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Abstract

We propose a new model-selection algorithm for Regression Discontinuity Design,

Regression Kink Design, and related IV estimators. Candidate models are assessed

within a ‘placebo zone’ of the running variable, where the true effects are known to

be zero. The approach yields an optimal combination of bandwidth, polynomial, and

any other choice parameters. It can also inform choices between classes of models

(e.g. RDD versus cohort-IV) and any other choices, such as covariates, kernel, or other

weights. We outline sufficient conditions under which the approach is asymptotically

optimal. The approach also performs favorably under more general conditions in a

series of Monte Carlo simulations. We demonstrate the approach in an evaluation of

changes to Minimum Supervised Driving Hours in the Australian state of New South

Wales. We also re-evaluate evidence on the effects of Head Start and Minimum Legal

Drinking Age. We conclude with practical advice for researchers.
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1 Introduction

Policy rules frequently create discontinuities in exposure to policies and programs.

Regression discontinuity design (RDD) has become a key tool for empirical researchers

in these settings (see e.g. Imbens & Lemieux, 2008; Lee & Lemieux, 2010; Cattaneo et

al., 2020, for overviews). In the canonical sharp RDD case, the treatment T changes

discontinuously from T = 0 to T = 1 at some threshold along the running variable

X. Setting x = 0 as that threshold, the goal is to estimate the change in the outcome

Y at x = 0:

τ(x) = lim
x→0+

E[Y |X = x]− lim
x→0−

E[Y |X = x] (1)

τ(x) is commonly estimated by local polynomial regression. Researchers select

some neighbourhood of observations around x = 0 (the bandwidth) where E[YT=0|X =

x] and E[YT=1|X = x] are expected to meet the continuity assumption (Hahn et al.,

2001) and estimate the jump in Y while flexibly controlling for X above and below

x = 0.

RDD is appealing because it facilitates estimation of causal effects under relatively

weak assumptions. Moreover, the assumptions for RDD have simple, testable impli-

cations (see e.g. McCrary, 2008; Cattaneo et al., 2019). The ability to visualize RDDs

in simple plots of the running variable and outcome (Calonico et al., 2015) also gives

an appealing air of transparency to this approach. A number of related estimators

extend the basic RDD. The regression kink design (RKD) identifies causal effects by

exploiting discontinuous changes in the slope of the running variable under similar

assumptions to RDD (Card et al., 2015). Fuzzy RDD and RKD deal with situations

where only the probability of treatment changes at the threshold, or treatment is a

continuous variable. Dong (2018) suggests a regression probability jump and kink de-

sign (RPJKD) for settings where there is both a discontinuous ‘jump’ and/or ‘kink’.

In many related settings it is also possible to fit a global polynomial through the

running variable and instrument the treatment using binned means (cohort-IV), as

in Angrist and Lavy (1999).1

1The cohort-IV approach can also be used in related situations where there is no clear disconti-
nuity, and yet treatment is a non-smooth function of the running variable. See for example Imbens
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While theoretically appealing, when using discontinuity designs researchers face

a daunting challenge in selecting a preferred estimator. The choice of bandwidth

involves a difficult trade-off between bias and variance. Researchers must also choose

what order of polynomial to use, what kernel to use, whether to include covariates,

and in some applications what discontinuity model to estimate (e.g. in situations

where there is a ‘jump’ and a ‘kink’). Sometimes it is also useful to adopt different

polynomial orders on the left and the right of the threshold, or different bandwidths.

Consequently, researchers will typically have thousands of potential estimators to

select from, and there is no widely accepted standard for making this choice. In a

given application, estimates may vary widely depending on the choices the researcher

makes.

Various solutions to model selection have been suggested, but these typically focus

on one decision and fix other important decisions. Optimal bandwidth selection

has received a lot of attention. In economics, least squares cross validation and

plug-in approaches have dominated (Imbens & Lemieux, 2008). Cross validation

methods typically select a bandwidth to minimize the mean squared error of the local

polynomial fit. Ludwig and Miller (2005, 2007) discuss an alternative approach that

minimizes error at the boundary, although ultimately reject this method for their

application. Early plug-in approaches also focused on the polynomial function’s fit,

for example the rule-of-thumb approach discussed in Fan and Gijbels (1996) (see also

Lee & Lemieux, 2010). In an influential paper, Imbens and Kalyanaraman (2012)

(IK) argue that instead of focusing on the global fit of the polynomial function,

the bandwidth should minimize the asymptotic mean squared error of the treatment

effect (boundary) estimator (see also Ludwig & Miller, 2005). They derive a plug-

in algorithm that selects the optimal bandwidth to achieve this. Calonico et al.

(2014) (CCT) derive a bias correction to IK’s method to improve confidence interval

estimation. The IK/CCT approach is now popular in applied work.

Card et al. (2017), however, caution against using the IK/CCT approach as a

default and demonstrate through simulations that it may not perform best for a

given application.2 Further, none of these approaches deals with the simultaneous

and van der Klaauw (1995), Bound and Turner (2002) and Cousley et al. (2017).
2Card et al. (2017) suggest that the regularization term used in the IK/CCT plug-in approach
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modelling choices researchers need to make. For example, the optimal bandwidth

will almost always depend on the polynomial order.3 There has been less theoreti-

cal development on the question of polynomial choice. Gelman and Imbens (2019)

argue that researchers should generally use local linear or quadratic regressions be-

cause higher order terms can induce undesirable effects on the estimates.4 Pei et

al. (2020) are less critical of higher order terms and suggest that, conditional on a

given bandwidth and other modelling choices, researchers should calculate the im-

plied asymptotic mean squared error for the boundary estimator (similar in spirit

to IK/CCT for bandwidth selection). They also show, through a review of recent

literature, that most researchers simply default to using local linear estimation.

To understand how researchers are dealing with the challenges of model selection

in discontinuity designs, we conducted a review of papers published in leading jour-

nals for applied economics research in 2019.5 Of the 26 papers we identified, 12 gave

no formal rationale for their preferred bandwidth. Of those that did motivate their

choice, 13 used IK/CCT; however, many of these merely used the method to ‘guide’

their choice (e.g. by noting that the IK/CCT bandwidth was similar to whatever

bandwidth they ultimately used). Almost all studies conducted some kind of sensi-

tivity testing by varying the bandwidth. Only five studies provided any justification

for their chosen order of polynomial. Most studies (18) used local linear regression

and typically added higher order terms as a robustness check.6

Overall, we surmise that there is no consensus among applied researchers about

how to select a preferred model in discontinuity settings. In many cases, researchers

seem to be selecting a baseline model either arbitrarily or based on possible defaults

may be overly punitive to large bandwidths in practice. The regularization term is used to account
for the fact that the curvature parameters for the polynomial fits – which are parameters themselves
in the plug-in formula – are unknown and must be estimated from the data.

3Hall and Racine (2015) propose a leave-one-out cross validation approach that jointly selects the
bandwidth and polynomial order. Their cross validation approach is subject to the issues discussed
in IK.

4Gelman and Imbens (2019) point out that higher order terms can have the practical effect of
giving disproportional weighting to certain observations, are generally not selected on the basis of
optimizing the objective of boundary estimation, and can lead to misleading inference.

5See Kettlewell and Siminski (2020) Appendix D for further details.
6Other common robustness checks included adding covariates, different kernels, ‘donuts’ around

the threshold and falsification tests using placebo cut-off points.
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Table 1: Discontinuity studies published in leading journals in 2019

Sharp RDD Fuzzy RDD Cohort-IV

Papers using this model 15 10 2
Method for bandwidth choice

No stated method 6 4 2
IK/CCT 8 6 0

Method for polynomial choice
No stated method 10 9 2
Local linear polynomial as baseline 11 8 -

Robustness tests
Varied bandwidth 15 9 1
Varied polynomial 13 5 1

Notes: One paper used both sharp and fuzzy RDD as main specifications, so columns add to more
than the sample size (n = 26). Papers that use spatial or multivariate RDD are included in Sharp
RDD or Fuzzy RDD (depending on whether the treatment had complete or partial take-up). No
papers used RKD; however, one cohort-IV study did use kink variation as an instrument. See
Kettlewell and Siminski (2020) Appendix D for a more detailed overview.

like local linear regression. The focus away from emphasizing a preferred model and

towards sensitivity analysis may be problematic in certain applications. Further, if

there is no clear preferred model, there is also no clarity around the confidence interval

for the treatment effect. More generally, the emphasis on robustness tests means that

we may be ‘setting the bar too high’ for what constitutes credible evidence in RDD

and related contexts.

In this paper we propose a new method for model selection with broad applica-

tion. Our method allows researchers to select an optimal combination of bandwidth,

polynomial, and any other choice parameters he/she wants to consider. It can also

be used to choose between competing models (e.g. RDD versus cohort-IV) in certain

settings and can accommodate nonlinear models. It relies on using observations of the

running variable away from the discontinuity (the placebo zone) as a training ground

to assess the performance of candidate models where a ‘pseudo-treatment’ effect is

known to be zero. The estimator that minimizes the preferred performance criterion

(e.g. lowest root mean squared error) across all pseudo-treatments is then selected

as the ‘best’ specification for estimating the actual treatment effect. Our approach is

applicable in settings where the point of discontinuity can be reasonably thought of
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as being randomly chosen from the domain of the running variable.7

We are not the first to recognize the value in placebo zone data. Imbens and

Lemieux (2008) suggest testing for jumps at specific psuedo-thresholds as a general

test for specification error, a common practice in applied work. Wing and Cook

(2013) use the placebo zone to create a kind of differences-in-differences structure,

which they argue can improve precision and allow one to learn something about the

treatment effect away from the threshold. Gelman and Imbens (2019) use results from

the distributions of placebo estimates to inform general advice about higher order

terms in RDD studies. Closest to our work is Ganong and Jäger (2018), who suggest

a randomization inference approach to hypothesis testing based on the distribution

of pseudo-treatment effect estimates (we propose extensions to this procedure). We

extend all of this work by using the placebo zone for ex ante model selection, which

to the best of our knowledge is a new idea.

Our approach also has parallels with studies that use estimates from randomized

controlled trials (RCTs) to assess RDD estimators. A prominent example is Hyytinen

et al. (2018) who use one such RCT-RDD pair, and conclude that CCT bias-corrected

estimators perform well in that application.8 In this literature, as in our approach,

the assessment rests on knowing the true parameter that the RDD estimator targets.

In that literature, the target is the estimate generated by an RCT. In our case, the

target estimate is zero, since there is no actual treatment. Our approach builds

on the RCT-RDD approach in three important ways. First, rather than making a

single comparison of RDD to RCT estimates, our approach assesses each candidate

estimator’s performance repeatedly – at hundreds or thousands of placebo thresholds

throughout the placebo zone. Second, these comparisons serve to inform the choice of

estimator to apply within the same context, to estimate the effect of a real treatment

using the same data, in a range of the running variable that borders the placebo zone.

There is no reason to believe that the best-performing estimator will perform best in

7While we focus on applications of linear models in the paper, our method naturally extends to
nonlinear models like logit and ordered logit (see Xu, 2017, for an alternate IK-type approach to
bandwidth selection for categorical dependent variables). In nonlinear models the marginal effect for
the treatment indicator when x = 0 could be used as the target parameter for RMSE minimization,
for example.

8See Chaplin et al. (2018) for a review and meta-analysis of similar studies.
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other unrelated contexts where the DGP may be completely different, or with other

sources of data. Thirdly, the target parameter in the RCT-RDD literature is subject

to sampling bias, whereas the placebo-zone target of zero is known with certainty.

Finally, our approach positions point-estimation as a principal goal of model se-

lection in RDD. As emphasised by Cattaneo and Vazquez-Bare (2016), the choice of

method for (point) estimation should be seen as distinct from the task of inference, or

constructing a valid confidence interval. Our approach is primarily focussed on point

estimation, rather than inference. In contrast, a key motivation for using the CCT

approach, which has become increasingly popular in applied research, has been that

it provides theoretically robust coverage even when there is misspecifcation. Recent

work has also been explicit in making confidence interval estimation the primary ob-

jective (e.g. Armstrong & Kolesár, 2018, 2020). While inference is important, point

estimation is also important. Whilst we are primarily interested in point estimation,

we also suggest using the placebo zone to assess coverage of associated confidence

intervals, and propose a randomization inference procedure which again draws on

estimates in the placebo zone. We also assess coverage for our approach in a range

of simulations, and obtain favourable results. If desired, one can always use our ap-

proach to obtain point estimates and then use other approaches for inference, such

as those promoted in the papers above.

We begin by outlining sufficient conditions under which our selection algorithm is

‘asymptotically optimal’, which is when it converges on selecting the estimator with

the lowest mean squared error amongst all candidate estimators as the number of

placebo zone repetitions goes to infinity.

We then conduct Monte Carlo simulations using a number of DGPs. Some of these

DGPs are stylized, and others are based on well-known RDD applications. Many of

these DGPs depart greatly from the conditions we discuss in our proof of optimality.

Our approach has lower RMSE than CCT’s estimator in almost every simulation,

and always lower RMSE than both CCT and IK estimators with DGPs derived from

real data.

We then demonstrate our approach with a novel evaluation of a policy designed

to reduce motor vehicle accidents (MVAs) for young drivers. The policy requires

that learner drivers meet a minimum supervised driving hours (MSDH) mandate
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before being able to drive independently; a common requirement in jurisdictions using

graduated driver licencing systems.9 We are among the first to causally evaluate the

effect of MSDH on MVAs.

In New South Wales, Australia, policy rules created two discontinuities whereby

young drivers needed to complete either 0, 50 or 120 MSDH depending on their

birth cohort and date of obtaining license. There are apparent discontinuities in

both the level and slope of the first-stage relationship between treatment and date

of birth. We could estimate a global polynomial model like Angrist and Lavy (1999)

(cohort-IV), RKD, RDD, or RPJKD, and it is a priori unclear which approach we

should adopt. More importantly, within each model type, we need to make important

functional form and bandwidth choices. In this setting, there are also good reasons

to consider models with both asymmetric bandwidths and asymmetric polynomial

orders. Institutional details prevent long bandwidths on the left (but not on the

right) of the threshold. Institutional details also result in complete compliance on the

right, but strong non-linearity on the left, of the threshold. In total we consider almost

10,000 different estimators considering model type, functional form and bandwidth.

Somewhat surprisingly, our ‘best’ estimator is a month-of-birth cohort-IV with

linear trend. A mixed order RPJKD also performs well, and indeed performs best

when asymmetric bandwidths are allowed. Strikingly, the root mean squared error is

about five times greater across the placebo zone if we use the bandwidths suggested

by CCT rather than the best performing RDD or RKD bandwidths. In a different

application, Card et al. (2017) come to a similar conclusion, drawing on Monte Carlo

simulations. When comparing across model types, our ‘best’ estimator is a month-

of-birth cohort-IV with linear trend. A mixed order RPJKD also performs well, and

indeed performs best when asymmetric bandwidths are allowed.

We find that going from 0 to 50 MSDH lowers the probability of an MVA in the

first year of independent driving by 1.4 percentage points (21%). This estimate is

robust to a randomization inference procedure similar to Ganong and Jäger (2018),

even after adjusting for serial correlation in the distribution of the placebo estimates.

We also re-evaluate evidence on the effect of Head Start on child mortality (Ludwig

9Countries implementing graduated driver licensing include Australia, Canada, New Zealand and
the U.S.
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& Miller, 2007) and the minimum legal drinking age on drinking behavior (Lindo et

al., 2016). For both applications, the best performing model is linear RDD with

a relatively long bandwidth (much longer than in the original papers) and CCT

estimators perform considerably worse than our best models in the placebo zone.

We recommend that researchers consider using our approach whenever feasible.

This means settings where the researcher has access to a sufficiently wide placebo

zone and where the threshold is plausibly random with respect to the underlying

DGP (we provide guidance on how this assumption could be assessed in practice).

We think these conditions would be met in a great number of discontinuity settings;

in fact, settings where there are insufficient placebo observations can be thought of

as the subset of discontinuity studies where data constraints rule out consideration

of large bandwidths.

The remainder of the paper is structured as follows. In Section 2 we outline

sufficient conditions under which our method is asymptotically optimal. Section 3

presents results from Monte Carlo simulations. In Section 4 we illustrate in detail

how to apply the placebo-zone approach in our evaluation of MSDH laws. Section 5

discusses using the placebo zone for randomization inference. Section 6 presents re-

sults for our MSDH evaluation which adopt the chosen estimators. Section 7 presents

a re-evaluation of Head Start and minimum legal drinking age studies. Section 8

concludes and discusses practical considerations and recommendations for using the

placebo zone approach.

2 Asymptotically Optimal Model Selection Using

a Placebo Zone

Following standard sharp-RDD notation, consider a random sample (Yi(0), Yi(1), Xi),

i = 1, 2, . . . , n, where Yi(0),Yi(1) are potential outcomes, with and without treatment.

Treatment (T ) is determined by the forcing variable exceeding a threshold at X = 0

so that Ti = 1(Xi ≥ 0). The observed sample is therefore (Yi, Xi), where Yi =

(1− Ti)Yi(0) + TiYi(1).

The parameter of interest is the average treatment effect at the threshold τ =
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E[Yi(1)− Yi(0)|Xi = 0].

There are many candidate estimators of τ . Amongst the set of such candidates,

assume the existence of a single estimator which has the lowest MSE(τ̂) of all candi-

date estimators. For each candidate estimator, MSE(τ̂) is not observed. Intuitively,

our approach will be useful if the set of placebo estimates are informative of MSE(τ̂)

for each candidate specification.

In this section, we outline a sufficient set of conditions under which our model se-

lection approach is ‘asymptotically optimal’. Our model selection approach is asymp-

totically optimal if it converges on selecting the estimator with the lowest MSE(τ̂)

amongst all candidate estimators of τ , as the number of placebo zone repetitions, m,

goes to infinity, keeping constant the distance between consecutive placebo thresholds.

The proof below is based on the following key insight. To establish asymptotic

optimality, it is sufficient to show that for each candidate specification, the MSE of

the threshold estimate is the same as the MSE of each relevant placebo estimate.

That is, to show that:

MSE(τ̂) = MSE(τ̂k), for all |k| > b, (2)

where X = k is the location of each placebo threshold, and b is the bandwidth

used for this estimator.10 For each candidate specification, we observe τ̂k for each

k. MSE(τ̂k) = E(τ̂k) since τk = 0. If Eq. 2 holds, E(τ̂k) is independent of k, and

E(τ̂k) = MSE(τ̂).

The mean of the m observed squared-placebo estimates is 1
m

∑b+m
k=b+1 τ̂

2
k . As m

gets large, lim
m→∞

1
m

∑b+m
k=b+1 τ̂

2
k = E(τ̂k)2 = MSE (τ̂). Therefore, as the placebo zone

becomes large, the MSE of each candidate estimator is revealed as a simple function

of the corresponding observed placebo estimates. And the optimal specification (the

one with the lowest MSE of the threshold estimate) is also the specification which

yields the lowest mean squared placebo estimates.

We will show that Eq. (2) holds under the following assumptions:

1. X is uniformly distributed

10The condition |k| > b ensures that the discontinuity itself does not influence any of the placebo
estimates.
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2. Yi(0) and Yi(1) are homoscedastic and have the same variance:

V ar(Yi(0)|X) = V ar(Yi(0)) = V ar(Yi(1)|X) = V ar(Yi(1))

3. The Conditional Expectations of Yi(0) and Yi(1) with respect to X are contin-

uous, smooth, and have zero fourth derivatives:
d4

dX4E[Yi(0)|X] = 0 and d4

dX4E[Yi(1)|X] = 0.

4. The Average Treatment Effect has a zero second derivative with respect to X:
d2

dX2E[Yi(1)− Yi(0)|X] = 0

While these assumptions are restrictive, they serve as a baseline case. In Section

3 we explore the performance of our approach with violations of these assumptions,

and with a finite number of placebo estimates.

Consider a set of local linear candidate estimators, each with a distinct, symmetric

bandwidth (b).11 Let τ̂b denote the estimated treatment effect from a local linear

estimator with bandwidth b. There is a finite sample of nb observations within this

bandwidth, on each side of the threshold. The estimated treatment effect is τ̂b =

α̂2b−α̂1b, where α̂2b and α̂1b can be estimated using two independent linear regressions,

one on each side of the threshold, using data within the appropriate bandwidth.

Dropping the i subscript for simplicity, these regression equations are:

y = α1 + β1x+ ε, −b < x < 0 (3)

y = α2 + β2x+ ε, 0 < x < b (4)

Similarly, let τ̂bk denote the estimated discontinuity at placebo threshold X = k

(where the true discontinuity is zero), using the same local linear specification and

bandwidth as above. τ̂kb = α̂k2b − α̂k1b, where α̂k1b and α̂k2b are the estimates from

the regressions below:

y = αk1 + β1 (x− k) + ε, (k − b) < x < k (5)

11All of the results below also hold under the same assumptions if the set of candidate estimators
is expanded to include higher-order polynomials. The required assumptions are more restrictive if
the set of candidate estimators includes local-linear estimators with asymmetric bandwidth (which
requires a zero 3rd derivative in place of assumption 3), or zero-order polynomial estimators (which
requires a zero 2nd derivative in place of assumption 3).
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y = αk2 + β2 (x− k) + ε, k < x < (k + b) (6)

The MSE of any treatment effect estimator is

MSE (τ̂) = E(τ̂ − τ)2 = V ar (τ̂) +Bias (τ̂)2 (7)

For each local linear estimator, MSE (τ̂b) is a function of the variance of the

estimated constant from both regressions (in equations 3 and 4), and the bias of

the estimator:

MSE (τ̂b) = E(α̂2b − α̂1b − τ)2 = V ar (α̂1b) + V ar (α̂2b) +Bias (τ̂b)
2 (8)

Assumptions (3) and (4) imply that the true DGP takes the following form:

y = α + (τ + ϑx)1(x > 0) + θ1x+ θ2x
2 + θ3x

3 + ε, (9)

In other words, the assumptions imply that the CEF can be globally cubic, with

a potential discontinuity (τ) and kink (ϑ) at the threshold.12 With this CEF, θ2x
2

and θ3x
3 are omitted variables from the linear regressions in equations (3) and (4),

while α1 = α and α2 = α+ τ . The estimate of α1 using a linear model on the LHS of

the threshold (as per equation 1) is hence biased, and so is the estimate of α2. Using

well-known omitted variable bias formulas:

E(α̂1b) = α + δ̂L1b + δ̂L2b (10)

Where δ̂L1b is the estimated constant in the regression of θ2x
2 on x:

θ2x
2 = δ1 + π1x+ ε1, −b < x < 0 (11)

And δ̂L2b is the estimated constant in the regression of θ3x
3 on x,

12θ1, θ2 and θ3 can be any real numbers. The inclusion of any other term to equation (9) would
violate assumption (3). As we show in this section, the bias of local-linear RDD estimators is a
function of the third derivative of the DGP’s CEF. If this derivative is not a constant (implied by
assumption 3), the bias of placebo estimates does not equal the bias of the threshold estimate, and
so the proof does not hold.
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θ3x
3 = δ2 + π2x+ ε2, −b < x < 0 (12)

Similarly for E(α̂2b) using data on the RHS (0 < x < b)

E(α̂2b) = (α + τ) + δ̂R1 + δ̂R2 (13)

Therefore,

E (τ̂b) = E(α̂2b)− E(α̂1b) = (α + τ) + δ̂R1 + δ̂R2 − (α + δ̂L1 + δ̂L2) (14)

However, δ̂R1b = δ̂L1b and δ̂R2b = −δ̂L2b.13 Therefore,

E (τ̂b) = τ + 2δ̂L2b (15)

so that Bias(τ̂b) = 2δ̂L2b. Equation (12) also implies that δ̂L2 is proportional

to θ3, and unrelated to any other parameters of the true DGP. Bias (τ̂b) is hence

proportional to the third derivative of the DGP’s CEF.

We now show that Bias (τ̂b) = Bias (τ̂kb), for |k| > b.

Substituting xk = x− k, equations (5) and (6) are equivalent to

y = αk1 + β1xk + ε, −b < xk < 0 (16)

y = αk2 + β2xk + ε, 0 < xk < b (17)

and the DGP in equation (9) can be expressed as

y = α + τ + (θ1 + ϑ)(xk + k) + θ2(xk + k)2 + θ3(xk + k)3 + ε (18)

if k > b. And, similarly,

y = α + θ1(xk + k) + θ2(xk + k)2 + θ3(xk + k)3 + ε (19)

13To see this, replace x with −x in (11) and (12), noting the assumed uniform distribution of x.
(11) becomes θ2x

2 = δ1 − π1x + ε1. This regression yields exactly the same estimate of δ1. (12)

becomes −θ3x3 = δ2−π2x+ ε2. This regression yields an estimated constant exactly equal to −δ̂L2.
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if k < −b.
Expanding equation (18) and collecting terms:

y = π0 + π1xk + π2xk
2 + θ3xk

3 + ε, (20)

Where π0 = α+τ+kθ1+kϑ+k2θ2+k3θ3, π1 = θ1+ϑ+2kθ2+3k2θ3, π2 = θ2+3kθ3.

And similarly if one expands (19).

Equations (16), (17) and (20) are equivalent to equations (3), (4) and (9), respec-

tively, with x > 0, or similarly if x < 0, with the threshold at xk = 0. As shown

above, the bias of the RDD estimate is proportional only to the third derivative of

the true DGP’s CEF. The third derivative (6θ3) is the same in (20) as in (9), and so

Bias (τ̂kb) = Bias (τ̂b), for |k| > b.

It is trivial to show that V ar (τ̂kb) = V ar (τ̂b), given assumptions (1) and (2).

Therefore MSE (τ̂kb) = MSE (τ̂b), which we have argued above is sufficient for estab-

lishing the asymptotic optimality of our procedure under assumptions (1)–(4).

3 Monte Carlo simulations

In this section we present the results of Monte Carlo simulations, in which we illus-

trate the performance of our approach under various conditions, and compare this to

popular bandwidth selection algorithms. While our approach can be used to choose

between candidate estimators that vary on a range of dimensions, its main use is likely

to be as an aid for choosing bandwidth and polynomial order, for RDD estimators.

We therefore focus on these designs and choices in this section.

3.1 Stylized DGPs

We commence with some simple DGPs. In each case the sample size is 900 observa-

tions. For observation i, the running variable x is equal to i − 100.5. The running

variable is therefore uniformly distributed across the range (-100, 800).14 The out-

14This structure is common for RDD applications with sample sizes of this order. In particular,
this structure arises when a larger original data set has been collapsed into a smaller data set in
which each observation represents the mean of y within a particular range of x.
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come variable is given by

y = 0.3(x > 0) + f(x) + ε (21)

where 0.3 is the discontinuity at x = 0, and σ2 = 0.12 (representing ‘large’ error

variance), or 0.032 (‘small’ error variance).15 f(x) is either:

Linear: f(x) = x/400

Quadratic: f(x) = (x/400)2

Cubic: f(x) = (x/400)3

Sine: f(x) = sin(2πx/400)/2

Cosine: f(x) = cos(2πx/400)/2

Linear, quadratic and cubic DGPs were chosen because these are theoretically

ideal conditions for our approach. The sine and cosine functions were chosen to

represent DGPs that do not satisfy assumption (3) in Section 2 (zero fourth order

derivative) and are dissimilar near the treatment threshold to the placebo zone. More

specifically, the 3rd derivative of the sine curve takes its maximum value at the

threshold. In contrast, the 3rd derivative of the cosine curve takes its minimum

value at the threshold.

The resulting ten DGPs are depicted in Figure B1. Each panel shows the deter-

ministic component of f(x) as well as a scatter plot with one entire simulated data

set (the data generated in the first iteration of the simulation). The vertical lines

at x = 400 show where the placebo zone is truncated when we test the performance

of each approach with a smaller placebo zone. Given that our approach relies on

asymptotics for the number of placebo replications, we expect it to perform better

when we use a longer placebo zone.

The results of the simulations are shown in Panels A-E of Table 2. For each DGP,

we show the RMSE of the estimated discontinuity across 1,000 iterations for our

approach (labelled KS), as well as CCT and IK with polynomial order 1.16 We also

15The size of the discontinuity has no bearing on the results. 0.3 was chosen for presentational
purposes.

16We focus on polynomial order 1 since this is the typical specification used with these methods.
Moreover, we found that across all our specifications, CCT with order 1 always outperformed CCT
with order 2 (results available on request). We also ran versions of CCT and IK without the
regularisation term. The RMSEs from these versions were similar but usually slightly higher than
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show the average ‘optimal’ bandwidth across iterations, as selected by each approach.

For our approach, we also show the share of iterations in which the ‘optimal’ estimator

is linear (as opposed to quadratic). For our approach, we set the maximum bandwidth

to 300 for the ‘long’ placebo zone trials, and 200 for the ‘short’ placebo zone trials.

In each candidate model, the bandwidths are set to be symmetrical, until reaching

100 units (which is equal to the full support on the left side of the discontinuity). At

higher (right side) bandwidths, the left bandwidth is fixed at 100 units. We discuss

the choice of maximum bandwidth further in the conclusion.

Table 2: Results of Monte Carlo simulations

KS CCT IK

RMSE mean
BW

linear
(%)

RMSE mean
BW

RMSE mean
BW

A: Linear DGP

Baseline DGP 0.0241 250.19 1.000 0.0413 66.42 0.0295 149.85
Small error variance 0.0072 250.19 1.000 0.0092 83.01 0.0079 201.92
Small placebo zone 0.0292 151.53 0.974 0.0601 34.70 0.0319 120.94
Small placebo zone
and error variance

0.0088 151.53 0.974 0.0180 34.69 0.0087 149.19

B: Quadratic DGP

Baseline DGP 0.0285 114.30 0.999 0.0413 66.37 0.0331 137.67
Small error variance 0.0088 98.63 0.995 0.0124 65.87 0.0166 149.54
Small placebo zone 0.0318 118.92 0.969 0.0601 34.70 0.0332 115.63
Small placebo zone
and error variance

0.0096 98.54 0.953 0.0180 34.70 0.0116 117.95

C: Cubic DGP

Baseline DGP 0.0301 93.59 1.000 0.0414 66.38 0.0325 114.81
Small error variance 0.0104 79.49 1.000 0.0125 65.94 0.0109 89.25
Small placebo zone 0.0321 100.39 0.953 0.0601 34.69 0.0340 106.87
Small placebo zone
and error variance

0.0110 82.66 0.919 0.0180 34.66 0.0111 83.62

D: Sine DGP

Baseline DGP 0.0481 59.0 0.857 0.0605 34.1 0.0443 60.8

those shown for the DGPs in Panels A-E. The exception is for the cosine function, where the IK
RMSE was much higher without the regularisation term.
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Small error variance 0.0172 41.6 0.886 0.0187 30.8 0.0174 56.5
Small placebo zone 0.0633 79.9 0.729 0.0605 34.1 0.0443 60.8
Small placebo zone
and error variance

0.0207 58.6 0.673 0.0187 30.8 0.0174 56.5

E: Cosine DGP

Baseline DGP 0.0446 83.9 0.640 0.0601 34.7 0.0377 75.1
Small error variance 0.0147 42.1 0.876 0.0180 34.7 0.0114 71.0
Small placebo zone 0.0437 82.5 0.579 0.0601 34.7 0.0377 75.1
Small placebo zone
and error variance

0.0153 41.8 0.778 0.0180 34.7 0.0114 71.0

F: Head Start DGP

Mortality 0.6794 13.86 0.999 1.4265 7.93 0.9853 14.87

G: Political incumbency DGP

Wins 0.0111 21.59 0.988 0.0125 22.76 0.0119 30.35

H: MLDA DGP

Ever Drinks 0.0271 3.81 0.981 0.0591 0.96 0.0347 2.50
Drinks Regularly 0.0340 3.96 0.983 0.0750 0.96 0.0425 2.89
Proportion of Days
Drinks

0.0154 3.96 0.983 0.0339 0.96 0.0189 3.15

Notes: For panels A-D, the sample sizes are set to 900 observations with the running variable uni-
formly distributed between (-100,800). For the ‘small placebo zone’ we truncate at 400. The out-
come variable is given by the equation y = 0.3(x > 0) + f(x) + ε with σ2 = 0.12 (representing
‘large’ error variance), or 0.032 (‘small’ error variance). For panel A: f(x) = x/400. For panel B:
f(x) = (x/400)2. For panel C: f(x) = (x/400)3. For panel D: f(x) = sin(2πx/400)/2. For panel
E: f(x) = cos(2πx/400)/2. For our approach (KS), we set the maximum bandwidth to 300 for the
‘long’ placebo zone trials, and 200 for the ‘short’ placebo zone trials. In each candidate model, the
bandwidths are set to be symmetrical, until reaching 100 units. At higher (right side) bandwidths,
the left bandwidth is fixed at 100 units. For panels F-H, the simulated datasets are constructed by
fitting a 5th order global polynomial through the support of the original data, allowing a discontinu-
ity and a kink at the threshold, and then fitting a beta distribution to the same data to summarise
the distribution of the running variable. In each iteration, the sample size is the same as the original
sample, and the variance of the error term is the same as variance of the residual from the regression
in the first step. The column ‘linear’ shows the fraction of iterations where KS selects linear (rather
than quadratic) as the best estimator. For each DGP we conduct 1,000 Monte Carlo simulations.
The results for the estimator with the lowest RMSE for each DGP are shown in bold font.

A main feature of Table 2 is that KS attains a lower RMSE than CCT in almost

every version of the simulation. The CCT bandwidth (and its performance) are
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relatively insensitive to most of the parameters of the simulations: f(x), the error

variance, and the size of the placebo zone.

The relative performance of KS is best in the linear, quadratic and cubic DGPs,

especially with large SEs and large bandwidth. Here, the RMSE is always consider-

ably lower for KS than CCT, and in all but one case lower than IK. In all of these

simulations, our algorithm selects linear functions in a large majority (over 91%) of

the iterations.

For the sine DGP, the results are more mixed. The IK performs best in 3 of the 4

versions. KS also performs quite well, and is actually wins when the placebo zone is

short and error variance is low. For the Cosine function, IK performs best and CCT

worst. KS performs reasonably well, especially when the error variance is large.

We conclude from this that KS outperforms the alternate approaches when the

DGP is linear, quadratic or cubic, even when the placebo zone is not overly long.

Even with very unstable DGPs, and relatively small placebo zones, our approach still

performs reasonably well.

3.2 DGPs based on prominent applications

We now turn to DGPs which are designed to mimic realistic scenarios, drawing on

three well known applications – Head Start (Ludwig & Miller, 2007), political incum-

bency (Lee, 2008), and Minimum Legal Drinking Age (MLDA) (Lindo et al., 2016).17

In each case, we take the following approach. Using the original data from each

application, we fit f(x): a 5th order global polynomial through the support of the

data, allowing a discontinuity and a kink at the threshold, which allows the treatment

effect to be heterogeneous in a way that satisfies assumption (4) in Section 2 (i.e., the

average treatment effect has a zero second derivative with respect to X).18 We then

17The MLDA context is one of the best known applications of RDD, beginning with Carpenter
and Dobkin (2009). Carpenter and Dobkin (2009) used restricted variables from the NHIS, which
are not easily available. Instead, we draw on data from Lindo et al. (2016)’s corresponding analysis
for the Australian state of New South Wales.

18Other papers which have undertaken similar exercises have taken the approach of fitting 5th
order polynomials on either side of the threshold. We do not believe this is appropriate for the
present exercise. Fitting 5th order polynomials on either side results in discontinuities in every
derivative of y w.r.t. x. It can also result in a wildly unstable fit on either side of the threshold –
but a much smoother fit elsewhere (see for example Calonico et al., 2014, Figure 1, Model 2). This
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fit a beta distribution to the same data to summarize the distribution of the running

variable.

For each iteration of the simulation, the sample size is set equal to the original

sample. We randomly draw values of the running variable from the beta distribution.

Finally, we set y = f(x) + ε, where ε is normally distributed with zero mean and

variance equal to the variance of the residuals from the regression in the first step.

The resulting DGPs are depicted in Figure B2. Each panel shows f(x) and a

scatter plot with the full data set generated in the first iteration of the simulations.

For the Head Start application, in each iteration we allocate each placebo zone

observation randomly into one of two groups. This is to address the fact that the

density is approximately twice as large in the placebo zone as the treatment zone.

We expand on this in Section 7.

The results of these simulations are shown in Panels F-H of Table 2. The key

result is that KS outperforms the other approaches for each application, while CCT

is consistently last.19 We conclude from this that the KS approach outperforms the

other approaches on ‘realistic’ DGPs based on well known applications.

3.3 Coverage

The primary objective of our approach is optimal point estimation. However, it is

worth recognizing that an important contribution of CCT was to pioneer ‘robust confi-

dence intervals’ for RDD designs, since conventional standard errors do not guarantee

correct coverage rates. We therefore report coverage results from our simulations in

Table B1, where confidence intervals for the KS method are constructed using conven-

tional asymptotic standard errors clustered at units of the running variable. We also

report results for our method using a novel randomization inference approach based

is only realistic under a violation of the usual assumption of “smoothness” of all other determinants
of y, or when the ATE is a highly non-linear function of X. This is not appropriate for testing our
approach, which relies on the assumption that data patterns away from the threshold can sometimes
be informative about likely patterns near the threshold. Nevertheless, our approach still outperforms
the other candidate approaches in a majority of the cases discussed here, even when a 5th order
polynomial is fitted on either side (results available on request).

19We also ran versions of CCT and IK without the regularisation term (available on request). The
RMSEs from these versions were slightly lower than those shown for the DGPs in Panels E-G, but
never enough to change the RMSE rankings of the three approaches.
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on the placebo estimates (building on Ganong & Jäger, 2018), which we outline in

Section 5.

The results can be summarized as follows. When our approach is combined with

the conventional inference procedure, coverage is close to 95% for each of the ’realistic’

DGPs, with smaller average confidence intervals than other methods, especially CCT.

Similarly, for each of the stylized DGPs except sine, our approach with conventional

inference also achieves coverage close to 95%, often closer to 95% than CCT. Our

confidence intervals are also markedly shorter than CCT (sometimes less than half

the length). The only DGP where conventional inference does not perform well with

our approach is the sine DGP – with mean coverage of around 88%. However, for the

larger placebo zones, coverage is around 94% when we instead use our randomization

inference approach. The randomization inference procedure also performs well for

all other DGPs when the placebo zone is sufficiently large. Overall, our approach

generally performs better on coverage, while also having much shorter confidence

intervals, than CCT.

4 An application: minimum supervised driving hours

We now demonstrate our method in detail, in the context of a novel application –

estimating the effectiveness of learners’ permit policy changes in New South Wales.20

Online Appendix A describes institutional details, including the two policy changes

and key features of the data. The policy reforms provide exogenous variation in the

probability of being subject to MSDH, as a function of date of birth (DOB).What

makes this application so interesting is there are many classes of estimators (e.g.,

RDD, RKD, cohort IV) that can be used to estimate treatment effects in this setting,

as we will show. We use our method to compare the performance of estimators within

each class, as well as between classes.

We begin by describing the many credible candidate models which could be applied

to estimate the effect of the policy changes. We then describe the ‘placebo zone’. This

is a set of 2,556 consecutive DOBs (from 1 July 1984 to 30 June 1991). Within this

20Our study received ethics approval from the UTS Human Research Ethics Committee (Appli-
cation number ETH17-1547).
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zone, there is no reason to suspect any systematic relationship between DOB and

the outcome variable (MVAs within 1 year of obtaining a provisional license). It

therefore provides an opportunity for testing the performance of candidate models

in estimating the true treatment effect within this zone (which is zero). Next, we

summarize the performance of the candidate models within this zone.21

4.1 Candidate models

The first-stage relationship between DOB and holding a ‘new’ learner’s permit fol-

lowing the 2000 reform (0 to 50 MSDH) is shown in Figure 1 (see Appendix Figure

B3 for the 2007 reform, and Figure B4 for scatter plots showing the reduced form for

both reforms). Both panels draw on the same underlying data, differing only in the

bin-size used in the plots. Panel A uses a ‘small’ bin-size of 2 days, while Panel B

uses a ‘large’ bin size of 30 days.

Figure 1: First-stage relationship between DOB and 50 MSDH treatment
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Notes: Both panels shows the mean value of the ‘treatment’ variable, by DOB. Treatment is
defined as obtaining a first learner’s permit on or after 1 July 2000, thereby subject to dif-
ferent MSDH requirements. The only difference between panels is the size of the DOB ‘bins’.

Figure 1 shows complete compliance to the right of 1 July 1984.22 It was not

21In the working paper version of this paper, we also consider the implications of various types of
treatment effect heterogeneity which we impose into the placebo zone data (Kettlewell & Siminski,
2020).

22While there appears to be very minor non-compliance, this is due to imprecision around DOB,
as described in Section A.4. We drop observations where we are uncertain about treatment status
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possible for anyone born on this date or after to hold an ‘old’ learner’s permit due to

administrative rules. The pattern on the left side is more complicated. Both panels

show a monotonic upward, non-linear pattern. Panel B suggests the presence of a

discontinuity at the threshold. In contrast, Panel A suggests no discontinuity, but a

kink, caused by a very steep rise on the left side of the threshold.

This figure illustrates that many different estimators could potentially be used

to estimate the effect of the reform. Candidate estimators could exploit the appar-

ent kink, or the approximate discontinuity, or both. Or, they could instead employ

a between-cohort-IV strategy. Each approach could be implemented using various

alternate functional form assumptions (i.e. orders of polynomial, which need not

be the same on each side of the threshold). Finally, one can choose between many

bandwidths.

We first consider a total of 4,634 alternate candidate specifications, each with

symmetrical bandwidth around the threshold. This consists of 14 different models,

estimated using each possible bandwidth in the range of 35 to 365 days. In principle,

we could consider larger bandwidths as well. This is prevented by practical consid-

erations in our application. People born before 1 July 1983 were eligible for driver’s

licenses which differed in other important ways. Therefore we need an estimator

which does not use data on people born before that date, hence making 365 days the

largest feasible bandwidth.

Denoting outcome (i.e. MVA 1-year indicator) for person i by Yi, DOB by Xi

(centred at zero around 1 July 1984), treatment (obtained learner’s permit after

policy change) by Ti and an indicator for DOB ≥ 1 July 1984 (1991) by Di, the first

11 candidate models are fuzzy RDD, RPJKD and RKD estimators. Each of these

can be treated as instrumental variable models, with the structural equation given

by Eq. 22 and first-stage given by Eq. 23. Full details on the estimation equations

are in Table B2.23

Yi = α + βTi + f(Xi, Di) + ei (22)

in our regression analysis.
23We only consider a uniform kernel in our application, although it would be straightforward to

vary the kernel along with other modelling dimensions. In practice, kernel choice typically has little
influence on the estimates (Lee & Lemieux, 2010).
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Ti = π0 + f(Xi, Di) + g(Xi, Di) + εi (23)

Model 1 is a conventional (fully-interacted) linear RDD. Model 2 is an RDD model

with a linear fit on the right side of the threshold, and a quadratic on the left. This

is motivated by the first-stage relationship in Figure 1, characterized by a clearly

nonlinear relationship on the left, and perfect linearity on the right. We refer to this

as a ‘mixed polynomial’ specification. Model 3 is a conventional (fully-interacted)

quadratic RDD.

The next four candidate models exploit both the discontinuity and the kink for

identification. These are RPJKD estimators of the following form. Model 4 is a

conventional (fully-interacted) linear RPJKD. Model 5 is a quadratic RPJKD, in

which the quadratic term is not interacted with the threshold indicator. Model 6 is

an RPJKD model with a linear fit on the right side of the threshold, and a quadratic

on the left. Model 7 is a fully-interacted quadratic RPJKD.

Four more candidate models adopt conventional regression kink designs. Model

8 is a conventional (fully-interacted) linear RKD. Model 9 is a quadratic RKD, in

which the quadratic term is not interacted with the threshold indicator. Model 10 is

an RKD model with a linear fit on the right side of the threshold, and a quadratic

on the left. Model 11 is a fully-interacted quadratic RKD.

The remaining three candidate models are month-of-birth cohort-IV models, which

exploit between-cohort variation in the probability of ‘treatment’. Denoting month-

of-birth fixed effects by θm, for these models, the first-stage becomes:

Ti = π0 + f(Xi) + g(Xi, θm) + εi (24)

Model 12 assumes a linear secular relationship between DOB and the outcome

variable. Model 13 assumes a quadratic secular relationship between DOB and the

outcome variable. Model 14 assumes a cubic secular relationship between DOB and

the outcome variable.
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4.2 The placebo zone

The placebo zone is the set of DOBs between 1 July 1984 and 30 June 1991, inclusive.

There were no apparent major licencing policy changes which were likely to have

affected MVAs in a way that depends on DOB within this zone. Figure 2 Panel A

shows the MVA rate by month of birth within this zone (in 30 day bins), with a

lowess fit. Generally, the pattern is relatively smooth, with a slight downward trend,

apart from perhaps the first 5 months.

Figure 2: The placebo zone
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Notes: Panel A shows the proportion of people who crashed within one year of receiving a provisional
drivers license (the main outcome variable in the analysis) by DOB within the placebo zone. The plot
uses 30-day bins of DOB. Panel B is based on Figure 1 Panel A. Here, however, the range of DOB is
shifted by one year, and so is the definition of ‘treatment’, which is a function of date received first Ls.

Within this zone, we create placebo treatments in a way that mimics the true

treatment selection process. For example, in the first placebo, persons are deemed

treated if they obtained their license on or after 1 July 2001. The first-stage relation-

ship between DOB and this placebo treatment is shown (in 2-day bins) in Figure 2

Panel B, with a 365 day bandwidth around the DOB threshold of 1 July 1985. This

relationship closely resembles the true treatment profile around the 1 July 1984 DOB,

which we show in Figure 1. Similar patterns are found for the other placebo DOB

thresholds in this zone.

After collapsing to DOB-level (and weighting by cell-size), we estimate the placebo

treatment effect (which we know to be zero and constant across entities) using each
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of the 4,634 candidate models.24 We repeat this for all 1,826 placebo treatment

thresholds, and summarize the performance of each candidate model.

4.3 Model performance in the placebo zone

Table 3 summarizes the performance of each candidate model. It would not be prac-

tical to report on the performance of all 4,634 candidates. Instead we show only the

results for the bandwidth which yields the lowest root mean squared error (RMSE)

for each model type. The first clear feature of this table is that for every model

considered, large bandwidths (365 days in all but one case) yield the smallest RM-

SEs, compared with smaller bandwidths. Secondly, most models have appropriate

coverage rates.

In our application, four models stand out with the lowest RMSE. The best per-

forming model (RMSE = 0.0051) is ‘Model 12’ – the month-of-birth cohort-IV model

with a linear trend. This is closely followed by ‘Model 6’ (RMSE = 0.0052) – the

RPJKD with mixed polynomial fit (quadratic on the left and linear on the right).

Next are the RKD with mixed-polynomials (RMSE = 0.0057) and the linear RPJKD

(RMSE = 0.0060). All four have similarly good coverage (at least 93.6%), and small

average bias (0.001 at most).

We also consider a model-averaging approach. It is defined as the weighted average

of the estimates from the 14 candidate models (each with full 365 day bandwidth).

The weights are set to the inverse of the MSE of each candidate model. The per-

formance of this weighted average estimator is also shown in Table 3. Whilst its

performance is good, its RMSE is higher than Models 12 and 6. The coverage of this

estimator is not shown as its variance has not been derived.

The final four rows of Table 3 summarize the performance of four estimators

proposed by CCT, and implemented using Stata’s -rdrobust- command. These are

conventional, and bias-corrected estimates using RDD and RKD, respectively.25 The

‘optimal’ bandwidths for these estimators are determined within rdrobust, rather

24The results are almost identical when uncollapsed microdata are used instead, but estimation
is much faster with collapsed data.

25The results shown are for models estimated on collapsed microdata. As with the other estimators
considered, the results with collapsed (DOB) data are very similar.
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Table 3: Candidate model performance in the placebo zone

Model Description RMSE Optimal BW Coverage Bias

1 RDD - linear 0.0083 365 0.962 -0.0004
2 RDD - mixed polynomial 0.0199 365 0.921 0.0014
3 RDD - quadratic 0.0230 365 0.927 0.0015
4 RPJKD - linear 0.0060 365 0.936 0.0010
5 RPJKD - quadratic 0.0073 365 0.980 -0.0005
6 RPJKD - mixed polynomial 0.0052 365 0.992 0.0000
7 RPJKD - interacted quadratic 0.0132 365 0.938 0.0005
8 RKD - linear 0.0096 355 0.910 0.0028
9 RKD – quadratic 0.0179 365 0.953 0.0019
10 RKD - mixed polynomial 0.0057 365 0.984 0.0002
11 RKD - interacted quadratic 0.0177 365 0.950 0.0019
12 birth cohort-IV - linear 0.0051 365 0.946 0.0006
13 birth cohort-IV - quadratic 0.0070 365 0.987 -0.0007
14 birth cohort-IV - cubic 0.0124 365 0.937 0.0001
WA Inv-MSE weighted average 0.0055 365 n.d. 0.0003
C1 RDD conventional 0.0340 117 0.966 0.0012
C2 RDD bias corrected 0.0443 117/184 0.939 0.0015
C3 RKD conventional 0.0346 136 0.997 0.0014
C4 RKD bias corrected 0.0415 136/202 0.999 0.0019

Notes: This table summarizes the performance of each candidate model within the placebo zone.
The key statistic is the RMSE of estimated treatment effects. There are 1,826 treatment effect es-
timates for every model, one for each placebo-zone threshold. The true treatment effect is known
to be zero throughout the placebo zone, so zero is the target parameter for every estimator. With
the exception of WA and C1-C4, every candidate model is trialled repeatedly with symmetric band-
widths ranging from 30 to 365 days. For each model, results from the bandwidth which yields the
lowest RMSE are shown. In addition to the 14 main models, the model labelled WA is an estima-
tor which (for each placebo-zone repetition) uses the inverse-MSE-weighted average of the estimates
from the 14 main models, using each of those model’s respective optimal bandwidth. Unlike the
other models, those labelled C1-C4 use a CCT bandwidth selection procedure and default settings
in Stata’s -rdrobust- command.

than the placebo zone procedure that we adopt for the other estimators.26 As seen

in the table, these bandwidths are much smaller than the others. The key result,

however, is that the performance of these estimators, as measured by RMSE, is worse

than any of the other candidate models, and an order of magnitude worse than the

26More precisely, the CCT bandwidths shown in Table 3 are the average of bandwidths selected
by rdrobust through the placebo zone.
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best performing candidate models. This is consistent with the findings of Card et al.

(2017)’s RKD Monte Carlo simulations and our results in Section 3.

4.4 Incorporating asymmetrical bandwidths

In every model tested on the placebo zone thus far, we have followed conventional

practice and imposed the same bandwidth on the left and right sides of the thresh-

old. Here we explore whether model performance can be improved by allowing for

asymmetric bandwidths.

In particular, we have so far capped the bandwidth at 365 days on each of the

thresholds. This is motivated by practical constraints in our application. Any more

than 365 days to the left of the 1 July 1984 threshold would take us into territory where

other important policy changes were implemented in a way that relates systematically

with DOB. But we do not have the same issue on the right side of the threshold.

Similarly, for the 1991 threshold, we have no constraints in the left side, though data

constraints prevent us from considering bandwidths greater than 365 days on the

right.27

We now repeat the placebo-zone model selection procedure for all 14 candidate

models using two similar procedures.

1. We fix the bandwidth to 365 days on the left, whilst allowing the bandwidth

to vary between 365 days and 730 days on the right. This will be informative

for model selection in our analysis of the 2000 reform. The number of placebo

thresholds in this exercise is 1,461, due to the need to include a larger maximum

bandwidth.

2. We fix the bandwidth to 365 days on the right, whilst allowing the bandwidth

to vary between 365 days and 730 days on the left. This will be informative

for model selection in our analysis of the 2007 reform. The number of placebo

thresholds is 1,461.

27The constraint is due to the fact that drivers who obtain their P1 license after age 25 are dropped
from the sample because they are not required to meet the MSDH requirement (see Appendix A).
We cannot impose this constraint consistently on the RHS of the 2007 reform because the end-date
for our license data mean we do not always observe whether people got their P1 license by age 25.
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The results for Version 1 of this exercise are summarized in Table 4. It shows that

performance is improved considerably for every model by allowing larger bandwidths

on the right. In some cases, RMSE is reduced by more than 50%. The optimal

right-side bandwidth varies considerably, from 550 up to the 730 day limit. Model 6

is the best performing model, with an optimal RHS bandwidth of 550 days. This is

the best performing estimator amongst all candidates for estimating the effect of the

2000 reform. The weighted-average estimator, shown in the lowest row, does just as

well as Model 6. Models 12, 4 and 10 continue to perform well.

Table 4: Candidate model performance in the placebo zone V1: Asymmetric band-
widths

Model Description RMSE Optimal
RHS BW

Coverage Bias

1 RDD - linear 0.0069 550 0.958 -0.0005
2 RDD - mixed polynomial 0.0186 660 0.942 0.0016
3 RDD - quadratic 0.0203 710 0.930 0.0013
4 RPJKD - linear 0.0046 670 0.910 0.0022
5 RPJKD - quadratic 0.0059 710 0.985 0.0001
6 RPJKD - mixed polynomial 0.0039 550 0.996 0.0005
7 RPJKD - interacted quadratic 0.0056 720 0.993 0.0005
8 RKD - linear 0.0059 730 0.879 0.0031
9 RKD - quadratic 0.0166 730 0.910 0.0070
10 RKD - mixed polynomial 0.0043 730 1.000 0.0006
11 RKD - interacted quadratic 0.0067 730 0.997 0.0008
12 birth cohort-IV - linear 0.0042 670 0.912 0.0020
13 birth cohort-IV - quadratic 0.0056 720 0.998 -0.0003
14 birth cohort-IV - cubic 0.0060 700 0.990 -0.0004
WA Inv-MSE weighted average 0.0039 As above n.d 0.0010

Notes: The results in this table are from a similar procedure to what is detailed in the Table 3
notes. The only difference is the set of bandwidths considered. The left side bandwidth is fixed at
365 days, the right side bandwidths considered range from 365 days to 730 days. As in Table 3, re-
sults are shown for the bandwidths which yield the lowest RMSE for each model. There are 1,461
treatment effect estimates for every model, one for each placebo-zone threshold. The smaller num-
ber of repetitions is a result of the larger maximum bandwidth considered.

The results for Version 2 of this exercise are summarized in Table 5. They are

similar to those of the previous exercise – Models 12, 10 and 6 continue to perform
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well. Optimal bandwidths vary, but are generally considerably larger than the baseline

exercise. Model 12 has the lowest RMSE, with an optimal LHS bandwidth of 560

days. This is the single best performing specification amongst all candidates for

estimating the effect of the 2007 reform.

Table 5: Candidate model performance in the placebo zone V2: Asymmetric band-
widths

Model Description RMSE Optimal
LHS BW

Coverage Bias

1 RDD - linear 0.0049 660 0.986 -0.0009
2 RDD - mixed polynomial 0.0095 730 0.979 0.0020
3 RDD - quadratic 0.0122 730 0.977 0.0019
4 RPJKD - linear 0.0047 690 0.987 -0.0005
5 RPJKD - quadratic 0.0041 610 0.999 -0.0009
6 RPJKD - mixed polynomial 0.0040 560 0.999 -0.0004
7 RPJKD - interacted quadratic 0.0122 730 0.969 -0.0001
8 RKD - linear 0.0051 370 1.000 -0.0002
9 RKD - quadratic 0.0054 600 0.990 -0.0012
10 RKD - mixed polynomial 0.0037 550 0.997 -0.0005
11 RKD - interacted quadratic 0.0186 370 0.942 0.0024
12 birth cohort-IV - linear 0.0036 560 1.000 -0.0004
13 birth cohort-IV - quadratic 0.0037 610 1.000 -0.0009
14 birth cohort-IV - cubic 0.0061 730 0.997 0.0007
WA Inv-MSE weighted average 0.0038 As above n.d -0.0005

Notes: The results in this table are from a similar procedure to what is detailed in the Table 3 notes.
The only difference is the set of bandwidths considered. The right side bandwidth is fixed at 365
days, the left side bandwidths considered range from 365 days to 730 days. As in Table 3, results
are shown for the bandwidths which yield the lowest RMSE for each model. There are 1,461 treat-
ment effect estimates for every model, one for each placebo-zone threshold. The smaller number of
repetitions is a result of the larger maximum bandwidth considered.

5 Using placebo zone estimates for inference

Our main interest in this paper is estimation. However the placebo zone may also

be useful for inference. As already shown, the placebo zone can be used to assess

coverage of confidence intervals stemming from standard approaches. In this section,
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we propose some new approaches to randomization inference.

The placebo zone consists of 1,826 overlapping data windows, corresponding to

1,826 separate placebo estimates for each (symmetric) estimator. Consider the distri-

bution of these placebo estimates for Model 12 – shown in Figure 3. One can use this

distribution for alternative approaches to inference – randomization inference, in the

spirit of Ganong and Jäger (2018). We discuss two alternative inference approaches.

These alternatives may be useful if there is reason to believe that a given estimator

or its estimated variance, are biased.

Figure 3: Distribution of placebo estimates from Model 12 (symmetric bandwidth)
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Notes: This figure shows the distribution of treatment effect estimates generated within
the placebo zone by ‘Model 12’, with a symmetric 365 day bandwidth. This is the
model which performed best in the placebo zone trials reported in Table 3. Bars
represent estimates grouped into 64 evenly sized bins. Kernel density fit is overlaid.

5.1 Approach 1: Fully non-parametric

Consider an estimate which lies outside of the range of the placebo estimates. If these

1,826 placebo estimates were independent, one would conclude that the two-sided p-

value < 2/1826 = 0.0011. For an estimate lying inside the range of placebo estimates,

p = 2 ∗ min(i/1826, (1826 − i)/1826), where i is the rank of the estimate alongside

the 1,826 placebo estimates.

However, the 1,826 placebo estimates are not independent. Indeed they are

strongly serially correlated in our application. This is almost certainly the case in
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other applications as well, given the rolling data window. In our Model 12, the serial

correlation of placebo estimates = 0.9895. This equates to an effective sample size

(ESS) of just 10 independent observations.28 A more appropriate two-sided p-value

for estimates lying outside the placebo zone is p < 2/ESS. In our case, for Model

12, p < 2/10 = 0.2.

5.2 Approach 2: Semi-parametric

A more powerful approach to inference is to calculate t-statistics, based on the dis-

tribution of placebo estimates, taking into account the effective sample size of those

placebo estimates. This approach respects the fact that these placebo estimates are

not independent, but invokes an assumption that they are drawn from a normal dis-

tribution. The mean of that normal distribution is not set to zero, but to the mean

placebo estimate, thereby accounting for potential systematic bias. For example, for

Model 12, the mean placebo estimate is 0.0002, with a standard deviation 0.0047.

For a given estimate of the actual treatment effect β̂, the t-stat = (β̂ – (0.0002))/

0.0047, distributed with ESS-1 degrees of freedom. The use of the t-statistic with ESS

degrees of freedom takes into account the sampling error in the estimated variance

of the population distribution of placebo estimates. For example, if β̂ = 0.132 using

Model 12, t = -2.86, which corresponds to a p-value = 0.0187 assuming 9 degrees of

freedom.

5.3 Randomization inference when the placebo zone is not

contiguous

In our own application, the placebo zone is contiguous. But in other applications

it may not be, particularly if placebo data are available on ‘both sides’ of the real

threshold. In such cases, it is not obvious how to determine the ‘effective sample

size’, since the estimates on either side of the ‘gap’ may be correlated, but less so

than estimates from immediately adjacent thresholds. One approach is to bound the

effective sample size. The lower bound essentially ignores this discontinuity in serial

28This calculation draws on Eq. 5 in Zwiers and Storch (1995).
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correlation, and derives the ESS using a weighted average of the autocorrelations

within each contiguous segment. The upper bound treats estimates between each

segment as distinct and so the total ESS is the sum of the ESS in each segment.

In our application, this approach would produce tight bounds. To illustrate, if

our placebo zone was not contiguous but instead consisted of two equally sized zones

on either side of the treatment threshold, the lower bound for the ESS for our best

symmetric bandwidth estimator would be 10 and the upper bound would be 11.

6 Estimated effects of minimum supervised driv-

ing hours

The main estimation results are presented in Table 6. Panel A shows the estimated

effects of the 2000 reform and Panel B shows the estimated effects of the 2007 reform.

Each panel shows results from five separate estimators – one in each column.

Column (1) shows results from the ‘best’ estimator. This is the estimator with

the lowest RMSE of all candidate models evaluated on the placebo zone. For the

2000 reform, this is ‘Model 6’, with a bandwidth of 365 days on the left and 550 on

the right. For the 2007 reform, this is ‘Model 12’ with a bandwidth of 560 days on

the left and 365 days on the right.29

These ‘best’ estimates suggest that the first reform had a strong impact on re-

ducing MVAs, while the second reform did not. The first reform is estimated to

have reduced the crash rate by -0.014, a reduction of 21% relative to the predicted

value at the threshold for the untreated. The conventional p-value associated with

this estimate is 0.0005. We have no reason to be sceptical about the validity of this

p-value, since this estimator was found to have good coverage in the placebo zone

trial, as well as an estimated bias that is close to zero. Nevertheless, we also show

alternate p-values, based on the distribution of placebo estimates, as discussed in the

29Recall that we are constrained to a maximum bandwidth of 365 days on the left of the threshold
for the 2000 reform, and a maximum bandwidth of 365 days on the right of the threshold for the 2007
reform. Model 6 is a RPJKD model with quadratic polynomials to the left and linear polynomial to
the right of the threshold in each stage. Model 12 is a month-of-birth cohort-IV model, controlling
for a linear secular relationship between DOB and the outcome variable.
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Table 6: Estimated effects of minimum supervised driving hours

Best esti-
mator

Best sym.
cohort-IV

Best sym.
RPJKD

Best sym.
RKD

Best sym.
RDD

(1) (2) (3) (4) (5)
A: 2000 Reform (0 → 50 hours)

MVA
1-year

-0.0144*** -0.0132*** -0.0147*** -0.0144** -0.0168***

SE 0.0041 0.0049 0.0050 0.0058 0.0058
p-value 0.0005 0.0073 0.0032 0.0129 0.0038
alt. p-value 0.0101 0.0187 0.0161 0.0374 0.0578
Model 6 12 6 10 1
BW 365 / 550 365 365 365 365

B: 2007 Reform (50 → 120 hours)

MVA
1-year

0.0021 0.0003 0.0006 -0.0024 -0.0007

SE 0.0030 0.0033 0.0033 0.0046 0.0035
p-value 0.4790 0.9259 0.8477 0.6069 0.8422
alt. p-value 0.5532 0.9886 0.8882 0.6681 0.9524
Model 12 12 6 10 1
BW 560 / 365 365 365 365 365

Notes: This table shows the main estimated effects of the actual policy changes in our main ap-
plication. Asymptotic standard errors are clustered at the DOB level. Alternate p-values use the
randomization inference procedure described in Section 5. * p < 0.1, ** p < 0.05, *** p < 0.01.

previous section. This p-value is larger (0.010), though still strongly significant. The

alternate p-value is larger, primarily due to the small number of degrees of freedom

used in the translation of the t-statistic into a p-value, which makes it inherently

conservative.30 For the 2007 reform, the alternate p-value is also slightly higher than

the conventional p-value, but remains very far from any conventional threshold of

statistical significance.

Column (2) shows results from the best symmetric estimator – which is Model

12 with a bandwidth of 365 days on each side. For the 2000 reform, all of the key

30Just 6 degrees of freedom are used for this estimate. This is equal to the ‘effective sample size’
of placebo estimates calculated in the placebo zone minus 1, taking into account the very strong
serial correlation of those estimates (0.9915).
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parameters from this model are similar to those in Column 1. The standard error

and both p-values are all slightly larger, but qualitatively the same as in Column (1).

The estimate for the 2007 reform is close to zero.

Columns (3), (4) and (5) show the results from the best symmetric RPJKD, RKD

and RDD estimators, respectively. In each case, the maximum feasible bandwidth

(365 days) is used, consistent with the outcomes of the placebo zone trials. Again,

the qualitative conclusions are the same, with strongly significant negative effects of

the 2000 reform, and approximately zero for the second reform.

Table 7 delves deeper into the effects of the 2000 reform. Corresponding results

for the 2007 reform are generally precise zeros and are available on request. The

structure of this table is the same as the previous table, and the same five estimators

are used throughout.31

One possible explanation for the 2000 reform reducing MVA is delayed timing of

obtaining a provisional license, which would support the idea that maturity rather

than improved driving skill lowered MVAs. Appendix Figure B6 suggests a possible

small delay effect. Panel A considers the extent to which this explains the main

treatment effect. The first rows show the original estimates, while the next rows

show estimates from the same models, but controlling for a quadratic of age (in

days) of obtaining a provisional license. The estimated effects are generally slightly

smaller when these controls are included. In the ‘best’ estimator, the treatment effect

estimate is actually unchanged, while in the other models, this reduction is no more

than 11%. Thus we conclude that delaying of obtaining a license is at most only a

small factor in the treatment effects that we have estimated.32

Panel B shows results which consider the timing of the treatment effects. As

may be expected, the majority (65% in the ‘best’ model) of the treatment effect is

confined to the first 6 months after obtaining a provisional license. The effect in the

6-12 month period is also at least marginally significant across the estimators, and its

31We use the same set of estimators across each of the outcome variables (and sub-populations)
here. This approach has the advantage of transparency and internal consistency, which helps to inter-
pret the drivers of the main estimates. An alternative approach is to choose a different set of preferred
estimators (using the placebo zone approach) for each outcome variable and sub-population.

32Moreover, for the 2007 reform we observe a much stronger delay effect, yet our treatment effect
estimates indicate no effect on MVAs.
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Table 7: Further results for the 2000 reform to driving hours

Best esti-
mator

Best sym.
cohort-IV

Best sym.
RPJKD

Best sym.
RKD

Best sym.
RDD

(1) (2) (3) (4) (5)
A: Age of Obtaining Provisional License (Mechanism)

MVA 1-year -0.0144*** -0.0132*** -0.0147*** -0.0144** -0.0168***
SE 0.0041 0.0049 0.0050 0.0058 0.0058
controlling for age
got P1s

-0.0144*** -0.0118** -0.0133** -0.0131** -0.0155**

SE 0.0042 0.0052 0.0052 0.0061 0.0060

B: Timing of Treatment Effect

MVA 6 months -0.0094*** -0.0074** -0.0078** -0.0072 -0.0093**
SE 0.0031 0.0035 0.0036 0.0044 0.0044
MVA 6-12 months -0.0048* -0.0059* -0.0070** -0.0069* -0.0077*
SE 0.0028 0.0034 0.0034 0.0040 0.0040
MVA 1-2 years 0.0035 0.0026 0.0027 0.0019 0.0033
SE 0.0036 0.0045 0.0046 0.0053 0.0053

C: Serious MVAs

Injury -0.0084*** -0.0093*** -0.0100*** -0.0102*** -0.0110***
SE 0.0026 0.0032 0.0032 0.0038 0.0036
Fatality -0.0002 -0.0001 -0.0002 -0.0002 -0.0002
SE 0.0003 0.0004 0.0004 0.0005 0.0005

D: Heterogeneity by Sex

MVA 1-year males -0.0132** -0.0146** -0.0139* -0.0114 -0.0163*
SE 0.0059 0.0072 0.0073 0.0086 0.0085
MVA 1-year fe-
males

-0.0164*** -0.0111* -0.0159** -0.0181** -0.0177**

SE 0.0056 0.0066 0.0068 0.0080 0.0083

Notes: Asymptotic standard errors are clustered at the DOB level. * p < 0.1, ** p < 0.05, *** p <
0.01.

magnitude is not small. The effect in the following year (12-24 months after obtaining

a license) is not statistically significant in any column.
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Panel C shows results for serious MVAs. It shows strongly significant negative

effects for the subset of MVAs in which one or more people were injured. The effect

size (-0.0084 in the preferred model) is large (-30% relative to the predicted value at

the threshold for the untreated). The estimate is larger when the other estimators

are used. The effects for fatalities are not statistically significant, which reflects a

lack of statistical power stemming from a relatively small number of fatalities.

Panel D shows results by sex. The preferred estimator suggests that the effects

are similar by sex, as do the results of the other estimators.

In Appendix C we undertake a back-of-the envelope cost-benefit analysis using

our main estimates. Our estimates imply an average social gain of $2,300 per person

due to the 50 MSDH reform. If we take the conservative view that on average people

would complete 20 hours supervised in the absence of the reform, then this would

constitute a net social improvement provided that supervisors’ and learners’ combined

cost of obtaining hours is less than $46 per hour. Since we find no evidence the 120

MSDH reform improved safety, we cannot rule out nil social benefits for that reform.

7 Other selected applications of the placebo zone

approach

In this section we re-evaluate evidence for the two ‘well-known’ applications suited

to our method; Head Start and MLDA. We focus on these applications because they

feature relatively large placebo zones, which makes them ideal for our method.

7.1 Head Start

Since Ludwig and Miller (2007)’s RDD analysis of the Head Start program, the data

from this study have been used widely for illustrative purposes in the RDD method-

ological literature, including papers by Calonico et al. (2014), Cattaneo et al. (2017),

Ganong and Jäger (2018) and Calonico et al. (2019).

The unit of analysis is the county. Treatment is eligibility for technical assistance

to develop Head Start funding applications. Eligibility is tied to a sharp, arbitrary
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cut-off in the county-level poverty rate at 59.198 percentage points. The outcome

variable is child mortality from Head Start-relevant causes.

Earlier papers have used a range of methodological approaches to estimate the

same discontinuity. Ludwig and Miller (2007) prefer local-linear regressions with a

triangular kernel. Citing a lack of consensus on bandwidth selection, they show results

using bandwidths of 9, 18 and 36 percentage points, as well as from regular linear

and quadratic specifications. Calonico et al. (2019) use the CCT bandwidth-selection

algorithm, which yields bandwidths of 6.81 and 6.98, varying by the use of covariates.

We consider 10 separate estimators, each with a range of alternate bandwidths.

These were chosen to examine questions of functional form (linear versus quadratic)

kernel (uniform versus triangular), weights (unweighted or population-weighted), and

covariates (include or exclude). A priori, weighted estimates are likely to be more

precise, since residual variance is likely inversely proportional to population size, and

population varies greatly (Mean = 38,964; Standard Deviation = 117,460), ranging

from 224 to 2,664,438. We also show four estimates using CCT models. Models 11 and

12 are unweighted conventional and bias-corrected estimates with CCT bandwidths.

Models 13 and 14 are corresponding weighted estimates.

We face two challenges for adopting our approach in this context. The first is a

relatively small range of the forcing variable within the placebo zone. The placebo

zone has a range of 47 percentage points (spanning 15.2 to 59.198 percentage points).

When models with relatively large bandwidths are trialled, the effective sample size

of the resulting placebo estimates is small. The second challenge is a considerably

larger density (about 2.1 times larger) in the placebo zone than in the treatment

zone (see Cattaneo et al., 2017, Figure A1). The results of trials within such a high

density zone may not be relevant for choosing models to adopt in a low density zone.

We address both of these challenges by splitting the placebo zone sample into two

independent groups.33 We randomly allocated each county into one of these groups.34

33We split the placebo zone observations into two groups because the placebo zone density is 2.1
times greater than the treatment zone density. This approach can be generalized for other contexts
where the density is uneven. Practitioners may split the placebo zone into g groups, where g =
round(placebo zone density / treatment zone density). It is not clear however if our approach is
useful for situations where the treatment zone density is markedly greater than the placebo zone
density.

34When these random allocations are repeated, the results are generally very similar. The RMSEs
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This solves the second challenge, since the resulting density is very similar to that of

the treatment zone. It also helps with the first challenge, since the effective sample

size of placebo estimates is approximately doubled.

The results of these placebo zone trials are shown in Table 8. For every model

considered, the optimal bandwidths are either the maximum (15 percentage points),

or close to it. This is considerably larger than the bandwidths in Calonico et al.

(2019).35 Since we are unable to test larger bandwidths, these should be seen as lower

bounds for each optimal bandwidth. The results suggest that for this application,

the population weights are very helpful – reducing the RMSE by around 28% in

the linear model. The table also shows that covariates do not help, in fact they

increase RMSE slightly. This is perhaps unsurprising, since the set of covariates is

not rich and does not account for much residual variation.36 The results suggest that

models with a triangular kernel do worse than a regular rectangular kernel, and that

a linear polynomial is preferred to higher orders. The CCT estimators (which are

characterized by small bandwidths) perform poorly, but not to the same extent as

they do in our main application.

The best performing estimator is the weighted linear RDD, with no controls,

and with full bandwidth. The estimated discontinuity using this estimator in the

treatment zone is shown in Column (1) of Table 9. The estimate is statistically

significant, consistent with Ludwig and Miller (2007) and with Calonico et al. (2019).

But the estimate is also considerably smaller than that of Calonico et al. (2019).

The alternate p-value should be interpreted with some caution. It is relatively large

primarily because the effective sample size from the placebo trial is small.

for the unweighted specifications are most sensitive to these repetitions, but they seem to always
exceed the RMSEs for corresponding weighted specifications, usually by a large factor.

35The bandwidths in Calonico et al. (2019) are in turn similar to the average CCT-selected band-
width within the placebo zone, which are shown in the last four rows of Table 8.

36The covariates are: percentage of black and urban population, levels and percentages of popu-
lation in three age groups (children aged 3 to 5, children aged 14 to 17, and adults older than 25)
as well as total population. We do not include ‘total population’ as a covariate whenever we use it
as a weight instead.
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Table 8: Head Start candidate model performance in the placebo zone

Model Description RMSE Optimal
LHS
BW

Optimal
RHS
BW

Coverage Bias

1 RDD - linear 0.7763 15.0 15.0 0.972 -0.020
2 RDD - linear, weighted 0.5616 15.0 15.0 0.844 -0.054
3 RDD - linear, with covariates 0.7838 15.0 15.0 0.972 -0.019
4 RDD - linear, weighted, with

covariates
0.5622 15.0 15.0 0.876 -0.055

5 RDD - linear, triangular kernel 1.0072 15.0 15.0 1.000 0.043
6 RDD - linear, weighted, trian-

gular kernel
0.6198 15.0 15.0 1.000 -0.036

7 RDD - quadratic 1.4649 15.0 15.0 0.890 0.147
8 RDD - quadratic, weighted 0.7751 14.6 14.6 0.918 0.017
9 RDD - cubic 1.7051 14.6 15.0 0.968 0.254
10 RDD - cubic, weighted 0.7842 15.0 15.0 0.982 0.057
C1 RDD conventional 1.9513 4.3 4.3 0.954 0.078
C2 RDD bias corrected 2.3386 4.3/6.9 4.3/6.9 0.961 0.052
C3 RDD conventional - weighted 1.0278 5.1 5.1 0.972 0.089
C4 RDD bias corrected - weighted 1.2098 5.1/8.0 5.1/8.0 0.968 0.084

Notes: The results in this table are from a similar procedure to what is detailed in the Table 3
notes. However, these are for the Head Start application. The set of models considered is different,
for reasons discussed in the text. The bandwidths considered ranged from 3 to 15 percentage points
(in 0.2 percentage point increments) and was allowed to be asymmetric. There are 282 treatment
effect estimates for every model, one for each placebo-zone threshold.

7.2 Minimum legal drinking age and drinking behavior

We now illustrate our approach with discontinuities in drinking behaviour at the

MLDA. The MLDA context is one of the best known applications of RDD, beginning

with Carpenter and Dobkin (2009). It is featured in econometric textbook treatments

of RDD, such as Angrist and Pischke (2015).

We draw on data from Lindo et al. (2016)’s analysis for the Australian state of

New South Wales. We use the same three self-reported drinking outcomes as Lindo

et al.: ‘Ever drinks’, ‘Drinks regularly’ and ‘Proportion of Days Drinks’. And we use

the same data: waves 1-11 of the HILDA survey.

Following Carpenter and Dobkin (2009), Lindo et al. show estimates from linear
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Table 9: Head Start and MLDA RDD estimates

Head Start MLDA

Mortality Ever Drinks Drinks Regu-
larly

Proportion of
Days Drinks

(1) (2) (3) (4)

Estimated Effect -1.323** 0.1799*** 0.2306*** 0.0726***
SE 0.5372 0.0285 0.0237 0.0083
p-value 0.0140 0.0000 0.0000 0.0000
alternate p-value 0.0756 0.0132 0.0156 0.0035
Model 2 1 3 1
BW 15.00 4.68 4.93 4.68

Notes: This table shows the main estimated effects for the Head Start and MLDA applications, us-
ing the best-performing model (lowest RMSE) from the respective placebo-zone trials reported in
Tables 8 and 10. Asymptotic standard errors are clustered at unique values of the running variable.
Alternate p-values use the randomization inference procedure described in Section 5. * p < 0.1, **
p < 0.05, *** p < 0.01.

specifications with bandwidths up to two years of age. These are centred around

the 18th birthday MLDA threshold. Here, we consider the performance of a range

of specifications – linear and quadratic, with and without weights, as well as CCT

estimators. We consider a much wider bandwidth range, from three months to five

years on the right side (in 90 day increments), with the left side capped at three years.

The 3-year cap on the left reflects the limit of data availability in the treatment zone,

since all respondents were aged 15 years and over.

Table 10 shows results from the placebo zone trials, for which the placebo zone

consists of 18-30 year old respondents.37 In many respects, the results are consistent

across outcome variables used, and indeed consistent with the earlier applications we

have shown: (i) long bandwidths are optimal for each estimator – much larger than

those selected by CCT’s procedure; (ii) linear RDD yields the lowest RMSEs; (iii)

the CCT estimator does poorly, with or without bias adjustment.

Table 9 shows the estimated discontinuities at the MLDA, using the placebo-

37The results are qualitatively similar when a longer placebo zone is used (eg. 18-40 years, or 18-50
years) or if the maximum bandwidth is changed (e.g. 10 years, or 20 years). These are available on
request.
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Table 10: MLDA candidate model performance in the placebo zone

Model Description RMSE Optimal RHS BW Coverage Bias

A: Ever Drinks
1 RDD - linear 0.0212 4.68 0.957 -0.003
2 RDD - quadratic 0.0434 3.70 0.914 0.006
3 RDD - weighted linear 0.0233 4.68 0.900 -0.005
4 RDD - weighted quadratic 0.0379 4.19 0.919 0.007
C1 RDD conventional 0.0680 0.99 0.838 0.003
C2 RDD bias corrected 0.0776 1.58 0.843 0.002

B: Drinks Regularly
1 RDD - linear 0.0302 4.93 0.995 0.012
2 RDD - quadratic 0.0551 2.71 0.981 0.009
3 RDD - weighted linear 0.0278 4.93 1.000 0.006
4 RDD - weighted quadratic 0.0531 4.93 0.948 0.013
C1 RDD conventional 0.0744 1.02 0.952 0.006
C2 RDD bias corrected 0.0861 1.59 0.957 0.005

C: Proportion of Days Drinks
1 RDD - linear 0.0117 4.68 1.000 0.005
2 RDD - quadratic 0.0261 3.21 0.938 0.003
3 RDD - weighted linear 0.0119 4.93 1.000 0.002
4 RDD - weighted quadratic 0.0257 4.93 0.890 0.007
C1 RDD conventional 0.0372 1.02 0.890 0.002
C2 RDD bias corrected 0.0430 1.61 0.886 0.001

Notes: The results in this table are from a similar procedure to what is detailed in the Table 3
notes. However, these are for the MLDA application. The set of models considered is different, for
reasons discussed in the text. For each of the three outcome variables, the bandwidth is allowed to
vary from three months to 12 years on the right side, with the left side capped at three years. There
are 210 treatment effect estimates for every model, one for each placebo-zone threshold.

zone-optimal models we have identified. These are each linear RDD models, with a

bandwidth of three years on the left, and between 4.68 and 4.93 years on the right, as

per Table 10. These results are directly comparable to those in Lindo et al.’s Figure

3. Each of the point estimates is similar to Lindo et al.’s 2-year bandwidth estimates.
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8 Conclusion and practical considerations

Regression Discontinuity Design and related estimators are amongst the most im-

portant tools of empirical economics. When using such estimators, however, applied

researchers are typically faced with choosing between hundreds or thousands of candi-

date specifications. The large number of candidates is due to the numerous dimensions

by which these estimators can vary – bandwidth, functional form, kernel, covariates

are some of these dimensions, and these need not be the same on either side of the

threshold. Various guidelines have been developed for model selection, but these

generally only address one of these dimensions, whilst keeping others constant. In

practice, contemporary applied work in leading economics journals still relies more

on robustness testing than on model selection algorithms. Many such papers provide

no explicit justification for model specification.

We have outlined a new approach for model selection which allows the performance

of all candidate models to be assessed. The approach is conceptually straightforward.

Each candidate model is assessed on its performance in estimating treatment effects

in a placebo zone of the running variable – where the true effect is known to be zero.

The RMSE of the resulting placebo estimates is the summary statistic by which each

estimator is judged.

Our approach has potential to be useful for model-selection in a wide range of

applications. We have demonstrated its use with three such applications within the

paper. Researchers can implement the approach using our Stata command -pzms-

.38 However the approach should not be seen as a completely automated procedure

for unproblematically choosing an objectively best specification. In this section we

discuss some complications and suggestions for using the approach judiciously.

8.1 Applying the Approach for Fuzzy RDD and RKD

Our method is relatively straightforward to apply for testing a set of candidate sharp-

RDD models. For designs that rely on a first stage (e.g., fuzzy-RDD and RKD), a first

stage relationship between the treatment variable and running variable may not exist

38We will release this program after the peer review process. In the meantime, if you would like
to use our methods and need assistance, please contact us directly.
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in the palcebo zone.39 In these settings, one option is to use our approach to choose an

estimator for the reduced-form discontinuity (or kink) only – that is, the discontinuity

(or kink) of the outcome variable at the threshold. Such an approach may be useful in

cases where it can be reasonably assumed that the first-stage discontinuity (or kink)

estimate is relatively insensitive to the specification used. This is often the case in

practice – see for example Abdulkadiroğlu, Angrist, and Pathak (2014).40

8.2 How to set the maximum bandwidth for the placebo zone

tests?

In any given application of our proposed method, the analyst must choose a maximum

bandwidth for the set of candidate models. This choice will depend on the specific

constraints of the application. In principle, one would like to consider all possible

bandwidths, but this is not practical. If the chosen maximum bandwidth is too large,

the number of thresholds within the placebo zone will be too small for the procedure

to be informative about model performance.41

When natural constraints do not occur, we suggest that researchers undertake

some data examination before choosing a maximum bandwidth. A key consideration,

for a given model type, is the relationship between treatment effect estimates and

bandwidth. In Figure B7 we plot this for our applications in Section 7. For Head

Start, the estimated treatment effect changes markedly up to a bandwidth of around

15, which indicates worth in setting a maximum at least equal to this value. Beyond

15, the effect size is more stable and (arguably) the discrepancy between estimates

with bandwidths between 15 and 30 are not economically important. Since our esti-

mator selects 15 as the preferred bandwidth when we set this as the maximum, there

is little value in choosing a higher bandwidth and this seems like a sensible choice

(if the solution had been interior, we would suggest increasing the maximum and

39Our own application is unusual since the placebo treatments have a natural definition – as a
function of date obtained learners license.

40This is often the case in practice, sometimes because the first-stage results from policy rules
that function in a nearly deterministic way. Of the fuzzy-RDD papers we identified in Table 1, the
majority arguably fall in this category in our view.

41Larger bandwidths are also likely to yield higher serial correlation in placebo estimates.
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reassessing). For MLDA outcomes, the estimates are fairly stable after five years.42

8.3 Allowing for heterogeneous treatment effects

Our approach is perhaps most useful for model selection within (rather than between)

a class of estimators. For example, consider the large set of candidate RDD estima-

tors for a given application. Our approach assesses performance of such models with

different bandwidths and different polynomial orders. Each of those candidate esti-

mators has the same target parameter, and so comparing performance is relatively

unproblematic.

Comparing performance between classes of models is more problematic, because

they often estimate different parameters. Fuzzy-RDD models estimate LATEs, while

RKDs estimate MTEs, RPJKDs estimate a weighted average of a LATE and a MTE

(under additional assumptions of local MTE stability), while cohort-IV estimates a

weighted average of a different set of LATEs. Our approach can be used to compare

performance between such models. But this can only be done unproblematically if

one is willing to assume that selection into treatment is unrelated to potential gains

from that treatment. In our own application, this may be a reasonable assumption.

It is less reasonable in many other applications.

More generally, researchers adopting our approach should carefully consider the

implications of potential treatment effect heterogeneity. To be clear, placebo treat-

ment effects in the raw data are precisely zero. This implies that model performance

is assessed in a constant-treatment-effect context. This may be informative for model

selection in more general contexts. But a more nuanced approach is to explore the

implications for model performance if treatment effect heterogeneity is imposed into

the placebo zone. In Kettlewell and Siminski (2020) (Section 4.6) we demonstrate

how one might go about this using our own MSDH application as an example.

42We also suggest researchers consider the ESS. The ESS of the placebo estimates for the Head
Start applications is quite small (5), due to the relatively small placebo zone. A larger maximum
bandwidth would decrease the ESS even further. Importantly, however, even with this small ESS, our
monte carlo simulations suggest that our procedure still outperforms popular alternative approaches
(Table 2, Panel E). The small ESS perhaps has greater implications for our alternate inference
procedure, by which the estimate is only marginally significant.
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*Online Appendices*

A An application: Minimum supervised driving hours

and motor vehicle accidents

A.1 Overview

Globally, motor vehicle accidents (MVAs) are the leading cause of death for children and
young adults, with more than 1.3 million people aged 5-29 years dying from MVAs each
year (WHO, 2018). To reduce the fatality rate for young drivers, governments around the
world have introduced graduated driver licensing (GDL). GDL limits the exposure of young
drivers to risky situations with the goal of better preparing them for unsupervised driving. It
typically operates in three stages: a learner stage in which driving is supervised; a provisional
stage in which driving is unsupervised but subject to restrictions; and an unrestricted stage.
To progress, drivers are required to demonstrate competence by passing written exams and
practical driving tests.

During the learner stage drivers usually need to complete a mandatory number of su-
pervised driving hours – the MSDH requirement. Most U.S. states mandate between 40-60
hours (IIFHS, 2020). In Australia, the three most populous states (New South Wales (NSW),
Victoria and Queensland) require 100-120 hours.

It is generally believed that GDL as a system has reduced MVAs for young drivers
(McKnight & Peck, 2002; Foss, 2007; Shope, 2007); however, there is little evidence on
the independent effects of different components of GDL. Typically researchers rank GDL
systems by some measure of ‘strictness’ and use state variation in regulatory settings to
identify policy effects (e.g. Dee et al., 2005; Chen et al., 2006; Traynor, 2009; Trempel, 2009;
Karaca-Mandic & Ridgeway, 2010; Masten et al., 2011; Lyon et al., 2012; Steadman et al.,
2014).1 Results consistently show that states with stricter GDL systems experience lower
rates of fatalities and MVAs involving injury among teenage drivers.

We are aware of only one study (Gilpin, 2019) that attempts to estimate the independent
causal effect of MSDH on MVAs.2 Gilpin (2019) uses a difference-in-differences design with
variation between and within U.S. states and finds going from no MSDH requirement to
having some MSDH requirement counter-intuitively increased fatalities overall, but had no
effect per licensee.

A.2 Policy environment and causal variation

NSW adopted GDL on 1 July 2000. Prior to this, a licensing system with GDL features
operated. Under the pre-July 2000 system, the minimum age for obtaining a learner license
was 16 years, there was a minimum six-month learner period and one year provisional license

1Moore and Morris (2020) identify the causal effect of one common component of GDL – night-time
passenger restriction – on MVAs in NSW, Australia. Using variation in MVAs by time-of-day and a difference-
in-differences design, they find large reduction effects.

2Trempel (2009) and McCartt et al. (2010) estimate models that control for MSDH in U.S. state-level
studies but do not control for state fixed-effects or time trends. O’Brien et al. (2013) study an increase from
0 to 30 MSDH in Minnesota using a before-after design.
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period, and the minimum age for obtaining a provisional license was 17 years. There was
no MSDH requirement. The introduction of GDL resulted in two restricted provisional
license periods – provisional 1 (P1) and provisional 2 (P2), which remain in place today.
It also resulted in a large increase in MSDH – from 0 to 50 hours. Importantly, the six-
month minimum learner period and 17 years minimum age for obtaining a provisional license
remained in place.

Although the 1 July 2000 MSDH increase was not implemented in isolation, it was
implemented in such a way that people born up to one year before 1 July 1984 experienced
the same provisional licensing conditions as those born after this date. This is because
people born within one year prior to 1 July 1984 turned 16 before the introduction of GDL
(meaning they could obtain their learner license before 1 July 2000 and avoid the increase
to MSDH) but turned 17 after 1 July 2000, meaning they could not avoid the new GDL
provisional regulations. Consequently, the GDL experience of people born within one year
of 1 July 1984 only differs with regards to the 50 MSDH requirement.

The GDL system was expanded on 1 July 2007. The most significant changes were pas-
senger restrictions for night-time driving for P1 drivers, a zero-tolerance policy for speeding
(immediate three-month suspension of license) and an increase in MSDH from 50 to 120
hours (minimum 20 hours night-time driving). There was also an increase to the minimum
learner period from six to 12 months. In Table A1 we highlight the main difference between
the pre- and post-July 2007 regimes (see Bates, 2012, for a detailed comparison). As with
the 1 July 2000 policy changes, the 17 years minimum age for obtaining a provisional license
meant that people born up to one year prior to 1 July 1991 (meaning they would turn 17
after 1 July 2007) could obtain their learner license before 1 July 2007 and avoid the MSDH
increase but would be subject to the same provisional regulations as those born after 1 July
1991.3

Our empirical analysis exploits the fact that people born just before 1 July 1984 (1991)
are likely to be statistically similar to those born just after 1 July 1984 (1991) but differ
in their MSDH experience. Since people often delay getting their license until sometime
after their 16th birthday, there is a positive slope in the probability of treatment on the
left-hand-side of the threshold, while everyone is treated on the right-hand-side.

A.3 Compliance

We do not observe learner driving hours so cannot assess compliance directly. However, the
limited Australian evidence supports high compliance with MSDH regulations. For example,
surveys of newly licensed drivers found 98.2% complied with NSW’s 50 MDSH requirement
(Bates et al., 2010), while only 12.8% admitted to rounding up hours and 4% to including
additional hours not undertaken in Queensland (Scott-Parker et al., 2011). A survey by
Bates et al. (2014) also found strong agreement from parent supervisors about the accuracy
of recorded hours.

3Because the minimum learner period also increased at the same time as MSDH in 2007, these policy
effects may be confounded in our analysis. To separate these effects and isolate the impact of increased
driving practice, we consider the impact of the policy change on time spent on the learner license and how
our results change when we control for this.
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Table A1: NSW GDL characteristics

1 July 2000—30 June 2007 From 1 July 2007

MSDH 50 120a

Min. learner age 16 years 16 years
Min. learner period 6 months 1 year
Min. P1 age 17 years 17 years
Min. P1 period 1 year 1 year
P1 restrictions Max speed (90km/h); 4

demerit pointsb; engine
restrictionsc

Max speed (90km/h); 4
demerit points; engine
restrictionsc; night-time
passenger restrictions; imme-
diate license suspension for
speeding

Blood alcohol limit 0.02 (0.00)d 0.00

Notes: aIn NSW drivers receive financial penalties and demerit points for driving offences. Drivers who ac-
crue a critical number of demerit points have their license suspended (4 for P1 drivers, 12 for unrestricted
license drivers). bMinimum 20 hours at night. In December 2009 new rules were introduced that allowed
learners to convert hours with a qualified driving instruction at a ratio 3:1 with regular supervised driving
(limited to 10 hours). cSince 11 July 2005 P1 drivers have been prohibited from driving certain high-powered
vehicles. dLowered to this on 3 May 2004.

One reason to expect high compliance in our setting is because learner drivers are required
to record all journeys in a log book, with each entry signed off by the supervising driver (not
a P1 or P2 driver). If there is evidence of falsification the learner may be barred from
taking the practical driving test for up to six weeks and fined (fines also apply to supervising
drivers).

A related question is whether the policy is binding at all. Bates et al. (2010) compared
new drivers in NSW to Queensland when NSW had a 50 MSDH requirement and Queensland
had none. The average self-reported hours was only slightly higher in NSW (73 compared to
64). However, while 98.8% of drivers reported completing at least 50 hours in NSW, more
than half in Queensland reported doing less than this. A 50 MSDH requirement would have
therefore been binding for a significant portion of learners in Queensland. It is important
to note that any effects of increased MSDH we estimate will be driven by the subsample of
learners who would have completed less than the minimum requirement in the absence of
the policy.

A.4 Data

Our data are individual level administrative records supplied by the NSW Centre for Road
Safety (CRS). Driver licencing data come from the universe of licensing history for NSW
drivers born from 1 January 1980. For these individuals, we know their age in (completed)
weeks at the time they obtain their license. The MVA data are from a separate dataset
containing the universe of police reported MVAs from 1 January 1996 to 26 October 2017.
MVAs are accidents occurring on NSW roads in which at least one vehicle was towed away
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or one of the occupants was injured or killed, which by law must be reported to NSW Police
(we exclude motorcycle crashes from the analysis). We link the license and MVA datasets
using a unique identifier provided by CRS.

A.4.1 Main variables

Our outcome variables are indicators for whether an MVA occurred within certain periods.
We focus primarily on the probability a person was the driver in an MVA within one year
of obtaining his/her P1 license (during which drivers are typically aged 17-20 years). The
one year criterion matches the mandatory time period before a P1 driver can take the test
to become a P2 driver, and therefore reflects an expected period of progression in driver
safety. We also find little evidence that the MSDH reforms improve driver safety beyond
this period. In further analysis we limit attention to MVAs that resulted in injury to a driver
or passenger or resulted in fatality.

Our running variable, date of birth (DOB), is constructed as follows. For each entry a
person has in the license dataset (for example, when they renew their license or move to
a different license class), we observe that person’s age in weeks on that day. That means
that for people with one entry, we know their precise DOB within 6 days. For people with
multiple entries we can narrow that window down; for more than 50% of people we can
narrow it down to within three days. We use the midpoint of the minimum and maximum
possible DOB as our variable, considering all licensing history data available to us.

See Figure A1 for density plots for DOB.

Figure A1: DOB distribution plots
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n = 154,524 in Panel A. n = 160,301 in Panel B. 7-day bins.

A.5 Matching MVAs to driver license records

From October 2002 onwards, we can match 99.6% of MVAs involving drivers who, according
to the MVA data are between 17-20 years old and licensed in NSW, to the license data.4 Prior

4The match rate is almost identical (99.5%) if we instead look at all people who, based on their age
recorded in the MVA data, we can be certain were born after 1980.
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to this date the match rate is discontinuously lower by around 20 percentage points between
July 2002 and October 2002 and 15 percentage points pre-July 2002 (see Appendix Figure
A2). CRS cited an improvement in record keeping practices as a reason for the discontinuity
but were unable to provide further details. Our analysis in Appendix Figure A2 indicates
that the discontinuities are not limited to any subset of MVAs by characteristics, which
would have allowed us to exclude inconsistently recorded MVAs. To address the missing
MVAs we therefore inflate the MVA indicators we use as dependent variables for people who
are not matched to an MVA (i.e. are recorded as having not had an MVA in our raw data)
by a factor equal to the probability they actually did have an MVA given what we know
about the rate of non-matched MVAs.

Focusing on our main dependent variable (any MVA within 12 months of obtaining P1
license), our preferred approach adjusts the crash probability for a person obtaining their
P1 license on day t by:

1−

(
1 −

[
t+365∑

t

MVAt

nt

]
× 0.15

)min{t∗−t,365}

×

(
1 −

[
t+365∑

t

MVAt

nt

]
× 0.20

)1.[t>t∗]×min{t−t∗,130}

(1)
where MVAt is total number of matched MVAs involving drivers aged 17-20 years, nt is

the total number of licensed drivers aged 17-20 years (so that
∑t+365

t
MV At

nt
is the unadjusted

probability of being involved in an MVA within one year of obtaining a P1 license on day
t), t∗ indicates 1 July 2002 and 1.[t > t∗] is an indicator for t > t∗. We also use Eq. 1 to
adjust indicators for MVAs involving injury since the match rates for these crashes is almost
identical to the rate for MVAs overall. For MVA indicators over six-month windows we
replace 365 with 183.

A more sophisticated approach of obtaining the adjustment factor is to replace 0.15 and
0.20, which are approximate rates at which MVAs can be matched to license data in the
pre-July 2002 and July-October 2002 periods, with daily estimates for this rate and calculate

1 −
t+365∑

t

(
1 −

[
t+365∑

t

MVAt

nt

]
×Match ratet

)
. (2)

This approach allows for more variation in the match rate; however, it may suffer from
rare events bias since there are often few MVAs on a given day (expanding the time unit
can solve this but setting a new time unit is arbitrary). In practice, the two approaches
give very similar adjustment factors (Appendix Figure A3) and after confirming the choice
had no effect on our main results, we committed to using the simpler and more transparent
approximation approach.

A.6 Sample restrictions

Throughout our analysis we always maintain the following sample restrictions:

• Exclusion of people whose license history violates the GDL rules – some people in our
dataset appear to have licencing histories that violate rules of the GDL system. For
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Figure A2: Match rates: License and MVA data
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Notes: Each scatter point corresponds to the average percentage of MVAs for 17-20 year old drivers
that can be matched to license records for NSW licensed drivers (15 day groupings). Baseline: The full
sample of 17-20 year old drivers; Male: Males only; Seatbelt: driver wearing seatbelt; 4-6pm: MVA
between 4-6pm; 6-8pm: MVA between 6-8pm; 8-10pm: MVA between 8-10pm; Rear end: MVA reason,
rear-ender; MVA reason, right through; Cross traffic: MVA reason, cross traffic; Country non-urban:
MVA in country non-urban region; Country urban: MVA in country urban region; Newcastle: MVA in
Newcastle region; Sydney: MVA in Sydney region; Wollongong: MVA in Wollongong region; Speeding:
speeding involved in MVA; Speed 0-10kph: main vehicle travelling between 0-10kph; Speed 50-60kph:
main vehicle travelling between 50-60kph; Speed 60-70kph: main vehicle travelling between 60-70kph;
Speed unknown: main vehicle speed unknown; Proceeding in lane: manoeuvre before crash, proceeding
in lane; Stationary: manoeuvre before crash, stationary; Turning right: manoeuvre before crash, turning
right; Key traffic unit: vehicle was key traffic unit in MVA; Other traffic unit: vehicle was not key traffic
unit in MVA.

example, some people obtain their P1 license before turning 17 years; others are on
their learner license for less than the mandatory period. These violations may have a
variety of unobserved causes, such as people moving from interstate or data error. Only
around 0.3% of people in our analysis sample violate the GDL rules and we exclude
them throughout the analysis.

• Exclusion of people whose eligibility to avoid treatment status is uncertain – in our
models, people cannot avoid ‘treatment’ if they are born after a certain date. People
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Figure A3: Adjustment factors
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Notes: The y-axis shows by how much the MVA within first year of P1 license probability is adjusted
for a person obtaining their P1 license on day t (the x-axis) in order to account for missing MVA data.
Formulaic details are in Eq. 1 (Approx. adjustment factor) and Eq. 2 (Precise adjustment factor).

whose minimum and maximum possible DOB straddles the threshold date are dropped
in the models we estimate (see discussion in Section A.4). Recall that for people with
multiple license records we can narrow this range. However, since the reforms may
have affected licensing behavior (and consequently the accuracy of DOB), we only use
the first license record when imposing this restriction.

• Exclusion of people who obtained their P1 license after age 25 – these people are not
subject to the MSDH requirements. Only 8.7% of people in our dataset obtained their
P1 license after age 25.

A.7 Additional details on the data

• Change in MVA record keeping 2014 – in 2014, a policy change meant that NSW Police
reported fewer MVAs from this year onwards. This was due to NSW Police no longer
being refquired to attend a crash scene and investigate for tow away MVAs where
nobody was injured or killed. This policy change is largely inconsequential for us as
we only consider the periods July 2000-June 2008 in our analysis, and most people we
observe obtain their P1 license more than 12 months before 2014. Moreover, exposure
to this period (in terms of days on P1 after 2014) is a smooth function of DOB. We
therefore ignore this change.

• License suspensions and demotions – in our analysis we focus on the first date a
person obtained their P1 license and ignore any suspensions (e.g. for speeding or
drunk driving), demotions (i.e. being made to redo the learner class due to a serious
driving offence) or moves out of NSW after this date. If these events are unrelated to
MSDH, which seems reasonable, then our MVA rates will be equally affected by them
in the treatment and untreated groups. While we do not observe suspensions or moves
in our data, we note that in 99.1% of cases the expiry date for learner license matches
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the date of effect for the first time obtaining a P1 license, which indicates demotions
are rare.

• Other policy changes between 200 and 2007 – Policy changes that may have affected
MVAs in our data window are lowering the Blood Alcohol Limit from 0.02 to 0 (3
May 2004), engine restrictions (11 July 2005) and changes to the GDL system that
occurred on 1 July 2007 for P1 drivers (see Table A1), in particular night-time passenger
restrictions. However, days exposed to these policies is a smooth function of DOB
(see Appendix Figure B5) so they are unlikely to have affected MVAs in a way that
discontinuously depends on DOB.

A.7.1 Descriptive Statistics

Sample means for the main variables in our study are in Table A2. We focus on two birth
cohorts, centred ±365 days from the key dates for our two policy reforms. In Figure A4 we
plot the variables by DOB for all years.

Table A2: Sample means by birth cohort

1 July 1983–30 June 1985 1 July 1990–30 June 1992

MVA 1-year 0.057 0.044
MVA 1-2 years 0.038 0.028
Injury 1-year 0.022 0.020
Fatality 1-year <0.000 <0.000
Age got L’s 16.970 16.700
Age got P1 18.451 18.538

n 154,524 160,301

Notes: this table shows sample means of the key variables for observations within each of the two ‘treatment
zones’ –. i.e. people born within one year of 1 July 1984, and 1 July 1991, respectively

MVA incidences are generally lower for younger birth cohorts, although this is weaker
for more serious MVAs that involve injury. For the circa 1 July 1984 cohort, the probability
of any MVA within 12 months of obtaining P1 is 5.7%. This falls to 3.8% for the next 12
months, consistent with young drivers becoming safer with age and experience. The average
age at which people obtain their learner license is 17 years, a full 12 months later than they
become eligible. However, the mass of observations are just after the 16th birthday (Figure
A5). Most people obtain their license shortly after they become eligible. Similarly, there is
a large mass who obtain their P1 license shortly after their 17th birthday, while the average
is 18.5 years for both birth cohorts.
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Figure A4: Scatter and fit plots: Main variables by DOB
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Figure A5: Distributions for age obtaining license
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B Additional tables and figures

Figure B1: Stylized DGPs for Monte Carlo simulations
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Notes: This figure shows the ‘stylized’ data generating processes for the Monte Carlo simulations. Each
panel shows the C.E.F. used in each iteration, as well as the full distribution of the data in the first
iteration. The outcome variable is given by the equation y = 0.3(x > 0) + f(x) + ε with σ2 = 0.12

(representing ‘large’ error variance), or 0.032 (‘small’ error variance). For panels A and B: f(x) = x/400.
For panels C and D: f(x) = (x/400)2. For panels E and F: f(x) = (x/400)3. For panel G and H:
f(x) = sin(2πx/400)/2 For panel I and J: f(x) = cos(2πx/400)/2.
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Figure B2: DGPs based on prominent examples
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Notes: The simulated DGPs are constructed by fitting a 5th order global polynomial through the support
of the original data, allowing a discontinuity and a kink at the threshold, and then fitting a beta
distribution to the same data to summarise the distribution of the running variable.
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Table B1: Coverage rates and confidence interval lengths
from Monte Carlo simulations

KS KS alt. CCT IK

cov CI cov CI cov CI cov CI
A: Linear DGP

Baseline DGP 0.952 0.094 0.960 0.110 0.928 0.184 0.937 0.160
Small error variance 0.952 0.028 0.957 0.033 0.929 0.055 0.942 0.045
Small placebo zone 0.942 0.107 0.887 0.124 0.912 0.245 0.934 0.170
Small placebo zone
and error variance

0.942 0.032 0.853 0.037 0.916 0.074 0.945 0.048

B: Quadratic DGP

Baseline DGP 0.945 0.109 0.951 0.120 0.928 0.184 0.902 0.165
Small error variance 0.955 0.035 0.946 0.037 0.927 0.055 0.759 0.048
Small placebo zone 0.938 0.113 0.911 0.135 0.912 0.245 0.927 0.173
Small placebo zone
and error variance

0.949 0.036 0.900 0.044 0.912 0.073 0.887 0.051

C: Cubic DGP

Baseline DGP 0.949 0.115 0.946 0.126 0.929 0.184 0.924 0.171
Small error variance 0.926 0.037 0.932 0.039 0.924 0.055 0.917 0.056
Small placebo zone 0.938 0.119 0.912 0.142 0.912 0.245 0.926 0.177
Small placebo zone
and error variance

0.926 0.039 0.900 0.046 0.913 0.073 0.926 0.058

D: Sine DGP

Baseline DGP 0.889 0.151 0.936 0.173 0.931 0.189 0.900 0.220
Small error variance 0.890 0.053 0.937 0.061 0.929 0.064 0.782 0.069
Small placebo zone 0.886 0.157 0.867 0.174 0.911 0.246 0.910 0.226
Small placebo zone
and error variance

0.878 0.055 0.868 0.061 0.918 0.078 0.819 0.072

E: Cosine DGP

Baseline DGP 0.942 0.153 0.956 0.173 0.927 0.185 0.936 0.186
Small error variance 0.951 0.055 0.968 0.061 0.933 0.058 0.937 0.057
Small placebo zone 0.921 0.156 0.910 0.169 0.913 0.245 0.939 0.203
Small placebo zone
and error variance

0.937 0.056 0.924 0.061 0.914 0.073 0.941 0.063

F: Head Start DGP

Mortality 0.930 3.569 0.912 3.763 0.941 6.045 0.941 3.758

G: Political incumbency DGP

Wins 0.952 0.044 0.963 0.058 0.947 0.054 0.918 0.060
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H: MLDA DGP

Ever Drinks 0.950 0.103 0.936 0.152 0.928 0.239 0.933 0.123
Drinks Regularly 0.946 0.130 0.919 0.197 0.928 0.304 0.932 0.149
Proportion of Days
Drinks

0.949 0.059 0.937 0.090 0.928 0.138 0.927 0.066

Notes: For the columns ‘KS’, coverage rate and average confidence interval length is based on conventional
cluster-robust standard errors. For the columns ‘KS alt.’, they are based on the semi-parametric approach
outlined in Section 5. For the columns ‘CCT’, they are based on the robust confidence intervals discussed in
CCT and implemented using the -rdrobust- package for Stata. For the columns ’IK’ they use conventional
standard errors after choosing a bandwidth using the bwselect (IK) in the rdbwselect 2014 command. For
further details on the simulations see Table 2.

Figure B3: First-stage relationship between DOB and 120 MSDH treatment
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Figure B4: Reduced-Form Relationships between DOB and MVA 1-year
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Notes: Scatter plots use 14-day bin size.
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Figure B5: Exposure to BAC, engine and passenger restrictions by DOB
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Notes: Day exposed is the maximum of zero and the date their P1 license expired minus the relevant
policy change date.

Figure B6: Relationship between DOB and age obtained P1 license
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Figure B7: Relationship between bandwidth and RDD estimates: Head Start and MLDA
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Notes: This figure shows RDD estimates and confidence intervals for the Head Start and MLDA ap-
plications by bandwidth (in intervals of 2 units for Head Start and 30 for MLDA) using local linear
regression. For MLDA, the maximum LHS bandwidth is three years; values above this in the figure only
refer to the RHS (with the LHS fixed at three years). Asymptotic standard errors used to construct
confidence intervals are clustered at unique values of the running variable.
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Table B2: Candidate model equations

Model Description f(.) g(.)

RDD models
1 RDD - linear f(.) = γ1Xi + γ2XiDi g(.) = π1Di

2 RDD - mixed polynomial f(.) = γ1Xi + γ2XiDi + γ3X
2
i (1 −Di) g(.) = π1Di

3 RDD - quadratic f(.) = γ1Xi + γ2XiDi + γ3X
2
i (1 −Di) + γ4X

2
iDi g(.) = π1Di

RPJKD models
4 RPJKD - linear f(.) = γ1Xi g(.) = π1Di + π2XiDi

5 RPJKD - quadratic f(.) = γ1Xi + γ2X
2
i g(.) = π1Di + π2XiDi

6 RPJKD - mixed polynomial f(.) = γ1Xi + γ2X
2
i (1 −Di) g(.) = π1Di + π2XiDi

7 RPJKD - interacted quadratic f(.) = γ1Xi + γ2X
2
i (1 −Di) + γ3X

2
i g(.) = π1Di + π2XiDi

RKD models
8 RKD - linear f(.) = γ1Xi g(.) = π1XiDi

9 RKD - quadratic f(.) = γ1Xi + γ2X
2
i g(.) = π1XiDi

10 RKD - mixed polynomial f(.) = γ1Xi + γ2X
2
i (1 −Di) g(.) = π1XiDi

11 RKD - interacted quadratic f(.) = γ1Xi + γ2X
2
i + γ3X

2
i (1 −Di) g(.) = π1XiDi

Birth cohort-IV models
12 Birth cohort-IV - linear f(.) = γ1Xi g(.) = θm
13 Birth cohort-IV - quadratic f(.) = γ1Xi + γ2X

2
i g(.) = θm

14 Birth cohort-IV - cubic f(.) = γ1Xi + γ2X
2
i + γ3X

3
i g(.) = θm

Notes: This table summarizes the functional forms of the models included in the placebo zone trials in our main application. The functions f(.) and
g(.) are components of the full specifications shown in equations 22, 23, and for models 12-14, equation 24.
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Table B3: Candidate model performance in the placebo zone: ‘shifted’ first-stage

Model Description RMSE Optimal BW Coverage Bias

1 RDD - linear 0.0060 365 0.962 -0.0006
2 RDD - mixed polynomial 0.0114 365 0.922 -0.0001
3 RDD - quadratic 0.0129 270 0.971 0.0006
4 RPJKD - linear 0.0053 365 0.932 0.0006
5 RPJKD - quadratic 0.0057 365 0.978 -0.0004
6 RPJKD - mixed polynomial 0.0046 365 0.985 0.0000
7 RPJKD - interacted quadratic 0.0111 365 0.939 0.0007
8 RKD - linear 0.0113 350 0.921 0.0033
9 RKD - quadratic 0.0209 365 0.964 0.0012
10 RKD - mixed polynomial 0.0052 365 0.984 0.0001
11 RKD - interacted quadratic 0.0205 365 0.955 0.0013
12 birth cohort-IV - linear 0.0048 365 0.953 0.0004
13 birth cohort-IV - quadratic 0.0054 365 0.981 -0.0005
14 birth cohort-IV - cubic 0.0102 365 0.932 0.0004
WA Inv-MSE weighted average 0.0050 365 n.d. 0.0001

Notes: The results in this table are from a similar procedure to what is detailed in the Table 3 notes. In this
case, the first-stage relationship from the treatment zone is imposed into (each repetition of) the placebo
zone, after collapsing the data to DOB level. This procedure is explained in the text.

C Cost-benefit analysis

Our cost-benefit analysis estimates the social benefits from reducing the probability of an
MVA in the first 12 months of unsupervised driving. Since we find no evidence of reduced
risk beyond this period, we assume those benefits are zero.

We proceed by first estimating the reduction in the rate of MVAs at the policy threshold
for each MVA type (non-injury, injury and fatality) using our ‘best’ model for each reform
(see Table 6). Since our point estimates for fatalities are imprecise owing to low frequencies,
we assume fatality risk decreased by the same percentage as injury risk in our baseline
calculations. We also show how the estimates change if instead we assume no change in the
fatality risk.

We multiply the MVA rates by the total social costs associated with each type of MVA
under the assumption that no one is treated (T = 0) and under the assumption that everyone
is treated (T = 1). The difference between these estimates is the total social benefit per
person. Social benefits for non-injury MVAs are taken from BITRE (2009). Specifically, we
use the average repair cost for MVAs. We therefore ignore other costs associated with these
MVAs such as towing costs, time lost and administrative fees associated with, for example,
insurance claims. On the other hand, the BITRE value includes all MVAs, even severe MVAs
resulting in injury or fatality, and as such the repair costs may be overstated. Moreover,
non-injury crashes comprise a negligible proportion of total social benefits so doubling or
tripling this value has little material effect on the estimates.
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Social benefit estimates for crashes involving injury and fatality are taken from NRMA
(2017). They are estimated using the willingness-to-pay method, which uses hypothetical
scenario analysis to infer preferences. A strength of this approach is that it should capture
all the information that goes into people’s individual preferences. A drawback is that people
may be unsure of their preferences, particularly if they have never experienced an MVA.
This approach also ignores externalities, and may be subject to hypothetical bias.

Table C1 steps through our calculations for the 2000 (0 to 50 MSDH) reform. We have set
out this table in such a way that it is easy to substitute our chosen social benefits parameters
for other parameters, if desired.

Table C1: CBA – 2000 reform (0 to 50 MSDH)

Non-injury Injury Fatality Alt. fatality

Policy effect -0.0058238 -0.008405 -0.0002131 -0.000101968
Prediction T = 0 0.039571 0.0279324 0.000480 0.000480
Prediction T = 1 0.0337472 0.0195274 0.0002669 0.000378
% reduction -15% -30% -44% -21%

Average social cost $4,004 $144,172 $7,369,845 $7,369,845

Expected cost of driving T = 0 $158.44 $4,027.06 $3,537.53 $3,537.53
Expected cost of driving T = 1 $135.12 $2,815.30 $1,967.01 $2,786.04

Social saving per person $23.32 $1,211.76 $1,570.51 $751.49

Notes: Policy effect estimates correspond to the ‘best’ estimator in Table 6. T means ‘treated’ (i.e. sub-
ject to the 50 MSDH policy). Expected cost of driving equals the predicted MVA probability × the average
social cost. All values are expressed in 2019 $AUD (for references, in 2019 the $AUD:$USD exchange rate
averaged around 0.7:1).

Our preferred estimate for the average social benefit is the sum of the average social
benefit due to reduced risk of non-injury MVAs ($23), injury MVAs ($1,212) and fatalities,
assuming that this risk falls by the same percentage as injury MVAs ($751). This implies
an average social benefit of $2,300. If we ignore the reduction in fatalities, we estimate an
average social benefit of $1,235.

Under the assumption that on average learners complete 20 hours before the reform and
50 hours after the reform, our estimates imply a social benefit of between $25-$46 per hour.
By way of comparison, the national minimum wage in 2019-2020 is $19.49. Given that some
supervised driving hours will be for trips that would have been taken anyway, and that there
may be positive externalities to supervision (e.g. bonding), it seems likely, based on our
estimates, that the 2000 reform was welfare improving.
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