
1	

	

Working with Images in MATLAB

Teacher's Day Workshop

School of Computing and Communications

December 2013

2	

	

Prepared by Dr. Abdallah Al Sabbagh in collaboration with Prof. Robin Braun and Dr.
Richard Xu.

3	

	

Table of Contents
	

1. Introduction to MATLAB .. 4	

2. Work with Images in MATLAB .. 5	

2.1 Read and Display an Image ... 6	

2.2 Grayscale Images .. 6	

2.3 Write the Image to a Disk File ... 6	

2.4 Check the Contents of the Newly Written File ... 6	

2.5 Resize an Image ... 7	

2.6 Rotate an Image ... 8	

2.7 Crop an Image ... 8	

2.8 Getting Image Pixel Values ... 10	

2.9 Changing Image Pixel Values ... 11	

2.10 Image Intensity Adjustment .. 12	

2.11 Detecting Edges Using the edge Function ... 12	

2.12 Removing Noise from an Image ... 13	

3. Getting Help in MATLAB ... 15	

4. Alternative Softwares to MATLAB ... 15	

4.1 Installing GNU Octave Software ... 15	

5. References .. 18	

	

4	

	

1. Introduction to MATLAB

MATLAB® developed by MathWorks is a high-level language and interactive environment
for numerical computation, visualization, and programming.

When you start MATLAB, the desktop appears in its default layout.

The desktop includes these panels:

• Current Folder — Access your files.
• Command Window — Enter commands at the command line, indicated by the

prompt (>>).
• Workspace — Explore data that you create or import from files.
• Command History — View or rerun commands that you entered at the command

line.

As you work in MATLAB, you issue commands that create variables and call functions. For
example, create a variable named a by typing this statement at the command line:

a=1

MATLAB adds variable a to the workspace and displays the result in the Command
Window.
 a =
 1

5	

	

Create a few more variables.

b=2
 b =
 2

c=a+b
 c =
 3

d = cos(a)
 d =
 0.5403

Now clear all these variables from the Workspace using the clear command.

clear

Now clear the Command Window using the clc function.

clc

2. Work with Images in MATLAB

Digital image is composed of a two or three dimensional matrix of pixels. Individual pixels
contain a number or numbers representing what grayscale or color value is assigned to it.
Color pictures generally contain three times as much data as grayscale pictures, depending on
what color representation scheme is used. Therefore, color pictures take three times as much
computational power to process.

MATLAB can import/export several image formats:

• BMP (Microsoft Windows Bitmap)
• GIF (Graphics Interchange Files)
• HDF (Hierarchical Data Format)
• JPEG (Joint Photographic Experts Group)
• PCX (Paintbrush)
• PNG (Portable Network Graphics)
• TIFF (Tagged Image File Format)
• XWD (X Window Dump)
• raw-data and other types of image data.

6	

	

2.1 Read and Display an Image

You can read standard image files by using the imread function. The type of data returned
by imread depends on the type of image you are reading. For example, read image1.jpg by
typing (the image can be downloaded using the following link.
http://crin.eng.uts.edu.au/~rob/image1.jpg, and then can be copied into the current folder):

A = imread('image1.jpg');

which will stores image1.jpg in a matrix named A.

Now display the image using the imshow function. For example, type:

imshow(A);

2.2 Grayscale Images

A grayscale image is a data matrix whose values represent intensities within some range.
MATLAB stores a grayscale image as an individual matrix, with each element of the matrix
corresponding to one image pixel.

B = rgb2gray(A);

Now display the image by typing:

imshow(B);

2.3 Write the Image to a Disk File

To write the newly adjusted image B to a disk file, use the imwrite function. If you include
the filename extension '.png', the imwrite function writes the image to a file in Portable
Network Graphics (PNG) format, but you can specify other formats. For example, type:
imwrite (B, 'image2.png');

2.4 Check the Contents of the Newly Written File

To see what imwrite wrote to the disk file, use the imfinfo function.

imfinfo('image2.png')

The imfinfo function returns information about the image in the file, such as its format,
size, width, and height.

7	

	

 ans =

 Filename: 'image2.png'
 FileModDate: '12-Nov-2013 10:43:31'
 FileSize: 52936
 Format: 'png'
 FormatVersion: []
 Width: 350
 Height: 350
 BitDepth: 8
 ColorType: 'grayscale'
 FormatSignature: [137 80 78 71 13 10 26 10]
 Colormap: []
 Histogram: []
 InterlaceType: 'none'
 Transparency: 'none'
 SimpleTransparencyData: []
 BackgroundColor: []
 RenderingIntent: []
 Chromaticities: []
 Gamma: []
 XResolution: []
 YResolution: []
 ResolutionUnit: []
 XOffset: []
 YOffset: []
 OffsetUnit: []
 SignificantBits: []
 ImageModTime: '11 Nov 2013 23:43:31 +0000'
 Title: []
 Author: []
 Description: []
 Copyright: []
 CreationTime: []
 Software: []
 Disclaimer: []
 Warning: []
 Source: []
 Comment: []
 OtherText: []

2.5 Resize an Image

To resize an image, use the imresize function. When you resize an image, you specify the
image to be resized and the magnification factor. To enlarge an image, specify a
magnification factor greater than 1. To reduce an image, specify a magnification factor
between 0 and 1.
imshow(B);

C = imresize(B,1.5);

8	

	

figure

imshow(C);

C = imresize(B,0.5);

figure

imshow(C);

You can specify the size of the output image by passing a vector that contains the number of
rows and columns in the output image. If the specified size does not produce the same aspect
ratio as the input image, the output image will be distorted.
C = imresize(B,[300,150]);

figure

imshow(C);

This example creates an output image with 300 rows and 150 columns.

2.6 Rotate an Image

To rotate an image, use the imrotate function. When you rotate an image, you specify the
image to be rotated and the rotation angle, in degrees. If you specify a positive rotation angle,
imrotate rotates the image counterclockwise; if you specify a negative rotation angle,
imrotate rotates the image clockwise.

C = imrotate(B,35);

figure

imshow(C);

C = imrotate(B,-20);

figure

imshow(C);

2.7 Crop an Image

Cropping an image means creating a new image from a part of an original image. To crop an
image using the Image Viewer, use the Crop Image tool or use the imcrop function.

Using the Crop Image Tool:
By default, if you close the Image Viewer, it does not save the modified image data. To save
the cropped image, you can use the Save As option from the Image Viewer File menu to store

9	

	

the modified data in a file or use the Export to Workspace option to save the modified data in
the workspace variable. To use the Crop Image tool, follow this procedure:

1) View an image in the Image Viewer.
imtool(A);

2) Start the Crop Image tool by clicking Crop Image in the Image Viewer toolbar or
selecting Crop Image from the Image Viewer Tools menu. (Another option is to open a figure
window with imshow and call imcrop from the command line.) When you move the

pointer over the image, the pointer changes to cross hairs .

3) Define the rectangular crop region, by clicking and dragging the mouse over the image.
You can fine-tune the crop rectangle by moving and resizing the crop rectangle using the
mouse.

4) When you are finished defining the crop region, perform the crop operation. Double-click
the left mouse button or right-click inside the region and select Crop Image from the context
menu. The Image Viewer displays the cropped image.

5) To save the cropped image, use the Save as option or the Export to Workspace option on
the Image Viewer File menu.

Now display the image using the imshow function.

Using the imcrop Function:
By using the imcrop function, you can specify the crop region interactively using the mouse
or programmatically by specifying the size and position of the crop region.

This example illustrates an interactive syntax. The example reads an image into the MATLAB
workspace and calls imcrop specifying the image as an argument. imcrop displays the
image in a figure window and waits for you to draw the crop rectangle on the image. When
you move the pointer over the image, the shape of the pointer changes to cross hairs . Click
and drag the pointer to specify the size and position of the crop rectangle. You can move and
adjust the size of the crop rectangle using the mouse. When you are satisfied with the crop
rectangle, double-click to perform the crop operation, or right-click inside the crop rectangle
and select Crop Image from the context menu. imcrop returns the cropped image.

C = imcrop(A);

figure

imshow(C);

10	

	

Raw MATLAB: For advanced users, the native MATLAB commands can be used. You can
specify the size and position of the crop rectangle as parameters when you call imcrop.
Specify the crop rectangle as a four-element position vector, [xmin ymin width height].

In this example, you call imcrop specifying the image to crop, A, and the crop rectangle.
imcrop returns the cropped image in D.

D = imcrop(A,[160 140 110 180]);

figure

imshow(D);

2.8 Getting Image Pixel Values

You can get information about specific image pixels such as RGB values. Type:
A(2,15,:)

which returns the RGB (red, green, and blue) color values of the pixel (2,15). R=66; G= 88;
B= 174.

 ans(:,:,1) =

 66

 ans(:,:,2) =

 88

 ans(:,:,3) =

 174

Now try:
A(40:100,10:20,:)

You can also use the impixel function which will determine the values of one or more
pixels in an image and return the values in a variable. Select the pixels interactively using a
mouse. impixel returns the value of specified pixels in a variable in the MATLAB
workspace.

The following example illustrates how to use impixel to get pixel values.

1) Display an image.
imshow(A);

2) Call impixel. When called with no input arguments, impixel associates itself with the
image in the current axes.

11	

	

vals = impixel

3) Select the points you want to examine in the image by clicking the mouse. impixel
places a star at each point you select.

4) When you are finished selecting points, press Return. impixel returns the pixel values
in an n-by-3 array, where n is the number of points you selected. The stars used to indicate
selected points disappear from the image.

 vals =

 46 71 155
 80 96 184
 95 107 193

2.9 Changing Image Pixel Values

You can change the values of specific image pixels. Type:
A(40:100,10:20,:) = 0;

figure

imshow(A);

which changes the colors of the selected pixels into black color.

Now try:
A(40:100,10:20,:) = 255;

12	

	

figure

imshow(A);

2.10 Image Intensity Adjustment

Image intensity adjustment is used to improve an image, Read image1.jpg again.
A = imread('image1.jpg');

Multiply the image pixels values by two.
E = A.*2;

figure

imshow(E);

Now try:
F = A.*0.75;

figure

imshow(F);

Then, try:
F = A.*7.5;

figure

imshow(F);

2.11 Detecting Edges Using the edge Function

In an image, an edge is a curve that follows a path of rapid change in image intensity. Edges
are often associated with the boundaries of objects in a scene. Edge detection is used to
identify the edges in an image. To find edges, you can use the edge function. This function
looks for places in the image where the intensity changes rapidly, using one of these two
criteria:

• Places where the first derivative of the intensity is larger in magnitude than some
threshold.

• Places where the second derivative of the intensity has a zero crossing.

edge provides a number of derivative estimators, each of which implements one of the
definitions above. For some of these estimators, you can specify whether the operation should
be sensitive to horizontal edges, vertical edges, or both. edge returns a binary image
containing 1’s where edges are found and 0’s elsewhere.

13	

	

The most powerful edge-detection method that edge provides is the Canny method. The
Canny method differs from the other edge-detection methods in that it uses two different
thresholds (to detect strong and weak edges), and includes the weak edges in the output only
if they are connected to strong edges. This method is therefore less likely than the others to be
fooled by noise, and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by showing the
results of applying the Sobel and Canny edge detectors to the same image:

1) Read the image and display it.
G = imread('image2.png');

imshow(G);

2) Apply the Sobel and Canny edge detectors to the image and display them.

BW1 = edge(G,'sobel');

BW2 = edge(G,'canny');
	

figure

imshow(BW1);

figure

imshow(BW2);

2.12 Removing Noise from an Image

Digital images are prone to a variety of types of noise. Noise is the result of errors in the
image acquisition process that result in pixel values that do not reflect the true intensities of
the real scene. There are several ways that noise can be introduced into an image, depending
on how the image is created. For example:

• If the image is scanned from a photograph made on film, the film grain is a source of
noise. Noise can also be the result of damage to the film, or be introduced by the
scanner itself.

• If the image is acquired directly in a digital format, the mechanism for gathering the
data (such as a CCD detector) can introduce noise.

• Electronic transmission of image data can introduce noise.

You can use linear filtering to remove certain types of noise. Certain filters, such as averaging
or Gaussian filters, are appropriate for this purpose. For example, an averaging filter is useful
for removing grain noise from a photograph. Because each pixel gets set to the average of the
pixels in its neighborhood, local variations caused by grain are reduced.

14	

	

Median filtering is similar to using an averaging filter, in that each output pixel is set to an
average of the pixel values in the neighborhood of the corresponding input pixel. However,
with median filtering, the value of an output pixel is determined by the median of the
neighborhood pixels, rather than the mean. The median is much less sensitive than the mean
to extreme values (called outliers). Median filtering is therefore better able to remove these
outliers without reducing the sharpness of the image.

The following example compares the use of a linear Gaussian filter and a median filter to
remove salt and pepper noise for the same image:

1) Read the image and display it.
H = imread('image2.png');

imshow(H);

2) Add salt and pepper noise to the image and then display it.
I = imnoise(H,'salt & pepper',0.02);

figure

imshow(I);

3) Filter the noisy image using a linear Gaussian filter.

• Create a Gaussian filter using the fspecial function.

filter = fspecial('gaussian',[3 3], 0.5);

• Filter the image using the created filter and then display the filtered image.
J = imfilter(I, filter, 'replicate');

	

figure

imshow(J);

4) Filter the noisy image using a median filter by applying the medfilt2 function and then
display the filtered image.
K = medfilt2(I,[3 3]);

figure

imshow(K);

15	

	

3. Getting Help in MATLAB

For reference information about any of the functions, type in the MATLAB command
window:
help functionname

For example:
help imread

4. Alternative Softwares to MATLAB

There are several open source alternatives softwares to MATLAB such as: GNU Octave,
FreeMat, and Scilab. GNU Octave will be installed in this section.

4.1 Installing GNU Octave Software

1) Download both "Octave.zip" and "DomainMathIDE.zip" zip files. Then, unpack these two
zip files from the following links:

a. http://crin.eng.uts.edu.au/~rob/DomainMathIDE.zip
b. http://crin.eng.uts.edu.au/~rob/Octave.zip

2) From the DomainMathIDE_v0.1.5 directory, create a shortcut for the
"DomainMathIDE.bat" file.

16	

	

3) From the Desktop, open the created shortcut. You will get a message: “Unable to find
Octave”, click OK and then add Octave path.

4) Add the Octave path; browse the octave.exe file from the bin directory inside the
Octave3.6.4_gcc4.6.2 directory.

17	

	

5) Click OK to restart the DomainMath application which it is an open source GUI front-end
application for GNU Octave.

18	

	

6) Now type the command inside the console window.

5. References

MathWorks, MATLAB® Primer, The MathWorks, Natick, MA, USA 2013.

MathWorks, Image Processing Toolbox™ User’s Guide, The MathWorks, Natick, MA, USA
2013.

A. Knott, “MATLAB 6.5 Image Processing Toolbox Tutorial,” Department of Computer
Science, University of Otago, Dunedin, New Zealand.

