity.15

15WedefineM♮-concavity in Section 4. If a utility function u satisfiesM♮-concavity, then it satisfies
the following property. For any X,X ′ ⊆ X with |X | > |X ′|, there exists x ∈ X \ X ′ such that
u(X) + u(X ′) ≤ u(X − x) + u(X ′ + x). In fact, M♮-concavity is equivalent to this property in
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Our second representation theorem uses size-restricted concavity.

Theorem 2. A choice rule satisfies path independence and the law of aggregate demand

if and only if it is rationalizable by a utility function that satisfies ordinal concavity and

size-restricted concavity.16

By Theorem 1, a choice rule that is rationalizable by an ordinally concave utility

function satisfies path independence. To complete the if direction, we show that

when the utility function also satisfies size-restricted concavity, the induced choice

rule satisfies the law of aggregate demand as well. For the only-if direction, we

show that the utility function we construct in the proof of Theorem 1 satisfies size-

restricted concavity when the choice rule satisfies both path independence and the

law of aggregate demand. This completes the proof using Theorem 1, which shows

that the utility function satisfies ordinal concavity.

4. Rationalizability by an M♮-concave utility function

In this section, we explain the relationship between our results and the literature

on choice rules that are rationalizable by utility functions satisfying M♮-concavity:

A utility function u satisfies M♮-concavity if, for any X,X ′ ⊆ X and x ∈ X \ X ′,

there exists x′ ∈ (X ′ \X) ∪ {∅} such that

u(X) + u(X ′) ≤ u(X − x+ x′) + u(X ′ + x− x′).

M♮-concavity implies ordinal concavity (Hafalir et al., 2022, Proposition 5). More-

over, when a choice rule is rationalizable by an M♮-concave function, the following

result holds.

Proposition 1 (Eguchi et al. (2003) andMurota and Yokoi (2015)). LetC be a choice

rule that is rationalizable by an M♮-concave utility function. Then C satisfies path inde-

pendence and the law of aggregate demand.

our setting (Murota and Shioura, 2018, Corollary 1.4). It can be easily verified that size-restricted
concavity is an ordinal implication of this inequality. Therefore,M♮-concavity implies size-restricted
concavity.

16We note that path independence of the choice rule or ordinal concavity of the rationalizing
utility function is indispensable in this theorem. More precisely, without those assumptions, the law
of aggregate demand is logically unrelated to rationalizability by a size-restricted concave function.
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If a choice ruleC is rationalizable by a utility function, then it is also rationalizable

by any monotonic transformation of that utility function.17 Therefore, even though

M♮-concavity is a cardinal notion, rather than an ordinal one, Proposition 1 still

holdswhenC is a choice rule that is rationalizable by amonotonic transformation of

anM♮-concave utility function. In otherwords, if we replaceM♮-concavitywith “the

ordinal content of M♮-concavity” in Proposition 1, the result continues to hold.18

One important implication of this discussion is that ordinal concavity is not

equivalent to the ordinal content of M♮-concavity. This can be seen by noting that

under ordinal concavity, the induced choice rule does not need to satisfy the law

of aggregate demand, but under the ordinal content of M♮-concavity the law of

aggregate demand holds. For example, consider a path-independent choice rule

that does not satisfy the law of aggregate demand and the corresponding utility

function that we construct in the proof of Theorem 1.19 We know that the utility

function satisfies ordinal concavity by Theorem 1. However, since the choice rule

fails the law of aggregate demand, the utility function cannot be amonotonic trans-

formation of an M♮-concave utility function by Proposition 1. In fact, even though

both ordinal concavity and size-restricted concavity are implied by M♮-concavity,

their conjunction is not equivalent to its ordinal content. To see why, we note that

Kojima et al. (2018) provide a choice rule that satisfies path independence and the

law of aggregate demand while not being rationalizable by an M♮-concave utility

function.20

The preceding discussion sheds light on relationships between different con-

cepts of substitutability. The substitutes condition of Hatfield and Milgrom (2005)

17A utility function u is a monotonic transformation of another utility function ũ if there exists a
strictly increasing function g : R → R such that u(X) = g(ũ(X)) for allX ⊆ X .

18The ordinal content of cardinal notions has drawn some attention in the literature. For
example, Chambers and Echenique (2009) study the ordinal content of supermodularity and
Chambers and Echenique (2008) consider ordinal notions for submodularity.

19For example, let X = {x, y, z}. Define choice rule C as, if x ∈ X , then C(X) = {x}, and
C(X) = X , otherwise. It is easy to check that C is path independent but does not satisfy the law of
aggregate demand.

20If the conjunction of ordinal concavity and size-restricted concavity were equivalent to the or-
dinal content of M♮-concavity, then the choice rule would also be rationalizable by an M♮-concave
utility function. The example is on pages 811 and 812 of Kojima et al. (2018).



REPRESENTATION THEOREMS FOR PATH-INDEPENDENT CHOICE RULES 11

is closely related to the gross substitutes property of Kelso and Crawford (1982),

which is the standard concept of substitutability in markets with continuous trans-

fers. Those two conditions are often regarded as natural counterparts in markets

with andwithout transfers, with the gross substitutes property being stronger than

the substitutes condition. Our analysis precisely pins down how stronger the for-

mer is than the latter for rationalizable choice rules. To see this, we note that

Fujishige and Yang (2003) show that the gross substitutes property is equivalent to

M♮-concavity. Since Theorem 1 provides a representation for rationalizable choice

rules satisfying the substitutes condition (rationalizability and the substitutes con-

dition are jointly equivalent to path independence, see Proposition 2 below and

Theorems 4 and 5 in Yang (2020)), one can attribute the difference between the two

notions of substitutability to the difference between two kinds of discrete concavity,

namely M♮-concavity and ordinal concavity. Similarly, Theorem 2 shows that size-

restricted concavity is precisely the additional restriction on utility functions that

corresponds to imposing the law of aggregate demand on choice rules in addition

to path independence.

5. Concluding remarks

Concavity has been a central assumption in microeconomic analysis with divis-

ible goods. Our analysis showed a sense in which it is essential in economies with

indivisible goods as well. In particular, we showed that a path-independent choice

rule is rationalizable by a utility function that satisfies a particular notion of dis-

crete concavity, namely ordinal concavity. In fact, we showed that the relationship

between path independence and rationalizability by a utility function with ordinal

concavity is tight. In economies with divisible goods, it is often the case that max-

imization techniques of concave functions help us characterize equilibrium out-

comes. Our representation theoremsmay prove useful in the analysis of economies

with indivisible goods.

To our knowledge, the present paper is one of the first to provide representa-

tion theorems for combinatorial choice rules. One possible direction of future re-

search is to provide representation results for other choice rules. It is not arduous to



12 YOKOTE, HAFALIR, KOJIMA, AND YENMEZ

provide such results for canonical choice rules such as the responsive ones (Roth,

1985) aswell as the q-acceptant and substitutable ones (Kojima and Manea, 2010).21

Meanwhile, representation results are still open for most other choice rules such as

those with type-specific quotas (Abdulkadiroğlu and Sönmez, 2003) and with re-

serves (Hafalir et al., 2013). More generally, it would be interesting to establish

representation theorems for practically relevant choice rules.
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Appendix A. Proofs

In the appendix, we provide the proofs of our results.

A.1. The substitutes condition and the irrelevance of rejected contracts. We use

the following choice rule properties in our proofs.

Definition 5 (Roth and Sotomayor (1990)). A choice rule satisfies the substitutes con-

dition if, for any X,X ′ ⊆ X withX ⊆ X ′,

C(X) ⊇ C(X ′) ∩X.

The substitutes condition is equivalent to the following condition: for any

X,X ′ ⊆ X with X ⊆ X ′, it holds that X\C(X) ⊆ X ′\C(X ′).

Definition 6 (Aygün and Sönmez (2013)). A choice rule satisfies the irrelevance of

rejected contracts if, for any X,X ′ ⊆ X withX ⊆ X ′,

C(X ′) ⊆ X =⇒ C(X) = C(X ′).

The following is a classical choice-theoretic result.
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Proposition 2 (Aizerman and Malishevski (1981)). A choice rule satisfies path inde-

pendence if and only if it satisfies the irrelevance of rejected contracts and the substitutes

condition.

A.2. Proof of Theorem 1. The if direction is a special case of Theorem 2 of

Hafalir et al. (2022). We prove the only-if direction. Let C be a choice rule that

satisfies path independence. Then it also satisfies the irrelevance of rejected con-

tracts and the substitutes condition (Proposition 2).

We proceed in three steps. In Section A.2.1, we construct a utility function ũ.

In Section A.2.2, we prove that ũ rationalizes C. In Section A.2.3, we prove that ũ

satisfies ordinal concavity.

A.2.1. Construction of a utility function. Let n = |X |. For any X ⊆ X , we define Ek
X

for k = 1, . . . , n, inductively as follows:

E1
X = X ,

Ek
X = Ek−1

X \ (C(Ek−1
X ) \X) for k = 2, . . . , n.

We define αk for k = 1, . . . , n, inductively (from n to 1) as follows:

αn = 1,

αk = max
X⊆X

n
∑

j=k+1

αj · |X ∩ C(Ej
X)|+ 1 for k = n− 1, n− 2, . . . , 1.

We define u : 2X → R by

u(X) =
n

∑

k=1

αk · |X ∩ C(Ek
X)| for every X ⊆ X .(1)

For anyX ⊆ X and k = 1, . . . , n, we define δkX by

δkX =







ε if C(Ek
X) ⊆ X and C(Ej

X) * X for every j with j < k,

0 otherwise,

where ε is a sufficiently small number with 0 < ε < 1/n. We define ũ : 2X → R by

ũ(X) = u(X)−
n

∑

k=1

δkX · |X \ C(Ek
X)| for every X ⊆ X .(2)
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The following inequalities hold:

u(X) ≥ ũ(X) and ũ(X) > u(X)− 1 for every X ⊆ X ,(3)

where the strict inequality follows from
∑n

k=1 δ
k
X · |X \ C(Ek

X)| ≤ ε · n < 1.

Claim 1. Let X,X ′ ⊆ X withX ⊆ X ′. Then,

Ej
X ⊆ Ej

X′ for every j = 1, . . . , n.

Proof. The proof is by mathematical induction. The claim trivially holds for j = 1

because E1
X = E1

X′ = X . Suppose that it holds for j − 1. We show the claim for j.

By the definition of E, our goal is to prove that
(

Ej−1
X \ (C(Ej−1

X ) \X)
)

⊆
(

Ej−1
X′ \ (C(Ej−1

X′ ) \X ′)
)

.(4)

Let x ∈ Ej−1
X \ (C(Ej−1

X ) \X). By x ∈ Ej−1
X and the induction hypothesis,

x ∈ Ej−1
X′ .(5)

By x /∈ C(Ej−1
X ) \X , we have (i) x /∈ C(Ej−1

X ) or (ii) x ∈ C(Ej−1
X ) ∩X . If (i) holds,

then by x ∈ Ej−1
X , the induction hypothesis, and the substitutes condition, we have

x /∈ C(Ej−1
X′ ), which implies x /∈ C(Ej−1

X′ ) \ X ′. Together with (5), it implies that x

is included in the right-hand side of (4). If (ii) holds, then x ∈ X , which implies

x ∈ X ′, and so x /∈ C(Ej−1
X′ ) \X ′. Together with (5), it implies that x is included in

the right-hand side of (4). �

A.2.2. Proof of ũ rationalizing C. Fix an arbitrary X̄ ⊆ X with X̄ 6= ∅ and let X∗ =

C(X̄). Our goal is to prove that X∗ uniquely maximizes ũ among all subsets of X̄ .

The proof works in a number of steps. At each Step k, where 1 ≤ k ≤ n, we provide

two statements labeled as (a|k) and (b|k) below.

In Step 1, we show that either Claim (a|1) or Claim (b|1) holds. The proof is

completed if (a|1) holds. If (b|1) holds, then we go to Step 2. In Step 2, we show

that either Claim (a|2) or Claim (b|2) holds. Again, if (a|2) holds then the proof is

completed, and otherwise we go to Step 3. We continue this process until Claim

(a|k) holds for some k ∈ {1, . . . , n}.
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We define Ψk for k = 0, . . . , n inductively as follows:

Ψ0 = {X ⊆ X | X ⊆ X̄},

Ψk =
{

X ∈ Ψk−1 | |X ∩ C(Ek
X̄)| ≥ |X ′ ∩ C(Ek

X̄)| for every X ′ ∈ Ψk−1
}

for every k = 1, . . . , n.

Note that Ψ0 ⊇ Ψ1 ⊇ · · · ⊇ Ψn.

Step k (1 ≤ k ≤ n). Suppose that one of the following two conditions holds:

• k = 1, or

• k ≥ 2 and (b|j) holds in every Step j = 1, . . . , k − 1.

Then, one of the following two claims holds:

(a|k): X∗ uniquely maximizes ũ among all elements in Ψ0; or

(b|k): δkX = 0 for every X ∈ Ψk−1, and Ψk satisfies the following four condi-

tions:

(i) X∗ ∈ Ψk,

(ii) X ∩ C(Ek
X) = X̄ ∩ C(Ek

X̄
) for every X ∈ Ψk,

(iii) Ek+1
X = Ek+1

X̄
( Ek

X̄
for every X ∈ Ψk, and

(iv) u(X) > u(X ′) for every X ∈ Ψk and X ′ ∈ Ψk−1 \Ψk.

Moreover, if k = n, then (a|n) holds.

Proof of the statement for Step k. By the definition of E, Ek
X̄

⊇ X̄ . Together with the

substitutes condition, it implies that

X∗ = C(X̄) ⊇ X̄ ∩ C(Ek
X̄).(6)

The following equality holds:

Ψk =
{

X ∈ Ψk−1 | X ⊇ X̄ ∩ C(Ek
X̄)

}

.(7)

To see that (7) holds, letX ∈ Ψk−1 with X ⊇ X̄ ∩ C(Ek
X̄
). Then,X ∩C(Ek

X̄
) ⊇ X̄ ∩

C(Ek
X̄
), which implies |X∩C(Ek

X̄
)| ≥ |X̄∩C(Ek

X̄
)|. Since |X̄∩C(Ek

X̄
)| ≥ |X ′∩C(Ek

X̄
)|

for every X ′ ∈ Ψk−1 ⊆ Ψ0, we obtain X ∈ Ψk. Conversely, let X ∈ Ψk−1 with
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X + X̄ ∩ C(Ek
X̄
). Then,

|X∗ ∩ C(Ek
X̄)| = |X∗ ∩

(

X̄ ∩ C(Ek
X̄)

)

| > |X ∩
(

X̄ ∩ C(Ek
X̄)

)

| = |X ∩ C(Ek
X̄)|,

where the first equality follows from X∗ ⊆ X̄ , the strict inequality follows from

(6) and X + X̄ ∩ C(Ek
X̄
), and the last equality follows from X ⊆ X̄ . By the above

displayed inequality and X∗ ∈ Ψk−1 (which follows from (b|k − 1) (i)),22 we get

X /∈ Ψk. It follows that (7) holds.

By (6), (7) andX∗ ∈ Ψk−1,

X∗ ∈ Ψk.(8)

For any X ∈ Ψk andX ′ ∈ Ψk−1 \Ψk,23

u(X)− u(X ′)

=
{

k
∑

j=1

αj · |X ∩ C(Ej
X)|+

n
∑

j=k+1

αj · |X ∩ C(Ej
X)|

}

−
{

k
∑

j=1

αj · |X
′ ∩ C(Ej

X′)|+
n

∑

j=k+1

αj · |X
′ ∩ C(Ej

X′)|
}

≥
k

∑

j=1

αj · |X ∩ C(Ej
X)| −

{

k
∑

j=1

αj · |X
′ ∩ C(Ej

X′)|+
n

∑

j=k+1

αj · |X
′ ∩ C(Ej

X′)|
}

= αk · |X ∩ C(Ek
X)| − αk · |X

′ ∩ C(Ek
X′)| −

n
∑

j=k+1

αj · |X
′ ∩ C(Ej

X′)|

= αk · |X ∩ C(Ek
X̄)| − αk · |X

′ ∩ C(Ek
X̄)| −

n
∑

j=k+1

αj · |X
′ ∩ C(Ej

X′)|

≥ αk −
n

∑

j=k+1

αj · |X
′ ∩ C(Ej

X′)|

≥ 1,

where

• the first inequality follows from
∑n

j=k+1 αj · |X ∩ C(Ej
X)| ≥ 0,

22If k = 1, then X∗ ∈ Ψ0 follows from X∗ = C(X̄) ⊆ X̄ .
23If k = n, then the summation

∑n
j=k+1

αj · |X ∩ C(Ej
X)| is defined to be 0.
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• the second equality follows from (b|j) (ii) for every j with 1 ≤ j ≤ k − 1,24

• the third equality follows from E1
X = E1

X′ = E1
X̄

= X (if k = 1), and

X,X ′ ∈ Ψk−1 and (b|k − 1) (iii) (if k ≥ 2),

• the second inequality follows from X ∈ Ψk and X ′ /∈ Ψk, and

• the last inequality follows from the definition of αk.

Hence,

u(X)− u(X ′) ≥ 1.(9)

We consider two cases.

Case 1: Suppose X̄ ⊇ C(Ek
X̄
). We prove that (a|k) holds.

By C(Ek
X̄
) ⊆ X̄ ⊆ Ek

X̄
and the irrelevance of rejected contracts,

X∗ = C(X̄) = C(Ek
X̄).(10)

Fix X ∈ Ψk with X 6= X∗. The above equality and (7) imply

X ⊇ X̄ ∩ C(Ek
X̄) = X̄ ∩X∗ = X∗ = C(Ek

X̄).

Together with (10) and X 6= X∗, it implies

X ) C(Ek
X̄).(11)

By (8), X ∈ Ψk, and (b|k − 1) (iii),25 we have

Ek
X∗ = Ek

X = Ek
X̄ .(12)

Together with (10) and (11), it yields

X∗ = C(Ek
X∗), X ) C(Ek

X),(13)

which implies C(Ek
X∗) \X∗ = ∅ and C(Ek

X) \X = ∅. By the definition of E,

Ek
X∗ = Ek+1

X∗ = · · · = En
X∗ and Ek

X = Ek+1
X = · · · = En

X .

Together with (12) and (13), it implies

X∗ ∩ C(Ej
X∗) = X ∩ C(Ej

X) for every j = k, . . . , n.(14)

24If k = 1, then the second equality trivially holds.
25If k = 1, then (12) follows from E1

X∗ = E1
X = E1

X̄
= X .
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By (b|j) (ii) for every j with 1 ≤ j ≤ k − 1,26

X∗ ∩ C(Ej
X∗) = X ∩ C(Ej

X) for every j with 1 ≤ j ≤ k − 1.(15)

By (14) and (15),

u(X∗) = u(X).(16)

By the first claim of (b|j) for every j with 1 ≤ j ≤ k − 1, (13), and the definition of

δ,

δkX∗ = δkX = ε and δjX∗ = δjX = 0 for every j ∈ {1, . . . , n} with j 6= k.(17)

We obtain

ũ(X∗) = u(X∗)− δkX∗ · |X∗ \ C(Ek
X∗)| = u(X∗)(18)

> u(X)− δkX · |X \ C(Ek
X)|

= ũ(X),(19)

where the first and last equalities follow from (17), the second equality follows

from (13), and the strict inequality follows from (13) and (16).

Furthermore, for any j = 0, . . . , k − 1 and any Xj ∈ Ψj\Ψj+1,

u(X∗) > u(Xk−1) > · · · > u(X0),(20)

where the first inequality follows from (8) and (9) and the other inequalities follow

from (b|j) (iv) for every j with 1 ≤ j ≤ k − 1. Hence, for any X ′ ∈ Ψ0 \ Ψk, we

have ũ(X∗) = u(X∗) > u(X ′) ≥ ũ(X ′), where the equality follows from (18), the

strict inequality follows from (20), and theweak inequality follows from the former

inequality of (3). Together with (19) for everyX ∈ Ψk withX 6= X∗, it yields (a|k).

Case 2: Suppose X̄ + C(Ek
X̄
). We prove that (b|k) holds. For any X ∈ Ψk−1, by the

assumption of Case 2 and X ⊆ X̄ (which follows from X ∈ Ψk−1 ⊆ Ψ0), we have

C(Ek
X) = C(Ek

X̄
) * X (where the equality follows from (b|k − 1) (iii)),27 which

implies δkX = 0. Thus, the first claim of (b|k) holds.

26If k = 1, then we do not need (15) in order to establish (16).
27If k = 1, then the equality follows from E1

X = E1

X̄
= X . The same comment applies to the

equation Ek
X = Ek

X̄
in the remaining part.
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By (8), we obtain (b|k) (i).

For any X ∈ Ψk, by (7), we have X ⊇ X̄ ∩ C(Ek
X̄
). Together with X ⊆ X̄ (which

follows from X ∈ Ψk ⊆ Ψ0), it yields

X̄ ∩ C(Ek
X̄) = X ∩ C(Ek

X̄).(21)

Together with Ek
X = Ek

X̄
(which follows from (b|k − 1) (iii)), it implies (b|k) (ii).

For any X ∈ Ψk, we have

Ek+1
X = Ek

X \ (C(Ek
X) \X)

= Ek
X̄ \ (C(Ek

X̄) \X)

= Ek
X̄ \

(

C(Ek
X̄) \

(

X ∩ C(Ek
X̄)

)

)

= Ek
X̄ \

(

C(Ek
X̄) \

(

X̄ ∩ C(Ek
X̄)

)

)

= Ek
X̄ \ (C(Ek

X̄) \ X̄)

= Ek+1
X̄

.

where the second equality follows from Ek
X = Ek

X̄
(which follows from (b|k − 1)

(iii)) and the fourth equality follows from (21). Together with C(Ek
X̄
) \ X̄ 6= ∅

(which follows from the assumption of Case 2), it yields (b|k) (iii). Finally, (b|k)

(iv) follows from (9). We conclude that (b|k) holds.

Finally, we prove the claim that (a|k) holds for k = n. By (b|j) (iii) for j with

1 ≤ j ≤ n − 1, we get |En
X̄
| ≤ 1. Together with X̄ 6= ∅ and X̄ ⊆ En

X̄
(which follows

from the definition of E), we get En
X̄
= X̄ . Hence, C(En

X̄
) ⊆ X̄ . As proven in Case

1, (a|n) holds. �

By the statement for Step k (1 ≤ k ≤ n), there exists j ∈ {1, . . . , n} such that (a|j)

holds. Therefore, we obtain the desired claim. �

A.2.3. Proof of ordinal concavity of ũ. We consider the following stronger notion than

ordinal concavity. We say that a utility function u satisfies ordinal concavity+ if,

for any X,X ′ ⊆ X and x ∈ X \X ′, one of the following two conditions holds:

(i) there exists x′ ∈ (X ′ \X) ∪ {∅} such that u(X) < u(X − x+ x′), or

(ii) u(X ′) < u(X ′ + x).
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LetX,X ′ ⊆ X and x ∈ X \X ′. We show that ũ defined by (2) satisfies (i) or (ii)

in the above definition.

Let X̄ = X ∪ X ′ and X∗ = C(X̄). By following the same line of the proof in

Section A.2.2, there exists ℓ ∈ {0, . . . , n− 1} such that

• For every j with 1 ≤ j ≤ ℓ, Case 2 holds in Step j and we obtain (b|j), and

• Case 1 holds in Step ℓ+ 1 and we obtain (a|ℓ+ 1).

As shown in the proof, there exists a sequence of collections of subsets of X̄ ,

(Ψ0, . . . ,Ψℓ), such that Ψj satisfies the conditions in (b|j) for every j with 1 ≤ j ≤ ℓ.

We define k(X), k(X ′) ∈ {0, . . . , ℓ} by

k(X) = max
{

j ∈ {0, . . . , ℓ} | X ∈ Ψj
}

,

k(X ′) = max
{

j ∈ {0, . . . , ℓ} | X ′ ∈ Ψj
}

.

Let k̄ = min{k(X), k(X ′)}. By (7) andX,X ′ ∈ Ψj for every j with 1 ≤ j ≤ k̄,

X ⊇ X̄ ∩ C(Ej

X̄
) and X ′ ⊇ X̄ ∩ C(Ej

X̄
) for every j with 1 ≤ j ≤ k̄.

Together with x ∈ X \X ′, it implies

X − x+ x′ ⊇ X̄ ∩ C(Ej

X̄
) for every x′ ∈ (X ′ \X) ∪ {∅} and j with 1 ≤ j ≤ k̄, and

X ′ + x ⊇ X̄ ∩ C(Ej

X̄
) for every j with 1 ≤ j ≤ k̄.

These conditions and (7) imply

X − x+ x′ ∈ Ψj for every x′ ∈ (X ′ \X) ∪ {∅} and j with 1 ≤ j ≤ k̄, and(22)

X ′ + x ∈ Ψj for every j with 1 ≤ j ≤ k̄.(23)

We consider two cases.

Case 1: Suppose k(X ′) > k(X). By the definition of k(X), we have X ∈ Ψk(X) and

X /∈ Ψk(X)+1. Together with X ′ ∈ Ψk(X)+1 and (7), it yields

X ′ ⊇ X̄ ∩ C(E
k(X)+1

X̄
) andX + X̄ ∩ C(E

k(X)+1

X̄
).

Since X̄ = X ∪ X ′, the above conditions have two implications. First, the former

set-inclusion and x ∈ X \X ′ imply

x /∈ C(E
k(X)+1

X̄
).(24)
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Second, there exists x′ ∈ X ′ \X such that

x′ ∈ C(E
k(X)+1

X̄
).(25)

By (22) and x′ ∈ X ′ \X ,

X − x+ x′ ∈ Ψj for every j with 1 ≤ j ≤ k(X).(26)

We obtain

u(X − x+ x′)− u(X)

=
{

k(X)+1
∑

j=1

αj · |(X − x+ x′) ∩ C(Ej
X−x+x′)|+

n
∑

j=k(X)+2

αj · |(X − x+ x′) ∩ C(Ej
X−x+x′)|

}

−
{

k(X)+1
∑

j=1

αj · |X ∩ C(Ej
X)|+

n
∑

j=k(X)+2

αj · |X ∩ C(Ej
X)|

}

≥

k(X)+1
∑

j=1

αj · |(X − x+ x′) ∩ C(Ej
X−x+x′)|

−
{

k(X)+1
∑

j=1

αj · |X ∩ C(Ej
X)|+

n
∑

j=k(X)+2

αj · |X ∩ C(Ej
X)|

}

= αk(X)+1 · |(X − x+ x′) ∩ C(E
k(X)+1
X−x+x′)|

− αk(X)+1 · |X ∩ C(E
k(X)+1
X )| −

n
∑

j=k(X)+2

αj · |X ∩ C(Ej
X)|

= αk(X)+1 · |(X − x+ x′) ∩ C(E
k(X)+1

X̄
)|

− αk(X)+1 · |X ∩ C(E
k(X)+1

X̄
)| −

n
∑

j=k(X)+2

αj · |X ∩ C(Ej
X)|

= αk(X)+1 −
n

∑

j=k(X)+2

αj · |X ∩ C(Ej
X)|

≥ 1,

where

• the first inequality follows from
∑n

j=k(X)+2 αj ·|(X−x+x′)∩C(Ej
X−x+x′)| ≥ 0,
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• the second equality follows fromX−x+x′ ∈ Ψj (which is implied by (26)),

X ∈ Ψj , and (b|j) (ii) for every j with 1 ≤ j ≤ k(X),

• the third equality follows from X − x + x′ ∈ Ψk(X) (which is implied by

(26)), X ∈ Ψk(X), and (b|k(X)) (iii),28

• the fourth equality follows from (24) and (25), and

• the last inequality follows from the definition of αk(X)+1.

It follows that u(X−x+x′) ≥ u(X)+1, which together with (3) implies ũ(X−x+

x′) > ũ(X). Hence, the conclusion of ordinal concavity+ holds.

Case 2: Suppose k(X ′) ≤ k(X)(≤ n− 1). We consider two subcases.

Subcase 2-1: Suppose that x /∈ C(Ek
X̄
) for every k ∈ {k(X ′) + 1, . . . , n}.

By (7) and the definition of k(X), we have X ⊇ X̄ ∩ C(Ej

X̄
) for every j with

k(X ′) + 1 ≤ j ≤ k(X). Together with the assumption of Subcase 2-1, it yields

X − x+ x′ ⊇ X̄ ∩ C(Ej

X̄
)

for every x′ ∈ (X ′ \X) ∪ {∅} and j with k(X ′) + 1 ≤ j ≤ k(X).

This condition and (7) imply

X − x+ x′ ∈ Ψj for every x′ ∈ (X ′ \X) ∪ {∅} and j with k(X ′) + 1 ≤ j ≤ k(X).

These conditions, together with (22), yield

X − x+ x′ ∈ Ψj for every x′ ∈ (X ′ \X) ∪ {∅} and j with 1 ≤ j ≤ k(X).(27)

We consider two further subcases.

Subcase 2-1-1: Suppose k(X) = ℓ. As we noted in the beginning of Section A.2.3

(after the definition of ordinal concavity+), Case 1 holds in the proof of Step ℓ + 1

in Section A.2.2, which implies X̄ ⊇ C(Eℓ+1
X̄

) (see the first sentence of Case 1 after

(9)). We consider two further subcases.

Subcase 2-1-1-1: SupposeX ⊇ C(Eℓ+1
X̄

). ByX−x ∈ Ψℓ (which follows from (27)),

X ∈ Ψℓ, and (b|ℓ) (iii),29 we have

Eℓ+1
X−x = Eℓ+1

X = Eℓ+1
X̄

.(28)

28If k(X) = 0, then the third equality follows from E1
X−x+x′ = E1

X = E1

X̄
= X .

29If ℓ = 0, then (28) follows from E1
X−x = E1

X = E1

X̄
= X .
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Together with the assumptions of Subcases 2-1 and 2-1-1-1, these equations imply

X − x ⊇ C(Eℓ+1
X−x) and X ⊇ C(Eℓ+1

X ).(29)

If ℓ+ 1 < n, then by the definition of E and (29), we get

Eℓ+1
X−x = Eℓ+2

X−x and Eℓ+1
X = Eℓ+2

X ,

which together with (29) imply X − x ⊇ C(Eℓ+2
X−x) and X ⊇ C(Eℓ+2

X ). Repeating

this procedure,

Ej
X−x = Ej

X for every j = ℓ+ 1, . . . , n, and(30)

X − x ⊇ C(Ej
X−x) andX ⊇ C(Ej

X) for every j = ℓ + 1, . . . , n.

We obtain the following:30

u(X − x)− u(X)

=
{

ℓ
∑

j=1

αj · |(X − x) ∩ C(Ej
X−x)|+

n
∑

j=ℓ+1

αj · |(X − x) ∩ C(Ej
X−x)|

}

−
{

ℓ
∑

j=1

αj · |X ∩ C(Ej
X)|+

n
∑

j=ℓ+1

αj · |X ∩ C(Ej
X)|

}

=

n
∑

j=ℓ+1

αj · |(X − x) ∩ C(Ej
X−x)| −

n
∑

j=ℓ+1

αj · |X ∩ C(Ej
X)|

= 0,

where

• the second equality follows from X − x ∈ Ψj (which is implied by (27)),

X ∈ Ψj and (b|j) (ii) for every j with 1 ≤ j ≤ ℓ, and

• the third equality follows from (30).

Hence,

u(X − x)− u(X) = 0(31)

30If ℓ = 0, then the summation
∑ℓ

j=1
αj · |(X − x) ∩ C(Ej

X−x)| is defined to be 0.
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By X − x ∈ Ψj , X ∈ Ψj and the first statement of (b|j) for every j with 1 ≤ j ≤ ℓ,

we have

δjX = 0 and δjX−x = 0 for every j with 1 ≤ j ≤ ℓ.(32)

We obtain
n

∑

k=1

δkX · |X \ C(Ek
X)| = δℓ+1

X · |X \ C(Eℓ+1
X )|

> δℓ+1
X−x · |(X − x) \ C(Eℓ+1

X−x)|

=

n
∑

k=1

δkX−x · |(X − x) \ C(Ek
X−x)|,

where the two equalities follow from (29), (32), and the definition of δ, and the

strict inequality follows from (28) and (29). This inequality and (31) imply

ũ(X − x) > ũ(X).

Hence, the conclusion of ordinal concavity+ holds.

Subcase 2-1-1-2: Suppose X + C(Eℓ+1
X̄

). Since X̄ = X ∪ X ′ and X̄ ⊇ C(Eℓ+1
X̄

)

(which follows from the assumption of Subcase 2-1-1), there exists x′ ∈ X ′ \ X

such that x′ ∈ C(Eℓ+1
X̄

). Then,

u(X − x+ x′)− u(X)

=
{

ℓ+1
∑

j=1

αj · |(X − x+ x′) ∩ C(Ej
X−x+x′)|+

n
∑

j=ℓ+2

αj · |(X − x+ x′) ∩ C(Ej
X−x+x′)|

}

−
{

ℓ+1
∑

j=1

αj · |X ∩ C(Ej
X)|+

n
∑

j=ℓ+2

αj · |X ∩ C(Ej
X)|

}

≥
ℓ+1
∑

j=1

αj · |(X − x+ x′) ∩ C(Ej
X−x+x′)|

−
{

ℓ+1
∑

j=1

αj · |X ∩ C(Ej
X)|+

n
∑

j=ℓ+2

αj · |X ∩ C(Ej
X)|

}

= αℓ+1 · |(X − x+ x′) ∩ C(Eℓ+1
X−x+x′)|

− αℓ+1 · |X ∩ C(Eℓ+1
X )| −

n
∑

j=ℓ+2

αj · |X ∩ C(Ej
X)|
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= αℓ+1 · |(X − x+ x′) ∩ C(Eℓ+1
X̄

)|

− αℓ+1 · |X ∩ C(Eℓ+1
X̄

)| −
n

∑

j=ℓ+2

αj · |X ∩ C(Ej
X)|

= αℓ+1 −
n

∑

j=ℓ+2

αj · |X ∩ C(Ej
X)|

≥ 1,

where

• the first inequality follows from
∑n

j=ℓ+2 αj · |(X−x+x′)∩C(Ej
X−x+x′)| ≥ 0,

• the second equality follows fromX−x+x′ ∈ Ψj (which is implied by (27)),

X ∈ Ψj , and (b|j) (ii) for every j with 1 ≤ j ≤ ℓ,

• the third equality follows fromX − x+ x′ ∈ Ψℓ (which is implied by (27)),

X ∈ Ψℓ, and (b|ℓ) (iii),31

• the fourth equality follows from the assumption of Subcase 2-1 and x′ ∈

C(Eℓ+1
X̄

), and

• the last inequality follows from the definition of αℓ+1.

It follows that u(X−x+x′) ≥ u(X)+1, which together with (3) implies ũ(X−x+

x′) > ũ(X). Hence, the conclusion of ordinal concavity+ holds.

Subcase 2-1-2 Suppose k(X) < ℓ, which implies X /∈ Ψk(X)+1. By (7), we have

X + X̄ ∩ C(E
k(X)+1

X̄
). By following the same line of the proof of Subcase 2-1-1-2

(with k(X) playing the role of ℓ), there exists x′ ∈ X ′\X with ũ(X−x+x′) > ũ(X).

Hence, the conclusion of ordinal concavity+ holds.

Subcase 2-2: Suppose that there exists k ∈ {k(X ′) + 1, . . . , n} such that x ∈ C(Ek
X̄
).

Together with

• Ej
X′+x ⊆ Ej

X̄
for every j = 1, . . . , n (which follows from X ′ + x ⊆ X̄ and

Claim 1),

• x ∈ X ′ + x ⊆ Ej
X′+x (where the set-inclusion follows from the definition of

E) for every j = 1, . . . , n, and

• the substitutes condition,

31If ℓ = 0, then the third equality follows from E1
X−x+x′ = E1

X = E1

X̄
= X .
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it implies that there exists k′ ∈ {k(X ′) + 1, . . . , n} with x ∈ C(Ek′

X′+x). Let k∗ ∈

{k(X ′) + 1, . . . , n} denote the minimum index such that x ∈ C(Ek∗

X′+x).

By (7) and X ′ ∈ Ψj for every j with 1 ≤ j ≤ k(X ′),

X ′ + x ∈ Ψj for every j with 1 ≤ j ≤ k(X ′).

Together with (b|j) (ii) for every j with 1 ≤ j ≤ k(X ′), it implies

(X ′ + x) ∩ C(Ej
X′+x) = X ′ ∩ C(Ej

X′) for every j with 1 ≤ j ≤ k(X ′).(33)

By E1
X′ = E1

X′+x = X and (b|j) (iii) for every j with 1 ≤ j ≤ k(X ′), we have

Ej
X′ = Ej

X′+x for every j = 1, . . . , k(X ′) + 1.(34)

If k(X ′) + 1 < k∗, then

E
k(X′)+2
X′+x = E

k(X′)+1
X′+x \

(

C(E
k(X′)+1
X′+x ) \ (X ′ + x)

)

= E
k(X′)+1
X′+x \

(

C(E
k(X′)+1
X′+x ) \X ′

)

= E
k(X′)+1
X′ \

(

C(E
k(X′)+1
X′ ) \X ′

)

= E
k(X′)+2
X′ ,

where the second equality follows from x /∈ C(E
k(X′)+1
X′+x ) (which follows from

k(X ′)+1 < k∗ and theminimality of k∗) and the third equality follows from (34). If

k(X ′)+2 < k∗, then by the same argument as above, we obtain E
k(X′)+3
X′+x = E

k(X′)+3
X′ .

Repeating this procedure, we obtain

Ej
X′ = Ej

X′+x for every j with k(X ′) + 2 ≤ j ≤ k∗.

This condition and (34) imply

Ej
X′ = Ej

X′+x for every j = 1, . . . , k∗.(35)

Together with the minimality of k∗, it yields

(X ′ + x) ∩ C(Ej
X′+x) = X ′ ∩ C(Ej

X′) for every j with k(X ′) + 1 ≤ j ≤ k∗ − 1.(36)

We obtain

u(X ′ + x)− u(X ′)
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=
{

k∗
∑

j=1

αj · |(X
′ + x) ∩ C(Ej

X′+x)|+
n

∑

j=k∗+1

αj · |(X
′ + x) ∩ C(Ej

X′+x)|
}

−
{

k∗
∑

j=1

αj · |X
′ ∩ C(Ej

X′)|+
n

∑

j=k∗+1

αj · |X
′ ∩ C(Ej

X′)|
}

≥
k∗
∑

j=1

αj · |(X
′ + x) ∩ C(Ej

X′+x)|

−
{

k∗
∑

j=1

αj · |X
′ ∩ C(Ej

X′)|+
n

∑

j=k∗+1

αj · |X
′ ∩ C(Ej

X′)|
}

= αk∗ · |(X
′ + x) ∩ C(Ek∗

X′+x)|

− αk∗ · |X
′ ∩ C(Ek∗

X′)| −
n

∑

j=k∗+1

αj · |X
′ ∩ C(Ej

X′)|

= αk∗ −
n

∑

j=k∗+1

αj · |X
′ ∩ C(Ej

X′)|

≥ 1,

where

• the first inequality follows from
∑n

j=k∗+1 αj · |(X
′ + x) ∩ C(Ej

X′+x)| ≥ 0,

• the second equality follows from (33) and (36),

• the third equality follows from (35) and x ∈ C(Ek∗

X′+x), and

• the last inequality follows from the definition of αk∗ .

It follows that u(X ′ + x) ≥ u(X ′) + 1, which together with (3) implies ũ(X ′ + x) >

ũ(X ′). Hence, the conclusion of ordinal concavity+ holds. �

A.3. Proof of Theorem 2.

A.3.1. Proof of the if direction. Let C be a choice rule and u be a utility function that

rationalizes C and satisfies ordinal concavity and size-restricted concavity. By the

if direction of Theorem 1, C satisfies path independence. It remains to prove that C

satisfies the law of aggregate demand. The proof is similar to that of Theorem 3.10

in Murota (2016). Suppose, for contradiction, that the law of aggregate demand
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is violated, i.e., there exist X and X ′ such that X ⊇ X ′ and |C(X ′)| > |C(X)|. By

size-restricted concavity of u, there exists x ∈ C(X ′) \ C(X) such that

(i) u(C(X ′)) < u(C(X ′)− x), or

(ii) u(C(X)) < u(C(X) + x), or

(iii) u(C(X ′)) = u(C(X ′)− x) and u(C(X)) = u(C(X) + x).

If (i) or the first equality of (iii) holds, then we obtain a contradiction to C(X ′)

uniquely maximizing u among all subsets of X ′. If (ii) or the second equality of

(iii) holds, then together with x ∈ C(X ′) ⊆ X ′ ⊆ X , we obtain a contradiction to

C(X) uniquely maximizing u among all subsets ofX . We conclude that C satisfies

the law of aggregate demand.

A.3.2. Proof of the only-if direction. Let C satisfy path independence and the law of

aggregate demand. We define ũ as in (2). By the only-if direction of Theorem 1,

ũ rationalizes C and satisfies ordinal concavity. It remains to prove that ũ satisfies

size-restricted concavity. Let X,X ′ ⊆ X with |X| > |X ′| and X∗ = C(X ∪ X ′).

Recall that ũ satisfies ordinal concavity+ (see the first paragraph of Section A.2.3).

Case 1: Suppose X∗ \ X ′ 6= ∅. By ordinal concavity+ applied to X∗, X ′, and an

arbitrarily chosen x ∈ X∗ \X ′, we have

(i) there exists x′ ∈ (X ′ \X∗) ∪ {∅} such that ũ(X∗) < ũ(X∗ − x+ x′), or

(ii) ũ(X ′) < ũ(X ′ + x).

If (i) holds, since x′ satisfies x′ = ∅ or x′ ∈ X ′ ⊆ X ∪X ′, we obtain a contradiction

to X∗ maximizing ũ among all subsets of X ∪ X ′. Hence, (ii) must hold. Since

x ∈ X∗ \X ′ ⊆ (X ∪ X ′) \X ′ = X \X ′, the conclusion of size-restricted concavity

holds.

Case 2: SupposeX∗\X ′ = ∅, i.e.,X∗ ⊆ X ′. By the law of aggregate demand, letting

X∗∗ = C(X),

|X∗∗| = |C(X)| ≤ |C(X ∪X ′)| = |X∗|.(37)
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Subcase 2-1: Suppose X∗∗ ⊇ (X \ X ′). Since C satisfies path independence,

by Proposition 2, C satisfies the substitutes condition. Hence, the following set-

inclusion holds:32

X∗ \X∗∗ ⊆ X ′ \X.(38)

Since |X| > |X ′|,

|X \X ′| > |X ′ \X|.(39)

Then,

|X∗ \X∗∗| ≤ |X ′ \X| < |X \X ′| ≤ |X∗∗ \X∗|,

where the first inequality follows from (38), the second inequality follows from

(39), and the last inequality follows from X \X ′ ⊆ X∗∗ \X ′ ⊆ X∗∗\X∗, where

• the first set-inclusion follows from the assumption of Subcase 2-1, and

• the second set-inclusion follows from the assumption of Case 2.

The above displayed inequality implies |X∗∗| > |X∗|. We obtain a contradiction to

(37). Hence, Subcase 2-1 is not possible.

Subcase 2-2: The remaining possibility isX∗∗ + (X\X ′), i.e., there exists x ∈ X\X ′

with x /∈ X∗∗. By ordinal concavity+ applied to X , X∗∗ and x ∈ X \X∗∗, together

with X∗∗ ⊆ X , we have

(i) ũ(X) < ũ(X − x), or

(ii) ũ(X∗∗) < ũ(X∗∗ + x).

If (ii) holds, then together with x ∈ X , we obtain a contradiction toX∗∗ maximizing

ũ among all subsets of X . Hence, (i) holds. Since x ∈ X \ X ′, the conclusion of

size-restricted concavity holds.

32To see that (38) holds, suppose that there exists x ∈ X∗ \X∗∗ with x /∈ X ′ \X . By x ∈ X∗ and
X∗ ⊆ X ′ (which follows from the assumption of Case 2), we have x ∈ X ′. Together with x /∈ X ′\X ,
it implies x ∈ X ∩X ′. By combining x /∈ C(X) = X∗∗, x ∈ X , and x ∈ X∗ = C(X ∪X ′), we obtain
a contradiction to the substitutes condition.
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