STUDENT GUIDE TO

MASTER OF ENGINEERING MANAGEMENT

January to March 2013 Academic Teaching Period
MASTER OF ENGINEERING MANAGEMENT
I would like to welcome you to the University of Technology, Sydney (UTS) on behalf of all the staff of the Faculty of Engineering and Information Technology. The Master of Engineering Management Degree (MEM) that you are about to commence is UTS:Engineering’s premier postgraduate coursework program. It has been offered continuously since 1990 and has achieved an enviable reputation of providing a strong and valuable focus on the interface between technology and management.

UTS:Engineering, in association with HKMA, has offered the English language program in Hong Kong since 1999. A Modern Standard Chinese program has also been introduced into Hong Kong. In early 2003, the undergraduate Bachelor of Engineering Science program commenced in Hong Kong.

The growth of the program outside Australia is viewed with great pride by UTS:Engineering and it helps to keep our staff alert to international developments and trends. The experience offshore feeds back into our onshore courses and assists in ensuring our staff and graduates have an international outlook.

Each offshore student represents an important international link for UTS:Engineering and its staff. It is hoped that this link remains strong throughout your future career progression.

Finally, I hope your experience with UTS proves challenging, intellectually rewarding and enjoyable.

Professor Deepak Sharma
Associate Dean (International)
Faculty of Engineering and Information Technology
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The University</td>
<td>1</td>
</tr>
<tr>
<td>2. UTS:Engineering</td>
<td>1</td>
</tr>
<tr>
<td>2.1 History</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Postgraduate Programs</td>
<td>3</td>
</tr>
<tr>
<td>3. Hong Kong Management Association (HKMA)</td>
<td>3</td>
</tr>
<tr>
<td>4.1 MEM in Hong Kong</td>
<td>5</td>
</tr>
<tr>
<td>5. Subject Outlines</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Core Subjects</td>
<td>6</td>
</tr>
<tr>
<td>5.2 Electives</td>
<td>7</td>
</tr>
<tr>
<td>6. General Information for Students</td>
<td>8</td>
</tr>
<tr>
<td>6.1 Academic Teaching Patterns</td>
<td>8</td>
</tr>
<tr>
<td>6.2 Student and Related Rules</td>
<td>8</td>
</tr>
<tr>
<td>6.3 Enrolments</td>
<td>8</td>
</tr>
<tr>
<td>6.4 Examinations</td>
<td>9</td>
</tr>
<tr>
<td>6.5 Results</td>
<td>9</td>
</tr>
<tr>
<td>6.6 Credit Recognition</td>
<td>10</td>
</tr>
<tr>
<td>6.7 Leave of Absence</td>
<td>11</td>
</tr>
<tr>
<td>6.8 Withdrawal from the course</td>
<td>11</td>
</tr>
<tr>
<td>6.9 Adding / Deleting Subjects</td>
<td>11</td>
</tr>
<tr>
<td>6.10 Graduation</td>
<td>11</td>
</tr>
<tr>
<td>6.11 Change of Name</td>
<td>11</td>
</tr>
<tr>
<td>6.12 UTSOnline</td>
<td>11</td>
</tr>
<tr>
<td>6.13 UTS Email</td>
<td>12</td>
</tr>
<tr>
<td>7. Contacts</td>
<td>13</td>
</tr>
<tr>
<td>7.1 HKMA – Administrative</td>
<td>13</td>
</tr>
<tr>
<td>7.2 UTS – Academic</td>
<td>13</td>
</tr>
<tr>
<td>7.3 UTS – Library</td>
<td>13</td>
</tr>
<tr>
<td>7.4 UTS – Service Desk</td>
<td>14</td>
</tr>
<tr>
<td>Appendix A Survival Guide 2013</td>
<td>15</td>
</tr>
<tr>
<td>Appendix B Style Guide for Written Assignments</td>
<td>17</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>20</td>
</tr>
<tr>
<td>2. General Conventions</td>
<td>20</td>
</tr>
<tr>
<td>3. Engineering Reports</td>
<td>24</td>
</tr>
<tr>
<td>4. Laboratory Reports</td>
<td>28</td>
</tr>
<tr>
<td>5. Handwritten Assignments</td>
<td>29</td>
</tr>
<tr>
<td>6. Conference Papers</td>
<td>30</td>
</tr>
<tr>
<td>7. Poster Presentations</td>
<td>30</td>
</tr>
<tr>
<td>8. Resumes</td>
<td>30</td>
</tr>
<tr>
<td>9. Letters</td>
<td>31</td>
</tr>
<tr>
<td>10. Other Relevant Genre</td>
<td>31</td>
</tr>
</tbody>
</table>
1. UNIVERSITY

The University of Technology, Sydney (UTS), is one of the largest universities in New South Wales – a university with an international reputation for quality programs and flexible learning. UTS develop and regularly revise its programs of study in partnership with industry, government and professional bodies, so that its degrees are based on the latest professional standards and current practices. As a result, UTS produces graduates who are ready for work, and this is demonstrated in the high numbers of its students who are members of the workforce within a few months of finishing their degrees.

UTS offer its students a lively, supportive and diverse learning environment. UTS regards learning as a lifelong experience and offers a range of programs to cater for the educational needs of people at a variety of stages in their lives and from diverse backgrounds and cultures.

UTS offers undergraduate and postgraduate degrees developed by the Faculties of Business; Design, Architecture and Building; Engineering and Information Technology; Arts and Social Sciences; Law; Nursing; Midwifery and Health; and Science. Each of these faculties is responsible for programs across a number of key disciplines and many offer courses in conjunction with one another. Courses developed and delivered by these faculties reflect the University's commitment to providing a relevant education to students through flexible and work-based modes of learning and through the ongoing internationalisation of the curriculum.

2. UTS:ENGINEERING

UTS:Engineering has a clear mission: to be a world leader in practice-based engineering education. We have a unique practice-based undergraduate course that includes two internships, each consisting of a six-month period of paid work in industry linked with academic preparatory and debriefing subjects. This contextualisation is critical in preparing students to be lifelong learners who are able to respond to any new challenge they subsequently meet. It also promotes an early identification of career preferences – in time to influence later subject choices – while helping students shape and form their career directions. The paid work in industry is recognised in the award of a Diploma in Engineering Practice (DipEngPrac).

UTS:Engineering offers a four year Bachelor of Engineering (BE) program, the five year combined Bachelor of Engineering Diploma in Engineering Practice (BE DipEngPrac) and a three year Bachelor of Engineering Science degree (BEngSc).

At the postgraduate level, world class coursework and collaborative research programs are offered and are closely targeted to 'industry-driven' needs. UTS:Engineering is internationally focused and committed to globalising its programs, staff and students.

We are proud of our many recent achievements. These include:

- **SMART WHEELCHAIR MAKES THE NEWS** – FEIT Dean Professor Hung Nguyen and Jordan Nguyen were featured on The Project and the ABC News with the hands-free smart wheelchair named TIM (Thought-controlled Intelligent Machine) that was created in the faculty at UTS.

- **UTS KEY PROJECT PARTNER IN ONE OF THE WORLDS LARGEST WATER INFRASTRUCTURE PROJECTS** - The UTS team will apply their
robotics expertise in interpreting data from sensors and building accurate maps of the surroundings to buried pipes.

- **INNOVATIVE UTS RESEARCH SWEEPS 2012 ENGINEERING EXCELLENCE AWARDS** – A self and peer assessment software SPARKPLUS developed by FEIT lecturer Dr Keith Willey won equal first prize in the Sydney division with ‘HypoMon’ a nocturnal glycaemic monitor, conceptualised and developed by Professor Hung Nguyen FEIT Dean.

- **UTS JUDGED TO BE AMONG THE TOP 400 UNIVERSITIES IN THE WORLD** by the recently released 2012-13 Times Higher Education (THE) World University Rankings - UTS is an up-and-coming young university, on its way to being a world-leading university of technology.

- **BRIDGING THE GAP TO A FUTURE IN ENGINEERING** – UTS students took home first prize in the annual Australian Bridge Building competition from a field of forty teams. Entrants were given a limited time-frame to complete their bridge and were only allowed to use certain materials, mainly wood, glue, string and duct tape.

- **FEIT RESEARCHERS HONOURED IN VICE CHACELLORS 2012 AWARDS FOR EXCELLENCE** – Professor Dikai Liu, Professor Gamini Dissanyake, Greg Peters, Gavin Paul and David Rushton-Smith of the Bridge Maintenance Robotics team were rewarded with the ‘Research Excellence through Partnership’ award.

- **BUST OF RAJIV GANDHI DONATED** – The Indian Council for Cultural Relations (ICCR) donated the bust to commemorate the establishment of the Rajiv Gandhi Visiting Chair of Contemporary Indian Studies at UTS. This was a great opportunity to improve relations with the Indian-Australian community, and to showcase our fast-improving campus.

- **FEIT DEAN NOMINATED FOR AUSTRALIAN OF THE YEAR** – Professor Hung Nguyen has dedicated the last decade to giving severely disabled people greater independence and control with his revolutionary ‘Aviator’ wheelchair. He has also created a diabetes monitoring machine, a ‘stealth based’ system for early detection of breast cancer and a system for monitoring the prevention of driver fatigue.

We will continue to strive to improve our student service and strengthen our links with Industry partners.

2.1 History

UTS:Engineering began teaching in 1965 as part of a new institute, soon to become the New South Wales Institute of Technology (NSWIT). In 1987, by Act of the Parliament of New South Wales, NSWIT was reconstituted as the University of Technology, Sydney and commenced operation as UTS in January 1988. During 1988 and 1989, UTS amalgamated with several other institutions and parts of institutions, and the 'new UTS' came into being in its present form in 1990. None of the University's new partners had engineering schools, and so UTS:Engineering has continued in essentially the same form since its inception.

The first courses offered led to the award of Diploma in Technology. These were extended to Bachelor of Engineering level in 1971 and the diploma courses were gradually phased out. The first Bachelor of Engineering degrees were awarded in 1972. Programs leading to Master of Engineering by coursework and by research were offered in 1975. The degree of Doctor of Philosophy by research was made available in 1986, initially by arrangement with another university and, from 1988, by UTS in its own right.
In 2012, UTS:Engineering has some 3579 undergraduate students and 1245 postgraduate students (coursework and research).

2.2 Postgraduate Programs
UTS:Engineering has developed and manages postgraduate coursework and research programs that maintain UTS:Engineering as an international node offering a wide range of professional development opportunities to engineers and other graduates. In fulfilling these responsibilities, UTS:Engineering draws on its close links with industry to offer distinctive programs highly regarded by engineering-dependent enterprises.

In 2012, 29 MEM students were admitted in the Hong Kong English-based program; 48 MEM students were admitted in the Modern Standard Chinese based program in Hong Kong, and 400 were admitted in the MEM at the City campus in Sydney.

The MEM program began in Sydney in 1990 and in Hong Kong in 1999. Over 549 students have graduated from the MEM (English) and 1069 from the MEM (Modern Standard Chinese) since its inception. Approximately 2330 have graduated from the UTS campus in Sydney.

3. HONG KONG MANAGEMENT ASSOCIATION (HKMA)

The Hong Kong Management Association (HKMA) is a non-profit making incorporated body that was established in 1960. Over the past 50 years, the Association, with a mission to train and develop local executives, has been actively taking part in training tens of thousands of management practitioners and professionals, thereby raising the standard of management and improving its quality in Hong Kong.

More than 2,600 integrated and well-balanced courses are offered by the Association and attended by over 60,000 participants annually. As part of HKMA’s deep commitment to providing opportunities to local executives for continuing development, the Association has been in partnership with the University of Technology, Sydney since 1997, offering a range of programs.

For further information on HKMA please visit http://www.hkma.org.hk/front.asp
4. MASTERS OF ENGINEERING MANAGEMENT - GENERAL

The Master of Engineering Management (MEM) (course code C04094), is the ideal course for engineers, technical specialists and others wishing to expand their managerial skills within a technology-based organisation. The MEM has been specifically designed to emphasise the interface between technology and management.

The MEM program provides an opportunity for engineers and others who are seeking a career in engineering management to undertake a formal course of relevant study at a master’s level. It may also be of benefit to current engineering managers to undertake formal study and gain recognition of their knowledge and experience.

Career Options
Engineering and applied science jobs are becoming increasingly multidisciplinary. Knowledge and skills in technical management gained from completing the MEM can assist in obtaining a high-quality engineering or engineering management position.

Duration
The course requires 48 credit points of study. The program is structured for weekend attendance and distance mode. The elective subjects are available by distance only. Students usually take two subjects per academic teaching period requiring 1.5 years to complete the degree.

Admission requirements - Direct Entry
Minimum entry requirement for the MEM is a degree (general or engineering) of a minimum of three years’ duration from a recognised tertiary institution. If an applicant has been given advanced standing towards their undergraduate degree, they must submit proof of the studies undertaken previously (diploma etc).

Entry via Graduate Certificate and Transfer to the MEM
Applicants who do not fulfil the requirements for entry into the MEM, may be eligible to enter via the Graduate Certificate in Engineering Management (course code C11054) and transfer to the MEM once they have successfully completed the required number of subjects in the Graduate Certificate in Engineering Management. Note that students cannot exit with the Graduate Certificate in Engineering Management. The entry requirements for the Graduate Certificate in Engineering Management are:

a) evidence of general and professional qualifications sufficient to show that the applicant possesses the educational preparation and capacity to pursue graduate studies
b) at least two years relevant work experience

Transfer to MEM
Students will only be approved for transfer once they have passed the required number of subjects. Once in the MEM, the subjects completed in the GCEM will automatically be credited towards the MEM.

English Proficiency
Applicants whose tertiary education was conducted in a language other than English will be required to demonstrate proficiency in the English language. The most effective way of doing this is by obtaining a satisfactory result in a recognised English test. UTS accept the results from two tests:
- IELTS result (Academic Strand) of 6.5 overall with a 6.0 in the writing section
- TOEFL (paper based) score of 550-583 with Test of Written English (TWE) 4.5
- TOEFL result of 231 overall with an Essay Rating of 4.5 (computer based)
- TOEFL Internet based result of 79-93 overall with 21 in Writing
- Completion of the DEEP at C level
- A Pearson Test of English (PTE) score of 58-64

Also acceptable are:

- HK Advanced Level Exam with a Grade of “C” or better for English
- Evidence of successful completion of at least 12 months full-time study at a recognised University where all classes were conducted in English e.g. HK Polytechnic University, City University of HK, HKUST

Documentation

Original documentation or a certified copy stamped by HKMA is required to support all applications. Failure to submit required documentation may delay or even jeopardise an applicant’s admission to a course. Applicants who are uncertain of the documentation required should contact the HKMA.

Fees

On application to HKMA.

4.1 Master of Engineering Management in Hong Kong

Core Subjects

<table>
<thead>
<tr>
<th>Subject No</th>
<th>Subject Name</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>49001</td>
<td>Judgment & Decision Making</td>
<td>A/Prof T Anderson</td>
</tr>
<tr>
<td>49003</td>
<td>Economic Evaluation</td>
<td>Prof D Sharma</td>
</tr>
<tr>
<td>49002</td>
<td>Managing Projects</td>
<td>A/Prof D Eager</td>
</tr>
<tr>
<td>49309</td>
<td>Quality Planning & Analysis</td>
<td>Dr H Akpolat</td>
</tr>
<tr>
<td>49069</td>
<td>Leadership and Responsibility</td>
<td>A/Prof T Anderson</td>
</tr>
<tr>
<td>49098</td>
<td>Engineering Financial Control</td>
<td>Dr A Chung</td>
</tr>
</tbody>
</table>

Within the core subjects students will participate in lectures and seminars held over two days (usually a weekend). Typically this will be held about two thirds into the academic teaching period. Other than the assignments, a formal examination is also held for each subject.
5. SUBJECT OUTLINES

5.1 Core Subjects

49001 Judgment and Decision Making
Availability: core for MEM; 6cp
Subject coordinator: Associate Professor Tom Anderson

This subject develops understanding of rational decision aids in the light of modern descriptive theories of judgment, choice and decision in organisations. The methods of management science, decision analysis and judgment analysis are presented, and models of individual, group and strategic decision making are critically assessed. Drawing on the insights of psychology, sociology and management science, this subject aims to inform you about the many facets of good judgment associated with decision-making.

Assessment: Two assignments 25 per cent each; formal examination 50 per cent.

49002 Managing Projects
Availability: core for MEM; 6cp
Subject coordinator: Associate Professor David Eager

This subject introduces project management principles and tools. Students develop an understanding of the importance of sound management practices and their application to the successful performance of engineering projects and works. What students learn in this subject enhances their ability to make and implement decisions for strategic and operational management within an engineering setting.

Assessment: Assignment worth 10 per cent; project report worth 30 per cent; workbook/journal worth 10 per cent and final examination worth 50 per cent.

49003 Economic Evaluation
Availability: core for MEM; 6cp
Subject coordinator: Professor Deepak Sharma

This subject deals with the application of economic concepts to engineering decision making. Main topics include: Macroeconomic issues and policies; micro-economic market theory; theory of the firm; project evaluation and cost-benefit analysis; intangibles and risk.

Assessment: Assignments worth 50 per cent; formal examination worth 50 per cent.

49309 Quality Planning and Analysis
Availability: core for MEM; 6cp
Subject coordinator: Dr Hasan Akpolat

Quality is one of the main success factors for organisations, whether they operate in manufacturing or service and transactional sectors. A sound quality management system, based on modern and up-to-date quality planning and analysis tools and techniques, reduces rejects, warranty claims and the need for costly rework. It helps to preserve customer goodwill and builds a brand loyalty based on objective criteria rather than illusions.

Assessment: Assignments 40 per cent; final examination 60 per cent.

49069 Leadership and Responsibility
Availability: core for MEM; 6cp
Subject coordinator: Associate Professor Tom Anderson

1 Please go to the following website for more detailed subject outlines
This subject develops an understanding of the role of engineering managers as responsible leaders in organisations. It focuses on the need to work through other managers and leaders, not only subordinates and supervisors. The subject provides a comprehensive review of leadership theory. It teaches that there exist many complex facets of leadership and emphasises the belief that one should not accept a position of trust without accepting the responsibility that goes with it.

However, the art of leadership cannot be learned solely from books or virtual cafes, it needs to be experienced and practised face-to-face. A central teaching element of this subject is class-based activities that require engagement, motivation, critical thinking, verbal communication, group participation and performance under time pressure.

Assessment: Three assignments worth 75 per cent; class-based exercises worth 25 per cent.

49098 Engineering Financial Control

Availability: core for MEM; 6cp
Subject coordinator: Dr Alice Chung

This subject introduces students to the basics of cost control for project management. A project plan is created and populated with material and labour costs. A chart of accounts is then created for the project and accounting transactions are entered to demonstrate the double-entry accounting system. The project is tracked over a series of months to create an income statement. The individual project is then consolidated into the company accounts to show the effect on the company’s income statement, balance sheet and cash flow statements. The concepts of project budgeting and cost accumulation systems are introduced.

Assessment: Based on completion of an MYOB financial transaction assignment, a Microsoft project budgeting assignment and a multiple choice examination.

5.2 Electives

Fourth academic teaching period electives to be advised.
6. GENERAL INFORMATION FOR STUDENTS

6.1 ACADEMIC TEACHING PATTERNS
The timetable for the MEM is listed below with the Academic Teaching Period name:

- Summer semester is January - March Academic Teaching Period
- Autumn semester is March - May Academic Teaching Period
- Spring semester is August - October Academic Teaching Period

<table>
<thead>
<tr>
<th>14 Week Periods</th>
<th>January to March 2013</th>
<th>March to May 2013</th>
<th>August to October 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of Teaching Period</td>
<td>17 December 12</td>
<td>04 March 13</td>
<td>05 August 13</td>
</tr>
<tr>
<td>Study Period End</td>
<td>22 March 13</td>
<td>07 June 13</td>
<td>08 November 13</td>
</tr>
<tr>
<td>Census Date</td>
<td>07 January 13</td>
<td>28 March 13</td>
<td>30 August 13</td>
</tr>
<tr>
<td>Last Withdrawal</td>
<td>07 January 13</td>
<td>28 March 13</td>
<td>30 August 13</td>
</tr>
<tr>
<td>Last Withdrawal Without Fail</td>
<td>07 January 13</td>
<td>28 March 13</td>
<td>30 August 13</td>
</tr>
<tr>
<td>Result Publication Date</td>
<td>03 April 13</td>
<td>17 July 13</td>
<td>18 December 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Pattern</th>
<th>Subject</th>
<th>Lecture dates</th>
<th>Exam dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-Mar</td>
<td>49001 Judgment and Decision Making</td>
<td>15 & 16 Dec 12</td>
<td>17 Feb 13</td>
</tr>
<tr>
<td>Jan-Mar</td>
<td>49003 Economic Evaluation</td>
<td>12 & 13 Jan 13</td>
<td>24 Feb 13</td>
</tr>
<tr>
<td>Mar-May</td>
<td>49002 Managing Projects</td>
<td>13 & 14 Apr 13</td>
<td>09 Jun 13</td>
</tr>
<tr>
<td>Mar-May</td>
<td>49309 Quality Planning & Analysis</td>
<td>16 & 17 Mar 13</td>
<td>02 Jun 13</td>
</tr>
<tr>
<td>Aug-Oct</td>
<td>49098 Engineering Financial Control</td>
<td>07 & 08 Sept 13</td>
<td>20 Oct 13</td>
</tr>
</tbody>
</table>

6.2 Student and Related Rules
Note there have been some changes to the rules http://www.gsu.uts.edu.au/rules/ruleschanges.html.

6.3 Enrolments
You complete your enrolment form during the Induction Session held at the beginning of each new intake. Your enrolment form will be passed to UTS by HKMA and will be processed there. You must check online that your enrolment is complete. Your status online will be ‘admitted’ into the course and ‘enrolled’ into subjects.

You must confirm your enrolment into the correct subjects by going to: https://onestopadmin.uts.edu.au/estudent/
• This brings up the UTS: mystudentadmin login page
• Enter in user ID and password
• Then click the Log in tab

Please note that if you are not enrolled in a subject, you cannot attend that particular subject.

Adding/Deleting subjects: If you decide to change your enrolment by adding or deleting a subject, please request a ‘Variation of Enrolment’ form from HKMA. (Please note this form cannot be downloaded).

Leave of Absence without being enrolled in any subjects will incur a PRR sanction. A PRR (Progression Re-enrolment Required) sanction is applied when a student has failed to enrol in any half year and has not applied for leave of absence. You must then re-enrol by week two of the next academic teaching period otherwise you will be withdrawn from the course.

Leave of Absence: If you wish to suspend study for any reason, an application must be made on the appropriate ‘Leave of Absence’ form obtainable from HKMA.

These forms must be submitted to HKMA. Please be aware of relevant deadlines - failure to submit by the deadline might incur academic/financial penalties.

6.4 Examinations
For a formal examination, you will need to attend at a location to be organised and advised by HKMA. The usual examination time is between two and three hours long. The examination supervisor will let you know if the exam is a “closed” examination (no materials allowed in the exam room) or an “open” exam where you are allowed to bring notes, your study guide and so on.

If you are unable to attend your exam you must submit either one of the following forms to HKMA – ‘Advice of Scheduling Difficulties for Centrally Conducted Examinations’ and ‘Application for Special Consideration’. Deadlines must be adhered to.

 this form is to be used when through circumstances beyond your control you are unable to attend an exam.

2. ‘Application for Special Consideration’. This form is to be used when you miss an exam, for example through illness. The form must be lodged to HKMA no later than on one working day after the exam. The forms can be downloaded from the UTS website http://www.sau.uts.edu.au/forms.

6.5 Results
Your results will be shown at https://onestopadmin.uts.edu.au/estudent/. The site contains links to course information such as results, course status as well as other useful links such as UTS Email and UTSOnline. Your login will be your UTS Email username and password. To receive an official record, please follow the instructions given on the website.

Below is a description of how your work is assessed and what your results mean:
Final Grade

<table>
<thead>
<tr>
<th>Final Grade</th>
<th>Notation</th>
<th>Notional %</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Distinction</td>
<td>H</td>
<td>85 – 100%</td>
<td>Work of outstanding quality in all objectives of the subject</td>
</tr>
<tr>
<td>Distinction</td>
<td>D</td>
<td>75 – 84%</td>
<td>Work of superior quality in all objectives of the subject</td>
</tr>
<tr>
<td>Credit</td>
<td>C</td>
<td>65 – 74%</td>
<td>Work of good quality, showing more than satisfactory achievement of all objectives of the subject</td>
</tr>
<tr>
<td>Pass</td>
<td>P</td>
<td>50 – 64%</td>
<td>Work showing satisfactory achievement of all objectives of the subject</td>
</tr>
<tr>
<td>Fail</td>
<td>Z</td>
<td>0 – 49%</td>
<td>Work showing unsatisfactory achievement of one or more objectives of the subject</td>
</tr>
<tr>
<td>Fail</td>
<td>X</td>
<td>50% or more</td>
<td>Unsatisfactory performance in a compulsory component of the subject (e.g., final examination)</td>
</tr>
</tbody>
</table>

Interim Results

<table>
<thead>
<tr>
<th>Interim Results</th>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result Pending</td>
<td>Q</td>
<td>The subject involves a project, clinical practicum or field excursion where the student has not completed assessment task(s) by the end of the semester.</td>
</tr>
<tr>
<td>Withheld</td>
<td>W</td>
<td>Interim result recommended by RRC. Supplementary final examination to be completed.</td>
</tr>
</tbody>
</table>

If you require an official record of your study for **all years**, please complete a ‘Statement of Academic Record’ Application form at http://www.sau.uts.edu.au/forms and then follow the instructions given on the website.

If you fail a subject, you must enrol in it again. If you fail two or more subjects, UTS: Engineering has the option of (a) asking you to show proof why you should be allowed to continue; (b) recommend to the Registrar that you be withdrawn from the course.

To appeal against an assessment grade please download the correct form - ‘Review of Final Subject Assessment Result’ located at http://www.sau.uts.edu.au/forms. Please lodge the form with HKMA and note there are deadlines for submission.

6.6 Credit Recognition

Students who have completed recent engineering or management postgraduate subjects may apply to use them as Credit Recognition from electives in the MEM. **Credit Recognition is not granted based on work experience.**

Download and complete the ‘Application for Credit Recognition’ form http://www.sau.uts.edu.au/forms/pdfs/RPL_0911.pdf. You must attach proof of subjects completed and submit to HKMA. This should be done as early in the course as possible.

If you have transferred from the Graduate Certificate in Engineering Management to the Master of Engineering Management, your subjects will be transferred automatically. **You do not need to complete the Credit Recognition application form.**

If your application for the Graduate Certificate leading to Master of Engineering Management has been approved based on your completion of a Diploma or Certificate from HKMA or any
other recognised institution, you cannot then claim Credit Recognition (or Advanced Standing) based on any of the subjects completed in those courses.

6.7 Leave of Absence
Leave of Absence is not normally granted to students who have not completed the requirements for at least one subject in their course. Leave of Absence during candidature for one award is normally limited to a total period of two years.

Retrospective leave will not be granted. Application should be made on the appropriate ‘Leave of Absence’ form obtained from HKMA and submitted to HKMA.

6.8 Withdrawal from the course
Some students find that the course is not right for them. UTS:Engineering recommends that students who are unsure about their future in the course seek advice from HKMA.

Any student who definitely does not intend to continue their course should complete a ‘Course Withdrawal’ application form before the census date of the teaching period to avoid incurring fees and fail grades for subjects that were not attempted. You can obtain the form from HKMA. You must also return your current student ID card.

6.9 Adding / Deleting Subjects
In order to add or delete a subject to your program, please use the ‘Variation of Enrolment’ form and submit it to HKMA. Please check deadline dates on the ‘Survival Guide’ in Appendix A. This form must be requested from HKMA.

6.10 Graduation
Once you have fulfilled the requirements of your program you are eligible to graduate. You will be given the option to attend the graduation ceremony in Hong Kong or Sydney. The following website has more information http://www.gsu.uts.edu.au/graduation/. Please read all the information on the website carefully and respond according to your requirements.

6.11 Change of Name
If you have changed your name, you must submit proof of the name change. Only original documents or CERTIFIED COPIES will be accepted. For further information download the ‘Correction of Name’ form available at http://www.sau.uts.edu.au/forms.

6.12 UTSOnline
UTSOnline is a web-based tool used at UTS to deliver online learning to students. UTSOnline is accessible by most web browsers and provided you have access to an internet connection you can access UTSOnline anywhere. Please note that not all subjects are supported by UTSOnline.

To access UTSOnline go to http://online.uts.edu.au/webapps/login/. To log in to UTSOnline, you need an activated UTS email account. The UTSOnline login now is as follows:

- Username: Student ID
- Password: UTS email password
6.13 UTS Email
As an enrolled student at UTS you will automatically be given a free UTS email/access account. This account will stay with you from the day you enrol until the day you graduate and will provide you with an easy and constant communications and access tool while you are studying. Your UTS email account allows you access to the following:

- UTS email account
- Library Database Remote Access
- UTS Exam Results Online
- Student One Administration

Use of the same email login and password will access all these areas but it does not give access to UTSOnline.

Activating your account
You will need to activate your account the first time you use it. To do this you:

1. Visit the UTS Home page www.uts.edu.au.
2. Click on ‘Your UTS Email’ to access the UTS Email web site and select ‘Activate my account’ or go straight to http://email.itd.uts.edu.au/webapps/myaccount/activation/
3. You will need your Student ID number as well as some other information all of which is supplied on your student card.
4. This activation page will set your password and give you your username and email account. Your email account will take the form Firstname.Lastname@student.uts.edu.au

Please ensure that you activate your UTS email account as it is used for ALL correspondence between you and the University.
7. CONTACTS

7.1 HKMA – Administrative
Any administrative questions you may have, for example if you need to go on Leave of
Absence for an academic teaching period, you must contact HKMA who will respond to you
in consultation with UTS:Engineering:

The Local MEM Secretariat
The Hong Kong Management Association
16/F Tower B Southmark
11 Yip Hing Street
Wong Chuk Hang
HONG KONG

Tel: 2774-8578 or 2774-8586
Fax: 2774-8503 or 3513-8141
Email: mem_uts@hkma.org.hk

<table>
<thead>
<tr>
<th>HKMA Course Coordinators:</th>
<th>Course Administrator:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Tony Wu: Director International Programmes</td>
<td>Ms Francine Ngai: Assistant Manager</td>
</tr>
<tr>
<td>Ms Christine Choy: Deputy Director International Programmes</td>
<td>Mr Michael Yeung: Administration Officer</td>
</tr>
</tbody>
</table>

7.2 UTS – Academic
If you have any academic questions for example you do not understand what is required of
you in an assignment, you may contact the lecturer teaching the subject by email.

<table>
<thead>
<tr>
<th>Subject No</th>
<th>Subject Name</th>
<th>Lecturer Name</th>
<th>Lecturer Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>49001</td>
<td>Judgment and Decision Making</td>
<td>A/P Tom Anderson</td>
<td>Tom.Anderson@uts.edu.au</td>
</tr>
<tr>
<td>49002</td>
<td>Managing Projects</td>
<td>A/P David Eager</td>
<td>David.Eager@uts.edu.au</td>
</tr>
<tr>
<td>49003</td>
<td>Economic Evaluation</td>
<td>Prof Deepak Sharma</td>
<td>Deepak.Sharma@uts.edu.au</td>
</tr>
<tr>
<td>49309</td>
<td>Quality Planning & Analysis</td>
<td>Dr Hasan Akpolat</td>
<td>Hasan.Akpolat@uts.edu.au</td>
</tr>
<tr>
<td>49069</td>
<td>Leadership and Responsibility</td>
<td>A/P Tom Anderson</td>
<td>Tom.Anderson@uts.edu.au</td>
</tr>
<tr>
<td>49908</td>
<td>Engineering Financial Control</td>
<td>Dr Alice Chung</td>
<td>amc@consulteqcc.com</td>
</tr>
<tr>
<td>49013</td>
<td>Managing IT in Engineering</td>
<td>Mr Anthony Kadi</td>
<td>Anthony.Kadi@uts.edu.au</td>
</tr>
<tr>
<td>49016</td>
<td>Technology & Innovation</td>
<td>Mr Peter Dalmaris</td>
<td>Peter.Dalmaris@uts.edu.au</td>
</tr>
</tbody>
</table>

7.3 UTS - Library
The UTS Library website provides a number of useful resources. You can visit the UTS
Library at www.lib.uts.edu.au/.

To access the library resources, go to the library website at www.lib.uts.edu.au/ then click on
the resource you want to access (e.g. Journal Databases). You will be asked to login. Your
login is the same as your UTS email login.
7.4 UTS – Service Desk
The Service Desk is the helpdesk for UTS. This is your first point of contact in relation to IT Support.

Having problems logging onto UTSOnline? You can contact the UTS Service Desk on https://servicedesk.uts.edu.au/CAisd/pdmweb.exe. Not all UTS subjects are supported by UTSOnline.

Note, use the login button if you are an existing UTS student and use your student number with your email password to login. Guest login is for all other customers. You will need to refresh your browser the first time you login.

What can I use UTS Service Desk for?

- Logging requests for service
- Searching for solutions in the UTS Knowledge Tools
APPENDIX A

Survival Guide 2013

Start of Teaching Period
To find out when classes commence for each academic teaching period, please contact Ms Francine Ngai at HKMA (details given on page 16).

Confirming your Enrolment
To check which subjects you are enrolled in, log into My Student Admin and click on My Current Enrolment details https://onestopadmin.uts.edu.au/estudent/
You will need to know your student ID number and email password.

Changing your Enrolment
Once you have enrolled you can change your enrolment by completing a ‘Variation of Enrolment’ form to add or delete subjects. Please take note of the deadlines below and visit the UTS website www.sau.uts.edu.au/enrolment/index.html for more information. Don’t forget – you will have to pay for any subjects you do not delete by the census date for the teaching period.

Key Dates
January to March Academic Teaching Periods
The last day to add a subject is at the end of week 2. The last day to withdraw from a subject is the census date of the teaching period.
March to May and August to October Academic Teaching Periods
The last day to add a subject is the end of week 2.
The last day to withdraw from a subject without financial penalty is the census date of the teaching period.
The last day to withdraw from a subject without academic penalty is the census date. Subject withdrawal after the census date will be regarded as a ‘Withdrawn Fail’.

When difficulties arise
If you encounter difficulties during the academic teaching period, you have a number of options. Please don’t hesitate to seek advice from subject coordinators, program coordinators, or HKMA. Options include:
Special Consideration
Students who experience difficulty meeting subject requirements due to illness or misadventure can apply for special consideration. The outcome of this application may be an extension of time, alternative assessment or other appropriate arrangements.
Deleting a Subject
Use the Variation of Enrolment form to delete a subject by the dates listed overleaf.

Leave of Absence
Students who are not enrolling in any subjects in an academic teaching period must apply for Leave of Absence. You must have completed at least one subject satisfactorily to be granted Leave. Leave of Absence during candidature for one award is normally limited to a total period of four academic teaching periods. Application should be made on the appropriate Leave of Absence form obtained from HKMA. Retrospective leave will not be granted.

Withdrawal from a course
UTS:Engineering recommends that students who are unsure about their future in the course seek advice from HKMA. Any student who definitely does not intend to continue their course
should complete a ‘Course Withdrawal’ form before the census date to avoid incurring fees and fail grades for subjects that were not attempted. You can obtain the form from HKMA.

Late withdrawal

Forms for deletion of subjects, leave of absence and course withdrawal should be submitted by the dates indicated to avoid fees and failure. Late withdrawals can only be approved in exceptional circumstances such as serious illness, misadventure or other unforeseen events. However, the University Rules are clear on withdrawal after these dates and on fee refunds. You will need to provide documentary evidence on special circumstances University Rule 7.5 http://www.gsu.uts.edu.au/rules/7-5.html and University Rule 4.5 http://www.gsu.uts.edu.au/rules/4-5.html. These rules cover withdrawal after the last date and withdrawal without fees being changed.

Useful Websites

<table>
<thead>
<tr>
<th>Category</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Main site</td>
<td>http://www.uts.edu.au/</td>
</tr>
</tbody>
</table>

Keeping in Touch

You must inform the University as soon as possible of any changes in your contact details. To change your contact details please log into My Student Admin and click on the My Personal Details link. Please note your UTS email account will be used to contact you – NOT a private email account.

The Hong Kong Management Association

For assistance on student administration matters including enrolment, variation of program, timetable and graduation, contact HKMA.

HKMA

<table>
<thead>
<tr>
<th>Name</th>
<th>Office Hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Francine Ngai</td>
<td>9:00am to 5:00 pm (Monday to Friday)</td>
</tr>
<tr>
<td>16/F Tower B Southmark</td>
<td>9:00am to 1:00 pm (Saturday)</td>
</tr>
<tr>
<td>11 Yip Hing Street</td>
<td>Ph: 2774-8578 or 2774-8586</td>
</tr>
<tr>
<td>Wong Chuk Hang</td>
<td>Fax: 2774-8503 or 3513-8141</td>
</tr>
<tr>
<td>HONG KONG</td>
<td>Email: mem_uts@hkma.org.hk</td>
</tr>
</tbody>
</table>

Please ensure that you activate your UTS email account as it is used for ALL correspondence between you and the University.
Style Guide for Written Assignments

UTS:Engineering

All written assignments presented in UTS: Engineering should conform as closely as possible to the guidelines presented in this Style Guide unless otherwise instructed by your lecturer.
ABOUT THIS DOCUMENT

This document outlines a style guide to be used as a basis for assignments UTS:Engineering as negotiated with your supervisor for each subject. It builds on Morley-Warner (2000) Academic Writing Is and UTS Faculty of Business (1999) Guide to writing assignments specifically for an engineering context. You should refer to this Style Guide throughout your university experience so file it carefully.

Further help on writing and referencing can be found from the UTS Library website at www.lib.uts.edu.au.

COPYRIGHT AND ACKNOWLEDGEMENTS

This document was originally developed by Helen McGregor and has been updated and edited by Betty Jacobs. Photocopies of this document for the purpose of study in this subject may be made without permission.

All written assignments presented in the UTS:Engineering should conform as closely as possible to the guidelines presented in this Style Guide unless otherwise instructed by your lecturer.
Contents

About this Document
Copyright and acknowledgments 19

1. INTRODUCTION ... 21
 What are quality documents? .. 21
 Writing in a professional style .. 21

2. GENERAL CONVENTIONS .. 21
 2.1 Purpose and Audience .. 21
 2.2 Language .. 21
 2.3 Word processed or Hand-written 22
 2.4 Paper ... 22
 2.5 Font and Printing Style ... 22
 2.6 Titles and Headings ... 22
 2.7 Pagination ... 22
 2.8 Margins .. 23
 2.9 Grammar and Style .. 23
 2.10 Plagiarism ... 24
 2.11 References ... 24
 2.12 Originality ... 26
 2.13 Group Assignments .. 26
 2.14 Presentation of Assignments .. 26

3. ENGINEERING REPORTS ... 26
 3.1 General Requirements .. 26
 3.2 Structure .. 26
 3.3 Presentation of Reports ... 29
 3.4 Writing Style ... 29

4. LABORATORY REPORTS ... 29
 4.1 Introduction ... 29
 4.2 General Requirements ... 29
 4.3 Structure .. 29

5. HANDWRITTEN ASSIGNMENTS .. 30
 5.1 General Requirements .. 30
 5.2 Paper ... 30
 5.3 Writing .. 30
 5.4 Pagination and Numbering ... 30
 5.5 Margins .. 30
 5.6 Style .. 30
 5.7 Presentation of Hand-written Assignments 30

6. CONFERENCE PAPERS .. 30

7. POSTER PRESENTATIONS ... 31
 7.1 Content .. 31
 7.2 Visual Appeal ... 31
 7.3 Style .. 31
 7.4 Size .. 31

8. RESUMES ... 32

9. LETTERS ... 32

10. OTHER RELEVANT GENRE .. 32

11. REFERENCES & FURTHER READING 32
1. INTRODUCTION
As a student enrolled in UTS:Engineering it is important that you clarify what is expected of you when you are required to submit written assignments at university. During internships you also face decisions as to what is the best way to write up your work. Modelling your writing on existing corporate documents is often helpful. However, you still need to develop a writing style of your own that is at least acceptable and hopefully impressive.

This Style Guide is designed to help you produce quality written documents at UTS and at work. It is only one of many Style Guides developed by publishers, companies, conference authorities, universities and other groups. It is important when writing for other organisations that you follow their particular Style Guide.

What are quality documents?
Quality is often defined as "suitability for purpose". In both industry and university, written documents give evidence of quality. You must develop a commitment to quality in your written work as well as your technical engineering work.

Reports, letters and memos are common forms of documentation in business and industry; while research papers and essays, conference or seminar papers, worked solutions, reports and posters are frequently required at university. Each genre (or text type) has its own conventions of layout and the writing style for all should be clear and concise. Most organisations, including ours, prefer 'Plain English' that avoids jargon and excessive use of passive voice. We highly recommend that you read more about using Plain English at www.plainenglish.co.uk/plainenglishguide.html or in books like Eagleson (1992) Writing in Plain English.

Writing in a professional style
Your approach to writing also needs to develop to a professional level. In addition to accurately reporting the facts you discover during your research, you are usually expected to analyse and discuss various viewpoints. While it is still important to express your own personal opinions in some situations, you will be required to support your own views with competent research and the informed opinion from experts in the field.

You must understand the conventions of referencing not only to ensure that you comply with copyright regulations but because by referencing correctly, you are showing that you have consulted the recognised authorities in the area of your research. The list of references included with this Guide provides a source of additional information to help you develop your writing style.

The purpose of this Style Guide is to provide you with some procedures to follow so that you can be sure that the format and layout of written documents you submit in UTS:Engineering at UTS conforms to our expectations of quality. In designing this document we have consulted a variety of Australian and international Standards which deal with style in written documents. The conventions we have adopted are commonly followed in business and industry, and the style concurs with accepted practice for Engineers Australia. It is not the intention of UTS:Engineering to inhibit creativity or imagination - quite the opposite. By having this standard which covers details of format we are providing you with a framework that will help you minimise the effort you spend on these details. You will then have more time to devote to exploring the subject matter and presenting a thoughtful treatment of your results, analysis, discussion and conclusions.

2. GENERAL CONVENTIONS
2.1 Purpose and Audience
Before attempting to write a document whether for academic assessment or the workplace you must clarify the purpose and audience for whom you are writing. This will determine both the genre (text type) and language style (and voice) you are expected to use. Morley-Warner (2000) discusses these issues in detail in Part 1 of her book. You will be required to produce work in a variety of both informal and formal genre. You must also write to be understood by your readers.

2.2 Language
English is the official language for written assignments in the UTS:Engineering at UTS. You are expected to be competent in English and capable of progressing to a professional level. For most applications, 'Plain English' is preferred. That is, your writing should be as clear and concise as possible. Avoid excessive technical jargon and overuse of the passive voice.
If you use a spelling and grammar software package with your word processor, it should conform to Australian spelling (Macquarie Dictionary) when possible.

If you need help with English language or writing skills consult the ELSSA Centre (English Language Study Skills Assistance, Level 18, Building 1) before your lack of proficiency causes you problems with your Engineering subjects.

2.3 Word processed or Hand-written
In most cases, written assignments should be word processed. If it seems more appropriate or expedient to submit a handwritten assignment you should ensure that it also conforms as closely as possible to the conventions presented in this document. You should take special care to ensure that it is legible and professional in appearance. See Section 5 for more suggestions on presenting hand-written assignments.

2.4 Paper
You should use standard A4 size bond paper for most assignments. To ensure legibility and to make marking easier we prefer the print or writing to be on one side only. Simple handwritten assignments may use both sides providing the paper is thick enough for the writing to be legible. Single spacing is acceptable for most assignments. If you are submitting a draft for editing, and you expect the lecturer to make extensive notations, it would be more appropriate to use double spacing.

2.5 Font and Printing Style
Most experts agree that 12-point ‘serif’ fonts (e.g. Times New Roman) are easiest to read for large blocks of text. This has been done in this document. Other popular ‘serif’ fonts are Times, Bookman, New York, Garamond and Palatino. If you do not have access to these fonts, you should choose another conventional font and use a quality printer. Technical writers often use a sans-serif font such as Arial for headings as we have done in this document.

Usually one space should follow a full stop or comma. A blank line space should separate paragraphs and headings.

2.6 Titles and Headings
Consistency in format of titles and headings is essential.

2.7 Pagination
Number all pages, preferably in the ‘footer’ of the page. To identify each page of an important document it is a good idea to place your name and the title of the paper as a 'header' on the top of each page.

2.8 Margins
You should allow margins which are adequate for binding or notation and which provide an attractive frame for the text. A minimum of 20 mm for left and right, top and bottom margins is suitable for binding and reproduction, headers and footers. Some lecturers may ask for more to allow for marking, annotation and feedback.

Lines more than 50 characters long are more difficult to read. Keep this in mind when setting your page margins and font size.

2.9 Grammar and Style
The quality of your work is often judged by the way you present your report. Mistakes in spelling and grammar indicates lack of proof reading and can be interpreted as an indication of carelessness in the technical aspects of the work as well. It is important to be correct and to use grammar and spell checkers to help find careless errors. However, don't rely on these devices alone.

Proof read carefully and thoroughly. Use your dictionary, thesaurus and grammar texts.

Consult appropriate up-to-date references for details of grammar and style. Consult specific engineering texts for details of engineering notation and abbreviations. Don't hesitate to seek help from the ELSSA Centre if your English language or writing is weak.

For most technical writing, short sentences and paragraphs make the reader's task easier.
It is often appropriate to use technical terms and even technical jargon. However, be conscious of all the readers of a report. The style should be crisp, clear and informative. The logical presentation of information should lead a reader clearly from idea to idea.

While sentences should generally be short and simple, complex and compound sentences can be used to show relationships of ideas. Each paragraph should open with a topic sentence which is developed through the paragraph. Lists of ideas can be presented as a 'chunk' of information and are often highlighted using bullet points.

2.9.1 Dates and Time
Different formats for writing the date cause much confusion in international communication. While Australians would write 10/08/05 for the 10th August 2005, Americans would use 08/10/05 for the same date. It is easy to see the importance of some worldwide agreement as to the correct format. Confusion could arise translating either of these as October or August, depending on your cultural background.

The International Organisation for Standardisation (ISO) has developed a standard for the writing of calendar dates and time in numeric form (www.iso.org/iso/en/prodsservices/popstds/datesandtime.html). Australian Standards reflect this standard. Dates are specified in descending order of year, month and day in the format yyyy-mm-dd. For example: 2005-08-10. Time is written in descending order of hours, minutes, seconds in the format hh-mm-ss. If you are writing an international document this standard style should be used. However, for most applications it is more helpful to present the date in full: 10 August 2005.

2.9.2 Graphics
Drawings and diagrams can easily be incorporated using word processing packages. If necessary, drawings and diagrams can be done by hand using black ink. Photographs should be clear and original prints, scans from original prints or digital photos. Colour is expensive to print but loses definition when printed in black and white. Be careful to ensure that essential details are clearly visible. Label all graphics clearly with a Figure Number and Caption e.g. Figure 4.2 Temperature Transducer and refer to them in the body of the text e.g. See Figure 4.2.

2.9.3 Measurement
Most units of measurement used in Australia are those of the International System of Units, abbreviated 'SI'. It is important to use the correct symbol both in upper/lower case and spacing. Unit names and symbols should not be mixed in the same context.

For example: km/hr NOT km/hour

The term 'per' should be used only with words, whereas the '/' sign should be used only with symbols.

For example: kilometres per hour and km/hr but NOT km per hr

2.9.4 Symbols
Since symbols are internationally recognised representations of units, not abbreviations of the unit names, they do not take full stops nor do they change when associated with numbers greater than one.

For example: km NOT km., 2 kg NOT 2 kgs.

2.9.5 Mathematics and Symbols
Most word processing packages are able to handle mathematical equations, subscripts and superscripts and various symbols with ease. However, if necessary you can write them clearly with black ink. Ensure that adequate space is left above and below each equation. Define every symbol and give the units.

2.9.6 Equations
Equations should be numbered consecutively as they appear in the text and thereafter referred to by that number.

2.9.7 Non-discriminatory Style
Technical communication should be accurate and objective. It is not appropriate or accurate to assume that the use of the male pronoun or male terms throughout a document includes the female gender. The plural form usually gives a better representation of your meaning and eliminates the need to use the cumbersome form of he/she. For example: Engineers ... they NOT the Engineer… he.

Since engineering is an international profession, it is also important to be considerate of cultural differences. All communication should conform
to the UTS guidelines for the use of non-discriminatory language which is detailed in Language Matters, available from the Equity and Diversity Unit website at http://www.equity.uts.edu.au/index.html

2.10 Plagiarism
Plagiarism is regarded as a serious academic offence and can incur severe academic penalties.
When you directly copy the work of another without acknowledging it appropriately, you are obviously plagiarising. When you paraphrase another's work by putting it into your own words, or summarise their ideas, you must also acknowledge the source.
Therefore, you are expected to reference your work in a professional manner. You are also expected to be honest in your use of all reference materials. We expect that all work you submit is your own effort, correctly referenced to show the sources of ideas and information. Academic staff are duty bound to protect the integrity of the University by taking appropriate action when they encounter cases of plagiarism. Further details about plagiarism and referencing can be found on the UTS Library and ELSSA websites.

2.11 References
The Harvard System of referencing is the standard used by UTS:Engineering. In many of your assignments, you are expected to research by reading relevant books and articles and to use this material as a foundation for discussion and argument. Good referencing techniques help you to:
- acknowledge the source of your material
- comply with copyright regulations allowing others to read further if they wish.
Accurate referencing also indicates that you have thoroughly researched your field and that you are conversant with acceptable academic practice. You are expected to acknowledge both direct quotations and paraphrasing of ideas. Citations should occur within the body of the text as well as at the conclusion as a bibliography or list of references.
Table 1 describes the information you will need to record when reading to inform your research.

<table>
<thead>
<tr>
<th>Source</th>
<th>Reference requirements</th>
<th>citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book</td>
<td>Author, date of publication, title, edition if other than first, publisher: place</td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td>Author, date of publication, title of paper, journal name, volume number, issue number, date of issue, page numbers of paper</td>
<td></td>
</tr>
<tr>
<td>Conference</td>
<td>Author, date of publication, title of paper, conference and proceedings name, date of conference, page numbers of paper</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td>Author, date of publication, title, university</td>
<td></td>
</tr>
<tr>
<td>Chapter in larger publication</td>
<td>Author, date of publication, title of paper, publication name, publisher: place, page numbers of paper</td>
<td></td>
</tr>
<tr>
<td>Electronic Sources</td>
<td>Electronic and other non-print media should be identified as such by noting the media in brackets after the title. Include author, date of publication, title, the location and the name of the distributor if possible.</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>For items read or acquired over the Internet, author, date, title, publisher plus the format and shortest file address sufficient to find the item should be given.</td>
<td></td>
</tr>
</tbody>
</table>

2.11.1 In-text Referencing
When you refer to or quote the work of another author you should cite the author’s surname and year of publication (and the page number as appropriate). This referencing usually appears within the written text as shown below.

Smith (1990, p. 32) argues that all engineers are environmental engineers. Or ‘All engineers are environmental engineers.’ (Smith 1990, p. 32)
Footnotes are used sparingly for explanatory notes.

2.11.2 List of References
At the end of the paper you should list all works you have used in alphabetical order by author surname. This list is usually headed References. (A Bibliography is a list of known or consulted works on the topic, regardless of whether you have directly used them or not.) Where there is
more than one reference by the same author, you should list them in chronological order, the most recent publication first. If there is more than one in any one year then add an a, b, c... after the date to allow accurate in-text referencing. For full details of referencing style consult the ELSSA website under the Links tab – Study Links at www.elssa.uts.edu.au/elssalinks/studylinks.htm. Here you will find “A comprehensive guide to the Harvard and other styles” produced by the University of Central Queensland as well as other useful referencing sources. If an article has no obvious author, you should provide the fullest details possible in the textual citation and the list of references. The title or company name can be used instead of the author in these cases. e.g. Financial Times, 14 February 1996, p. 5 editorial

The expression 'Anonymous' or 'Anon' should not be used. It is worth noting that you should question the validity of any publication that lacks reference details as there is no way for you to authenticate its contents or for others to find it again. Remember that the information in the reference list must allow the reader to find the original reading for themselves.

2.12 Originality
Assignments are given to help you assimilate and synthesise the subject matter. During the course of completing an assignment, you will probably have discussed some aspects with your colleagues. We encourage this cross-fertilisation of ideas. However, it is not meant to result in blatant copying. If you have discussed an assignment with colleagues, and think that minor similarities with their work may appear, be sure to note their names on your cover sheet (see Section 2.14). If you have consulted previously submitted assignments from past students, you should list these assignments in the references section. Direct quotations from text books should not be overused.

Direct quotations should not be included in the word count of any assignment. Limited quotations and paraphrasing should, of course, be correctly referenced. (See Section 2.11) Your assignments should clearly be the result of your own efforts.

2.13 Group Assignments
Engineers often work as part of a professional team. Therefore, it is important to learn how to work in groups. Group assignments give you the opportunity to learn how to divide a complex project into tasks and share the workload in an equitable and efficient manner. Group assignments can also maximise your learning by encouraging you to discuss, debate and consolidate all your ideas and information. All members of a group are expected to make a fair contribution to the research, analysis and final written and oral presentations. Do not leave the final report preparation to one student. All members should be involved in the writing, editing and revising of the document so that it will have 'one voice' and not appear to be a collage of various writing styles. You should discuss any problems with unequal contributions with your lecturer.

2.14 Presentation of Assignments
Your assignments should be stapled in the upper left hand corner with a UTS:Engineering Cover Sheet (available on the Engineering website at http://www.eng.uts.edu.au/CurrentStudents/StudentSupport/Index.html#Forms or from the UPO). The Cover Sheet must contain the following information:

- UNIVERSITY OF TECHNOLOGY, SYDNEY (current logo can be used)
- UTS:ENGINEERING
- Assignment Title and Number
- Student Name(s) and Number(s)
- Subject Name and Number
- Lecturer's Name
- Due Date
- Submission Date
- Declaration of Originality
- Signature(s)
- Statement of Collaboration

Most lecturers prefer that assignments are NOT be presented in a folder or plastic sleeve. However, for some assignments or specific applications a folder or binding is appropriate.

3. ENGINEERING REPORTS
Reports, both in industry and at University, are tools for providing information for decision making. As such they should be designed so that they fulfil their specified purpose and are easy to use. The following guidelines provide a standard for submission of reports in UTS:Engineering and are generally accepted for the engineering workplace.
3.1 General Requirements
The general conventions presented in Section 2 of this Style Guide apply in principle to the writing of engineering reports.

3.2 Structure
The recommended structure for most formal reports is as follows:
- Cover Sheet (for assessment tasks)
- Title Page
- Acknowledgments
- Table of Contents
- List of Figures, Illustrations, Tables
- Glossary/ List of symbols
- Summary (Executive Summary)

For more detail about each section of a report see Table 2.

Table 2. Content of sections of an engineering report

<table>
<thead>
<tr>
<th>Section of Report</th>
<th>Contents of Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>Use a title that fully describes the major topic of your report.</td>
</tr>
<tr>
<td></td>
<td>Give the authorship details of your report, stating:</td>
</tr>
<tr>
<td></td>
<td>• name of writer, job title</td>
</tr>
<tr>
<td></td>
<td>• organisation</td>
</tr>
<tr>
<td></td>
<td>• city, state, postcode</td>
</tr>
<tr>
<td></td>
<td>Give the date the report is released.</td>
</tr>
<tr>
<td></td>
<td>Give the readership details of your report, stating:</td>
</tr>
<tr>
<td></td>
<td>• name of reader(s), job title</td>
</tr>
<tr>
<td></td>
<td>• organisation</td>
</tr>
<tr>
<td></td>
<td>• city, state, postcode</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>Use a separate page – no page number.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>When you want to draw attention to valuable help or important contributions, an</td>
</tr>
<tr>
<td></td>
<td>acknowledgments section is used.</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>Reports are often written for specific readers only. Restriction statements define</td>
</tr>
<tr>
<td></td>
<td>the circulation and describe the confidentiality of that report.</td>
</tr>
<tr>
<td>List of Figures, etc.</td>
<td>Reports of more than three pages should contain a list of the headings presented</td>
</tr>
<tr>
<td></td>
<td>in the report with relevant page numbers as a table of contents. A decimal</td>
</tr>
<tr>
<td></td>
<td>indexing system similar to the one used in this standard should identify each</td>
</tr>
<tr>
<td></td>
<td>section of the report.</td>
</tr>
<tr>
<td>Illustrations</td>
<td>If you use a number of tables, figures, and illustrations you should also include a</td>
</tr>
<tr>
<td></td>
<td>list of their location.</td>
</tr>
<tr>
<td></td>
<td>All illustrations, tables, graphs, charts, diagrams should be presented at the</td>
</tr>
<tr>
<td></td>
<td>appropriate point throughout the report. Each item should be given a Title and a</td>
</tr>
<tr>
<td></td>
<td>Figure Number.</td>
</tr>
<tr>
<td></td>
<td>For example, a table describing the cost of equipment presented in the Discussions</td>
</tr>
<tr>
<td></td>
<td>Section (Section 4) could be titled "Cost of laboratory equipment" and given the</td>
</tr>
<tr>
<td></td>
<td>index Table 4.3 which would indicate that it was the third table to appear in</td>
</tr>
<tr>
<td></td>
<td>Section 4. Tables and graphs usually have the title above the material, while other</td>
</tr>
<tr>
<td></td>
<td>illustrations have the caption below the figure.</td>
</tr>
<tr>
<td>Glossary/ List of symbols</td>
<td>If you have used a large amount of technical words or symbols in your report you could include a glossary or list of symbols at this point.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Summary/ Executive Summary</td>
<td>The summary of a report presents the key issues and facts of the report in a concise form. It is one of the most important sections of the report since it is read by almost all readers. It should include:</td>
</tr>
<tr>
<td></td>
<td>• the purpose of the report</td>
</tr>
<tr>
<td></td>
<td>• the main findings</td>
</tr>
<tr>
<td></td>
<td>• the conclusions and the recommendations</td>
</tr>
<tr>
<td></td>
<td>• It does not contain examples or illustrations</td>
</tr>
<tr>
<td></td>
<td>• While it is usually presented first, it is the last part of the report to be written.</td>
</tr>
<tr>
<td></td>
<td>Many readers will read ONLY the SUMMARY, so you should present the entire report in miniature. Give the readers all the facts they need to get the important messages of the report.</td>
</tr>
<tr>
<td></td>
<td>For lengthy reports in government and industry, the summary may be an entire volume. The length of your summary should be judged on function not by rule. However, industry values writers who can present concise one page executive summaries (i.e. summaries for the executive to read). Use a separate page – no page number</td>
</tr>
<tr>
<td>Introduction</td>
<td>The introduction contains any background needed to be able to appreciate the central information presented in the report.</td>
</tr>
<tr>
<td></td>
<td>In your Introduction:</td>
</tr>
<tr>
<td></td>
<td>• state the aim or objective of the report</td>
</tr>
<tr>
<td></td>
<td>• include some indication of why the report has been requested</td>
</tr>
<tr>
<td></td>
<td>• list the issues examined in your Discussion section</td>
</tr>
<tr>
<td></td>
<td>• indicate briefly your conclusion</td>
</tr>
<tr>
<td></td>
<td>The introduction also gives an overall view of the content and scope of the report.</td>
</tr>
<tr>
<td></td>
<td>The page numbering of your report begins with the Introduction</td>
</tr>
<tr>
<td>Background</td>
<td>In your Background you should:</td>
</tr>
<tr>
<td></td>
<td>• tell the story of an issue and/or organisation, and/or person, and/or event</td>
</tr>
<tr>
<td></td>
<td>• give definitions of any terms that the reader may not be aware of</td>
</tr>
<tr>
<td></td>
<td>A literature search is often required to present the current situation and how your work will move on from there. A written Literature Review can be included in a following section or as an Appendix.</td>
</tr>
<tr>
<td></td>
<td>If you have used specialist terms, it is wise to define these terms so that there is no misunderstanding or confusion throughout the report. If extensive technical terminology is used these should be added to the Glossary.</td>
</tr>
<tr>
<td>Method</td>
<td>A clear description of the research method should be included in the report. The purpose of this section is to give other researchers sufficient data to be able to replicate your study or understand where and how your data was derived. Note that this is not a methodology (=study of methods, i.e. a discussion or comparison of a variety of methods) but the method you have used.</td>
</tr>
<tr>
<td>Results*</td>
<td>You must present the relevant data in a clear and orderly manner and take care to format and organise it so that readers can easily understand and check for accuracy. In addition, you must interpret the data to give it meaning. Graphical interpretations in the form of tables, graphs or models, are especially useful to</td>
</tr>
</tbody>
</table>
simplify complex numerical data. Extensive calculations or tables of results that are interesting and relevant, but not essential to the main arguments should be presented in an Appendix.

Discussion*

Use your professional expertise to extract meaning from the data presented. Discuss how the laboratory data compares with theoretical predictions. Contrast Australian results with overseas studies. Explain the limitations of the equipment or the constraints of financial resources. Admit possible flaws in the method but show how you compensated by additional checks. Keep opinion quite distinct from fact and be careful of making inferences.

Note Use clear descriptive headings for the two sections above. Do not use the terms Body, Discussion, or Results since they do not give your readers any useful information about YOUR report. Instead use headings that describe what is in your report. e.g. *Analysis of Mild Steel Samples* or *Difficulties of International Benchmarking*.

Conclusions

This section opens with a brief summary of the report and then draws conclusions from the data presented. **No new material should be introduced in this section.** A good test of a well-written report is to check whether readers draw the same conclusions as those the writer presents.

Recommendations

Recommendations are clear statements of the action which should result from the report. They often form the basis for motions to be debated at business meetings. You should take great care with the wording of recommendations to prevent ambiguity and to ensure the outcome you are suggesting. Recommendation: That this organisation purchase three new computers for use in Test Lab 2. or *We recommend that students who are completing their final year projects should consult texts on thesis and report writing.*

References

Most reports require that you read some relevant literature as background to your own experiment or innovation. All literature that you use to formulate your basic ideas should be cited as references. Additional books, newspaper articles, journals, and sales pamphlets which could be of interest can be included in a *bibliography.* Sometimes evaluative comments are included to indicate what is valuable or interesting and the subsequent document is termed an *annotated bibliography.*

You can also list the names of people you interviewed in the course of your investigations. Reports are referenced to acknowledge the work of others but also to let your readers know where they can find the original work.

Appendix

Information that is too long, detailed or technical to be included in the main body of your report should be placed in the *Appendix.*

Extensive calculations or results, maps or diagrams, pamphlets or brochures which are relevant and may be interesting to the reader but are not necessary to the main discussions in the report should be placed in this section.

This material should be clearly titled and labelled (e.g. Appendix A, Results of Test 3.1) and flagged at an appropriate point in the main text (e.g. See Appendix A).

3.3 Presentation of Reports
For simplicity, you should submit routine reports on standard A4 paper with an appropriate cover page and stapled in the upper left-hand corner. Most lecturers prefer that no folders or plastic envelopes are used.

However, in workplace contexts considerable thought is given to the design and presentation of reports. You should consult the workplace Style Guide for details.

In some subjects, the professional appearance of reports is also an important component of the overall presentation. Your lecturers will probably indicate that they expect a more elaborate presentation. However, you may need to use your initiative to determine what is appropriate.

Your capstone project (or thesis) report requires careful attention to format, writing and presentation style. Details and further guidelines can be found on the Capstone Project website at www.eng.uts.edu.au/capstone.

3.4 Writing Style
Reports should be easy to read. Therefore, the writing style should be simple, clear and concise. Generally use short sentences and crisp short paragraphs. (See Section 2.8 for conventions of grammar and style). You should be sure to number all pages of the text including Appendices and other indices with Arabic numbers (1, 2, 3), while the Table of Contents is identified with lower case Roman numerals. (eg i, ii, iii, iv, v).

4. LABORATORY REPORTS

4.1 Introduction
Laboratory reports document experiments carried out by you either independently or in groups. More often than not, the quality of your experiment will be judged by your written account. The purpose of this account is to state clearly and exactly what has been done, to explain why the work was done, and to give the results attained. There are basically five types of experiments carried out in engineering laboratories:

- verifying laws and principles
- measuring or determining the value of a property
- comparing various methods of
- determining the value of a property
- comparing experimental results with theoretical results
- implementing a theoretical design

To successfully complete these experiments, you will need to:

- test accurately and consistently
- observe carefully and objectively
- measure accurately and consistently
- document your work thoroughly so
- that the experiment can be checked or replicated

The basic format for these reports is similar to all formal reports. However, there are some conventions which apply specifically to laboratory reports, and therefore a separate list of standard criteria is useful.

4.2 General Requirements
The general conventions presented in Sections 2 and 3 of this document apply in principle to the writing of laboratory reports.

4.3 Structure
The recommended structure for laboratory reports is as follows:

- Cover Sheet
- Title Page
- Summary (if requested)
- Aim
- Theory
- Apparatus
- Method
- Results
- Discussion
- Conclusions
- References
- Appendices

Table 3. Content of laboratory report sections.

<table>
<thead>
<tr>
<th>Section of Report</th>
<th>Contents of Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>List the title of the experiment, date, and objective of the experiment in addition to the conventional data.</td>
</tr>
<tr>
<td>Summary</td>
<td>Concisely describe</td>
</tr>
<tr>
<td></td>
<td>a. the aim of the experiment</td>
</tr>
<tr>
<td></td>
<td>b. the method used</td>
</tr>
<tr>
<td>5. HAND WRITTEN ASSIGNMENTS</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Handwritten miscellaneous assignments should also be easy to read, understand and grade. The purpose of assignments is usually to give you practice and to verify your competence at some specific task. You should design your paper to achieve these goals. You should also leave adequate space for assessor’s comments and notations.</td>
<td></td>
</tr>
</tbody>
</table>

5.1 General Requirements
Whenever possible, handwritten assignments should conform as closely as possible to the General Conventions presented in Section 2. They should have clear sections that may include Problem Number, Statement of what is required, clear diagrams, methods used, clear working for mathematical problems and an answer clearly highlighted.

5.2 Paper
Grid paper can be used to ensure neatness in both writing and drawing. Lined paper is appropriate for simple calculations. Paper should be a standard A4 size and should be of a thickness which allows both sides to be used when required, without losing clarity.

5.3 Writing
Writing should be clear and legible. Black pen is preferred. Pencil is sometimes acceptable for calculations or sketches. Check with the lecturer for individual requirements.

5.4 Pagination and Numbering
All pages should be numbered, and your name and student number should appear in the upper right hand corner of each page. Each assignment question should be clearly numbered in the left margin.

5.5 Margins
Adequate margins should be provided for lecturer comment.

5.6 Style
The assignment answer should be clearly highlighted. A ruled line should separate each assignment question.

5.7 Presentation of Hand-written Assignments
Assignments should be stapled in the upper left-hand corner with a standard Cover Sheet discussed in Section 2.14

<table>
<thead>
<tr>
<th>Aim</th>
<th>State in a one or two sentences, the main reason for carrying out the experiment; i.e. verify, measure, compare.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Present a brief account of the underlying theory.</td>
</tr>
<tr>
<td>Apparatus</td>
<td>Show the construction and operation of test equipment with detailed drawings and accompanying written text.</td>
</tr>
<tr>
<td>Method</td>
<td>Document the experiment with a clear and full account of how the experiment was carried out so that others could repeat your study.</td>
</tr>
<tr>
<td>Results</td>
<td>Present clearly constructed tables of measurements or a detailed synopsis of observations made, followed by calculations, graphs, and estimates of accuracy. It is imperative to record the units used for each measurement.</td>
</tr>
<tr>
<td>Discussion</td>
<td>Usually the most important section of the report, since it makes sense of the data presented above. Comment on the results and explain unexpected results. Compare your results with published values or with different sets of results. You may also suggest modifications or changes to any subsequent experiments or give direction for further research.</td>
</tr>
<tr>
<td>Conclusions</td>
<td>Summarise the discussion and state whether the aims of the experiment have been achieved.</td>
</tr>
<tr>
<td>References</td>
<td>List the publications you consulted as outlined in previous referencing sections of this document</td>
</tr>
<tr>
<td>Appendix</td>
<td>Present lengthy calculations or raw data as supplementary material.</td>
</tr>
</tbody>
</table>
6. CONFERENCE PAPERS
Conference or Seminar Papers should conform to the style guide issued by the conference authority. An abstract will usually be required.

7. POSTER PRESENTATIONS
Posters have become a common way to present the results of research work at conferences and are a useful way to publicise your work. A poster is like a mini-paper with the emphasis on 'mini'. It is a clear, succinct and precise summary of the project presented in a language that an intelligent layperson can understand. At conferences posters are displayed in a common area and the authors usually stand by their presentations at designated times to answer questions and explain their work. Viewers can consider the material at their own rate and discuss interesting points with the authors. Sometimes, authors also give short summary oral presentations. Posters at university are a good way to share your ideas and research results, too. Other students and staff can see at a glance the variety of work being attempted.

7.1 Content
Viewers need to be able to quickly identify:
- the reason why the research was necessary what the researcher has achieved
- the significance of the research and its potential benefits.

A poster should contain a title, your name and student number and where you can be contacted, an abstract, some text (e.g. equivalent to the executive summary of a report), diagrams, photos and other graphic material. Additional material can include
- exhibits, objects and models
- audiovisual displays
- take-away handouts (which could be a summary of your project or your CV)
- a blank note-pad so that when you are not in attendance readers can leave messages or comments for you.

7.2 Visual Appeal
Posters should have considerable visual appeal. They need to be conceptually appreciated from a distance of two metres so lettering should be at least 20-point and in bold type. The poster sections need to be arranged sequentially with important sections highlighted and detail easy to read. The whole poster needs to be attractive with a careful choice of colour and text able to be read at a distance of at least one metre.

7.3 Style
Simplicity is the key to a successful poster. Keep your message as simple as possible. Ask yourself key questions and then design your poster to clearly and simply answer those key questions. Consider which medium best satisfies the needs of the message. Is a picture worth more than a thousand words? Is a graph or table a more efficient way to summarise your data. Which colours are most appropriate?

Use headlines and pointers to focus attention on key points. Graphics should probably take up more than half of the poster.

The text should be clear and concise. Use short simple sentences. Use as little technical jargon as possible. Remember that not all viewers, even the engineers, are specialists in your research area.

The movement of the reader's eyes over a poster should be as natural as possible. Guide readers down columns and across rows. You can use arrows, hands, numbers or lines to help keep the viewers on track.

7.4 Size
Unless otherwise instructed, posters should be at least A1 size (equivalent to 8 x A4 pages – 840x594 mm) to a maximum of 1500 mm x 1000 mm. Lettering should be at least 20- point and in bold type. Consider how you will print it and the associated costs.

8. RESUMES
You will need to adapt your personal resume (Curriculum Vitae) to meet the changing demands of your professional development. Your lecturers will give you guidance in the different styles of resumes appropriate for various job applications. The Industry Partnering Unit (IPU) in the UPO and your first Engineering Practice Preview subject will support you in designing an acceptable resume before you apply for work through UTS: Engineering.
9. LETTERS
Throughout your academic life you may need to write a number of letters for both university and personal business. At work you would probably follow the form used by your organisation. The references listed at the end of this Style Guide give assistance with letter writing. The IPU also supplies templates for some letter formats online at www.eng.uts.edu.au/Industry/Internships/IPUEngineeringExperiencePage.htm.

10. OTHER RELEVANT GENRE
Other genre (text types) you may be expected to use in your academic experience include:

- essay
- literature review
- thesis
- annotated bibliography
- reflective journal

and many more. Descriptions of these can be found in the references below.

11. REFERENCES & FURTHER READING

Eunson, B. 2005, Communicating in the 21st century, Wiley, Melbourne

Plain English Campaign 2004, How to Write Plain English, viewed on 7 June 2005 at www.plainenglish.co.uk/plainenglishguide.html

UTS Faculty of Business 1999, Guide to writing assignments, Faculty of Business, University of Technology Sydney, Australia
Bibliography

<table>
<thead>
<tr>
<th>Resource</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTSOnline</td>
<td>http://online.uts.edu.au</td>
</tr>
<tr>
<td>One Stop Student Admin</td>
<td>https://onestopadmin.uts.edu.au/estudent/</td>
</tr>
</tbody>
</table>