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Abstract

Recursive Marginal Quantization (RMQ) allows fast approximation of solutions to
stochastic differential equations in one-dimension. When applied to two factor models,
RMQ is inefficient due to the fact that the optimization problem is usually performed
using stochastic methods, e.g., Lloyd’s algorithm or Competitive Learning Vector Quan-
tization. In this paper, a new algorithm is proposed that allows RMQ to be applied to
two-factor stochastic volatility models, which retains the efficiency of gradient-descent
techniques. By margining over potential realizations of the volatility process, a significant
decrease in computational effort is achieved when compared to current quantization meth-
ods. Additionally, techniques for modelling the correct zero-boundary behaviour are used
to allow the new algorithm to be applied to cases where the previous methods would fail.
The proposed technique is illustrated for European options on the Heston and Stein-Stein
models, while a more thorough application is considered in the case of the popular SABR
model, where various exotic options are also priced.

1 Introduction

Quantization is a lossy compression technique that has been applied to many challenging
problems in mathematical finance, including pricing options with path dependence and early
exercise [Pagès and Wilbertz, 2009; Sagna, 2011; Bormetti et al., 2016], stochastic control
problems [Pagès et al., 2004] and non-linear filtering [Pagès and Pham, 2005].

Pagès and Sagna [2015] introduced a technique known as Recursive Marginal Quantization
(RMQ), which approximates the marginal distribution of a stochastic differential equation by
recursively quantizing the Euler approximation of the process. This was extended to higher-
order schemes by McWalter et al. [2017]. RMQ can be applied to any one-dimensional SDE,
even when the transition density is unknown, and has been used to efficiently calibrate a local
volatility model by Callegaro et al. [2014, 2015a].

∗Correspondence: tom@analytical.co.za
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Applying the standard RMQ technique to a two-factor SDE generally requires the use of
stochastic numerical methods, such as the randomized Lloyd’s method or stochastic gradient
descent methods such as Competitive Learning Vector Quantization (see Pagès [2014] for an
overview of these methods). The computational cost of these techniques is prohibitive.

To overcome this numerical inefficiency, Callegaro et al. [2015b] used conditioning to derive
a modified RMQ algorithm that can be applied to stochastic volatility models while retaining
the use of the underlying Newton-Raphson technique. This was achieved by performing a
one-dimensional RMQ on the volatility process and then conditioning on the realizations of
the resultant quantized process. We derive a new RMQ algorithm for the stochastic volatility
setting by showing that the correlation between the two processes may be neglected when
minimizing the distortion. We call this innovation the Joint Recursive Marginal Quantization
(JRMQ) algorithm. It results in an increase in accuracy and a large increase in efficiency. Fur-
thermore, it allows for the modelling of the correct zero-boundary behaviour of the underlying
processes. We now provide an overview of the paper.

In Section 2 an overview of the RMQ algorithm in the one-dimensional case is provided.
Section 3 derives the JRMQ algorithm for the stochastic volatility setting with the main result
of the paper contained in Proposition 3.1. Section 4 discusses how to efficiently compute the
joint probabilities required by the new algorithm. In Section 5, a concise matrix formulation
is provided to ease implementation. Section 6 prices European options under the Stein-Stein,
Heston and SABR stochastic volatility models. In Section 7, a single grid generated by the
JRMQ algorithm for the SABR model is used to price Bermudan and barrier options, and
volatility corridor swaps. Section 8 concludes.

2 Quantization of Single-factor Models

Let X be a continuous random variable, taking values in R, and defined on the probability
space (Ω,F ,P). We seek an approximation of this random variable, denoted X̂, taking values
in a set of finite cardinality, Γx, with the minimum expected squared Euclidean difference from
the original. Constructing this approximation is known as vector quantization, with X̂ called
the quantized version of X and the set Γx = {x1, . . . , xN} known as the quantizer with
cardinality N . The elements of Γx are called codewords.

The primary utility of quantization is the efficient approximation of expectations of func-
tionals of the random variable X using

E [H(X)] =

∫
R
H(x) dP(X ≤ x) ≈

N∑
i=1

H(xi)P
(
X̂ = xi

)
,

where X̂ denotes the quantized version of X. We now briefly describe the mathematics of
vector quantization. Consider the nearest-neighbour projection operator, πΓx : R 7→ Γx, given
by

πΓx(X) :=
{
xi ∈ Γx

∣∣ ‖X − xi‖ ≤ ‖X − xj‖ for all j = 1, . . . , N ; where equality

holds only for i < j
}
.

The quantized version of X is defined in terms of this projection operator as X̂ := πΓx(X).
The region Ri(Γx), for 1 ≤ i ≤ N , is defined as

Ri(Γx) :=
{
z ∈ R

∣∣ πΓx(z) = xi
}
,
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and is the subset of R mapped to codeword xi through the projection operator.
The expected squared Euclidean error, known as the distortion, is given by

D(Γx) = E
[
‖X − X̂‖2

]
=

∫
R
‖x− πΓx(x)‖2 dP(X ≤ x)

=
N∑
i=1

∫
Ri(Γx)

‖x− xi‖2 dP(X ≤ x),

and is the function that must be minimized in order to obtain the optimal quantizer. We
retain the symbol x to refer to the continuous domain of the distribution of the random
variable X, whereas xi refers to the discrete codewords of the resulting quantizer, Γx, for
1 ≤ i ≤ N .

When the gradient and Hessian of the distortion can be computed in closed-form, a simple
Newton-Raphson algorithm may be used to minimise the distortion,

(n+1)Γx = (n)Γx −
[
∇2D

(
(n)Γx

)]−1
∇D

(
(n)Γx

)
.

Here, 0 ≤ n < nmax is the iteration index of the algorithm and [(n)Γx]i = xi, for 1 ≤ i ≤ N ,
is a column vector containing the codewords. The gradient vector and Hessian matrix of the

distortion are∇D
(

(n)Γx
)

and∇2D
(

(n)Γx
)

, respectively. Note that the distortion function is

applied element-wise to the column vector (n)Γx, and (0)Γx is an initial guess for the quantizer.
McWalter et al. [2017] provide explicit expressions for the gradient vector and Hessian matrix
in the one-dimensional case, and an efficient matrix formulation for implementation.

To extend the applicability of vector quantization for use with SDEs, Pagès and Sagna
[2015] proposed recursive marginal quantization of the Euler scheme for an SDE. In order to
fix the notation used in the remainder of the paper we briefly specify this problem.

Consider the one-dimensional continuous-time stochastic differential equation

dXt = ax(Xt) dt+ bx(Xt) dW
x
t , X0 = x0,

defined on (Ω,F , (Ft)t∈[0,T ],P), a filtered probability space satisfying the usual conditions.

The discrete-time Euler approximation X̃ of X, on an evenly spaced time grid, is given by

X̃k+1 = X̃k + ax(X̃k)∆t+ bx(X̃k)
√

∆tZxk+1

=: Ux(X̃k, Z
x
k+1), (1)

for 0 ≤ k < K, where ∆t = T/K, and Zxk+1 ∼ N (0, 1) are independent standard Gaussian
random variables.

The optimal quantizer for the continuous-time process X, at each fixed time tk+1 =
(k + 1)∆t, should be computed using the distortion

E
[
‖Xtk+1

− πΓx(Xtk+1
)‖2
]
.

This is, however, not possible in the general case, since the distribution of Xtk+1
is unknown.

We instead consider the distortion computed in terms of the Euler approximation X̃k+1.
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Let Γxk be the quantizer of X̃, at time-step k with 0 ≤ k ≤ K. To remain consistent
with the specification of the problem above, the quantizer at the initial time, t0, is given
by Γx0 = {x0}. We fix the cardinality of the quantizers at all other time steps to be Nx

— this may, however, be relaxed (see, for example, the discussion on optimal dispatching in
Pagès and Sagna [2015]). Since the Euler update is normally distributed, the quantizer at
the first time step is just the vector quantization of a normal distribution. The distortion of
the quantizer for each successive step is then given by

D̃
(
Γxk+1

)
= E

[∥∥X̃k+1 − πΓx(X̃k+1)
∥∥2
]

= E
[
E
[∥∥X̃k+1 − X̂k+1

∥∥2
∣∣∣ X̃k

]]
= E

[
E
[∥∥Ux(X̃k, Z

x
k+1)− X̂k+1

∥∥2
∣∣∣ X̃k

]]
=

∫
R
E
[∥∥Ux(x, Zxk+1)− X̂k+1

∥∥2
]
dP(X̃k ≤ x).

To proceed, we approximate the above distortion using the distribution of X̂k rather than
X̃k, in which case

D̃
(
Γxk+1

)
≈ D

(
Γxk+1

)
:=

Nx∑
i=1

E
[∥∥Ux(xik, Zk+1)− X̂k+1

∥∥2
]
P
(
X̂k = xik

)
,

where the approximate distortion is defined without any accents.
This is the one dimensional vector quantization problem, where the distribution being

quantized is a marginal distribution consisting of the probability-weighted sum of Euler up-
dates, each having originated from the codewords in the quantizer at the previous time step.
Recursively applying this procedure to the updates of the Euler process is known as recursive
marginal quantization (RMQ). Since the vector quantization problem specified in this manner
is one-dimensional, the efficient Newton-Raphson procedure can be used to minimize the re-
sulting distortion, which yields the quantizer at each time-step. McWalter et al. [2017] derive
explicit and efficient expressions for the gradient vector and Hessian matrix required for the
Newton-Raphson procedure and show that recursive marginal quantization of higher-order
schemes is possible — specifically the Milstein and simplified weak-order 2.0 schemes. In the
present work, we only consider the Euler scheme.

Note that the Euler update (1) can be written in an affine form as

Ux(X̃k, Z
x
k+1) = mi

kZ
x
k+1 + cik, (2)

with
mi
k := bx(xik)

√
∆t and cik := xik + ax(xik)∆t. (3)

Thus, for a given quantizer, Γxk+1, the standardized region boundaries associated with each
codeword are given by

ri,j±k+1 =
1
2(xj±1

k+1 + xjk+1)− cik
mi
k

, (4)

for 1 ≤ i, j ≤ Nx. This refers to the upper and lower region boundary of codeword xjk+1 when

viewed from codeword xik. Equations (2) to (4) are central to the standard RMQ algorithm,
see McWalter et al. [2017], and are presented here for use later in the paper.

4



3 Quantization of Stochastic Volatility Models

In this section, we consider the recursive marginal quantization of a generic stochastic volatil-
ity model described by the coupled SDEs

dXt = ax(Xt) dt+ bx(Xt) dW
x
t , X0 = x0, (5)

dYt = ay(Yt) dt+ by(Xt, Yt) (ρ dW x
t +

√
1− ρ2 dW⊥t ), Y0 = y0 (6)

defined on (Ω,F , (Ft)t∈[0,T ],P), where W x
t and W⊥t are independent standard Brownian

motions. In this system, the Cholesky decomposition, specified in terms of the correlation
parameter ρ ∈ [−1, 1], is chosen explicitly in order to facilitate derivations. Here, Xt, referred
to as the independent process, drives the specification of the stochastic volatility factor in the
dependent process Yt.

The Euler scheme for the above system is given by

X̃k+1 = Ux(X̃k, Z
x
k+1), X̃0 = x0 (7)

Ỹk+1 = Ỹk + ay(Ỹk) + by(X̃k, Ỹk)
√

∆t(ρZxk+1 +
√

1− ρ2Z⊥k+1), Ỹ0 = y0 (8)

=: Uy(X̃k, Ỹk, Z
x
k+1, Z

⊥
k+1), (9)

for 0 ≤ k < K, where Ux(X̃k, Z
x
k+1) is defined by (1) and Zxk+1, Z

⊥
k+1 ∼ N (0, 1) are inde-

pendent standard Gaussian random variables. The main result of this paper is to show that
quantizing the Euler update Ỹk+1 = Uy(X̃k, Ỹk, Z

x
k+1, Z

⊥
k+1) is equivalent to quantizing the

update given by
Uy(X̃k, Ỹk, Z) = Ỹk + ay(Ỹk)∆t+ by(X̃k, Ỹk)

√
∆tZ, (10)

where Z ∼ N (0, 1) is any standard Gaussian random variable. Having established this result,
we proceed to quantize the system and derive a one-dimensional vector quantization algorithm
based on a Newton-Raphson iteration.

Proposition 3.1. Given the Euler scheme defined by (7) and (8), the distortion of the
quantizer Γyk+1 may be expressed as

D̃(Γyk+1) = E
[∥∥Uy(X̃k, Ỹk, Z)− Ŷk+1

∥∥2
]
,

where the margined update function is defined by (10) with Z ∼ N (0, 1).

Proof. The distortion of the quantizer Γyk+1 for Ỹk+1 is given in terms of the update (9) as

D̃
(
Γyk+1

)
:=E

[∥∥Ỹk+1 − Ŷk+1

∥∥2
]

=E
[
E
[∥∥Ỹk+1 − Ŷk+1

∥∥2
∣∣∣ X̃k, Ỹk

]]
=

∫
R2

E
[∥∥Uy(x, y, Zxk+1, Z

⊥
k+1)− Ŷk+1

∥∥2
]
dP(X̃k ≤ x, Ỹk ≤ y)

=

∫
R2

E
[
f
(
Uy(x, y, Zxk+1, Z

⊥
k+1)

)]
dP(X̃k ≤ x, Ỹk ≤ y),

where f(w) :=
(
w − πΓy

k+1
(w)
)2

. The inner expectation may be written explicitly as

E
[
f
(
Uy(x, y, Zxk+1, Z

⊥
k+1)

)]
=

1

2π

∫
R2

f
(
Uy(x, y, u, v)

)
exp

(
−u2

2

)
exp

(
−v2

2

)
dv du.
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Now, let
z = ρu+

√
1− ρ2v,

which means that

v =
z − ρu√

1− ρ2
and dv =

1√
1− ρ2

dz.

Then,

E
[
f
(
Uy(x, y, Zxk+1, Z

⊥
k+1)

)]
=

1

2π
√

1− ρ2

∫
R2

f
(
Uy(x, y, z)

)
exp

(
−u2

2

)
exp

(
−(z − ρu)2

2(1− ρ2)

)
dz du

=
1

2π
√

1− ρ2

∫
R2

f
(
Uy(x, y, z)

)
exp

(
−z2

2

)
exp

(
−(u− ρz)2

2(1− ρ2)

)
dz du

=
1√
2π

∫
R
f
(
Uy(x, y, z)

)
exp

(
−z2

2

)
1√

2π(1− ρ2)

∫
R

exp

(
−(u− ρz)2

2(1− ρ2)

)
du︸ ︷︷ ︸

=1

dz

=
1√
2π

∫
R
f
(
Uy(x, y, z)

)
exp

(
−z2

2

)
dz,

where we have used Fubini’s theorem in the penultimate step. Thus, we obtain

E
[
f
(
Uy(x, y, Zxk+1, Z

⊥
k+1)

)]
= E

[
f
(
Uy(x, y, Z)

)]
.

Putting everything together, we have

D̃
(
Γyk+1

)
=

∫
R2

E
[
f
(
Uy(x, y, Z)

)]
dP(X̃k ≤ x, Ỹk ≤ y)

=

∫
R2

E
[∥∥Uy(x, y, Z)− Ŷk+1

∥∥2
]
dP(X̃k ≤ x, Ỹk ≤ y)

= E
[∥∥Uy(X̃k, Ỹk, Z)− Ŷk+1

∥∥2
]
,

as required.

Remark 3.2. The above proposition demonstrates that the quantization of Ỹk+1 depends only
on its distribution, and, from the perspective of the distortion function, the correlation between
Ỹk+1 and X̃k+1 is irrelevant. Another way of saying this is that

f
(
Uy(x, y, Zxk+1, Z

⊥
k+1)

) d
=f
(
Uy(x, y, Z)

)
,

where Z ∼ N (0, 1), and, since we only need to consider weighted sums of expectations of
these values when computing the distortion, the correlation between Zxk+1 and Z⊥k+1 need not
be considered. As we shall see later, it is necessary to take correlation into account when
computing the joint probabilities of Ỹk+1 and X̃k+1.

As we did in the previous section, we now quantize the expression for the distortion.
The quantization of the Euler scheme for the independent process, X̃, proceeds directly
using the standard RMQ algorithm from Section 2, and can be performed for all time steps
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without reference to Ỹ . Suppose, at time step k, the quantizer for the dependent process Γyk
has been computed along with the corresponding joint probabilities P(X̂k = xik, Ŷk = yuk ),

for 1 ≤ i ≤ Nx and 1 ≤ u ≤ Ny, then the distortion for the quantizer of Ỹk+1 may be
approximated by

D̃(Γyk+1) =

∫
R2

E
[∥∥Uy(x, y, Z)− Ŷk+1

∥∥2
]
dP(X̃k ≤ x, Ỹk ≤ y)

≈
Nx∑
i=1

Ny∑
u=1

E
[
(Uy(xik, yuk , Z)− Ŷk+1)2

]
P(X̂k = xik, Ŷk = yuk ) (11)

=: D(Γyk+1).

The main result from Pagès and Sagna [2015] shows that the approximation in (11) results
in a convergent procedure. We again assume that the cardinality of Γyk is fixed at Ny for all
0 < k ≤ K and that Γy0 = {y0}. As before, the quantizer Γy1 may be computed using standard
vector quantization of the normal distribution.

For the remainder of this section we assume that, conditional on knowing the quantizers
Γxk and Γyk, their associated joint probabilities are known — in Section 4 we shall provide
two different approaches for computing them. Under this assumption and having rewritten
the distortion (11) in terms of the margined update function, the minimization problem
that generates the quantizer at time-step k + 1 may be specified using the Newton-Raphson
iteration

(n+1)Γyk+1 = (n)Γyk+1 −
[
∇2D

(
(n)Γyk+1

)]−1
∇D

(
(n)Γyk+1

)
, (12)

where Γyk+1 is a column vector of the codewords in Γyk+1 and 0 ≤ n < nmax is the iteration
index. Closely following McWalter et al. [2017], closed-form expressions for the gradient of
the distortion, ∇D

(
Γyk+1

)
, and the tridiagonal Hessian matrix, ∇2D

(
Γyk+1

)
, may now be

derived.
To summarise notation, we write the update of the dependent process as

Uy(xik, yuk , Z) =: U i,uk+1 = mi,u
k Z + cuk ,

where
mi,u
k := by(xik, y

u
k )
√

∆t and cuk := yuk + ay(yuk )∆t.

Note that the i and j indices, for 1 ≤ i, j ≤ Nx, always refer to the codewords of the
quantizers for the X̃-process, whereas the u and v indices, for 1 ≤ u, v ≤ Ny, always refer to
the codewords of the quantizers for the Ỹ -process.

The gradient of the distortion is given by

∂D(Γyk+1)

∂yvk+1

= 2
Nx∑
i=1

Ny∑
u=1

E
[
I{U i,u

k+1∈R
v
k+1}(y

v
k+1 − U

i,u
k+1)

]
P(X̂k = xik, Ŷk = yuk )

= 2

Nx∑
i=1

Ny∑
u=1

∫
U i,u
k+1∈R

v
k+1

(yvk+1 − U
i,u
k+1) dP(Z < z)P(X̂k = xik, Ŷk = yuk ), (13)

where Rvk+1 is the region associated with codeword yvk+1. To rewrite the integration bounds

in terms of the Gaussian random variable, consider that U i,uk+1 ∈ R
v
k+1 implies that U i,uk+1 lies

between the region boundaries of the codeword yvk+1. This means

rv−k+1 < U i,uk+1 ≤ r
v+
k+1 and rv±k+1 := 1

2(yv±1
k+1 + yvk+1),
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and r1−
k+1 = −∞ and rN

y+
k+1 =∞ by definition. Thus,

U i,uk+1 ∈ R
v
k+1 =

r
i,u,v−
k+1 < Z ≤ ri,u,v+

k+1 for mi,u
k ≥ 0

ri,u,v−k+1 > Z ≥ ri,u,v+
k+1 for mi,u

k < 0,

where

ri,u,v±k+1 :=
rv±k+1 − c

u
k

mi,u
k

, (14)

is defined to be the standardized region boundary. Similar to the region boundaries of the
independent process, see (4), it refers to the region boundaries of the codeword yvk+1, when
viewed from the codewords xik and yuk of the previous time step.

Let fZ and FZ by the PDF and CDF of a standard normal random variable Z, respectively,
and define MZ as the first lower partial expectation of Z,

MZ(z) := E
[
ZI{Z<z}

]
.

Then, by direct evaluation of the integral in (13), each element of the gradient of the distortion
at time-step k + 1 is given by

∂D(Γyk+1)

∂yvk+1

= 2
Nx∑
i=1

Ny∑
u=1

[
(yvk+1 − cuk) sgn(mi,u

k )(FZ(ri,u,v+
k+1 )− FZ(ri,u,v−k+1 ))

−|mi,u
k |(MZ(ri,u,v+

k+1 )−MZ(ri,u,v−k+1 ))
]
P(X̂k = xik, Ŷk = yuk ). (15)

The Ny-elements of the main diagonal of the tridiagonal Hessian matrix, ∇2D
(
Γyk+1

)
, are

given by

∂2D(Γyk+1)

∂(yvk+1)2
=

Nx∑
i=1

Ny∑
u=1

[
2 sgn(mi,u

k )(FZ(ri,u,v+
k+1 )− FZ(ri,u,v−k+1 ))

+
1

2|mi,u
k |

fZ(ri,u,v+
k+1 )(yvk+1 − yv+1

k+1) (16)

+
1

2|mi,u
k |

fZ(ri,u,v−k+1 )(yv−1
k+1 − y

v
k+1)

]
P(X̂k = xik, Ŷk = yuk ),

with the (Ny − 1)-elements of the super-diagonal and sub-diagonal given by

∂2D(Γyk+1)

∂yvk+1∂y
v+1
k+1

=
Nx∑
i=1

Ny∑
u=1

1

2|mi,u
k |

fZ(ri,u,v+
k+1 )(yvk+1 − yv+1

k+1)P(X̂k = xik, Ŷk = yuk ) (17)

and

∂2D(Γyk+1)

∂yvk+1∂y
v−1
k+1

=

Nx∑
i=1

Ny∑
u=1

1

2|mi,u
k |

fZ(ri,u,v−k+1 )(yv−1
k+1 − y

v
k+1)P(X̂k = xik, Ŷk = yuk ), (18)

respectively.
The formulae above are similar to those derived for the standard RMQ case, with an

additional summation over the codewords of the independent process. Thus, we again have a
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ri,u,v+
k+1

ri,u,v−k+1

ri,j−k+1 ri,j+k+1

Γ
y k
+

1
R

eg
io

n
s

Γxk+1 Regions

(xjk+1, y
v
k+1)

Figure 1: A standardized region for the bivariate Gaussian distribution with indices i and u
fixed.

one-dimensional vector quantization problem, but this time the marginal distribution to be
quantized consists of a sum of Euler updates that are weighted using joint probabilities. For
this reason, we shall refer to this variant of the RMQ algorithm as the joint RMQ algorithm
(JRMQ). This will allow us to distinguish it in the text from the standard RMQ algorithm
described in Section 2.

When the above formulation is compared with the approach proposed by Callegaro et al.
[2015b] (see Appendix D of their paper), it is observed that our equations have one less
summation, since we do not need to condition on the independent process at time-step k+ 1.
This means that the expressions for the gradient and Hessian presented here are an order of
magnitude more efficient to implement.

4 Computing the Joint Probabilities

Up to this point, we have assumed that the joint probabilities required in (15) to (18) are
available. In this section, we shall show how to compute these probabilities exactly and using
a computationally efficient approximation. To facilitate efficient implementation, we also
provide a matrix formulation of the system in Section 5.1.

From (7) and (8) it is evident that, conditional on the realizations of X̃k and Ỹk, the joint
probability distribution of X̃k+1 and Ỹk+1 is bivariate Gaussian. We define

Zyk+1 := ρZxk+1 +
√

1− ρ2Z⊥k+1,

such that Ỹk+1 = U(X̃k, Ỹk, Z
y
k+1).

9



Consider the joint probability of X̃k+1 and Ỹk+1 in the form

F
X̃k+1,Ỹk+1

(x, y)

=

∫
R2

P(Ux(r, Zxk+1) ≤ x,Uy(r, s, Zyk+1) ≤ y) dP(X̃k ≤ r, Ỹk ≤ s)

≈
Nx∑
i=1

Ny∑
u=1

P(Ux(xik, Z
x
k+1) ≤ x,Uy(xik, yuk , Z

y
k+1) ≤ y)P(X̂k = xik, Ŷk = yuk ) (19)

=

Nx∑
i=1

Ny∑
u=1

P

(
Zxk+1 ≤

x− cik
mi
k

, Zyk+1 ≤
y − cuk
mi,u
k

)
P(X̂k = xik, Ŷk = yuk ).

The approximation in (19) is formed by replacing the continuous, and unknown, distributions
of X̃k and Ỹk with the discrete, and known quantized distributions of X̂k and Ŷk, as in the
standard RMQ case. The necessary joint probability is then given by

P(X̃k+1 = xjk+1, Ỹk+1 = yvk+1)

=
Nx∑
i=1

Ny∑
u=1

[∫ ri,u,v+k

ri,u,v−k

∫ ri,j+k

ri,j−k

φ2(x, y, ρ) dx dy

]
P(X̂k = xik, Ŷk = yuk ),

(20)

where φ2(x, y, ρ) is the bivariate Gaussian density function for two standard Gaussian random
variables correlated by ρ. The double integral above refers to the probability of a rectangle
delimited by the standardized regions of Γxk+1 and Γyk+1, see Figure 1. Therefore, for each
1 ≤ j ≤ Nx and 1 ≤ v ≤ Ny,

P(X̃k+1 = xjk+1, Ỹk+1 = yvk+1) =
Nx∑
i=1

Ny∑
u=1

[
Φ2

(
ri,j+k , ri,u,v+

k , ρ
)
− Φ2

(
ri,j−k , ri,u,v+

k , ρ
)

−Φ2

(
ri,j+k , ri,u,v−k , ρ

)
+ Φ2

(
ri,j−k , ri,u,v−k , ρ

)]
× P(X̂k = xik, Ŷk = yuk ),

(21)

where Φ2(x, y, ρ) is the standard bivariate Gaussian cumulative distribution function with
correlation ρ evaluated at x and y.

Given the quantizers at time k, the joint probability in (21) is exact. However, it requires
the evaluation of the bivariate Gaussian distribution function. Although most programming
languages have an efficient implementation of this function, it is significantly more expensive
to compute than the univariate distribution. The joint probability can be approximated
using only calls to the univariate Gaussian CDF by using quadrature to approximate the
inner integral of (20).

While other approaches are possible, a simple quadrature rule is used by replacing X̃k+1

10



with its quantized version, X̂k+1, which is constant over the interval. Then (20) becomes

P(X̃k+1 = xjk+1, Ỹk+1 = yvk+1)

≈
Nx∑
i=1

Ny∑
u=1

[∫ ri,u,v+k

ri,u,v−k

φ2

(
y, ρ
∣∣xjk+1−c

i
k

mi
k

)
dy

]
P(X̂k+1 = xjk+1)P(X̂k = xik, Ŷk = yuk )

=
Nx∑
i=1

Ny∑
u=1

FZ
ri,u,v+

k − ρx
j
k+1−c

i
k

mi
k√

1− ρ2

− FZ
ri,u,v−k − ρx

j
k+1−c

i
k

mi
k√

1− ρ2




× P(X̂k+1 = xjk+1)P(X̂k = xik, Ŷk = yuk ),

(22)

where φ2(y, ρ|x) is the conditional bivariate Gaussian density. It is worthwhile to note that
this approximation to the joint probability, although derived differently, is identical to that
of Callegaro et al. [2015b].

The computational efficiency of this approximation is demonstrated in the Sections 6 and
7.

5 Implementing the Algorithm

In this section a concise matrix formulation for the JRMQ algorithm is presented, similar to
that provided in McWalter et al. [2017] for the standard RMQ case.

5.1 Matrix Formulation

Throughout this section, the index 1 ≤ i ≤ Nx refers to time-step k and 1 ≤ j ≤ Nx refers
to time-step k+ 1, and both are associated with the X̃-process. For the Ỹ -process, the index
1 ≤ u ≤ Ny refers to time-step k and the index 1 ≤ v ≤ Ny refers to time-step k + 1.

To initialize the JRMQ algorithm, the standard RMQ algorithm is applied to the X̃-
process and yields the quantizers Γxk and associated probabilities pxk at each time-step 0 ≤
k ≤ K. The following three variables are initialized

[Γy0]1 = y0, [px0 ]1 = 1, [J0]1,1 = 1,

being the time-zero quantizer, associated probability and margined probability, respectively,
of the Ỹ -process. The standard one-dimensional vector quantization algorithm (on the normal
distribution) is used to produce Γy1 and py1, being the quantizer and associated probability

vector of the Ỹ -process at the first time step. The corresponding joint probabilities at time-
step one may then be computed using either (27) or (30) with k = 0 and Nx = Ny = 1.

We now describe the implementation of the recursive step form time-step k to k + 1.
Consider the time-step k quantizers

[Γxk]i = xik and [Γyk]u = yuk ,

of the independent and dependent processes, respectively, and the associated joint probability
matrix Jk, of size Nx ×Ny,

[Jk]i,u = P(X̂k = xik, Ŷk = yuk ),

11



all of which are assumed known (already computed). The rows of Jk are denoted by J
(i)
k .

The time-step k + 1 quantizer for the dependent process and associated probabilities are
computed as follows: Aside from an initial guess for Γyk+1, which is taken to be Γyk, we initialize
the Ny-element column vector

[ck]u = cuk

and the set of Ny-element column vectors, indexed by i,

[mk]
(i)
u = mi,u

k ,

in terms of the time-step k quantities listed above. For each iteration of the Newton-Raphson
algorithm, three sets of matrices, indexed by i, are computed. The first two sets have matrices
of size Ny ×Ny, given by

[Pk+1](i)u,v = P(Ŷk+1 = yvk+1|X̂k = xik, Ŷk = yuk ),

= FZ(ri,u,v+
k+1 )− FZ(ri,u,v−k+1 )

and

[Mk+1](i)u,v = MZ(ri,u,v+
k+1 )−MZ(ri,u,v−k+1 ),

while the third has matrices of size Ny × (Ny − 1), given by

[fk+1](i)u,v = fZ(ri,u,v+
k+1 ).

The above matrices allow the gradient and the Hessian of the distortion for Γyk+1 to be written
in simplified form. The Ny-element gradient vector is

∇D(Γyk+1)> =
Nx∑
i=1

2J
(i)
k (((Γyk+11Ny)> − ck1Ny) ◦P

(i)
k+1 − (|m(i)

k |1Ny) ◦M
(i)
k+1), (23)

where ◦ is the Hadamard (or element-wise) product and 1z is defined to be a length-z row
vector of ones. By specifying the column vector

[∆Γyk+1]v = yv+1
k+1 − y

v
k+1, (24)

with 1 ≤ v ≤ (Ny − 1), the (Ny − 1)-element off-diagonal of the tridiagonal Hessian matrix
is given by

hoff =
Nx∑
i=1

−1

2
J

(i)
k ((|m(i)

k |
◦−11Ny−1) ◦ f

(i)
k+1 ◦ (∆Γyk+11Ny)>) (25)

and the Ny-element main diagonal by

hmain =

Nx∑
i=1

2J
(i)
k P

(i)
k+1 + [hoff |0] + [0|hoff ]. (26)

Here, ◦ − 1 refers to the element-wise inverse.

12



Equations (23) to (26) provide a matrix representation of equations (15) to (18) and
correspond to those in the matrix implementation of the single-factor RMQ case. This al-
lows straightforward implementation of the Newton-Raphson algorithm described by (12),
ultimately yielding Γyk+1. It remains to compute the necessary probabilities.

The elements of the joint probability matrix, Jk+1, at time-step k+1, are computed using
the bivariate Gaussian distribution as

[Jk+1]j,v =
Nx∑
i=1

Ny∑
u=1

P(X̂k+1 = xjk+1, Ŷk+1 = yvk+1|X̂k = xik, Ŷk = yuk )P(X̂k = xik, Ŷk = yuk )

=

Nx∑
i=1

Ny∑
u=1

(
Φ2(ri,j+k , ri,u,v+

k , ρ)− Φ2(ri,j−k , ri,u,v+
k , ρ)

−Φ2(ri,j+k , ri,u,v−k , ρ) + Φ2(ri,j−k , ri,u,v−k , ρ)
)

[Jk]i,u,

(27)

with the probabilities associated with the new quantizer given by

pyk+1 =

Nx∑
j=1

J
(j)
k+1.f (28)

Finally, to compute the transition probability matrix for the time-step k+1, it is necessary to
recompute the Pk+1 matrix using the final regions associated with the new set of codewords
at k + 1. Then

[Py
k+1]u,v =

P(Ŷk = yuk , Ŷk+1 = yvk+1)

P(Ŷk = yuk )

=

∑Nx

i=1 P(Ŷk+1 = yvk+1|X̂k = xik, Ŷk = yuk )P(X̂k = xik, Ŷk = yuk )

P(Ŷk = yuk )

=

∑Nx

i=1[Pk+1]
(i)
u,v[Jk]i,u

[pyk]u
. (29)

To compute the joint probabilities using the computationally efficient approximation in-
stead of the bivariate Gaussian distribution, (27) is replaced by

[Jk+1]j,v =
Nx∑
i=1

Ny∑
u=1

FZ
ri,u,v+

k − ρx
j
k+1−c

i
k

mi
k√

1− ρ2

− FZ
ri,u,v−k − ρx

j
k+1−c

i
k

mi
k√

1− ρ2


 [pxk+1]j [Jk]i,u.

(30)

The time-step k + 1 quantizer probabilities and transition probability matrix, (28) and (29),
are now computed in terms of (30).

5.2 Zero Boundary Behaviour

As in the standard RMQ algorithm, to correctly model the underlying processes it may be
necessary to implement a reflecting or absorbing boundary at zero. Both the dependent and
independent process can be modified in this way, but, once the distribution of either process
has been adjusted, it is difficult to compute the joint probabilities using the bivariate Gaussian
distribution. Thus, the joint probability approximation (22) is used.
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The Independent Process

In the stochastic volatility setting, the independent process represents the stochastic volatility
or variance of the dependent process. This implies that it must remain strictly positive and
thus it is only necessary to consider a reflecting boundary. In Monte Carlo simulation a
reflecting boundary is modelled by the fully-truncated Euler scheme, shown to be the least-
biased scheme for stochastic volatility models in Lord et al. [2010]1.

Implementing a reflecting boundary in the standard RMQ case is discussed in detail in
McWalter et al. [2017] and modifying the independent process in this way leaves the JRMQ
algorithm unchanged.

The Dependent Process

As the dependent process usually represents either an asset price or an interest rate, depending
on the application, either a reflecting or absorbing boundary at zero may be appropriate.
When the process modeled is an asset price, an absorbing boundary allows the possibility of
bankruptcy, whereas a reflecting boundary is necessary to correctly model interest rates.

Modifying the algorithm to account for an absorbing boundary at zero is straightforward
and incurs no additional computational burden. To ensure the non-negativity of the process,
the domain of the marginal distribution implied by the quantizer at time k is smaller than
zero if

Z < −
cuk
mi,u
k

,

which implies that, under the requirement to ensure positive codewords at the next time step,
the left-most region boundary must be set to

ri,u,1−k+1 = −
cuk
mi,u
k

,

for 1 ≤ i ≤ Nx and 1 ≤ u ≤ Ny. This is equivalent to setting r1−
k+1 = 0 and thus truncates

the domain, cf. (14).
Truncating the domain of the implied marginal distribution at each time step will result in

quantizers with probabilities that do not sum to one. This is because there is now effectively
an additional codeword at zero, at which probability has accumulated. At the completion
of the algorithm, the quantizers can be augmented with this additional codeword and its
associated probability.

To model a reflecting boundary at zero, first the domain of the implied marginal distribu-
tion at each time step must be modified such that only positive codewords can be attained.
This is achieved by altering the left-most region boundary as above. Secondly, the distri-
bution, density and lower partial expectation functions that appear in (15) to (18) must be
replaced by their reflected counterparts,

f
Z

i,u
k+1

(y) = fZ(y) + fZ(2ȳi,uk − y),

F
Z

i,u
k+1

(y) = FZ(y)− FZ(2ȳi,uk − y),

1Note that a truncated Euler scheme models reflecting boundary behaviour.
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Figure 2: The European put pricing error under the Stein-Stein and Heston models.

and

M
Z

i,u
k+1

(y) = MZ(y) +MZ(2ȳi,uk − y)− 2ȳi,uk FZ(2ȳi,uk − y),

for y ∈ [ȳi,uk ,∞), where ȳi,uk = − cuk
mi,u

k

. Note that these functions have an i and u subscript,

indicating that they will be different for each term in the summations of (15) to (18).

6 Pricing European Options

In this section, we consider the pricing of European options under the Stein and Stein [1991],
Heston [1993] and SABR [Hagan et al., 2002] models. The Stein-Stein and Heston models
are both amenable to semi-analytical pricing using Fourier transform techniques, whereas an
analytical approximation exists for both the Black and Bachelier implied volatility under the
SABR model. The Fourier pricing technique implemented uses the little trap formulation
of the characteristic function from Albrecher et al. [2006] for the Heston model, while the
Schöbel and Zhu [1999] characteristic function formulation is used for the Stein-Stein model.
The implied volatility approximation for the SABR model is the latest from Hagan et al.
[2016].

The Stein-Stein example is used to illustrate the computational efficiency advantage of the
new algorithm compared to the RMQ algorithm from Callegaro et al. [2015b], whereas the
Heston example serves to highlight the effectiveness of correctly modelling the zero-boundary
behaviour of the independent process. For the SABR model, parameter sets were chosen
that are difficult to handle with traditional methods, illustrating the flexibility of the JRMQ
algorithm.

All simulations were executed using MATLAB 2016b on a computer with a 2.00 GHz Intel
i-3 processor and 4 GB of RAM. All Monte Carlo simulations in this section used 500 000
paths with 120 time steps per path.
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Figure 3: The error in the marginal distributions for the dependent process in the Stein-Stein
and Heston models.

6.1 The Stein and Stein Model

The SDEs for the Stein-Stein model may be specified in the notation of (5) and (6) as

ax(Xt) = κ(θ −Xt), bx(Xt) = σ,

ay(Yt) = rYt, by(Xt, Yt) = XtYt,

and in the example considered the parameters chosen are κ = 4, θ = 0.2, σ = 0.1, r = 0.0953,
ρ = −0.5, x0 = 0.2 and y0 = 100, with the maturity of the option set at one year. These
parameters are from Table 1 in Schöbel and Zhu [1999].

The left graph in Figure 2 displays the pricing error of four algorithms. The first is
the JRMQ algorithm presented in this paper using the joint probability approximation from
(22), the second is the JRMQ algorithm using the bivariate Gaussian distribution, the third
is the stochastic volatility RMQ algorithm from Callegaro et al. [2015b] and the fourth is a
two-dimensional standard Euler Monte Carlo simulation.

For the RMQ algorithms, K = 12 time steps were used with Nx = 30 codewords at each
step for the independent process and Ny = 60 codewords for the dependent process. We
consider variable moneyness by changing the strike over the fixed initial asset price.

The JRMQ algorithm took 3.8 seconds to price all strikes when using the probability
approximation and 77.2 seconds when using the bivariate Gaussian distribution. The algo-
rithm from Callegaro et al. [2015b] took 26.3 seconds to price all strikes and the Monte Carlo
simulation took 6.6 seconds per strike.

The computation time of the JRMQ algorithm for this example was approximately 7 times
faster than the algorithm of Callegaro et al. [2015b], when using approximate joint proba-
bilities. Despite this large decrease in computation time, the JRMQ algorithm prices with
the same accuracy. Barring three points, both algorithms price to within the three standard
deviation bound of the significantly higher resolution Monte Carlo simulation. Using the bi-
variate Gaussian distribution instead of the approximation significantly reduces the average

16



0.3
0

Volatility

200 0.2

Stein-Stein - Month 1

150

Asset Price

1

10-3

P
ro

b
a

b
ili

ty

100 0.1
50

2

0.3
0

Volatility

200 0.2

Stein-Stein - Month 4

150

Asset Price

1

P
ro

b
a

b
ili

ty

10-3

100 0.1
50

2

0.3
0

Volatility

200 0.2

Stein-Stein - Month 8

150

Asset Price

1

10-3

P
ro

b
a

b
ili

ty

100 0.1
50

2

0.3
0

Volatility

200 0.2

Stein-Stein - Month 12

150

Asset Price

1

P
ro

b
a

b
ili

ty
10-3

100 0.1
50

2

Figure 4: Evolution of the approximate joint probability for the Stein-Stein model.

error over the range of moneyness considered, but this is at the expense of a large increase in
computation time. For this reason, the remaining applications use only the approximation.

Since the Stein-Stein model has a closed-form characteristic function, it is possible to
compute the marginal distribution for the dependent process. The difference between this
marginal distribution and the one computed using the JRMQ algorithm is presented in the
left graph in Figure 3. The curve is blue at the initial time and changes color to green as we
move toward maturity. The maximum error is under 4% initially and decays to well under
1% as time advances. These errors are in line with those of the one-dimensional Euler RMQ
case illustrated in McWalter et al. [2017].

Figure 4 illustrates the evolution of the approximate joint probabilities over time. Note
that these are the joint probabilities associated with the quantizers and thus the grid is not
uniform; there are 60 points along the asset price axis and 30 points along the volatility axis.
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Figure 5: Evolution of the approximate joint probability for the Heston model.

6.2 The Heston Model

The SDEs for the Heston model may be specified in the notation of (5) and (6) as

ax(Xt) = κ(θ −Xt), bx(Xt) = σ
√
Xt,

ay(Yt) = rYt, by(Xt, Yt) =
√
XtYt,

and in the example considered the parameters chosen are κ = 2, θ = 0.09, σ = 0.4, r = 0.05,
ρ = −0.3, x0 = 0.09 and y0 = 100, with the maturity of the option set at one year. These
parameters are based on the SV-I parameter set from Table 3 of Lord et al. [2010], with
σ adjusted from 1 to 0.4 to ensure that the Feller condition is satisfied for the square-root
variance process.

The right graph in Figure 2 displays the pricing error for JRMQ compared with a two-
dimensional fully truncated log-Euler scheme, suggested as the least-biased Monte Carlo
scheme for stochastic volatility models in Lord et al. [2010]. For the JRMQ algorithm, K = 12
time steps were used with Nx = Ny = 30 codewords at each step for both processes. The
JRMQ algorithm took 1.4 seconds to price all strikes, whereas the Monte Carlo simulation
took 7.8 seconds for a single strike.
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Figure 6: Prices and implied Bachelier volatilities for the standard SABR model, using a
parameter set applicable for interest rates.

A reflecting zero-boundary was used when computing the standard RMQ algorithm for
the independent variance process. Compared to a high-resolution Monte Carlo simulation,
the JRMQ algorithm performs very well despite the coarseness of the grid.

Even though the Feller condition is satisfied, due to the discretization of time, there is a
non-zero probability of the Euler approximation for the variance process becoming negative.
This is handled in the RMQ algorithm by using a reflecting zero-boundary. Modelling the
boundary in this way leads to an increased accuracy in pricing, especially when compared to
the Monte Carlo simulation.

The right graph in Figure 3 presents the error in the marginal distribution of the dependent
process implied by the RMQ algorithm when compared to the distribution obtained from the
characteristic function using the Fourier transform technique. The error is just over 2%
initially and decreases to below 1% as time advances. Figure 5 illustrates the evolution of the
joint probabilities of the asset price and variance process.

6.3 The SABR Model

The SDEs for the standard SABR model may be specified in the notation of (5) and (6) as

ax(Xt) = 0, bx(Xt) = νXt,

ay(Yt) = 0, by(Xt, Yt) = XtY
β
t ,

with 0 ≤ β ≤ 1. A partial reason for the popularity of the SABR model is that the implied
volatility may be computed using an analytical approximation [Hagan et al., 2002]. Further
work has extended the original formula (see, for example, Oblój [2007] and Paulot [2015]),
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Figure 7: Implied Bachelier volatility and pricing error for the Bachelier SABR model.

with the latest and most accurate approximation given in Hagan et al. [2016], which allows a
more general specification of the volatility function.

In this section, we consider European options for two examples of extreme parameter sets
that may arise in the context of interest rate modelling.

In Figure 6 the parameters chosen are β = 0.7, ν = 0.3, ρ = −0.3, x0 = 20% and
y0 = 0.5%, with the maturity of the option set at one year. This parameter set is Test Case
III from Chen et al. [2012], and was specifically chosen to be appropriate to the fixed income
market and to illustrate the correct handling of zero-boundary behaviour. The reference price
is the implied volatility formula with the boundary correction from Hagan et al. [2016].

For the JRMQ algorithm, K = 24 time steps were used with Nx = Ny = 30 codewords at
each step for both processes. A reflecting zero-boundary was implemented for the dependent
process. The Monte Carlo simulation utilized a fully-truncated Euler discretization scheme.

The three standard deviation bound in the left graph in Figure 6 indicates that the Monte
Carlo simulation is not converging to the same result as the Hagan et al. [2016] implied
volatility, used here as the reference price. In their discussion, Chen et al. [2012] indicate
that this is a challenging parameter set for traditional Monte Carlo simulations. Barring a
single point, the JRMQ algorithm is more accurate than the Monte Carlo simulation across
the range of strikes. It is also significantly faster to compute. The JRMQ algorithm took 5.3
seconds to price all strikes, whereas the Monte Carlo simulation took 13.4 seconds per strike,
due to the much larger number of time steps.

In Figure 7, European call option prices and corresponding implied Bachelier volatilities
are displayed for the RMQ algorithm, the Hagan implied volatility approximation, and an
Euler Monte Carlo simulation. The parameters chosen are β = 0, ν = 0.3691, ρ = −0.0286,
X0 = 0.68%, Y0 = 4.35%, with the maturity of the option set at one year. This parame-
ter set is Test Case I from Korn and Tang [2013] and it describes a challenging simulation
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Figure 8: Time-evolution of the approximate joint probability for the SABR model.

environment with a low initial forward rate which is very volatile.
For the JRMQ algorithm, K = 24 time steps were used with Nx = 10 codewords at each

step for the independent process and Ny = 90 codewords for the dependent process. The
JRMQ algorithm took 5.5 seconds to price all strikes, whereas the Monte Carlo simulation
took 5.6 seconds per strike.

Despite the extreme parameter set, all but two of the JRMQ prices fall well within the
three standard deviation bound of the much higher resolution Monte Carlo simulation.

7 Pricing Exotic Options

An advantage of the RMQ algorithm, similar to binomial and trinomial tree methods, is
the ability to price many options off the same grid that results from a single run. This is
demonstrated in this section by using a single pass of the JRMQ algorithm to price European,
Bermudan and barrier options, and volatility corridor swaps.

The SABR model parameters for all the examples in this section are β = 0.9, ν = 0.4,
ρ = −0.3, X0 = 0.4 and Y0 = S0 exp(rT ), where Y now models the T -forward price of an
equity asset with S0 = 100, r = 0.05 and the maturity T is equal to one year. The JRMQ
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Figure 9: European and Bermudan put option prices for the SABR model.

algorithm used K = 24 time steps with Nx = 30 codewords for the volatility process and
Ny = 60 codewords for the forward price process. The Monte Carlo simulations are executed
using a fully-truncated Euler scheme with 500 000 paths and 120 time-steps.

To generate the quantization grid, the JRMQ algorithm took 7.8 seconds for these pa-
rameters. The computational cost of generating derivative prices using the resulting grid
is negligible in comparison. Figure 8 illustrates the time-evolution of the approximate joint
probability of the forward price of the asset and the volatility over the course of the year.

The left graph in Figure 9 illustrates the difference in the prices of European put options
using JRMQ and the prices using the implied volatility formula of Hagan et al. [2016]. The
right graph shows the prices for a Bermudan put with monthly exercise opportunities using
JRMQ and a least-squares Monte Carlo simulation. For each strike, computing an option
price using Monte Carlo simulation takes approximately 14.5 seconds for the European options
and 16.9 seconds for the Bermudan options. The high-level algorithm for pricing Bermudan
options using a quantization grid is outlined in McWalter et al. [2017].

The left graph in Figure 10 shows the JRMQ and Monte Carlo prices for a discrete up-and-
out put option, with monthly monitoring, where the barrier level is expressed as a multiple
of the at-the-money strike. The right graph shows the prices for a series of volatility corridor
swaps. The payoff of a volatility corridor swap is given by

1

T

∫ T

0
XzI{L<Sz<H} dz, (31)

where St = Yt exp(−r(T − t)) is the asset price in our deterministic interest-rate framework
and L and H specify the corridor of the asset price in which the volatility is accumulated.
The algorithm for pricing volatility corridor swaps on a quantization grid in the stochastic
volatility setting is presented in Callegaro et al. [2015b] and uses a left-endpoint approximation
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Figure 10: Price comparison for discrete up-and-out put options and volatility corridor swaps
in the SABR model.

to the integral in (31)
The corridor spreads on the x-axis represent a percentage bound around the initial asset

price value, i.e., the lower bound of the corridor is given by L = S0(1 − s) and the upper
bound by H = S0(1 + s), where s is the corridor spread. The vertical gap between the
prices generated by the Monte Carlo simulation and the RMQ algorithm is partially due
to the increased accuracy of the Monte Carlo simulation when using simple quadrature to
approximate (31), as a result of the large number of time steps used. For a single barrier value
or a single corridor spread, the Monte Carlo simulation takes approximately 15.2 seconds and
16.3 seconds to price these derivatives.

The accuracy of JRMQ volatility corridor swap prices can be improved without using
additional time steps. An increase in the accuracy of the approximation to the integral (31)
is achieved by interpolating both the asset price and the volatility over each interval, see
Appendix A. The improved accuracy of this interpolated JRMQ price is displayed in the
right graph of Figure 10.

8 Conclusion

In this work, we present a Joint Recursive Marginal Quantization algorithm for stochastic
volatility models that provides a significant computational advantage over the most recent
developments in this area.

The central idea is to margin over, and effectively undo, the Cholesky decomposition in
the two-dimensional Euler scheme when performing the quantization. We show how the joint
probabilities can be computed exactly and using a computationally efficient approximation.

A concise matrix formulation was provided for efficient implementation. The robustness
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of the algorithm was demonstrated by pricing options with path dependencies, early exercise
boundaries and exotic features. Parameter sets that would be appropriate to interest rate
and equity environments were used to demonstrate the correct handling of the boundary
behaviour.

JRMQ was shown to be accurate and fast when compared to traditional Monte Carlo
methods. This will allow the calibration of large derivative books, as per Callegaro et al.
[2015a], to be extended from only considering local volatility models to the more flexible
stochastic volatility models, while retaining the efficiency of the original recursive marginal
quantization algorithm.
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Appendix A: Volatility Corridor Swaps

Consider

1

T

∫ T

0
XzI{L<Sz<H} dz =

1

T

K−1∑
k=0

∫ tk+1

tk

XzI{L<Sz<H} dz

≈ 1

T

K−1∑
k=0

∫ t∗(Stk+1
)

t∗(Stk
)

Xtk+1
−Xtk

∆t
(z − tk) +Xtk dz, (32)

where the volatility process Xt has been replaced by a linear interpolation on the interval
t ∈ [tk, tk+1] with

t∗(s) =


tk if L ≤ s ≤ H and s = Stk ,

tk+1 if L ≤ s ≤ H and s = Stk+1
,

H−Stk
Stk+1

−Stk
∆t+ tk if s > H,

L−Stk
Stk+1

−Stk
∆t+ tk if s < L,

providing the intercepts of the line connecting Stk and Stk+1
with the corridor. This inter-

polation is illustrated in Figure 11 and accounts for the indicator function by constraining
the integration to where the asset price is in the corridor. Explicitly computing a single term
from (32) gives

G(tk, tk+1, Xtk , Stk , Xtk+1
, Stk+1

) :=

Xtk+1
−Xtk

2∆t

[
(t∗(Stk+1

)− tk)2 − (t∗(Stk)− tk)2
]

+Xtk

[
t∗(Stk+1

)− t∗(Stk)
]
.

Stk

∆t

H

L

Stk+1

t∗(Stk) t∗(Stk+1
)

Figure 11: Linear interpolation of the asset price provides the bounds for the integration.
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The value of a volatility corridor swap can now be computed as the expectation under the
risk-neutral measure approximated using the quantization grids for X and S,

E
[

1

T

∫ T

0
XzI{L<Sz<H} dz

]
≈ 1

T

K−1∑
k=0

Nx∑
i=1

Nx∑
j=1

Ny∑
u=1

Ny∑
v=1

G(tk, tk+1, x
i
k, s

u
k , x

j
k+1, s

v
k+1)

× P(X̂k = xik, Ŝk = suk , X̂k+1 = xjk+1, Ŝk+1 = svk+1),

with the probability

P(X̂k = xik, Ŝk = suk , X̂k+1 = xjk+1, Ŝk+1 = svk+1) =

P(Ŝk+1 = svk+1|X̂k = xik, Ŝk = suk , X̂k+1 = xjk+1)P(X̂k = xik, Ŝk = suk , X̂k+1 = xjk+1),

computed as part of the matrix formulation in Section 5.
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