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Abstract. Using a range of stochastic volatility models well-known in the
finance literature, we study the existence of money market bubbles in the US
economy. Money market bubbles preclude the existence of a risk-neutral pric-
ing measure. Understanding whether markets exhibit money market bubbles
is crucial from the point of view of derivative pricing since their existence
implies the existence of a self-financing trading strategy that replicates the
savings account’s value at a fixed future date at a cheaper cost than the current
value of the savings account. The benchmark approach is formulated under
the real world probability measure and does not require the existence of a risk
neutral probability measure. It hence emerges as the appropriate framework
to study the potential existence of money market bubbles. Testing the exis-
tence of money market bubbles in the US economy we find that for all models
the US market exhibits a money market bubble. This conclusion suggests
that for derivative pricing and hedging care should be taken when making
assumptions pertaining to the existence of a risk-neutral probability mea-
sure. Less expensive hedge portfolios may exist for a wide range of derivatives.
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1 Introduction

In this paper, we empirically investigate the potential existence of money market bubbles, as

formally introduced in the literature in [29]. Already in [52], the potential existence of this type

of classical arbitrage was theoretically pointed out. Money market bubbles form part of a growing

literature on bubbles, which are studied in both, the economics and the finance literature, see e.g.

[14],[23], [24], [48], [36], [29], [30], [31], [35], [37], [38], and, in particular, the recent article [57] for

an overview of the literature. In [29], an asset-price bubble is occurring through an asset with a

nonnegative price, which can be replicated at a fixed future time using a self-financing trading

strategy whose setup cost is lower than the current value of the asset. As in [29], we place ourselves

in a two asset economy. To be specific, we assume the existence of a well-diversified index and

a money market account. Then a money market bubble exists if the savings account value can

be replicated at a fixed future time using a well-diversified index at a cost that is lower than the

value of the savings account. As established in [29], a necessary and sufficient condition for the

existence of such a bubble is the failure of the existence of an equivalent risk neutral probability

measure or an equivalent martingale measure (EMM), i.e. the Radon-Nikodym derivative of the

putative EMM is a strict local martingale. So far though, only [29] and [31] have dealt with money

market bubbles. Furthermore, we point out that under the Platen’s benchmark approach, see e.g.

[55], money market bubbles naturally occur, as for example under the minimal market model

(MMM), see also [55] and [56]. Should the candidate model rule out money market bubbles, one

can investigate if the discounted well-diversified index follows a strict local martingale under a

respective EMM. If this is the case, then one has detected an asset-price bubble. The latter have

received much attention in the literature, see e.g. [35], [37], [38], and, in particular, the recent

article [57]. The conditions for the existence of asset-price bubbles are by now well understood:

An asset-price bubble exists if and only if the discounted index follows a strict local martingale

under the EMM. The asset-price bubbles exhibit some interesting financial consequences, such as

failure of put-call parity, non-convexity of option prices with respect to the underlying for convex
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Figure 1.1: Empirical Radon-Nikodym derivative for the US economy.

options with convex payoff functions, to name but a few.

This paper examines the fundamental question of the existence of an EMM when aiming for a

candidate model. A motivation for this type of examination is the plot of the US savings account

in units of the total S&P 500 return, shown in Figure 1.1, normalised to an initial value of one.

It displays an empirical Radon-Nikodym derivative for the putative risk neutral measure for the

US market for a complete market model that interprets the S&P 500 as numéraire portfolio, as

will be explained later.

By using FX-derivative data, in [5] it has been shown that an equivalent risk neutral proba-

bility measure may not exist for certain currency denominations. We aim to employ historical

index data to provide alternative evidence in the same direction. The empirical Radon-Nikodym

derivative displayed in Figure 1.1 demonstrates a systematic downward trend which is indicative

of a nonnegative strict local martingale, which is a strict supermartingale, and hence hints at the

presence of a money market bubble. This is opposed to a Radon-Nikodym derivative forming a

martingale, where the present value is the best forecast of any future values. We take Figure 1.1

as a motivation for a more thorough investigation of the potential existence of a money market

bubble.
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To investigate the existence of an EMM, we require an approach more general than the classi-

cal no-arbitrage approach with its risk neutral pricing paradigm. In particular, we require an

approach which is working under the real world probability measure and more general than the

classical approach. The benchmark approach, [55], offers such framework and allows us to rigor-

ously examine the potential existence of an EMM. At the heart of the benchmark approach sits

the numéraire portfolio (NP), see [47], which when used as benchmark, makes all nonnegative

benchmarked portfolios supermartingales. It is identical to the growth optimal portfolio (GOP),

where the latter is mathematically appropriately defined as the portfolio which maximises ex-

pected logarithmic utility from terminal wealth, see [43]. The NP plays a fundamental role in

derivative pricing, as it serves as numéraire when pricing contingent claims under the real world

probability measure. We alert the reader to the fact that when employing the benchmark ap-

proach for derivative pricing, one finds the minimal possible price by employing the real world

pricing formula, [55], which computes the expectation under the real world probability measure

using the NP as numéraire. In terms of money market bubbles, we recall that a money market

bubble exists if the savings account value at a future time can be replicated using the NP at

a setup cost cheaper than the current value of the savings account. More precisely, this paper

answers the following questions:

• Does a money market bubble most likely exist in the US market?

• Which is a tractable, parsimonious, yet sufficiently accurate model for the discounted S&P

500?

We answer the first question by connecting two significant streams in the finance literature,

namely the literature concerned with the estimation of stochastic volatility models and the lit-

erature on the existence of bubbles. Using Markov Chain Monte Carlo (MCMC) methods, see

[13], [20] and also the references therein, on parametrised stochastic volatility models describing

the S&P 500 index, we approach the second question. We adopt the MCMC approach and fit

various stochastic volatility models that are well established in the finance literature to the S&P
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500 index, including the Heston, the 3/2, and the continuous time GARCH model. We refer to

[45] for an overview of stochastic volatility models, including the latter ones. We remark at this

point that there are some criticisms pertaining to some of these models, as for example discussed

in [12] and [15]. For all stochastic volatility models considered in this paper, we can present

necessary and sufficient conditions for the existence of a money market bubble. We demonstrate

that money market bubbles cannot exist under the Heston model, and this model mainly serves

as a popular reference model. However, for the remaining models we find that for some param-

eter regimes, money market bubbles exist. In fact, we find that when fitting these models, they

strongly hint at the likely existence of money market bubbles. This suggests that assumptions

pertaining to the existence of an EMM should be made with care. Although the main objective

of this paper is to investigate the ability to generate bubbles by the selected models, we also

compare the model performance based on different selection criteria and find that all alternative

models that can generate bubbles also outperform the Heston model, leading to superior fitting

of the data.

This paper can be seen as building on [29], [31], [35], and [6]. It is the first paper that tests for

the existence of money market bubbles, which have only been discussed in [29], [31], in the same

way that [35] was the first paper to investigate empirically the existence of stock price bubbles.

Finally, we remark that in [6], local volatility models were fitted to well-diversified indices using

techniques that were similar to those extended in [35], used to examine the existence of stock

price bubbles. We point out that the results presented in [6] support our findings, which suggest

the existence of money market bubbles in the markets under consideration.

The presence of money market bubbles violates the ”no free lunch with vanishing risk” (NFLVR)

condition, see [16], [17], which is the no-arbitrage condition that underpins classical risk neutral

pricing. The models we present still satisfy the more general ”no unbounded profit with bounded

risk” (NUPBR) condition, see [41], which is sufficient for pricing, hedging, risk management and

utility maximisation in a general semimartingale framework. They also fit under the bench-

mark approach, which only assumes the existence of the numéraire portfolio and automatically

4



excludes, so called, strong arbitrage, which would create strictly positive wealth from a nonneg-

ative portfolio with zero initial capital, see [55]. From the point of view of classical economic

intuition though, a reader acquainted with derivative pricing, based on the absence of classical

arbitrage, might challenge the existence of money market bubbles: Shorting the asset and repli-

cating it using the index would then produce a certain positive cash-flow either at the time the

arbitrage is set up or, equivalently, at the time when the arbitrage strategy matures. One could

argue that arbitrageurs would employ the arbitrage strategy by investing accordingly. The key

problem with the above argument is that it is essentially a ”one-period model” argument: One

only considers the portfolio value at two points in time, when the arbitrage is set up, and when

the arbitrage matures. However, the argument ignores the portfolio values between these two

time points, which could become negative with strictly positive probability. This has important

(corporate finance) implications, as liabilities must be secured by posting collateral. This is ex-

plored in [46], where a model is presented for which an EMM does not exist, and under which

arbitrages are considered as risky investments. It is shown that it can be optimal for the investor

to underinvest in the arbitrage opportunity and not to take the largest arbitrage position allowed

by the collateral constraints. Clearly, if the investor only takes a limited position in the arbitrage

position or avoids taking a position in the arbitrage opportunity, then there is no reason for the

bubble to not to exist.

The remainder of the paper is structured as follows: in Section 2, we introduce the modelling

framework which will be used to detect money market bubbles, in Section 3 we introduce the

statistical methodology used to detect bubbles, and in Section 4 we present the empirical results.

Section 5 interprets the results and Section 6 concludes the paper.

2 Money Market Bubbles

In this section, we introduce a framework that will allow us to empirically test the existence

of money market bubbles. We place ourselves in the setup presented in [29], Section 2, and
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formulate our model on a filtered probability space (Ω,A,A, P ), where P is the real world

probability measure and A = (At)t≥0 is a filtration modelling the evolution of information and

satisfying the usual conditions. We assume that the squared volatility Vt of the NP, which is a

state variable, is the unique strong solution of the stochastic differential equation (SDE)

dVt = a(Vt)dt+ b(Vt)dW
1
t , (2.1)

where V0 is strictly positive. The process W 1
t is a Brownian motion under the real world proba-

bility measure P . In the following subsections we introduce specific models for Vt, specifying a(·)

and b(·). In particular, we assume that the functions a(·) and b(·) employed in this paper are

continuous functions on (0,∞) with b2(·) > 0. Secondly, we present a model for the discounted

numéraire portfolio (NP). In particular, we assume that the discounted NP satisfies the SDE

dSt = St

(
Vtdt+

√
VtdW

2
t

)
, (2.2)

where
√
Vt denotes the volatility and also the market price of risk, which we specify further below.

W 2
t is another Brownian motion and we assume that the Brownian motions W 1

t and W 2
t can be

correlated with constant correlation ρ. Finally, we introduce the money market account,

dBt = rtBtdt , (2.3)

t ≥ 0, where B0 = 1. We now provide a definition for a money market bubble, which is adopted

from [29], see Definition 2.1.

Definition 2.1. The money market account has a bubble, if there is a self-financing portfolio

with path-wise nonnegative wealth that costs less than the money market account and replicates

the money market account at a fixed future date. The value of the money market bubble is the

difference between the money market’s price and the lowest cost replicating strategy.

Under the benchmark approach the NP is employed as benchmark and all securities denominated

in units of the benchmark are called benchmarked securities. Next, we introduce the benchmarked

6



money market account B̂ =
{
B̂t = 1

St
, t ≥ 0

}
, which is simply the inverse of the discounted NP

and plays a central role in the detection of bubbles. The dynamics of B̂ are given by the SDE

dB̂t = −
√
VtB̂tdW

2
t , (2.4)

to obtain

B̂t = B̂0 exp

(
−
∫ t

0

√
VsdW

2
s −

1

2

∫ t

0

Vsds

)
.

We now introduce the Radon-Nikodym derivative for the putative equivalent martingale measure

(EMM), which is given by ξt = B̂t

B̂0
, t ≥ 0. We now recall Proposition 2.1 from [29].

Proposition 2.1. The process ξ = {ξt , t ≥ 0} is a strict local martingale if and only if the

money market account has a bubble.

As shown in [29], the process ξ is a strict local martingale, if and only if the process Ṽ does not

reach zero or infinity in finite time, where Ṽ is given by the SDE

dṼt = (a(Ṽt)− ρ
√
Ṽtb(Ṽt))dt+ b(Ṽt)dW

1
t , (2.5)

with Ṽ0 = V0. We formalise this insight in the following corollary, which reflects the Condition

2’ from [29].

Corollary 2.1. The money market account exhibits a bubble if and only if the solution of (2.5)

explodes or hits 0 in finite time.

There are necessary and sufficient conditions which allow one to check if a particular one-

dimensional diffusion, such as the one in equation (2.5), reaches 0 or infinity. This includes

the Feller test, see e.g. Theorem 5.29 (Section 5.5) in [42]. This argument appears in [59], but

has subsequently been used to study whether local martingales are strict or not, see e.g. [55]

and the references therein; and also to study moment explosions, see e.g. [3]. Important is in

this context the work by [32], which formulates in a semimartingale setting the necessary and

sufficient conditions when a local martingale is a true martingale.

We now discuss the four stochastic volatility models that will be examined in the paper. All fall

into the above framework.
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2.1 Heston Model

For the Heston model, see [27], we set

a(x) = κ(θ − x) , b(x) = σ
√
x , (2.6)

in equation (2.1), where κ > 0, θ > 0, and σ > 0. We assume that the Feller condition is in force,

i.e. that 2κθ > σ2. We then have the following result, which follows immediately from Corollary

2.1.

Theorem 2.1. Assume that the dynamics of B̂ are given by the Heston model. Then B̂ is a

martingale and the money market account does not exhibit a bubble.

Proof. The result can be directly established using the argument from [3], which is given in its

Lemma 2.3.

We remark that calibration of the Heston model in the FX-market usually leads to violations

of the Feller condition, see e.g. [25]. Also the trajectory in Figure 1.1 would not be typical

for the Heston model, since B̂t evolves more like a strict local martingale than a martingale.

Nevertheless, the Heston model will serve us for comparisons. Additionally, we find it interesting

to investigate whether the Feller condition is empirically satisfied or not.

2.2 3/2 Nonlinearly Mean Reverting Model

To formulate the nonlinearly mean reverting 3/2 model (3/2N), introduced in [54], [28], [1] and

[52], and further developed in [45], we set

a(x) = κx(θ − x) , b(x) = σx3/2 , (2.7)

where κ > 0, θ > 0, and σ > 0. Under the 3/2N model, for certain parameter combinations the

process B̂ is a martingale, but otherwise a strict local martingale.
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Theorem 2.2. Assume that the dynamics of B̂ are given by the 3/2N model. Then B̂ is a

martingale, if and only if

κ

σ
+
σ

2
≥ −ρ .

Proof. This result was first proven in [5] to which we refer.

In Section 3, we will estimate the parameters of the 3/2N model, to determine whether B̂ follows

potentially a strict local martingale.

2.3 Linearly Mean Reverting 3/2 Model

To formulate the linearly mean reverting 3/2L model, see [40], we set

a(x) = κ(θ − x) , b(x) = σx3/2 , (2.8)

where κ > 0, θ > 0, and σ > 0. For this model we obtain that for certain parameter combinations

the process B̂ is a martingale, but otherwise a strict local martingale.

Theorem 2.3. Assume that the dynamics of B̂ are given by the linearly mean reverting 3/2

model. Then B̂ is a martingale, if and only if

σ

2
≥ −ρ . (2.9)

Proof. The proof follows from Proposition 2.5 in [3]. Since we consider the benchmarked savings

account, we replace ρ in Proposition 2.5 by −ρ.

2.4 GARCH Model

Similar to the continuous time limit of the GARCH model, see [51], we consider also in continuous

time what we call here a GARCH model, which was e.g. studied in [26]. It is characterised by

the choice

a(x) = κ(θ − x) , b(x) = σx , (2.10)
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where κ > 0, θ > 0, and σ > 0. We obtain that for certain parameter combinations of this model

that the process B̂ is a martingale but otherwise a strict local martingale.

Theorem 2.4. Assume that the dynamics of B̂ are given by the GARCH model. Then B̂ is a

martingale, if and only if

ρ > 0 . (2.11)

Proof. The proof follows from Proposition 2.5 in [3]. Since we consider the benchmarked savings

account, we replace ρ in Proposition 2.5 by −ρ.

Note that the modelling framework introduced above is flexible enough to be extended to multi-

factor stochastic volatility models and models which include jumps. However, for the purpose

of this paper we concentrate on the one-factor stochastic volatility models. In the next section,

we discuss the statistical methodology that will be used to estimate the models presented in this

section. Having estimated the models, we can use Theorems 2.2, 2.3, and 2.4, respectively, to

determine if a money market bubble is present or not assuming the respective model.

3 Markov-Chain Monte-Carlo Estimation

We now discuss the statistical methodology used in this paper, which is based on [13] and [20].

Firstly, we define the logarithm of the benchmarked savings account Yt = log(B̂t) to obtain the

SDE

dYt = −1

2
Vtdt−

√
VtdW

2
t . (3.12)

To estimate the model, we use an Euler discretization scheme and use the time step size ∆ = 1,

which corresponds to one day. We define the log-returns of the benchmarked savings account

Rt = Yt − Yt−1 , so that

Rt = −1

2

∫ t

t−1
Vsds−

∫ t

t−1

√
VsdW

2
s

≈ −1

2
Vt−1 −

√
Vt−1(W

2
t −W 2

t−1)
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= −1

2
Vt−1 −

√
Vt−1ε

y
t , (3.13)

where εyt = W 2
t −W 2

t−1, t ∈ {1, 2, ...}. For the variance processes we assume a general specification,

Vt = Vt−1 +

∫ t

t−1
a(Vs)ds+

∫ t

t−1
b(Vs)dW

1
s

≈ Vt−1 + a(Vt−1) + b(Vt−1)(W
1
t −W 1

t−1) . (3.14)

We note that all models discussed in this paper can be represented approximately via the recursive

relationship

Vt ≈ Vt−1 + κ(Vt−1)
a(θ − Vt−1) + σ(Vt−1)

bεvt (3.15)

for a ∈ {0, 1}, b ∈
{

1
2
, 1, 3

2

}
and εvt = W 1

t −W 1
t−1. In particular, we have

Vt ≈ Vt−1 + κ(θ − Vt−1) + σ
√
Vt−1ε

v
t (a = 0, b = 1/2: Heston) (3.16)

Vt ≈ Vt−1 + κVt−1(θ − Vt−1) + σ(Vt−1)
3/2εvt (a = 1, b = 3/2: 3/2 model) (3.17)

Vt ≈ Vt−1 + κ(θ − Vt−1) + σ(Vt−1)
3/2εvt (a = 1, b = 3/2: 3/2 linear drift model) (3.18)

Vt ≈ Vt−1 + κ(θ − Vt−1) + σVt−1ε
v
t (a = 0, b = 1: GARCH) (3.19)

The underlying problem setup involves the estimation of the parameter vector Θ = (θ, κ, σ, ρ)>,

as well as, the volatility V, which is a state variable. In a Bayesian context each of these

unobserved variables is treated as a parameter to be estimated. This leads to a high-dimensional

posterior distribution that is not known. In order to compute the moments of the posterior, we

would have to compute a high dimensional integral, which is not feasible. Therefore, we rely

on the Markov-Chain Monte-Carlo (MCMC) method to compute the moments of the parameter

values and latent variables conditional on the observed data. These moments are used as a point

estimator for the parameters and the latent variables. Bayesian MCMC methods for stochastic

volatility models have been developed in [34]. MCMC generates samples from a given target

distribution, in our case p(Θ,V|R) - the joint distribution of the parameter vector Θ and the

state variable V, given the observed returns. The basis for MCMC estimation is provided by
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the Hammersley-Clifford theorem, which states that under certain regularity conditions the joint

posterior distribution can be completely characterised by the complete conditional distributions.

In order to compute the posterior distribution note that the joint distribution of (Rt, Vt) follows

a bivariate normal distribution with the following parameters:

µ =

(
−1

2
Vt−1

Vt−1 + κV a
t−1(θ − Vt−1)

)
Σ =

(
Vt−1 −ρσV b+0.5

t−1
−ρσV b+0.5

t−1 σ2V 2b
t−1

)
. (3.20)

Given the normality of the joint distribution we can determine the conditional distribution of

returns p(Rt|Vt, Vt−1,Θ). It follows a normal distribution with parameters

µRt|Vt = −1

2
Vt−1 − ρσ−1V 0.5−b

t−1 (Vt − Vt−1 − κV a
t−1(θ − Vt−1))

σ2
Rt|Vt

= Vt−1(1− ρ2). (3.21)

On the other hand, for the conditional distribution for p(Vt|Rt, Vt−1,Θ) we obtain a normal

distribution with

µVt|Rt = Vt−1 + κ(Vt−1)
a(θ − Vt−1)− ρσV b−0.5

t−1 (Rt +
1

2
Vt−1)

σ2
Vt|Rt

= σ2V 2b
t−1(1− ρ2). (3.22)

In general, the posterior is given by the following expression:

p(Θ,V|R) ∝ p(R|Θ,V)p(Θ,V) = p(R|Θ,V)p(V|Θ)p(Θ) (3.23)

where p(R|Θ,V) denotes the likelihood and p(Θ,V) is the prior distribution.

In (3.23) we can write p(R|Θ,V) =
∏T

t=1 p(Rt|Vt, Vt−1,Θ) by conditional independence and

p(V|Θ) ∝
∏T

t=1 p(Vt|Vt−1,Θ) by the Markov property. Using the fact that

p(R|Θ,V)p(V|Θ) ∝
T∏
t=1

p(Rt|Vt, Vt−1,Θ)p(Vt|Vt−1,Θ)

=
T∏
t=1

p(Rt, Vt|Vt−1,Θ), (3.24)
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we can rewrite (3.23) as follows:

p(Θ,V|R) ∝
T∏
t=1

p(Rt, Vt|Vt−1,Θ)p(Θ). (3.25)

To update estimated parameter values in each iteration, the MCMC algorithm draws from its

posterior distribution conditional on the current values of all other parameters and state variables.

Therefore, in order to reduce the influence of the starting point and to assure that stationarity

is achieved, the general approach is to discard a burn-in period of the first h iterations. The

iterations after the burn-in period provide a representative sample from the joint posterior,

and averaging over the non-discarded iterations provides an estimate for posterior means of

parameters and latent variables.

Sampling from the conditional posterior distribution can be implemented by either using the

Gibbs sampler introduced by [21], or the Metropolis-Hasting algorithm, see [49].

The Gibbs sampler is applied if the complete conditional distribution to sample from is known.

The MCMC algorithm with the Gibbs step samples iteratively drawing from the following con-

ditional posteriors, see [22]:

Parameters : p(Θi|Θ−i,V,R), i = 1, . . . , N
Volatility : p(Vt|Θ, Vt+1, Vt−1,R), t = 1, . . . , T,

where N denotes the number of draws, T is the number of observations and Θ−i is the parameter

vector Θ without the i−th element.

To start the procedure, we have to specify the prior distributions. When possible we assume

the so-called conjugate priors, which after multiplying with the likelihood lead to a posterior

distribution belonging to the same family of distributions as the prior itself. Wherever possible,

we choose standard conjugate priors, which allow us to draw from the conditional posteriors

directly. For the model parameters we specify conjugate priors and provide further details on

parameter draws in the appendix.

If some conditional distributions cannot be sampled directly, as in the case with variance, where
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the complete conditional distribution is not recognizable, we apply the Metropolis-Hasting algo-

rithm. For details on the Metropolis-Hasting algorithm we refer to [39]. We can use the following

expression for the complete conditional posterior:

p(Vt|Θ,R) ∝
T∏
t=1

p(Rt, Vt|Vt−1,Θ)p(Θ)

=
T∏
t=1

p(Vt|Rt, Vt−1,Θ)p(Rt|Vt−1,Θ)p(Θ)

∝
T∏
t=1

p(Vt|Rt, Vt−1,Θ)p(Rt|Vt−1,Θ). (3.26)

Thus, the complete conditional distribution for Vt, after removing all terms that do not depend

on Vt, reduces to

p(Vt|Θ,R) ∝ p(Vt+1|Rt+1, Vt,Θ)p(Rt+1|Vt,Θ)p(Vt|Rt, Vt−1,Θ)

= p(Rt+1, Vt+1|Vt,Θ)p(Vt|Rt, Vt−1,Θ). (3.27)

In the last expression, p(Rt+1, Vt+1|Vt,Θ) follows a bivariate normal distribution and p(Vt|Rt, Vt−1,Θ)

follows a univariate normal distribution. The Metropolis-Hasting step proposes a new variance

V
(i)
t in the ith draw by drawing from p(Vt|Rt, Vt−1,Θ) and accepting that draw with probability

min

{
p(Rt+1, Vt+1|V (i)

t ,Θ)

p(Rt+1, Vt+1|V (i−1)
t ,Θ)

, 1

}
. (3.28)

4 Model Testing

In addition to detecting money market bubbles, this paper also aims to determine which model

among the considered ones fits best the discounted S&P 500 data. This section aims to present

several decision criteria that quantify the model performance or the fit to the data. The first

procedure to investigate the model performance is the visual inspection, achieved by comparing

quantile-to-quantile (QQ) plots. Since residuals from the return and the variance equations are

14



assumed to follow normal distributions, one can contrast the quantiles of these error distributions

against normal quantiles in the QQ plot. The degree of model misspecification (non-normality

of residuals) is defined by how far the estimated residuals in the log-return and the variance

equation deviate from the 45 degrees line. Secondly, we will use the deviance information criterion

(DIC) proposed in [60], which allows us to compare non-nested models. Finally, we compare the

estimated volatility path with the path of the Chicago Board Options Exchange Market Volatility

Index (VIX)4, as it has been the best measure capturing the market perspective on the implied

volatility of the S&P 500 index options. In order to allow the comparison with the VIX, we will

use the S&P 500 index as our proxy for the NP in Section 5. The following subsection deals with

the DIC in more details.

4.1 Deviance Information Criterion

In a non-Bayesian setting deviance is used as a characteristic that estimates the number of the

parameters in the underlying model: It refers to the difference in log-likelihoods between the

fitted and the saturated model, that is, the one which yields a perfect fit of the data. Model

comparison can be performed based on the fit, which is measured by the deviance statistic and

the complexity, which is the number of free parameters in the model. In analogy to the well-

known criteria like the AIC introduced in [2] or BIC constructed in [58], the authors of [18],

[60] and [8] have developed the deviance information criterion (DIC) as a Bayesian model choice

criterion. The DIC solves the problem of comparing complex hierarchical models (among others

Bayesian models) when the number of parameters is not clearly defined. The DIC consists of

two components: a term D̄ that measures the goodness of fit and a penalty term pD accounting

for the model complexity:

DIC = D̄ + pD. (4.29)

The first term can be calculated as follows:

D̄ = EΘ|R{D(Θ)} = EΘ|R{−2 log f(R|Θ)}, (4.30)

4Available from http://www.cboe.com/micro/vix/historical.aspx
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where R denotes returns and Θ is a vector of parameters. The better the model fits the data,

the larger is the likelihood; i.e. smaller values of D̄ indicate a better model fit. In fact, since the

DIC already includes a penalty term pD, it could be better thought of as a measure of ’model

adequacy’ rather than a measure of fit, although these terms can be used interchangeably.

The second component measures the complexity of the model by the effective number of param-

eters:

pD = D̄ −D(Θ̄) = EΘ|R{D(Θ)} −D{EΘ|R(Θ)}

= EΘ|R{−2 log f(R|Θ)}+ 2 log f(R|Θ̄). (4.31)

Since pD is considered to be the posterior mean of the deviance (average of log-likelihood ra-

tios) minus the deviance evaluated at the posterior mean (likelihood evaluated at average), it

can be used to quantify the number of free parameters in the model. Furthermore, defining

−2 log f(R|Θ) to be the residual information in the data R conditional on Θ, and interpreting it

as a logarithmic penalty, see [44], [9], pD can be regarded as the expected excess value of the true

over the estimated residual information in data R conditional on Θ, and thus, can be thought

of as the expected reduction in penalty or uncertainty.

From (4.31) we obtain: D̄ = D(Θ̄) + pD, and thus, DIC can be rewritten as the estimate of the

fit plus twice the number of effective parameters (measure of complexity):

DIC = D(Θ̄) + 2pD. (4.32)

5 Empirical Analysis

In this section we analyse the performance of the different models using time series of daily

log-returns for the benchmarked savings account B̂ = B
S

, where the S&P 500 index is used as

benchmark, or numéraire. The time period analysed here covers data from 1 January 1980 to 31

December 2011.5 Note, the considered time period covers the most prominent crises discussed in

5In the following, we discuss the results only for this time period. However, alternative time frames (with or
without inclusion of crisis periods) have been used as a robustness check, and the results appear to be quantitatively
similar. The results are available from the authors upon request.
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the literature, which include the 1987 market crash, the LTCM and the Russian crisis of 1998,

the market decline in 2000, the dot-com bubble of 2001, and the subprime and financial crisis of

2007-2009.

In the following, we present the findings on parameter estimates and hence the implications for

the presence of money market bubbles discussed in Section 2. Furthermore, we discuss model

selection using various selection criteria presented in Section 4. Note however, model comparison

is not the primary goal of this study (which is to determine whether a money market bubble

is present or not), but merely serves as an indication for the best model under consideration.

Given the information about the presence of money market bubbles, it could obviously be used

for pricing of contingent claims.

Table 1 summarises parameter estimates for different stochastic volatility model specifications.

Note, the reported results are obtained using daily returns in percentages defined as 100 ×

(log(B̂t)− log(B̂t−1)). First of all, we find a large negative correlation ρ between fluctuations in

the return and the variance, ranging from −0.53 to −0.24, indicating that the leverage effect is

the strongest (weakest) for the Heston (3/2L) model specifications. The long-run mean of the

variance θ ranges between 0.36 and 0.46 indicating long-run yearly volatility
√

252× θ to fall in

a range between 9.5% and 10.8%. Note that κ is not directly comparable between linear (a = 0)

and nonlinear (a = 1) models, see [13]. Among linear model specifications κ tends to be larger for

the Heston and GARCH models, indicating greater speed of adjustment to the long-run variance

level. For the non-linear case (3/2N model) the speed of mean reversion is given by κVt.

Finally, σ is comparable for a given diffusion specification, i.e., for a given b, but not across

different diffusion specifications, see [13]. For the 3/2N and 3/2L models one observes similar

values for σ corresponding to about 0.12. Note that our results are in line with those reported

in the literature, see e.g. [20] and [13]6, even if we work with the benchmarked savings account

6[13] use time frame from 1996 to 2004, which does not incorporate the most pronounced market crashes as
in 1987 as well as the recent financial crisis. We have also used this time period to estimate the parameters, and
the results are consistent with [13].
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rather than with the S&P 500.7

We now discuss the possible existence of money market bubbles: Note, under the Heston model

the dynamics of B̂ is always a martingale. We observe that for the 3/2N, 3/2L, as well as,

GARCH models the inequalities formulated in Section 2 for the presence of martingales, are

violated, indicating that the price processes for all these models resemble strict local martingales.

As an implication of these results, we are now interested to learn which of the considered models

provides the best fit to the data.

To decide on model performance, to start with we first use visual inspection by looking at

Figures 6.3 and 6.4 that show the QQ probability plot of residuals in the return and the variance

equations, respectively.8 The QQ plot contrasts the quantiles of the estimated residuals with the

quantiles from the standard normal distribution. A deviation of the residual data from the 45

degrees line indicates strong non-normality of residuals and thus, the evidence of misspecification.

From the upper left panel of the two figures, which correspond to the Heston model, we observe

that the fat low tail for the return residuals (corresponding to negative returns), as well as, the

fat upper tail for the variance residuals (corresponding to high volatility) could not be captured

appropriately. All alternative model specifications seem to perform similarly (and outperform the

Heston model) based on the QQ plot for return innovations (Figure 6.3), whereas the GARCH

model tends to slightly outperform the competing models in capturing well high negative returns.

The latter result becomes more pronounced in Figure 6.4 when examining variance residuals:

Here, the QQ plot for the GARCH model shows no severe deviation from the 45 degrees line.

Secondly, we use the DIC statistic to rank the models. Comparing DIC values across different

model specifications, we observe that the 3/2N model is ranked first, whereas the Heston model

is ranked last.9 Note that this study considers stochastic volatility models without incorporating

7Remember, in order to make the results comparable, the parameter estimates have to be converted into the
units used, as e.g., yearly values in [13].

8This is done by first, estimating the model parameters, and then solving equations (3.13) and (3.14) for εyt
and εvt , respectively. If the model would fit data well, the residuals should be Gaussian.

9Note, for the applications we have in mind, that is, pricing under the benchmark approach using the real
world probability measure, we are interested in those models that allow strict local martingales. Thus, the Heston
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jump components. Although several studies treat jumps as secondary effect, if at all (see e.g. [4]

and [20]), others find an inclusion of the jump components essential (see e.g. [7], [20] and [11]).

Naturally, including jumps (in returns or returns and volatility) might result in different ranking,

and as documented e.g. in [33], the best performing stochastic volatility specification does not

necessarily lead to the best performing overall specification when a jump component is added to

it. Since the objective of this study is to determine whether different model specifications allow

strict local martingales (as supported by empirical evidence), we stay within the most parsimo-

nious model specifications, that is, stochastic volatility models (without jumps). However, our

methodology can be extended to include jumps.

Finally, we compare model performance by their ability to capture observed volatility provided

by the VIX. Figure 6.2 shows the annualised daily spot volatility path
√
Vt

10 using the dotted line

for each model specification, whereas the solid green line represents the VIX volatility index. All

volatility paths are shown on the same scale, going from 0% to 100% in annual terms. Although

the overall pattern in volatility is similar across models, when volatility increases it tends to do

so more sharply for the 3/2N and the 3/2L models, whereas the Heston model exhibits the least

number of spikes in volatility compared to the remaining models.11 Thus, although all models

appear to resemble the VIX movements, the Heston model seems to underestimate spikes in the

VIX, which could be noticed already visually from the figure. This observation is confirmed

when computing model errors reported in Table 2. Here, we present summary statistics for the

relative error δt defined as the percentage deviation from VIX, δt = (V olat − V IXt)/V IXt, its

absolute value |δt| as well as their sum of errors
∑T

t=1 δt and
∑T

t=1 |δt|, respectively. We observe

small negative values for the relative errors δt, ranging from -0.46% to -0.18%, indicating that

all models tend to slightly underestimate the VIX. While the Heston model under-performs all

other models, the 3/2L and the GARCH model perform equally well (based on the mean and the

median statistics for δt). This result also holds when
∑T

t=1 δt is used as a decision criteria. Note,

model is considered here only as a reference model for performance.
10The spot volatility path

√
Vt is estimated via the Metropolis-Hasting algorithm as described in Section 3.

11These observations are in line with [13] and [33].
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|δt| ignores the direction of the deviation and does not cancel out under- and over-estimation

effects. It leads to comparable values for all models allowing for money market bubbles (with

3/2L being slightly superior to the remaining models), whereas the Heston model, which assumes

B̂ to be a martingale, underperforms significantly all models under consideration.

6 Conclusion

Bubbles in financial market models have received a lot of attention in the recent literature, though

most of it has been focused on asset pricing bubbles, which assume the existence of an EMM.

Money market bubbles emerge if and only if an EMM fails to exist, which means that the widely

practiced risk neutral pricing is not theoretically justified. However, the benchmark approach,

which is formulated under the real world probability measure, is still applicable. Using stochastic

volatility models well established in the literature, namely the Heston, the 3/2 with linear (L)

and non-linear (NL) drift, and the continuous GARCH limit, we test for the existence of money

market bubbles in the US market. For this purpose, we use daily log-returns of the benchmarked

savings account from 1 January 1980 to 31 December 2011. We find that all models that can

produce money market bubbles do so when we fit these.

Although the main objective of this study was to investigate whether the selected models generate

bubbles when fitted, we also compared the model performance based on different selection criteria.

We observed that the Heston model performs worst out of all models under consideration. This

model does not allow the presence of a money market bubble. All alternative model specifications

(3/2N, 3/2L and GARCH) outperform the Heston model, when using as selection criteria the

deviance information criterion, QQ-plots, as well as, model errors computed as relative deviations

from the observed volatility (VIX). Comparing model performance across those which allow for

money market bubbles, we observe mixed results: While we tend to favour the 3/2L and the

GARCH model based on the smallest model errors and QQ-plots, respectively; the 3/2N is

superior to other models when using DIC as a decision criteria.
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Model Heston 3/2N 3/2L GARCH
(a,b) (0.0;0.5) (1.0;1.5) (0.0;1.5) (0.0;1.0)

κ 0.0609 (0.0053) 0.0347 (0.0037) 0.0117 (0.0040) 0.0531 (0.0059)
θ 0.3604 (0.0237) 0.3696 (0.0426) 0.4660 (0.1100) 0.3860 (0.0202)
σv 0.1378 (0.0079) 0.1285 (0.0070) 0.1243 (0.0070) 0.1432 (0.0093)
ρ -0.5356 (0.0325) -0.4726 (0.0381) -0.2462 (0.0349) -0.4172 (0.0344)

DIC 22,276 (4) 22,047 (1) 22,145 (2) 22,173 (3)

Table 1: Parameter estimates and their standard errors (in parentheses) for different stochastic
volatility model specifications. The reported parameter estimates are obtained using data on the
S&P 500 benchmarked savings account daily returns during the time period from 1 January 1980
to 31 December 2011.

The results presented in this study lead to several questions, which motivate further research. In

particular, its implications can be used when pricing and hedging derivative contracts under the

benchmark approach like, put and call options, as well as, long-dated insurance claims, exploiting

the presence of a money market bubble.
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Figure 6.2: Annualised daily spot volatility path
√
Vt (dotted line) during time period from 1 January

1980 to 31 December 2011 for each stochastic volatility model specification: Heston (upper left), 3/2
(upper right), 3/2 with linear drift (lower left), GARCH (lower right); the VIX volatility index (solid
green line).
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Figure 6.3: The QQ probability plot: quantiles from the return equation against quantiles from the
normal distribution for each stochastic volatility model specification: Heston (upper left), 3/2 (upper
right), 3/2 with linear drift (lower left), GARCH (lower right).
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Figure 6.4: The QQ probability plot: quantiles from the variance equation against quantiles from the
normal distribution for each stochastic volatility model specification: Heston (upper left), 3/2 (upper
right), 3/2 with linear drift (lower left), GARCH (lower right).
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Model Heston 3/2N 3/2L GARCH
(a,b) (0.0;0.5) (1.0;1.5) (0.0;1.5) (0.0;1.0)

Summary statistics for δt = (V olat − V IXt)/V IXt

mean -0.0046 (4) -0.0043 (3) -0.0018 (1) -0.0020 (2)
std.dev 0.1800 0.1586 0.1572 0.1621
median -0.0207 (3) -0.0216 (4) -0.0169 (2) -0.0165 (1)
min -0.5428 -0.6954 -0.5782 -0.4978
max 1.0486 1.1853 1.1367 0.9200

Summary statistics for |δt| = |V olat − V IXt|/V IXt

mean 0.1403 (4) 0.1198 (2) 0.1186 (1) 0.1253 (3)
std.dev 0.1128 0.1040 0.1032 0.1028
median 0.1153 (4) 0.0986 (2) 0.0968 (1) 0.1035 (3)
min 0.0000 0.0000 0.0000 0.0000
max 1.0486 1.1853 1.1367 0.9200

Sum of errors∑T
t=1 δt -25.4774 (4) -23.5729 (3) -9.8642 (1) -11.2436 (2)∑T
t=1 |δt| 777.3140 (4) 663.5747 (2) 656.9741 (1) 694.2380 (3)

Table 2: Model errors with ranking (in parentheses) for different stochastic volatility model
specifications. The reported models are obtained using data on the benchmarked (with S&P 500)
savings account daily log-returns during the time period from 1 January 1980 to 31 December
2011.
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vances in Mathematical Finance, Birkhäuser Boston, Cambridge, MA, 97–121, 2007.

[38] Jarrow, A.P., Protter, P. and Shimbo, K., Asset price bubbles in incomplete markets, Math-
ematical Finance, 20, 145–156, 2010.

[39] Johannes, M. and Polson, N., MCMC Methods for Financial Econometrics, Handbook of
Financial Econometrics, Elsevier, edt. Yacine Aı̈t-Sahalia and Lars Hansen, 2006.

[40] Jones, C., The dynamics of stochastic volatility: Evidence from underlying and options
markets, Journal of Econometrics, 116, 181–224, 2003.
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7 Appendix: Description of the MCMC Algorithm

7.1 Model

The discretised model for the logarithm of the benchmarked savings account Yt = log B̂t takes
the form for the time step size ∆ = 1:

Yt − Yt−1 = Rt ≈ −1

2
Vt−1 −

√
Vt−1ε

y
t

Vt − Vt−1 ≈ κ(Vt−1)
a(θ − Vt−1) + σ(Vt−1)

bεvt (7.33)

where εyt = W 2(t)−W 2(t−1) and εvt = W 1(t)−W 1(t−1) are standard normal random variables
with correlation ρ.

7.2 Priors

In order to simplify the MCMC algorithm, we rely on conjugate priors for the model parameters.
These are chosen in line with the previous literature, see e.g. [20], [34] and [33] to guarantee a low
level of information. Denoting by N (µ, σ2) a normal distribution with mean µ and variance σ2

and by IG(α, β) an inverse Gamma distribution with a shape parameter α and a scale parameter
β, we have

• θ ∼ N (0, 1)

• κ ∼ N (0, 1)

• ω2 = σ2(1− ρ2); ω ∼ IG(2, 200)

• ψ = σρ; ψ|ω2 ∼ N (0, 1/2ω2)

7.3 Posteriors

Whenever possible, we use conjugate priors for the parameters in order to derive the complete
conditionals. The only parameter (latent variable) that requires a Metropolis-Hastings step is
the variance. The posterior is given by the following expression

p(Θ,V|R) ∝ p(R|Θ,V)p(Θ,V) = p(R|Θ,V)p(V|Θ)p(Θ).

Note the following about the last expression

p(R|Θ,V)p(V|Θ) ∝
T∏
t=1

p(Rt|Vt, Vt−1,Θ)p(Vt|Vt−1,Θ)

=
T∏
t=1

p(Rt, Vt|Vt−1,Θ)
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since by conditional independence we have p(R|Θ,V) =
∏T

t=1 p(Rt|Vt, Vt−1,Θ), and by the

Markov property we have p(V|Θ) ∝
∏T

t=1 p(Vt|Vt−1,Θ).

From equation (7.33) we see that the joint distribution is bivariate normal with the following
parameters

µ =

(
−1

2
Vt−1

Vt−1 + κV a
t−1(θ − Vt−1)

)
Σ =

(
Vt−1 −ρσV b+0.5

t−1
−ρσV b+0.5

t−1 σ2V 2b
t−1

)
. (7.34)

Given normality of the joint distribution we can determine p(Rt|Vt, Vt−1,Θ). It is also normal
with parameters given by

µRt|Vt = −1

2
Vt−1 − ρσ−1V 0.5−b

t−1 (Vt − Vt−1 − κV a
t−1(θ − Vt−1))

σ2
Rt|Vt

= Vt−1(1− ρ2). (7.35)

On the other hand, for p(Vt|Rt, Vt−1,Θ) we obtain a normal distribution with

µVt|Rt = Vt−1 + κ(Vt−1)
a(θ − Vt−1)− ρσV b−0.5

t−1 (Rt +
1

2
Vt−1)

σ2
Vt|Rt

= σ2V 2b
t−1(1− ρ2).

We can rewrite the posterior as follows:

p(Θ,V|R) ∝
T∏
t=1

p(Rt, Vt|Vt−1,Θ)p(Θ).

Since we cannot sample from the posterior we have to construct the complete conditionals, in
order to use MCMC. The algorithms to draw from the complete conditional in each iteration is
outlined below. Most of the complete conditional distributions can be derived using standard
results in, e.g., [10].

• Drawing θ: The complete conditional distribution has the form of a regression with

yt =

[
Vt − Vt−1 + κV a+1

t−1 + ρσV b−0.5
t−1 (Rt +

1

2
Vt−1)

]
/
[
σV b

t−1

√
1− ρ2

]
as a dependent variable and

xt =
[
κV a

t−1
]
/
[
σV b

t−1

√
1− ρ2

]
as an explanatory variable. The regression has a known error variance of one.
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• Drawing κ: The complete conditional distribution has the form of a regression with

yt =

[
Vt − Vt−1 + ρσV b−0.5

t−1 (Rt +
1

2
Vt−1)

]
/
[
σV b

t−1

√
1− ρ2

]
as a dependent variable and

xt =
[
V a
t−1(θ − Vt−1)

]
/
[
σV b

t−1

√
1− ρ2

]
as an explanatory variable. The regression has a known error variance of one.

• Drawing ρ and σ: We follow [34] and use reparametrisation ψ = σρ and ω2 = σ2(1− ρ2).
This yields to the regression with

yt =
[
Vt − Vt−1 − κV a

t−1(θ − Vt−1)
]
/
[
V b
t−1
]

and

xt = −V −1/2t (Rt +
1

2
Vt−1).

The unknown homoscedastic error variance is given by ω2 = σ2(1− ρ2). Using this setup,
we are able to draw ψ and ω2. The parameters of interest are then given by σ2 = ω2 + ψ2

and ρ = ψ/σ.

• Drawing Vt: Variance Vt is a latent variable that does not have a recognizable complete
conditional and therefore, we rely on the Metropolis-Hastings algorithm. As outlined in
Section 3, the complete conditional distribution for Vt can be written as

p(Vt|Θ,R) ∝ p(Rt+1, Vt+1|Vt,Θ)p(Vt|Rt, Vt−1,Θ),

where p(Rt+1, Vt+1|Vt,Θ) follows the bivariate normal distribution and p(Vt|Rt, Vt−1,Θ)
follows a univariate normal distribution. The Metropolis-Hasting step proposes a new
variance V

(i)
t in the ith draw by drawing from p(Vt|Rt, Vt−1,Θ) and accepting that draw

with probability

min

{
p(Rt+1, Vt+1|V (i)

t ,Θ)

p(Rt+1, Vt+1|V (i−1)
t ,Θ)

, 1

}
.
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