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Abstract

Tournaments are widely used in organizations, explicitly or implicitly, to reward the

best-performing employees, e.g., through promotion or bonuses, and/or to punish

the worst-performing employees, e.g., through firing or unfavorable job assignments.

We explore the impact of the allocation of prizes on the effectiveness of tournament

incentive schemes. We show that while multiple prize allocation rules are equivalent

when agents are symmetric in their ability, the equivalence is broken in the presence

of heterogeneity. Under a wide range of conditions, loser prize tournaments, i.e.,

tournaments that award a low prize to relatively few bottom performers, are optimal

for the firm. The reason is that low-ability agents are discouraged less in such tour-

naments, and hence can be compensated less to meet their participation constraints.
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1 Introduction

Tournaments, or incentive schemes based on relative performance evaluation, are one of

the mainstays in a manager’s toolkit of motivational devices. In the workplace, employees

may compete with one another to receive a reward, for example in the form of a promotion

or bonus (see, e.g., Lazear and Rosen 1981; Bull et al. 1988; Orrison et al. 2004).

A sometimes overlooked, but equally important type of workplace tournaments is the

competition among co-workers to avoid being punished. Employee termination is the

most severe but not the only form of punishment. For example, a manager may take an

employee off attractive special projects, assign him or her to a more onerous job, or refuse

to give an employee an otherwise expected bonus or promotion.

Given the wide use of rank-based rewards and punishments in organizations,1 it is

important to understand what combination of rewards and punishments is optimal for

the firm. This question can be formulated quite generally as a prize allocation prob-

lem. In this paper, we explore the effect of the allocation of prizes on the effectiveness

of tournament contracts. Our model builds on the seminal theory of Lazear and Rosen

(1981). Workers perform by choosing effort, which is not observable by the manager. Each

worker’s performance depends positively on effort but also includes a random component

(“noise”). The manager can only observe the ranking of workers by their performance

levels and has to design a tournament contract that awards fixed prizes based on the

workers’ ranks. In the baseline case of homogeneous risk-neutral workers, multiple dis-

tributions of prizes are efficiency and profit-equivalent (Lazear and Rosen 1981), i.e., the

predicted work effort and firm profits are the same under those incentive schemes. We

depart from this symmetric setting and consider heterogeneous workers. We focus on

the case of relatively weak heterogeneity because, first, it is analytically tractable, and,

second, it is the most relevant for applications due to endogenous labor market sorting

and efficiency considerations.2

We show that in the presence of weak heterogeneity the multiplicity of optimal prize

allocations is broken in favor of a unique optimal tournament contract. The optimal

contract, to the first order in the level of heterogeneity, is a j-tournament awarding two

1A recent Wall Street Journal article (“’Rank and Yank’ Retains Vocal Fans,” January 31, 2012, avail-
able at http://online.wsj.com/article/SB10001424052970203363504577186970064375222.html)
states that 60% of Fortune 500 companies currently use some kind of a ranking system for incentive
provision. Jack Welch, the former CEO of General Electric, regularly terminated the lowest 10% of the
GE employees on the work performance scale.

2In fact, it is well-established that tournament incentive schemes become increasingly inefficient as the
degree of worker heterogeneity rises, due to the discouragement of low-ability workers (see, e.g., O’Keeffe
et al. 1984). Thus, tournament contracts are most likely to be used in relatively homogeneous groups.

2



distinct prizes:3 a higher prize is awarded to the agents ranked 1 through j, and a lower

prize to the remaining agents. Moreover, in a wide range of cases the optimal contract

awards a low prize to relatively few workers (j > n/2). This result is a consequence of

the finding that lower-ability workers are discouraged more in tournaments that focus on

rewarding top performers than in tournaments punishing low performers as it is more

important for them to avoid losing in the latter. Hence, lower compensation overall is

needed in tournaments with punishment to satisfy the workers’ participation constraints.

We show that tournament contracts are nearly efficient in weakly heterogeneous

groups, in the sense that the inefficiency is a second-order effect with respect to the

level of heterogeneity. There is, however, a first-order (negative) effect of heterogeneity

on the firm’s profit, and this effect depends critically on the allocation of prizes. The

optimal allocation of prizes is, in turn, determined by the shape of the distribution of

noise.

We restrict attention to tournament contracts satisfying anonymity, i.e., the prin-

ciple that two workers cannot be compensated differently for the same output.4 Such

schemes are preferable from a managerial perspective because they do not involve worker

discrimination, do not violate procedural equity, and are less demanding in terms of the

information the principal needs to possess. As we show, in order to implement an anony-

mous tournament contract for weakly heterogeneous workers, the principal only needs to

know average ability and the ability (but not the identity) of the least productive worker.

Finally, we show that as long as workers’ heterogeneity is not too strong, the inefficiency

of anonymous contracts is negligible.

To the best of our knowledge this is the first paper that presents a general, yet

tractable, theory of optimal prize allocation for heterogeneous workers in the Lazear and

Rosen (1981) framework. In the analysis, we sacrifice precision for generality and use

the linear approximation. This technique is reliable as long as the degree of workers’

heterogeneity is not too strong and has proved fruitful in other settings (see, e.g., Fibich

and Gavious 2003; Fibich et al. 2004, 2006; Ryvkin 2007, 2009). We show with an

example of an otherwise intractable model that the linear approximation agrees with a

high-precision numerical solution very well in a wide range of parameters.

The rest of the paper is organized as follows. Section 2 reviews the relevant theoretical

3We borrow the term “j-tournament” from Akerlof and Holden (2012). Importantly, Akerlof and
Holden (2012) focus on homogeneous agents and analyze two-prize tournaments in an ad hoc fashion,
whereas we show that they emerge as a unique optimal mechanism for weakly heterogeneous agents.

4It was shown previously that the inefficiencies arising in the traditional tournament contracts in the
presence of heterogeneity can be removed by extending the class of possible contracts to those violating
the principle of anonymity. Examples of such solutions include ability-specific piece rates (Lazear and
Rosen 1981), handicaps (O’Keeffe et al. 1984), and ability-specific prizes (Gürtler and Kräkel 2010).
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and empirical literature on the problem of prize allocation in tournaments. In Section 3,

we describe the model and briefly characterize symmetric optimal contracts that are well-

known and serve as the point of departure for further analysis. In Section 4, we present

the main results and a numerical illustration. Section 5 concludes with a summary and

discussion of our findings and their implications.

2 Review of the relevant literature

There is an extensive literature on tournaments in organizations (for a review of the

earlier literature see, e.g., McLaughlin 1988, Lazear 1995, Prendergast 1999; for a more

recent review see, e.g., DeVaro 2006, Konrad 2009). Most of this literature focuses on

tournaments that reward the best-performing employees.5 Punishment incentive schemes

were initially mentioned by Mirrlees (1975) and later re-examined by Nalebuff and Stiglitz

(1983), who note the equivalence of multiple prize allocation schemes in the symmetric

case.6

Most of the existing theoretical literature on optimal prize allocation in tournaments

focuses on two classes of models – perfectly discriminating contests and Tullock (1980)

contests (for a detailed review, see Sisak 2009). Moldovanu and Sela (2001) study perfectly

discriminating contests that are essentially all-pay auctions with private and possibly

nonlinear bidding costs. They find that the optimal allocation of prizes that maximizes

total effort depends on the curvature of the effort cost function: one top prize is optimal for

linear or concave costs, while multiple prizes can be optimal for convex costs. Moldovanu

et al. (2012) explore optimal prize structures in the same framework but explicitly allow

for punishment (prizes below the agents’ outside option) which may or may not be costly

to the employer. They identify the relationship between the distribution of ability in

the population and the prize structure and show that, in some cases, punishment can

be optimal even if it is costly. Baye et al. (1996), Barut and Kovenock (1998) and

Clark and Riis (1998), among others, study all-pay auctions of complete information

5Throughout this discussion, we focus on the standard static principal-agent models of tournaments in
the tradition of Lazear and Rosen (1981). There is also an extensive literature on dynamic tournaments
involving sequential elimination of employees (see, e.g., Rosen 1986, O’Flaherty and Siow 1995, Gradstein
and Konrad 1999, Ryvkin and Ortmann 2008, Casas-Arce and Martinez-Jerez 2009, Fu and Lu 2009).
Although elimination can be thought of as a form of punishment, it is typically not discussed as such.
Instead, these models focus on the incentives of the remaining (promoted) agents.

6The equivalence of optimal tournament contracts with various configurations of prizes in the sym-
metric case was mentioned already by Lazear and Rosen (1981). Nalebuff and Stiglitz (1983) discuss the
equilibrium existence and note that in the presence of punishment the agents’ payoff functions remain
concave as the number of agents n increases, whereas the pure strategy equilibrium disappears as n
increases in the case of reward. Thus, punishment prize structures tend to reduce nonconvexities in the
principal-agent problem.
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and also find that multiple prizes can be optimal for some configurations of types. In

the Tullock (1980) framework, it was found that heterogeneity (Baik 1994, Szymanski

and Valetti 2005) can lead to the optimality of the second prize. Schweinzer and Segev

(2012) show that multiple prizes can be optimal also in symmetric Tullock contests with a

nested winner determination structure. Liu et al. (2013) study optimal prize allocation in

tournaments as a general mechanism design problem under incomplete information and

show that punishments arise as part of a second-best solution.

Gürtler and Kräkel (2012) study rank-order “dismissal tournaments” of two hetero-

geneous workers, one of whom is terminated as a result. Their primary focus is on the

selection efficiency of the termination mechanism, defined as the probability that the high-

ability worker is retained. Gürtler and Kräkel (2012) show that, if the low-ability worker

has a relatively low outside option, potential termination incentivizes her more than the

high-ability worker. This leads to the possibility that, in some instances, the high-ability

worker contributes less effort and is more likely to be terminated. Kräkel (2012) uses a

similar argument to discuss adverse selection in a sequential elimination setting.

Kräkel (2000) discusses reward and punishment tournaments in which workers may

face “relative deprivation,” a behavioral term in the payoff function making a worker

minimize the distance between her income and the average income of a richer reference

group. One of the results is that in the absence of relative deprivation, for symmetric

workers, reward tournaments are more effective than punishment tournaments from the

organizer’s perspective. An important difference between our approach and that of Kräkel

(2000) is that he does not calculate optimal contracts, and the result is driven by the

assumption that the high and low prizes are the same in both tournament schemes and

thus the punishment tournament always costs more to the organizer.

The paper that is related most closely to ours is by Akerlof and Holden (2012) (hence-

forth, AH12) who study optimal prize structures using the Lazear and Rosen (1981) frame-

work.7 They consider homogeneous agents and focus on the role of the shape of agents’

utility function (risk aversion and prudence) in determining the optimal prize structure.

They find that nontrivial profiles of prizes rewarding top performers and punishing bot-

tom performers can be optimal depending on parameters. Our paper can be viewed as

complementary to AH12 as we use a model with risk-neutral agents but focus on the

effect of agents’ heterogeneity in ability. In the extended working paper version of AH12,

Akerlof and Holden (2007) provide some results for heterogeneous agents. First, they

discuss a model in which agents learn their abilities after they choose effort levels; thus,

7Krishna and Morgan (1998) pose essentially the same question but restrict attention to tournaments
of up to four agents.
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agents are symmetric ex ante but heterogeneous ex post. The resulting equilibrium is

symmetric and has properties similar to the equilibrium with ex ante symmetric agents.

Second, Akerlof and Holden (2007) discuss some special cases of models with ex ante

heterogeneous agents, restricting attention to tournaments with only two types of agents

and an equal number of agents of each type (n/2 high ability agents and n/2 low ability

agents); they also restrict the shape of the effort cost function to quadratic (in the case

of additive heterogeneity) or power law (in the case of multiplicative heterogeneity). For

additive heterogeneity, Akerlof and Holden (2007) show that the tournament that pays

a low prize w2 to the lowest-ranked agent and a high prize w1 to the remaining n − 1

agents (the “strict loser-prize tournament”) induces a higher level of effort than the tour-

nament that pays prize w1 to the highest-ranked agent and prize w2 to the remaining

n − 1 agents (the “strict winner-prize tournament”). This result is of limited practical

value, however, because total compensation is clearly higher in the former tournament

than in the latter. For multiplicative heterogeneity, Akerlof and Holden (2007) show that

when heterogeneity is sufficiently large, the strict winner-prize scheme is preferred to the

strict loser-prize scheme. In contrast to Akerlof and Holden (2007), our model does not

restrict the number of player types, nor does it impose any parametric restrictions on

the cost function of effort. Additionally, we keep various prize structures comparable by

calculating optimal contracts in all cases.

Because of the difficulties in observing effort and prize valuations with field data,

some of the initial empirical tests of tournament theory were conducted using laboratory

experiments (see a recent review by Dechenaux et al. 2012). One of the first is by Bull

et al. (1987) who showed that, on average, rank-order tournaments generated behavior

similar to piece-rate pay schemes, albeit with a higher variance in behavior. With this

result established, subsequent papers delved into more nuanced topics such as affirma-

tive action (Schotter and Weigelt 1992), tournament size and prize structure (Harbring

and Irlenbusch 2003; Orrison et al. 2004, Chen et al. 2011), sabotage (Harbring and

Irlenbusch 2008; Falk et al. 2008; Carpenter et al. 2010, Harbring and Irlenbusch 2011),

selection (Camerer and Lovallo 1999; Eriksson et al. 2009; Cason et al. 2010), dynamic

tournaments (Sheremeta 2010), and gender effects (Gneezy et al. 2003), just to name a

few.

The empirical literature using field data has looked at both sports tournaments

(Ehrenberg and Bognanno 1990; Becker and Huselid 1992; Fernie and Metcalf 1999; Lynch

2005; Brown 2012) and corporate tournaments (Main et al. 1993; Eriksson 1999; Bog-

nanno 2001; Conyon et al. 2001; DeVaro 2006). For the most part, the examined field

evidence is in line with the theories’ directional predictions with respect to effort when
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examining the spread between the winner and the loser prizes, the size of the tournament

and the number of prizes available. The empirical analysis of punishment tournaments has

mainly focused on the causes or effects of employee termination (see, e.g., a recent meta-

analysis of implications of downsizing by Datta et al. 2010). Warner et al. (1988), and

Gibbons and Murphy (1990) provide evidence that rank-order termination tournaments

are used in the upper levels of management by showing that relative stock performance

can be used in explaining CEO dismissals. In the financial sector, Chevalier and Elli-

son (1999) find a U-shaped relationship between relative fund performance and a fund

manager’s termination risk. Qiu (2003) builds upon this analysis and shows that a fund

manager’s risk attitudes are dependent upon their fund’s relative performance rank.

3 The model

3.1 Model setup

Consider a tournament of n ≥ 2 risk-neutral agents indexed by i = 1, . . . , n. Each agent

participates in the tournament by exerting effort ei ≥ 0 that costs her cig(ei). Here, ci > 0

is the agent’s cost parameter (higher ci implies lower ability), and g(·) is a strictly convex

and strictly increasing function, with g(0) = 0. All agents have the same outside option

payoff ω.8

Following Lazear and Rosen (1981), we model agent i’s output as yi = ei + ui, where

ui is a zero-mean random shock. Shocks u1, . . . , un are independent across individuals

and drawn from the same distribution with support [ul, uh], probability density function

(pdf) f(u) and cumulative density function (cdf) F (u).9

The agents’ output levels are ranked, and the agent ranked r receives prize Vr, with

V1 ≥ V2 ≥ . . . ≥ Vn, where at least two prizes are distinct. Let p(i,r)(e) denote the

probability, as a function of the vector of effort levels e = (e1, . . . , en), that agent i’s

output is ranked r in the tournament. Agent i’s expected payoff then can be written as

πi(e) =
n∑

r=1

p(i,r)(e)Vr − cig(ei).

8Outside option ω is the expected payoff of an agent if she does not participate in the tournament. It
can represent unemployment insurance benefits, earnings in a different firm or sector, or income from self-
employment. The assumption that ω is homogeneous across agents is warranted provided their abilities
are part of job-specific human capital and thus not transferrable outside the firm. If it is not the case,
agents’ outside options can be correlated with abilities (see, e.g., Kräkel 2012). We discuss implications
of such a correlation in Section 4.4.

9Under risk-neutrality, the results do not change if shocks ui contain an additive common shock
component, i.e., ui = ρ+ ϵi where ρ is the common shock and ϵi are zero-mean i.i.d.
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For a given configuration of prizes, suppose an equilibrium in pure strategies exists

and let e∗ = (e∗1, . . . , e
∗
n) denote the vector of equilibrium effort levels. There is a risk-

neutral principal, whose objective function is the expected profit defined as the difference

between aggregate effort and total prize payments, Π =
∑

i ei −
∑

r Vr.
10 The principal

chooses a tournament contract (V1, . . . , Vn). Given the principal’s objective, the optimal

contract (V ∗
1 , . . . , V

∗
n ) solves

max
V1,...,Vn

∑
i

e∗i −
∑
r

Vr

subject to the participation constraints, πi(e
∗) ≥ ω, i = 1, . . . , n, and the incentive

compatibility constraints ensuring that e∗ is an equilibrium under the optimal contract.

3.2 Symmetric optimal contracts

The results of this section are well-known in the literature. We provide them here for

completeness because they serve as the point of departure for the analysis that follows.

Assume that all agents have the same ability, c1 = . . . = cn = c̄. In this section, we briefly

characterize the symmetric equilibrium assuming it exists. The existence conditions are

discussed in detail by AH12 for a more general setting with risk-averse agents.

Let ē denote the symmetric equilibrium effort level. For a given configuration of

prizes, ē solves the symmetrized first-order condition∑
r

βrVr = c̄g′(ē), (1)

where βr = p
(1,r)
1 (ē, . . . , ē) is the derivative of an agent’s probability to be ranked r with

respect to the agent’s own effort evaluated at the symmetric equilibrium point. The

expression for βr is provided in AH12:

βr =

(
n− 1

r − 1

)∫
F (t)n−r−1[1− F (t)]r−2[n− r − (n− 1)F (t)]f(t)2dt. (2)

Coefficients βr, referred to by AH12 as “weights,” play a critical role in determining

the optimal distribution of prizes for symmetric risk-averse agents. As we show below,

however, a different set of coefficients enters the stage for heterogeneous agents.

Weights βr are determined entirely by the distribution of noise F . The following

additional properties of βr are provided by AH12: (i) For any distribution F ,
∑

r βr = 0,

10The results below are also valid for a more general model with Π = Q(
∑

i ei) −
∑

r Vr, where Q(·)
is a smooth, strictly increasing and concave function. The results below correspond to normalization
Q′(nēs) = 1, which can be adopted without loss of generality.
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β1 ≥ 0, and βn ≤ 0; (ii) If F is symmetric, i.e., f(t) = f(−t), then βr = −βn−r+1 for all

r; (iii) If F is a uniform distribution on the interval [−b, b], then β1 = −βn = 1/(2b) and

βr = 0 for 1 < r < n.

A critical issue that arises in the analysis below, and is also discussed by AH12, is

whether weights βr are monotonically decreasing in r. Although this appears to be the

case for some prominent distributions (such as the uniform and the normal distributions),

the monotonicity of βr is not a universal property. Specifically, as mentioned by AH12,

nonmonotonicities in the weights tend to arise when F is multimodal. In what follows, we

will be making the assumptions of monotonicity of βr and/or symmetry of F whenever

necessary.

In the symmetric equilibrium, the probability of any agent winning the tournament

is 1/n; therefore, the equilibrium payoff of an agent is π̄ = (1/n)
∑

r Vr − c̄g(ē). To

calculate the optimal contract, write the principal’s profit as Π̄ = n[ē − (1/n)
∑

r Vr].

Effort is costly, and compensation is independent of effort; therefore, the participation

constraint binds, π̄ = ω. This gives Π̄ = n[ē − c̄g(ē) − ω]. The principal will choose an

optimal contract (V̄1, . . . , V̄n) such that the equilibrium effort ē maximizes Π̄. This gives

the following system of equations:∑
r

βrVr = c̄g′(ē),
∑
r

Vr = n[ω + c̄g(ē)], c̄g′(ē) = 1. (3)

Let ēs denote the solution of the equation c̄g′(ē) = 1. Then any configuration of prizes

(V̄1, . . . , V̄n) that solves the system of equations∑
r

βrVr = 1,
∑
r

Vr = n[ω + c̄g(ēs)]. (4)

will implement an optimal contract. The firm’s optimal profit is Π̄s = n[ēs − c̄g(ēs)− ω].

The resulting contracts are socially optimal, in the sense that they maximize total surplus

n[ē− c̄g(ē)].

As seen from Eqs. (4), an optimal contract is only determined up to n − 2 arbitrary

prizes. Thus, two distinct prizes are sufficient to generate an optimal contract. The

multiplicity of optimal contracts, the discussion of which goes back to Lazear and Rosen

(1981), is a consequence of the symmetry (and risk-neutrality) of agents. As we show

below, the multiplicity of optimal contracts will be broken when agents are heterogeneous,

and in a wide range of scenarios a unique optimal contract will emerge.
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4 Optimal contracts with weakly heterogeneous

agents

4.1 Equilibrium with weakly heterogeneous agents

We now turn to tournaments of heterogeneous agents. While the case of arbitrary hetero-

geneity is analytically intractable, a lot can be said about the impact of relatively weak

heterogeneity. From a practical viewpoint, weak heterogeneity means that agents’ abilities

are not very different from some average level. This is a reasonable assumption to make

in most cases, as employees whose abilities are substantially different from group average

are unlikely to be part of a tournament in the first place, due to the well-documented

adverse effects of agent disparity on tournament efficiency (e.g., Lazear and Rosen 1981,

O’Keeffe et al. 1984, Müller and Schotter 2010). Moreover, in many cases natural job

market sorting will lead to attrition of employees whose ability is too far from the firm’s

average.

Let c̄ = n−1
∑

i ci denote the average cost parameter. Introduce relative abilities (or,

for brevity, abilities) ai defined as negative relative deviations of cost parameters from

the average: ci = c̄(1 − ai). By construction, ai < 1,
∑

i ai = 0, and higher ai implies

lower cost of effort, i.e., a higher ability. Moreover, ai > 0 (ai < 0) implies ability above

(below) average.

Assume agents are weakly heterogeneous, in the sense that µ ≡ maxi |ai| ≪ 1. Thus,

it is assumed that relative deviations of cost parameters ci from the average cost parameter

c̄ are “small.”

In what follows, we will assume that, for a given configuration of prizes (V1, . . . , Vn),

the pure strategy equilibrium with weakly heterogeneous agents exists and is governed by

the corresponding system of first-order conditions:∑
r

p
(i,r)
i (e)Vr = cig

′(ei), i = 1, . . . , n. (5)

This is a reasonable assumption to make provided the symmetric equilibrium exists and

the agents’ payoffs are smooth functions of parameters in the neighborhood of the sym-

metric equilibrium point.11 In this case, we can look for the equilibrium effort levels in the

form ei = ē(1+xi), where the relative deviations of effort from the symmetric equilibrium

11In line with other studies of tournament contracts, we focus on the symmetric equilibrium as the
point of departure, even though it may not be the only possible equilibrium, because it is the most
“natural” equilibrium for symmetric agents. The approximate equilibrium with weakly heterogeneous
agents we identify is unique in the neighborhood of the symmetric equilibrium by construction, as it is
given by the solution to a system of linear equations with full rank.
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level, xi, are also “small,” |xi| ≪ 1. In the linear approximation, xi can be found ap-

proximately, with accuracy O(µ2), by expanding the first-order conditions (5) around the

symmetric equilibrium point to the first order in µ. The result is given by the following

proposition (all proofs are provided in the Appendix).

Proposition 1 For a given configuration of prizes (V1, . . . , Vn), in the linear approxima-

tion,

(a) the equilibrium effort of agent i is e∗i = ē(1 + xi), with

xi = ξ(ē)ai +O(µ2), ξ(ē) =
c̄g′(ē)

ē[c̄g′′(ē)−
∑

r λrVr]
; (6)

(b) the equilibrium payoff of agent i is

πi =
1

n

∑
r

Vr − c̄g(ē) + η(ē)ai +O(µ2), η(ē) =
c̄2g′(ē)2

(n− 1)[c̄g′′(ē)−
∑

r λrVr]
+ c̄g(ē). (7)

Here,

λr = ∆r (8)

+
n(n− 2)![(r − 1)(r − 2)Mr − 2(r − 1)(n− r)Mr+1 + (n− r)(n− r − 1)Mr+2]

2(n− r)!(r − 1)!
,

Mk =

∫
F (t)n−k[1− F (t)]k−3f(t)3dt, (9)

∆r =



f(uh)
2 − f(ul)

2, n = 2, r = 1

f(ul)
2 − f(uh)

2, n = 2, r = 2
nf(uh)

2

2
, n ≥ 3, r = 1

−n
2
[f(ul)

2In=3 + f(uh)
2], n ≥ 3, r = 2

−n
2
[f(ul)

2 + f(uh)
2In=3], n ≥ 3, r = n− 1

nf(ul)
2

2
, n ≥ 3, r = n

0, otherwise

(10)

In=3 is the indicator equal 1 if n = 3 and zero otherwise.

In what follows, we will assume that the denominator in the expression for ξ(ē), Eq. (6),

is positive, i.e., higher ability agents exert higher effort, as would be expected in a “well-

behaved” equilibrium.12

12This is, of course, a consequence of our specification of the cost of effort in which effort and ability
are complementary.
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Proposition 1 shows that the deviations of agents’ efforts and payoffs from the sym-

metric equilibrium levels are determined, in the linear approximation, by coefficients λr.

As we show below, these coefficients, together with βr, also determine the prize structure

of optimal contracts.

Note that for n = 2, λr = ∆r; moreover, if F is symmetric, λr = 0. The following

corollary follows directly from Eq. (8) and describes the properties of coefficients λr for

n ≥ 3.

Corollary 1 For n ≥ 3, coefficients λr have the following properties:

(i) For any distribution F ,
∑

r λr = 0, λ1 ≥ 0 and λn ≥ 0;

(ii) If F is symmetric, λr = λn−r+1 for all r;

(iii) If F is a uniform distribution on the interval [−b, b] then λr = ∆r, i.e., λ1 =

λn = n/8b2; λ2 = λn−1 = −n(In=3 + 1)/8b2; and λr = 0 for 2 < r < n− 1.

4.2 Optimal contracts

It follows from Proposition 1, Eq. (6), that the aggregate deviation of agents’ effort from

the symmetric equilibrium level is zero in the linear approximation,
∑

i xi = O(µ2);

therefore, in the linear approximation the aggregate effort of agents is the same as in the

symmetric tournament and, thus, the principal’s objective function is Π = nē−
∑

r Vr +

O(µ2). The first-order correction to the principal’s profit arises due to the participation

constraint that now will be binding only for the lowest-ability agent. Let agents be

ordered, without loss of generality, so that c1 ≤ c2 ≤ . . . ≤ cn. Then the participation

constraint will be πn = ω, where πn is the equilibrium payoff of agent n given by Eq. (7).

This gives the principal’s objective function Π = n[ē− c̄g(ē)− ω + η(ē)an] +O(µ2). The

principal will choose the optimal contract (V ∗
1 , . . . , V

∗
n ) such that the equilibrium effort ē

maximizes Π and satisfies the participation constraint (1/n)
∑

r Vr − c̄g(ē) + η(ē)an = ω.

A j-tournament, as defined by AH12, is a tournament prize structure that awards two

distinct prizes, a prize W1 to the agents ranked 1 through j and a prize W2 to the agents

ranked j+1 through n, with W1 > W2. It turns out that, in the linear approximation, the

optimal tournament prize structure in the tournament of weakly heterogeneous agents is

that of a j-tournament. The results are summarized in the following proposition.

Proposition 2 In the tournament of weakly heterogeneous agents, in the linear approxi-

mation:

(a) The optimal contract is a j-tournament, with V ∗
1 = . . . = V ∗

j = W1, V
∗
j+1 = . . . =

V ∗
n = W2, and

j ∈ arg min
1≤r≤n−1

Λr

Br

.
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Here,

Br =
(n− 1)!

(n− r − 1)!(r − 1)!

∫
F (t)n−r−1[1− F (t)]r−1f(t)2dt, (11)

Λr =
n(n− 2)!

2(n− r − 1)!(r − 1)!
[(n− r − 1)Mr+2 − (r − 1)Mr+1] +

r∑
k=1

∆k.

(b) The optimal prizes are

W1 = ω + c̄g(ēs) +
n− j

nBj

+

[
τ − η(ēs) +

(n− j)c̄g′′(ēs)τ

nBj

]
an +O(µ2), (12)

W2 = ω + c̄g(ēs)− j

nBj

+

[
τ − η(ēs)− jc̄g′′(ēs)τ

nBj

]
an +O(µ2), τ =

η′(ēs)

c̄g′′(ēs)
.

(c) The firm’s optimal profit is

Π∗ = Π̄s + nη(ēs)an +O(µ2), (13)

The intuition for part (c) of Proposition 2 is as follows. In the linear approximation,

the optimal symmetric equilibrium effort ē can be sought in the form ē = ēs+τan+O(µ2),

where ēs is the optimal effort level for contracts with homogeneous agents, and τ is a

constant to be determined. However, because the firm’s profit is Π = n[ē − c̄g(ē) − ω +

η(ē)an] +O(µ2), the correction τan will have no first-order effect on the profit through ē

due to the envelope theorem. Thus, the first-order effect of agents’ heterogeneity on the

firm’s profit is simply nη(ēs)an.

The resulting optimal contract is still nearly efficient (the inefficiency is of order

O(µ2)).13 Thus, to the first order in µ, heterogeneity leads to a redistribution of surplus

from the principal to the agents, but not to a reduction in surplus. Indeed, by construction,

an < 0; therefore, in the heterogeneous case the principal’s profit is reduced, in the linear

approximation, by nη(ēs)|an|, as compared to the symmetric case.

Proposition 2 is the central result of this paper. It shows that the multiplicity of

optimal contracts with symmetric agents is broken in the presence of weak heterogeneity.

Two distinct prizes are still sufficient to implement an optimal contract, in the linear ap-

proximation, but the structure of the contract is determined critically by the distribution

of noise through coefficients βr and λr. Unfortunately, not much can be said about the

properties of these coefficients for general distributions F , and thus the optimal j in the

13To see this, consider total surplus S =
∑

i[e
∗
i − cig(e

∗
i )]. In the linear approximation, with e∗i

determined by Eq. (6), we have S = n[ē − c̄g(ē)] + O(µ2). With ē = ēs + τan + O(µ2), this gives
S = n[ēs − c̄g(ēs)] +O(µ2), i.e., the same surplus as in the symmetric case, in the linear approximation.
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j-tournament prize structure can potentially be (almost) anywhere. In the remainder of

this section, we will explore how certain restrictions imposed on F lead to restrictions on

the location of j.

Following AH12, we will refer to j-tournaments with j ≤ n/2 as “winner-prize tour-

naments” because they award the high prize to relatively few top performers; and to

j-tournaments with j ≥ n/2 as “loser-prize tournaments” because they award the low

prize to relatively few bottom performers. We will also use the terms “strict winner-prize

tournament“ and “strict loser-prize tournament“ to refer to the extreme versions of the

two tournaments with j = 1 and j = n − 1, respectively. In what follows, we show that

for a wide class of distributions F the optimal tournament prize structure with weakly

heterogeneous agents is that of a loser-prize tournament.

Figure 1 shows βr and λr as functions of r for the normal distribution of noise with

n = 20. As seen from Figure 1, both coefficients exhibit the predicted symmetry.
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Figure 1: Coefficients βr (left) and λr (right) as functions of r for n = 20 and the normal
distribution of noise F with zero mean and unit variance.
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Figure 2: Coefficients Br (left), Λr (center), and their ratio Λr/Br (right) as functions of
r for n = 20 and the normal distribution of noise F with zero mean and unit variance.

Moreover, βr is monotonically decreasing in r, while λr is U-shaped. These shapes are
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quite generic and hold for a variety of single-peaked symmetric distributions. They have

consequences for the dependence of the cumulative coefficients, Br and Λr, on r, as shown

in Figure 2.

Figure 2 shows the dependence of Br, Λr and their ratio, Λr/Br, on r for the same

distribution of noise as in Figure 1. Recall that Br is positive for any distribution F (cf.

Eq. (11)) and will have the inverted-U shape as in Figure 2 (left) if βr is decreasing in

r. The maximum of Br will be reached at the point where βr crosses zero. It will be

in the middle if βr is symmetric (i.e., if distribution F is symmetric). Similarly, recall

that
∑

r λr = 0 and λ1 is positive for any distribution F ; therefore, if λr is U-shaped as

in Figure 1, Λr will be positive and will have a maximum at a relatively low r, then it

will cross into the negative domain and will have a minimum for a relatively high r, as in

Figure 2 (center). It will be symmetric around the middle if F is symmetric.

The ratio Λr/Br appears to be monotonically decreasing in r when F is the normal

distribution (Figure 2, left), and reaches its minimum for r = n− 1. Thus, when F is the

normal distribution, the optimal contract is the strict loser-prize tournament awarding

prize W1 to the agents ranked 1 though n− 1 and prize W2 to the agent ranked last. It is

easy to see that the same is true when F is a uniform distribution. A more general result

is given by the following proposition.

Proposition 3 (a) Suppose the distribution of noise is symmetric and λr is U-shaped.

Then the optimal tournament contract for weakly heterogeneous agents, in the linear ap-

proximation, is a loser-prize tournament.

(b) For any distribution F under no circumstances is the strict winner-prize tournament

optimal for n ≥ 3.

To see why Proposition 3 is true, consider the shapes of Br and Λr (Fig. 2). It is clear

that the minimum of Λr/Br will be reached when Λr < 0; therefore the optimal j cannot

be equal to 1 for any F , and has to be greater than n/2 when F is symmetric.

Our results imply that, when agents are weakly heterogeneous, firms that use tour-

naments focusing on punishing the worst-performing workers will perform better.

4.3 A numerical illustration

In this section, we provide a numerical illustration of the results summarized in Proposi-

tions 1 and 2. The goal of this section is to demonstrate that the linear approximation

approach used in Sections 4.1 and 4.2 produces results that are very close to high-precision

numerical solutions in a wide range of parameters.
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Figure 3: Left: Equilibrium efforts e∗i as functions of heterogeneity parameter d. The solid
lines show the linear approximation given by Eq. (6). The squares show the results of a
high-precision numerical solution of the system of Eqs. (5). Right: The firm’s profit Π∗

as a function of heterogeneity parameter d for j-tournaments with j = 1, 2, 3. The solid
lines show the linear approximation given by Eq. (13). The squares show the results of
a high-precision numerical computation of the profit in the equilibrium generated by the
corresponding j-tournament.

For illustration, consider a tournament of n = 4 agents with the cost of effort g(e) =

e2/2, the standard normal distribution of noise F , and the outside option ω = 0. The

average cost parameter c̄ = 1, and the agents’ relative abilities are a1 = d, a2 = d/3, a3 =

−d/3 and a4 = −d. Here, d ≥ 0 is the heterogeneity parameter, with d = 0 corresponding

to the homogeneous case. The weak heterogeneity approximation requires that d be small

compared to unity. For practical purposes, d ≤ 0.1 would typically be considered as

“small” in applied mathematics. As we show below, the linear approximation in this

example works remarkably well at least for d ≤ 0.2, which corresponds to a nearly 40%

variation in ability between the highest and the lowest ability agents.

We start with an illustration of the linearized equilibrium characterized in Proposition

1. Let the prizes be V1 = 2, V2 = 1, V3 = 0 and V4 = 0. This configuration of prizes is not

optimal, but we use it here to demonstrate that the linear approximation works well for

various configurations of prizes, not necessarily restricted to two-prize optimal contracts

described in Proposition 2. The left panel in Figure 3 shows the dependence of equilibrium

effort levels e∗i on the heterogeneity parameter d for each of the four agents. The solid

lines in the left panel show the linear approximation e∗i = ē(1+xi), with ē = 0.589 and xi

given by Eq. (6).14 The squares show the results of a high-precision numerical solution of

the system of Eqs. (5). As seen from the figure, the agreement for d ≤ 0.1 is excellent and

remains reasonably good for d at least up to 0.2. As expected, the equilibrium efforts are

14Recall that ē is the solution of the equation
∑

r βrVr = c̄g′(e). In our example with n = 4 and the
standard normal distribution F , Eq. (2) gives β1 = 0.257, β2 = 0.0743, β3 = −0.0743 and β4 = −0.257.
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ranked in the same way as relative abilities, with more able agents exerting higher effort.

As d increases, variation in effort between agents becomes substantial, and it is captured

remarkably well by the linear approximation.

We now turn to an illustration of Proposition 2. A complete numerical computation

of optimal contracts is prohibitively complex because it requires optimization of the firm’s

profit Π as a function of prizes V1, . . . , V4, with the exact equilibrium computed at each

step of the optimization process. We, therefore, present hybrid computational results.

Since we already know, from the illustration above, that the equilibrium is evaluated very

well by the linear approximation as long as d is not too large, we use the optimal prizes

W ∗
1 and W ∗

2 computed in the linear approximation, Eq. (12), and calculate the exact

profit of the firm, Π∗, for every j-tournament (with j = 1, 2, 3) generated by those prizes.

The results are presented in the right panel of Figure 3 that shows the firm’s optimal

profit, Π∗, as a function of d for the three j-tournaments. The linear approximation, Eq.

(13), is shown by the solid lines, while the squares show the results of a high-precision

computation of Π∗. As seen from the figure, the optimal j-tournament is the strict loser-

prize tournament with j = 3, as predicted by Proposition 2.15 As expected, the firm’s

optimal profit decreases with heterogeneity. The agreement between the numerically

computed profit and the linear approximation is excellent.

4.4 Heterogeneous outside options

One possible extension of the analysis presented above is to explore the effect of hetero-

geneity in the agents’ outside options. Given that the agents’ heterogeneity in ability is

weak, it is reasonable to assume that their outside option payoffs ωi are also close to the

average value ω. Let ωi = ω + κi, where
∑

i κi = 0 and |κi/ω| ≪ 1.

The outside options will affect the principal’s problem through the participation con-

straints that will now take the form πi ≥ ωi. Thus, the binding participation constraint

will not necessarily be that of the lowest ability agent, but of agent k ∈ argmin1≤i≤n(πi−
ωi). Depending on who that agent is, the optimal allocation of prizes can be the same or

quite different from what we describe above. Specifically, nothing will change if ak < 0,

but if ak > 0, the optimal j-tournament will have a j that maximizes, as opposed to

minimizes, the ratio Λr/Br. Thus, if the configuration of outside options is such that the

participation constraint is binding for one of the high-ability agents, optimal contracts

may shift in the direction of winner-prize tournaments, i.e., those that award a high prize

to relatively few top performers, because now it is the top performers whose incentives

15Proposition 2 predicts that the optimal j is given by the r ∈ {1, 2, 3} that minimizes Λr/Br. In our
example, Λ1/B1 = 0.714, Λ2/B2 = 0 and Λ3/B3 = −0.714.
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are critical.

Kräkel (2012) assumes that the outside option is positively correlated with ability.

We can explore the effect of such correlation by letting κi = κai, where κ > 0 is some

coefficient. Recall that agent i’s payoff, in the linear approximation, is πi = π̄ + η(ē)ai,

where π̄ is the payoff in the symmetric equilibrium. This gives πi−ωi = π̄−ω+(η(ē)−κ)ai.

Thus, if κ is small compared to η(ē), there will be no effect on optimal contracts. If κ is

large compared to η, optimal contracts will be reversed (i.e., focusing on reward instead

of punishment). The nontrivial case is when κ is close to η in magnitude. Recall that η

can be manipulated through the structure of prizes; at the same time, the optimal prize

structure will depend on the sign of η − κ.

We conclude that the presence of heterogeneity in outside options does not change

the basic j-tournament structure of optimal contracts; moreover, it does not change the

optimality of punishment as long as the variation in outside options is small compared to

variation in ability. Nontrivial reversals of optimal contracts in the direction of rewards

may occur, however, if the variation in outside options is relatively strong.

5 Discussion and conclusions

The question of what works better – the carrot or the stick – is probably as old as life

itself. In this paper, we address this question in a narrow sense: if a firm uses relative

performance evaluation-based incentives, for example to decide on bonuses, promotion or

firing, which prize structure is most effective? We use a standard principal-agent model

of tournaments that yields the same levels of aggregate effort and firm’s profit for various

types of contracts involving rewards and/or punishments when workers are homogeneous

in ability. For heterogeneous workers, however, the equivalence of multiple prize alloca-

tions is broken. We show that it is never optimal to just reward the best performer, and

that under a wide range of conditions optimal contracts are those emphasizing punishment

of relatively few worst-performing employees. The result follows from the effect different

prize allocations have on the degree of discouragement of low-ability workers.

We also show that the efficiency of anonymous tournament contracts (i.e., contracts

in which prizes can only be conditioned on the ranking of output but not on the individual

worker’s ability) is robust to heterogeneity as long as heterogeneity is not too strong. The

inefficiency of such contracts is a second-order effect in the level of heterogeneity, while

the differences in firms’ profits across different prize allocations are of the first-order.

The broad interpretation of our result is in line with Bruton et al. (1996) in their

conclusion that downsizing may be an important part of a healthy organization if done
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strategically. Caution should be exercised though as other consequences could offset the

gains in productivity (Repenning 2000). Of course, termination is not the only form of

punishment. Importantly, we show that because optimal contracts are determined mostly

by the incentives of low-ability workers, it is the low-performing workers who should be

distinguished and motivated most by the optimal mechanism. Our results predict that

the firms using contracts that focus on punishing low-performing workers will do better.

Our results complement those of AH12 and Moldovanu et al. (2012), who show that

tournament contracts involving punishment can be optimal, respectively, for homogeneous

agents in the presence of risk aversion and in an all-pay auction setting under incomplete

information about agents’ abilities. We show that the agents’ ex ante heterogeneity is an

independent factor driving the effectiveness of punishment contracts.

We emphasize the key differences between our paper and AH12. From the outset, their

focus is on homogeneous agents with risk-aversion while we look at heterogeneous risk-

neutral agents. Thus, AH12 study a symmetric setting where the effect of prize allocation

on efficiency is driven by the curvature of agents’ utility function; whereas we study a

(weakly) heterogeneous setting in which prize allocation affects efficiency through the

discouragement of low-ability agents. Also, AH12 introduce and analyze j-tournaments

in an ad hoc fashion, while we identify them as unique optimal prize structures under

weak heterogeneity.16 We further emphasize that although in the extended working paper

version of AH12, Akerlof and Holden (2007) provide some results for heterogeneous agents,

they only analyze a few restrictive special cases. We view our results as more general and,

to an extent, complementary to Akerlof and Holden (2007) who find that in some special

cases sufficiently strong multiplicative heterogeneity leads to winner-prize tournaments

being preferred to loser-prize tournaments. We show that when heterogeneity is weak

loser-prize tournaments are preferred to winner-prize tournaments under very general

conditions.

Our analysis has several limitations dropping which can be of interest in terms of

possible extensions. First, we assume that workers are risk-neutral. More complex incen-

tive schemes involving more than two distinct prizes can be optimal under risk-aversion

(AH12). Further steps in this direction include considering workers with heterogeneous

risk attitudes and/or with preferences departing from the expected utility theory. Second,

we restricted attention to the case of relatively weak heterogeneity. Although the impact

of heterogeneity on aggregate effort is a second-order effect compared to the first-order

effect of heterogeneity on the optimal aggregate compensation, it can become large and

16We stress again that we do not restrict attention to two-prize tournaments from the outset. In an
unrestricted set of prize profiles, a two-prize scheme emerges as the unique optimal prize scheme for
weakly heterogeneous agents.
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surpass the latter in magnitude when heterogeneity becomes strong. As discussed in the

Introduction, this effect is likely to be mitigated by endogenous sorting of employees; nev-

ertheless, it may be of interest to explore the interplay between possible nonlinear gains

from strong heterogeneity in terms of aggregate effort and losses in terms of aggregate

compensation. Third, we follow the tradition of Lazear and Rosen (1981) and effectively

collapse the dynamic nature of employment into one decision-making period. A richer

model can study explicitly the multi-period principal-agent interaction and the role of

reward and punishment (including termination) in the optimal provision of incentives in

a dynamic setting.
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A Proofs of propositions

A.1 Proof of Proposition 1

We first prove the following two lemmas.

Lemma 1 The expression for λr is given by Eq. (8).

Proof. By definition, λr = p
(1,r)
11 − p

(1,r)
12 . Suppose agent 1 exerts effort e1 and all agents

j ≥ 2 exert effort ē. The probability of player 1 being ranked r can be written as

p(1,r)(e1, ē, . . . , ē) =

(
n− 1

r − 1

)∫
F (t+ e1 − ē)n−r[1− F (t+ e1 − ē)]r−1f(t)dt. (14)

Then p
(1,r)
11 can be found by differentiating Eq. (14) twice with respect to e1 and then

setting e1 = ē. For convenience, we will use the following notation for the integrals

arising in this calculation:

Mk =

∫
F (t)n−k[1− F (t)]k−3f(t)3dt.

Equation (14) then gives

p
(1,r)
11 =

(
n− 1

r − 1

)
∂

∂e1

[∫
F (t+ e1 − ē)n−r−1[1− F (t+ e1 − ē)]r−2

×[(n− r)(1− F (t+ e1 − ē))− (r − 1)F (t+ e1 − ē)]f(t+ e1 − ē)f(t)dt]e1=ē

=

(
n− 1

r − 1

)
[(n− r − 1)[(n− r)Mr+2 − (r − 1)Mr+1]− (r − 2)[(n− r)Mr+1 − (r − 1)Mr]
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−(n− 1)Mr+1 +

∫
F (t)n−r−1[1− F (t)]r−2[(n− r)(1− F (t))− (r − 1)F (t)]f ′(t)f(t)dt

]
.

Suppose now that agents 1 and 2 exert efforts e1 and e2, respectively, and all agents

j ≥ 3 exert effort ē. The probability of player 1 being ranked r can be written as

p(1,r)(e1, e2, ē, . . . , ē) (15)

=

(
n− 2

r − 1

)∫
F (t+ e1 − ē)n−r−1F (t+ e1 − e2)[1− F (t+ e1 − ē)]r−1f(t)dt

+

(
n− 2

r − 2

)∫
F (t+ e1 − ē)n−r[1− F (t+ e1 − ē)]r−2[1− F (t+ e1 − e2)]f(t)dt.

Here, the first term is the probability that y1 > y2 and y1 is ranked r among the remaining

n− 1 agents; and the second term is the probability that y1 < y2 and y1 is ranked r − 1

among the remaining n−1 agents. The expression for p
(1,r)
12 can be found by differentiating

Eq. (15) with respect to e1 and e2 and then setting e1 = e2 = ē. This gives

p
(1,r)
12 =

(
n− 2

r − 1

)
∂

∂e2

[
(n− r − 1)

∫
F (t)n−r−2F (t+ ē− e2)[1− F (t)]r−1f(t)2dt

+

∫
F (t)n−r−1[1− F (t)]r−1f(t+ ē− e2)f(t)dt

−(r − 1)

∫
F (t)n−r−1F (t+ ē− e2)[1− F (t)]r−2f(t)2dt

]
e2=ē

+

(
n− 2

r − 2

)
∂

∂e2

[
(n− r)

∫
F (t)n−r−1[1− F (t)]r−2[1− F (t+ ē− e2)]f(t)

2dt

−(r − 2)

∫
F (t)n−r[1− F (t)]r−3[1− F (t+ ē− e2)]f(t)

2dt

−
∫

F (t)n−r[1− F (t)]r−2f(t+ ē− e2)f(t)dt

]
e2=ē

=

(
n− 2

r − 1

)[
−(n− r − 1)Mr+2 + (r − 1)Mr+1 −

∫
F (t)n−r−1[1− F (t)]r−1f ′(t)f(t)dt

]
+

(
n− 2

r − 2

)[
(n− r)Mr+1 − (r − 2)Mr +

∫
F (t)n−r[1− F (t)]r−2f ′(t)f(t)dt

]
.

In addition to the various Mk terms, the expressions for p
(1,r)
11 and p

(1,r)
12 contain the

integrals involving f ′(t). These integrals can be dealt with through integration by parts.
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Collecting the integrals from both expressions in p
(1,r)
11 − p

(1,r)
12 , obtain∫ [(

n− 1

r − 1

)
F (t)n−r−1[1− F (t)]r−2[(n− r)(1− F (t))− (r − 1)F (t)]

+

(
n− 2

r − 1

)
F (t)n−r−1[1− F (t)]r−1 −

(
n− 2

r − 2

)
F (t)n−r[1− F (t)]r−2

]
f ′(t)f(t)dt

= n

∫ [(
n− 2

r − 1

)
F (t)n−r−1[1− F (t)]r−1 −

(
n− 2

r − 2

)
F (t)n−r[1− F (t)]r−2

]
f ′(t)f(t)dt

= ∆r −
n

2

(
n− 2

r − 1

)
[(n− r− 1)Mr+2− (r− 1)Mr+1]+

n

2

(
n− 2

r − 2

)
[(n− r)Mr+1− (r− 2)Mr].

Here, ∆r is the part determined by the boundary values of the distribution of noise:

∆r =
n

2

(
n− 2

r − 1

)
F (t)n−r−1[1− F (t)]r−1f(t)2

∣∣∣∣uh

ul

− n

2

(
n− 2

r − 2

)
F (t)n−r[1− F (t)]r−2f(t)2

∣∣∣∣uh

ul

.

It is easy to see that ∆r is equal to zero except for some special values of n and r.

Specifically, for n = 2, we have

∆1 = −∆2 = f(uh)
2 − f(ul)

2,

while for n ≥ 3,

∆1 =
nf(uh)

2

2
, ∆2 = −n

2
(f(ul)

2In=3 + f(uh)
2),

∆n−1 = −n

2
(f(ul)

2 + f(uh)
2In=3), ∆n =

nf(ul)
2

2
.

In all other cases, ∆r = 0.

Going back to the expression for p
(1,r)
11 − p

(1,r)
12 , we can now collect all the remaining

terms:

p
(1,r)
11 − p

(1,r)
12 = ∆r +

(
n− 1

r − 1

)
(n− r − 1)(n− r)Mr+2 −

(
n− 1

r − 1

)
(n− r − 1)(r − 1)Mr+1

−
(
n− 1

r − 1

)
(n− r)(r − 2)Mr+1 +

(
n− 1

r − 1

)
(r − 1)(r − 2)Mr −

(
n− 1

r − 1

)
(n− 1)Mr+1

−n

2

(
n− 2

r − 1

)
(n− r − 1)Mr+2 +

n

2

(
n− 2

r − 1

)
(r − 1)Mr+1 +

(
n− 2

r − 1

)
(n− r − 1)Mr+2

−
(
n− 2

r − 1

)
(r − 1)Mr+1 −

(
n− 2

r − 2

)
(n− r)Mr+1 +

(
n− 2

r − 1

)
(r − 2)Mr
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+
n

2

(
n− 2

r − 2

)
(n− r)Mr+1 −

n

2

(
n− 2

r − 2

)
(r − 2)Mr.

Collecting the terms with Mr, Mr+1 and Mr+2 and using the properties of binomial

coefficients, finally obtain Eq. (8).

Q.E.D.

Lemma 2

p
(1,r)
2 = − βr

n− 1
.

Proof. The expression for p
(1,r)
2 can be obtained by differentiating Eq. (15) with respect

to e2 and setting e1 = e2 = ē. This gives

p
(1,r)
2 = −

(
n− 2

r − 1

)∫
F (t)n−r−1[1−F (t)]r−1f(t)2dt+

(
n− 2

r − 2

)∫
F (t)n−r[1−F (t)]r−2f(t)2dt

=
(n− 2)!

(r − 2)!(n− r − 1)!

∫
F (t)n−r−1[1− F (t)]r−2

(
−1− F (t)

r − 1
+

F (t)

n− r

)
f(t)2dt

=
(n− 2)!

(r − 1)!(n− r)!

∫
F (t)n−r−1[1− F (t)]r−2[−(n− r)(1− F (t)) + (r − 1)F (t)]f(t)2dt

= − βr

n− 1
.

Q.E.D.

We now go back to the proof of Proposition 1. For part (a), start by plugging the

representations ei = ē(1 + xi) and ci = c̄(1− ai) into Eq. (5):∑
r

p
(i,r)
i (ē(1 + x1), . . . , ē(1 + xn))Vr = c̄(1− ai)g

′(ē(1 + xi)).

The next step is to expand both sides of the equation in Taylor series to the first order

in µ treating xi and ai as small corrections linear in µ. The left-hand side becomes∑
r

(p
(i,r)
i + p

(i,r)
ii ēxi +

∑
j ̸=i

p
(i,r)
ij ēxj)Vr +O(µ2).

Here and below, all the derivatives of p(i,r) are evaluated at the symmetric equilibrium

point (ē, . . . , ē). Note that, by symmetry, p
(i,r)
i = p

(1,r)
1 ≡ βr for all i and, likewise,

p
(i,r)
ii = p

(1,r)
11 for all i and p

(i,r)
ij = p

(1,r)
12 for all i ̸= j. Introducing X =

∑
i xi, finally obtain

for the left-hand side of (5),∑
r

(βr + λrēxi + p
(1,r)
12 ēX)Vr +O(µ2).
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Here, λr ≡ p
(1,r)
11 − p

(1,r)
12 .

Similarly expanding the right-hand side of (5), obtain

cig
′(ei) = c̄(1− ai)g

′(ē(1 + xi)) = c̄[g′(ē) + g′′(ē)ēxi − g′(ē)ai] +O(µ2).

Equating the two expressions and using Eq. (1), obtain∑
r

(λrēxi + p
(1,r)
12 ēX)Vr = c̄ēg′′(ē)xi − c̄g′(ē)ai +O(µ2).

Summing this expression over i and using the restriction
∑

i ai = 0 gives X = O(µ2),

which, together with Eq. (1), produces Eq. (6).

For part (b), write agent i’s equilibrium payoff, πi =
∑

r p
(i,r)Vr − cig(ei), using the

representations ci = c̄(1− ai) and ei = ē(1 + xi):

πi =
∑
r

p(i,r)(ē(1 + x1), . . . , ē(1 + xn))Vr − c̄(1− ai)g(ē(1 + xi)).

Expanding this expression to the first order in µ, obtain

πi =
∑
r

(
1

n
+ p

(i,r)
i ēxi +

∑
j ̸=i

p
(i,r)
j ēxj

)
Vr − c̄(g(ē) + g′(ē)ēxi − aig(ē)) +O(µ2)

=
1

n

∑
r

Vr − c̄g(ē) + c̄g(ē)ai − ē
∑
r

p
(1,r)
2 Vrxi +O(µ2).

Using Lemma 2, this can be written as

πi =
1

n

∑
r

Vr − c̄g(ē) + c̄g(ē)ai +
ē
∑

r βrVrxi

n− 1
+O(µ2).

which, together with Eqs. (1) and (6), gives the result.

A.2 Proof of Proposition 2

The principal’s profit is Π = n[ē− c̄g(ē)− ω + η(ē)an] +O(µ2). Let ē = ēs + τan. In the

linear approximation, the optimal profit Π can be evaluated at ē = ē = ēs, due to the

envelope theorem; hence part (c) of the proposition.

For part (a), note that η(ēs) is evaluated at the parameters of the symmetric optimal
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contract, which gives (cf. Eq. (7) and the fact that c̄g′(ēs) = 1)

η(ēs) =
1

(n− 1)[c̄g′′(ē)−
∑

r λrV̄r]
+ c̄g(ēs).

By construction the relative ability of agent n is negative, an < 0, therefore the principal

will choose the prize structure (V̄1, . . . , V̄n) that minimizes the loss term in the profit,

nη(ēs)|an|, i.e., minimizes η(ēs). This leads to the following principal’s problem:

min
V̄1,...,V̄n

∑
r

λrV̄r s.t.
∑
r

βrV̄r = 1,
∑
r

V̄r = n[ω + c̄g(ēs)].

Let Dr = V̄r− V̄r+1 for r = 1, . . . , n−1 denote the differences between adjacent prizes.

By construction, Dr ≥ 0. Prizes V̄r can then be written as V̄r =
∑n−1

j=r Dj+ V̄n. This gives∑
r

βrV̄r = β1(D1 + . . .+Dn−1 + V̄n) + β2(D2 + . . .+Dn−1 + V̄n) + . . .+ βnV̄n

= β1D1 + (β1 + β2)D2 + . . .+ (β1 + . . .+ βn)V̄n =
n−1∑
r=1

BrDr,

where Br =
∑r

j=1 βr; we also used the fact that Bn = 0. Similarly,

∑
r

λrV̄r =
n−1∑
r=1

ΛrDr,
∑
r

V̄r =
n−1∑
r=1

rDr + nV̄n.

Here Λr =
∑r

j=1 λr, with Λn = 0.

The principal’s problem can be written in terms of the variables Dr as

min
D1,...,Dn−1≥0

n−1∑
r=1

ΛrDr s.t.
n−1∑
r=1

BrDr = 1. (16)

Note that the second constraint is no longer relevant for the minimization problem and

only serves to determine the lowest prize: V̄n = ω + c̄g(ēs)− (1/n)
∑n−1

r=1 rDr.

The following lemma shows that the cumulative coefficients Br and Λr are indeed

given by Eqs. (11).

Lemma 3 Br =
∑r

k=1 βk and Λr =
∑r

k=1 λk are given by Eqs. (11).

Proof. It easy to see that for r = 1 both formulas are correct. It is, therefore, sufficient

to show that βr = Br −Br−1 and λr = Λr −Λr−1, with Br and Λr given by Eqs. (11). We
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have

Br −Br−1 =
(n− 1)!

(n− r − 1)!(r − 1)!

∫
F (t)n−r−1[1− F (t)]r−1f(t)2dt

− (n− 1)!

(n− r)!(r − 2)!

∫
F (t)n−r[1− F (t)]r−2f(t)2dt

=
(n− 1)!

(n− r)!(r − 1)!

∫
F (t)n−r−1[1− F (t)]r−2[(n− r)(1− F (t))− (r− 1)F (t)]f(t)2dt = βr;

Λr − Λr−1 =
n(n− 2)!

2(n− r − 1)!(r − 1)!
[(n− r − 1)Mr+2 − (r − 1)Mr+1]

− n(n− 2)!

2(n− r)!(r − 2)!
[(n− r)Mr+1 − (r − 2)Mr] + ∆r

=
n(n− 2)!

2(n− r)!(r − 1)!
[(n−r)(n−r−1)Mr+2−2(n−r)(r−1)Mr+1+(r−1)(r−2)Mr]+∆r = λr.

Q.E.D.

It follows from (11) that coefficients Br are positive for all r < n. Thus, the con-

straints of problem (16) define a convex polygon whose vertices k = 1, . . . , n − 1 have

Dk = 1/Bk and Dr = 0 for all r ̸= k. The objective function is linear, therefore the

minimum will be reached at one of the vertices.17 Specifically, an optimal vertex is

j ∈ argmin1≤r≤n−1 Λr/Br.

Thus, the optimal prize structure is such that Dj = 1/Bj for some j and Dr = 0

for r ̸= j. The nth prize, therefore, is V̄n = ω + c̄g(ēs) − j/nBj. This leads to the

following optimal configuration of symmetric prizes: V̄1 = . . . = V̄j = V̄n + 1/Bj and

V̄j+1 = . . . = V̄n.

Now that the optimal structure of symmetric prizes is determined, we are in a position

to find the optimal prizes W1 and W2 and the optimal average effort ē for weakly heteroge-

neous agents (part (b)). The first-order condition for the principal’s profit maximization

is
∂Π

∂ē
= n[1− c̄g′(ē) + η′(ē)an] = 0.

Plugging in the representation ē = ēs+ τan and expanding this equation to the first order

in µ, obtain

1− c̄g′(ēs)− c̄g′′(ēs)τan + η′(ēs)an = 0,

which implies τ = η′(ēs)/c̄g′′(ēs).

The optimal prizes W1 and W2 satisfy the equations
∑

r βrVr = c̄g′(ē) and πn = ω.

17It is possible to have multiple minima when Λk/Bk = Λl/Bl for some k ̸= l. Such solutions are
nongeneric; besides, any of the optimal vertices can be used as a solution anyway.
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With the j-tournament prize structure and ē = ēs + τan, these become, in the linear

approximation,

Bj(W1 −W2) = 1 + c̄g′′(ēs)τan,

jW1

n
+

(n− j)W2

n
− c̄g(ēs)− τan + η(ēs)an = ω.

Solving this system of equations, obtain the result.
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