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1 Introduction

Institutional investors have over $2 trillion worth of investments in private equity funds as

of 2012. These funds span a wide range of investments (e.g. real estate, leveraged buyouts,

venture capital) but irrespective of their focus, they always require that investors commit

capital ex-ante. Fund managers can then call the capital at their discretion. The total

value of committed but uncalled capital in private equity is over $1 trillion.1 This capital

commitment thus represents a sizeable amount to investors, in addition to the fact that

capital distributions are at the discretion of the fund managers too. Investors do not control

the timing or quantity of their entry or exit from private equity investments.

To illustrate the risk of capital commitment, consider Yale Endowment asset allocation:

18% in hedge funds, 16% in liquid equity, and about 6% in cash and fixed income. Most of

the remainder of the portfolio (about 60%) has been allocated to private equity funds with

various focuses.2 Using the aggregate statistics as an indicator, Yale Endowment has capital

commitments to future private equity investments worth about 30% of their portfolio – an

amount greater than their liquid asset holdings. A common defense of similar arrangements

is that by spreading out investments over a large number of private equity funds, the in-

vestor can diversify illiquidity risk away. Empirically, Robinson and Sensoy (2011) confirm

the potential for this type of liquidity diversification. They find that while there is some

cyclicality in capital calls and distributions, most of the timing risk can be diversified away

by investing in many different funds.

In this paper, we develop an asset allocation model with private equity funds that allows

us to evaluate commitment, risk, and diversification. A private equity fund investment goes

through two stages. First, after an investor pledges capital, there is a stochastic delay before

the fund issues a capital call. Second, after the investor has honored the pledge (turned over

the capital to the fund) and the fund has invested the capital, there is a second stochastic

delay before the fund exits and distribute the proceeds. The capital commitment mechanism

generates two sources of risk: timing and quantity. Timing risk results from the fact that the

pledge-to-call delay is stochastic. Quantity risk results from the fact that during the pledge-

to-call delay, other sources of investors’ wealth face random shocks, so investors would prefer

to adjust the pledge amount. In addition, we include realistic features like the ability to

default on pledges, limited secondary market sales, and multiple private equity funds.

1See, e.g., https://www.preqin.com/docs/quarterly/PE/Private_Equity_Quarterly_Q3_2012.pdf.

2See https://www.preqin.com/docs/quarterly/PE/Private_Equity_Quarterly_Q3_2012.pdf.
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We solve our model with and without commitment risk – turning on and off timing cer-

tainty and the ability to adjust pledges at the time of capital calls. We find that with only

one private equity fund, the welfare premium associated with commitment risk is essentially

zero. However, in direct contrast to the standard diversification intuition, the welfare pre-

mium associated with commitment risk with many funds is high. It is equivalent to the

welfare premium gained by increasing private equity returns by 1.63%.

Capital commitment induces investors to create an endogenous “escrow” account, setting

aside the amount of the pledge in the risk free asset. This is potentially costly because they

lose the opportunity to invest in the liquid risky asset (e.g. the S&P 500) or to consume

out of liquid wealth. There is a similar problem after the capital call: as investors cannot

sell their private equity fund investments, and because they can only consume out of liquid

wealth, their consumption is much more volatile. Both situations appear to create a disaster

state: investors cannot control their investment level and cannot consume out of a block of

wealth.

With only one private equity fund, investors are able to avoid the “before call” disaster,

even without strategic default, by controlling their allocation to the liquid risky asset. This

is especially true if investors would already allocate significant wealth to the risk free asset,

for example because of high risk aversion. Adding a liquidity cycle, or adding a covariance

between liquidity and returns, affects the value of private equity substantially but has very

little impact on the premium associated with commitment risk. The reason is the endogenous

escrow account in the risk-free asset, is buffered from the private equity liquidity cycle.

In contrast, adding many different private equity investments simultaneously allows for

diversification across liquidity events but increases the premium associated with commit-

ment risk. The reason is that diversifying across funds, and therefore making cash flows

more predictable, increases the value of private equity and increases the overall allocation.

However, a large, diversified private equity allocation will require using the returns from

previous funds to honor pledges made to later funds. With multiple funds, there is the

chance that some funds will return capital late and others will call capital early. The re-

sult is a funding mismatch, and it can only occur because of commitment: if the investor

could choose their allocation at the moment of a capital call, the problem never arises. To

summarize, the obvious features of commitment risk, uncertainty over timing and quantity

of investment, are unimportant only when there is only one illiquid asset. When there are

multiple illiquid assets the issue grows because of the possibility of a funding shortage. The

standard “illiquidity diversification” argument while present appears to be second-order.
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There are three recent, related papers that add one illiquid asset to a Merton-style econ-

omy. In Ang et al. (2013), the investor cannot trade the illiquid asset during an unknown

(i.e. stochastic) period of time. When the illiquid asset pays off the investor re-invests im-

mediately an amount of her choice into the illiquid asset. This paper generalizes that model

by including commitment and by allowing for multiple illiquid assets. In contemporaneous

work, Buchner (2012) models the illiquid investment as an infinitely-divisible irreversible in-

vestment good with deterministic timing and commitment. We generalize this approach by

considering discrete funds and random timing. In Sorensen et al. (2013) the illiquid invest-

ment is a one-shot opportunity that begins immediately and lasts for a pre-determined time.

The authors are able to derive the optimal hedging portfolio and consumption policies in

closed-form. Their focus is on understanding debt and option-like mechanics within the gen-

eral partners’s purview and also to extend the valuation of the buyout fee contract proposed

by Metrick and Yasuda (2010) to a setting where buyout funds are not continuously traded.

They also evaluate liquidity by varying the deterministic length of the fund. Our model

focuses instead on the limited partner’s problem, taking everything that happens inside the

fund as given and adding commitment and stochastic timing.

Also closely related to our paper is the pioneering work in Longstaff (2001) and Longstaff

(2009) on how the presence of an illiquid asset affects optimal portfolio decisions and pricing.

Dai et al. (2010) investigate the case when there are periods in which the investor cannot

trade and these periods are deterministic. Franzoni et al. (2012) quantify the liquidity risk

premium for private equity in the four factor model of Pastor and Stambaugh (2003). Our

results are consistent and complementary. Importantly, our paper introduces the notion of

commitment risk.

Empirically, Ljungqvist and Richardson (2003) were the first to model the speed of capital

calls and distributions. They propose a hazard/duration regression approach and model the

speed at which capital is called as a function of market conditions for a sample of US buyout

funds. More recently, Robinson and Sensoy (2011) analyze a large panel of private equity

funds capital commitments and net cash flows to private equity investors. They find that

there is some pro cyclicality of net cash flows, but they conclude that ‘illiquidity risk’ is

diversifiable to a large extent.
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2 Institutional Details

2.1 Fund Structure

Funds set up as private partnerships with a commitment structure are typically labeled

Private Equity (PE) funds, regardless of investment focus (e.g. buyout, real estate, venture

capital, infrastructure, mezzanine etc.)

A private equity firm is a general partner in a private equity fund. During the fund-

raising period, the firm (e.g. KKR) seeks capital from investors for its fund (e.g. KKR

millennium fund). Outside investors are offered limited partnerships in the fund. If they

accept, they agree to pay a certain amount of capital to the fund when the fund makes

investments of its own. The capital that an investor agrees to pay to a fund is called a

commitment, and the total aggregate commitment to a fund is the fund’s size. No capital is

paid other than in connection with the fund making a specific investment (and management

fees), at which point the fund “calls” its investors for capital; such capital calls are also known

as draw-downs. These draw-downs are ex-ante uncertain in terms of quantity and timing.

Capital is called project-by-project and when an investment is liquidated, the resulting cash

immediately goes to the limited partners and cannot be recycled to make a new investment.

Once a fund has reached its commitment target, it has its ‘final close’ and the year this

occurs is called the fund’s vintage year. After this point, it is not possible for new investors to

invest in the fund, unless they purchase an interest in the fund on the secondary market from

another investor (see Kleymenova et al. (2012), for a description of the secondary market).

The legal length of a fund is 10 years, plus three years of possible extensions. The limited

partnership agreement specifies the length of the investment period (typically, the first 5

years), during which the fund should make investments. The divestment period is flexible,

spanning the entire life of the fund, including an overlap with the investment period.

2.2 Commitment Risk in Practice

Committed capital represents an option to the fund manager and removes the limited part-

ner’s control over the quantity and timing of their investment; it should therefore be associ-

ated with a return premium to the limited partner. However, pre-crisis it was often argued

that the premium was negligible. For example, Fraser-Sampson (2007) writes “there is no

danger of the allocation level being breached in the real world, given proper cash-flow plan-

ning... Even if this sort of unimaginable financial cataclysm gripped the investment world for

4



a prolonged period, then in extremis existing interests could be sold as secondaries, and/or

future commitment levels reduced.” Similarly, Siegel (2008) writes ‘’Most investors have not

thought very much about the liquidity of their portfolios. They have simply assumed that

(...) they could meet liquidity requirements either with cash already held in the portfolio or

by selling stocks and bonds.”

The financial crisis generated more interest in commitment risk. As Leibowitz and Bova

(2009) points out, “The horrendous declines presented liquidity problems even for many

portfolio managers who were long-term oriented, had modest payment schedules, and a

seemingly ample percentage of liquid assets. This perfect liquidity storm, layered on top

of a perfect asset storm, resulted from a toxic combination of: 1) a need to fulfill prior

commitments to private equity, venture capital, real estate, and hedge funds, 2) reduced

distributions from these asset classes...” In terms used in the introduction above, the crisis

generated a funding mismatch.3 The result was a much greater practical interest in liquidity.4

3 The Model

3.1 Information

The information structure obeys standard continuous-time technical assumptions. There

exists a complete probability space (Ω,F ,P) supporting the vector of N + 2 independent

Brownian motions Zt = (ZL
t , Z

PE
t , Z1

t , Z
2
t , ..., Z

N
t ) and N + 1 independent Poisson processes

Mt = (M0
t ,M

1
t , ...M

N
t ) or N ≥ 0. P is the corresponding measure and F is a right-continuous

3From “Cash-Poor LPs Face Capital-Call Pressure”, Private Equity Insider, November 5, 2008: “Brown
University, Calpers and Carnegie Corp. are suddenly finding it hard to meet capital calls from private
equity fund managers... A growing set of limited partners find themselves short on cash amid the financial
crisis – and thus are scrambling for ways to make good on undrawn obligations to private equity vehicles.
Among those in the same boat: Duke University Management, Stanford Management, University of Chicago
and University of Virginia... Brown, whose $2.3 billion endowment has a 15% allocation for private equity
products, is apparently thinking about redeeming capital from hedge funds to raise the money it needs to
meet upcoming capital calls from private equity firms. That’s similar to a strategy that University of Virginia
is employing... Carnegie, a $3.1 billion charitable foundation, is also in a squeeze. Its managers have been
calling on commitments faster than expected, while distributions from older funds have slowed down, creating
a cash shortfall. As for Duke, the university’s endowment has been named as one of the players most likely
to default on private equity fund commitments. That partly explains a massive secondary-market offering
that the school floated last month, as it sought to raise much-needed cash and get off the hook for undrawn
obligations by unloading most of its $2 billion of holdings in the sector... Some of the bigger investors are
considering tapping credit facilities to meet near-term capital calls.”

4See e.g. Forbes, October 2009, “Did Harvard Sell At the Bottom?” and Institutional Investor, 4
November 2009, “Lessons Learned: Colleges Lose Billions in Endowments.”
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increasing filtration generated by Z ×M .

At any time t, the economy can be in one of two states st = {H,L}. State H corresponds

to periods of high liquidity and state L to low liquidity; we will allow all asset expected returns

and volatilities to vary with the liquidity state. The state of liquidity st follows a continuous

time Markov process governed by M0 with a transition probability matrix between t and

t+ dt given by

P =

(
1− χL dt χL dt

χH dt 1− χH dt

)
. (1)

Throughout the paper, we will use superscripts to represent states or counts and sub-

scripts to indicate time or other labels. The notation xs means ‘the value of x in the state

s’, so 1/χs is the expected duration of the state s = (H,L). x∼s means the value of x after

the next economy transition. st is the state of the economy at time t.

3.2 Assets

There are N + 2 assets in the economy: a risk-free bond with price Bt, a liquid risky asset

with price Lt, and N private equity funds. The risk-free bond appreciates at rate rs. The

price of the liquid risky asset (e.g. a public equity market index value) follows a geometric

Brownian motion:

dLt
Lt

= µs dt+ σsdZL
t . (2)

The first two assets are fully liquid and holdings can be rebalanced continuously.

The N private equity funds follow a private partnership structure in which they first

accept investor capital pledges, then search for a project. Upon finding a project, they call

the investor’s capital, use it in the project, and then return the capital at the end of the

project’s life (e.g. an IPO). In a slight abuse of notation, we will use Xn
t as a state variable

that captures the current value of capital pledged when fund n has accepted pledges but

before the capital call, and we will use Xn
t again to capture the amount invested after the

fund has called its pledges.

• At any time 0, an investor can pledge any positive amount to a private equity fund.

This pledge is a promise to make capital available in the future, and no capital changes

hands at time t. Xn
0 is the amount pledged, and the Poisson clock Mn with intensity λs0C
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is started. Because no capital is invested and the pledge cannot be changed, dXn
u = 0

until the pledge is called.

• When the Poisson clock Mn next hits (time τC), the pledge is called. At this time,

the agent turns over Xn
τC

in liquid wealth to the private equity fund; because of our

notation, Xn
t does not immediately change. At the time the pledge is called, the Poisson

clock Mn intensity becomes λ
sτC
D . Because capital is now invested in the private equity

fund, we have

dXn
t

Xn
t

= νs dt+ ψs
(
ρsLdZ

L
t +

√
ρsPE − ρsL2dZPE

t +
√

1− ρPEdZn
t

)
. (3)

This specification implies that each private equity fund’s returns have correlation ρsL
with the liquid risky asset returns and correlation ρPE ≥ ρsL

2 with the returns of any

other private equity fund.

• We assume that the investor may be able to default on a pledge: when the Poisson

clock hits and the investor is to turn over Xn
τC

to the private equity fund, the investor

may instead default and receive an outside option equal to V (Wt). We will usually

take V (Wt) to equal −∞ or the solution to the investor’s problem when N is reduced

by 1. The latter represents being ‘banned’ from a private equity fund.

• We assume that the investor may be able to sell his or her private equity investment

on a limited secondary market for a fraction α of it’s value. If this option is exercised,

the investor receives αXn
t in liquid wealth and invested capital is set to zero. Without

a secondary market, α = 0.

• When the Poisson clock Mn next hits (time τD), any invested capital is returned to

investors: the agent receives Xn
τD

in liquid wealth. This payment is assumed to be net

of fees, and net of general partner- or fund-level debt payments. The Poisson clock

intensity and invested capital are both set to zero. The next pledge can be made

immediately.

Finally, we will use Snt = {0, C,D} to characterize the state of the private equity fund’s

pledge or call. 0 means that no capital is pledged or invested, C means that capital is

pledged but not called, and D means that capital is invested but not yet returned.

This model focuses on the illiquidity of private partnership investments. Private part-

nerships differ from liquid investments because there are two waiting times: waiting for the
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pledge to be called and waiting for the invested capital to be returned. The parameters

λsC and λsD capture the severity of the illiquidity friction. We have built in two realistic

‘outs’ for the investor: strategic default on pledges and sales with a haircut on a limited

secondary market. Strategic default allows the investor to avoid a capital call, with the only

consequence being that he or she is no longer able to invest with that fund in the future.

Similarly, a limited secondary market allows the investor to sell their partnership at a dis-

count and so to recover part of their illiquid investment. Both of these options potentially

reduce the impact of illiquidity on the investor.5 To focus on liquidity, we have abstracted

from other concerns, assuming away any concavity or convexity from fees or debt payments.

Our private equity capital is assumed to be the investor’s residual claim.

3.3 The Investor

The investor has CRRA utility over sequences of consumption, Ct, given by

E

[∫ ∞
0

e−βt
C1−γ

1− γ
dt

]
, (4)

where β is the subjective discount factor and γ > 1.

The agent’s wealth has N +1 components, one liquid and N private equity funds. Liquid

wealth includes the amount invested in the liquid risky asset and the risk-free asset. The

evolution of the investor’s liquid wealth, given by Wt, is

dWt

Wt

= (rs + (µs − rs) θt − ct) dt+ θtσdZ
L
t −

dIt
Wt

(5)

The agent invests a fraction θ of her liquid wealth into the liquid risky asset, while the

remainder (1− θ) is invested in the bond. Following Dybvig and Huang (1988) and Cox and

Huang (1989), we restrict the set of admissible trading strategies, θ, to those that satisfy the

standard integrability conditions. All policies are appropriately adapted to Ft. The agent

consumes out of liquid wealth, so liquid wealth decreases at rate ct = Ct/Wt. When a private

equity fund calls capital or distributes capital, the agent transfers an amount dIτ from her

5It is important, as industry practice suggests, that the investor cannot use a private equity capital as
collateral on a loan. Riskless loans can be taken out (the bond position can be negative) and the liquid
risky asset can be used as collateral. However, if investors could issue risky debt or write a forward contract,
they would be able to avoid the illiquidity problem entirely. Similarly, we allow the investor to find buyers
on a limited secondary market, but the entire investment must be sold. The discreteness is not important
qualitatively.
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liquid wealth to the private equity fund (dI < 0 for returns from the PE funds). Finally,

we assume the standard discount rate restriction, that β is high enough that the investor’s

problem has a solution when all assets are liquid (e.g. the Merton problem).

We use dynamic programming techniques to solve the investor’s problem. The agent’s

value function is equal to the discounted present value of her utility flow,

F (Wt, {Xn
t }, st, {Snt }) = max

{θ, {Xn}, c}
Et

[∫ ∞
t

e−β(u−t)U(Cu)du

]
. (6)

Problem 1 (Baseline) The investor performs the maximization in (6), subject to the inter-

temporal budget constraint (5) and the private equity evolution described in Section 3.2.

To simplify further, we will use ξnt to denote the fund-n-composition of the investor’s

wealth:

ξnt ≡
Xn
t

W +
∑

nX
n1Snt =D

(7)

where the indicator is used to separate out capital pledges (which have not yet been paid)

from capital invested. Notice that ξ is required to be between zero and one after capital

is called, but not before. Because the utility function (4) is homothetic and the returns

processes have constant moments, it must be the case that F is homogenous of degree 1− γ
in total wealth:

F (W, {Xn}, s, S) =

(
W +

∑
n

Xn1Snt =D

)1−γ

H ({ξn}, s, S) , (8)

We will therefore be able to express the value function as the product of a power function

of total wealth and a function of the wealth composition.

4 The Solution with One Private Equity Fund

4.1 Characterization

Since there is only one PE fund, we will suppress the fund superscript, writing for example

Xt instead of X1
t .
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Proposition 1 (Baseline, N = 1) For Problem 1 with N = 1, the investor’s value function

can be written as in (8), where H(ξ, s, S) exists and is finite, continuous, and concave for

ξ ∈ [0, 1). Whenever the investor can pledge, he selects ξs∗ ≡ arg maxξH(ξ, s, S = C), which

exists. Between private equity pledges, calls, and distributions, H(ξ, s, S) is characterized by

0 = max
c,θ

[
1

1− γ
c1−γ(1− ξ)1−γ − βH + A(ξ, c, θ, S)H +B(ξ, c, θ, S)Hξ (9)

+C(ξ, c, θ, S)
1

2
Hξξ + J(H, ξ, S)

]
(10)

where

A(ξ, c, θ, S = D) = (1− ξ)(1− γ)(rs + θ(µs − rs)− c) + ξ(1− γ)νs

+
γ

2
(γ − 1)

(
ξ2ψs2 + σs2θ2(1− ξ)2 + 2ξ(1− ξ)ρsLψsσsθ

)
B(ξ, c, θ, S = D) = − ξ(1− ξ)(rs + θ(µs − rs)− c) + ξ(1− ξ)νs

+ γ
(
−ψs2ξ2(1− ξ) + σs2θ2(1− ξ)2ξ − ξ(1− ξ)(1− 2ξ)ρsLψ

sσsθ
)

C(ξ, c, θ, S = D) = ξ2(1− ξ)2
(
ψs2 − 2ρsLσ

sθψs + σs2θ2
)

J(H, ξ, S = D) = λsD(max
ξ
H(ξ, s, S = C)−H) + χs (H(ξ,∼ s, S = C)−H(ξ, s, S = C))

A(ξ, c, θ, S = C) = (1− ξ)(1− γ)(rs + θ(µs − rs)− c) +
γ

2
(γ − 1)σs2θ2(1− ξ)2

B(ξ, c, θ, S = C) = − ξ(1− ξ)(rs + θ(µs − rs)− c) + γσs2θ2(1− ξ)2ξ

C(ξ, c, θ, S = C) = ξ2(1− ξ)2σs2θ2

J(H, ξ, S = C) = λsC (H(ξ, s, S = D)−H) + χs (H(ξ,∼ s, S = C)−H(ξ, s, S = C))

The proof of Proposition 1, which is omitted for brevity, closely follows a standard dy-

namic programming problem with verification theorem. Our methods for generating numer-

ical result are in Appendix A.

The need to commit capital years before it is invested implies that the allocation to

private equity will not be optimal at the time of the capital call. We demonstrate this in

Figure 1 for a simplified economy without liquidity cycles. Panel A shows the distribution

of private equity wealth to total wealth (ξt) at three times: the pledge (dotted vertical line),

the call (dashed line), and the return (solid line). Panel B shows the agent’s value function

during the wait for the capital call (H(ξ, ·, C), dashed line) and the wait for the capital

return (H(ξ, ·, D), solid line).
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Figure 1 illustrates the fundamental illiquidity problem: the investor does not control his

allocation to private equity. The optimal pledge is a fixed fraction of the investor’s wealth,

but the investor is unable to update the pledge as his wealth evolves between the pledge

time and the call time. Panel A (dashed line) shows the eventual distribution of ξt at the

time of the call, and Panel B (dashed line) shows the welfare penalty function (H) because

the pledge is no longer the optimal fraction of wealth. Once the capital has been called,

the investor must wait again, unable to increase or decrease the private equity allocation

which evolves over time. Panel A (solid line) shows the eventual distribution of ξt at the

time capital is returned, and Panel B (solid line) shows the welfare penalty function when

the investor is away from the optimal allocation.

The investor’s allocation to private equity is both more volatile and larger than the pledge

amount, which we demonstrate in Figure 1, Panels C and D. Because private equity has a

return premium (ν > µ), and because consumption is out of liquid wealth, the private equity

to total wealth ratio will increase over time. Panel C shows the difference between pledged

capital and average ex-post allocated capital for different values of ν. As the return to private

equity increases, so does the investor’s optimal allocation. Surprisingly, the investor’s optimal

pledge does not necessarily increase with returns. Instead, the investor anticipates that the

invested capital will rapidly grow with high returns, and so the gap between pledge and

average allocation can grow faster than average allocation, pushing the pledge down. Panel

D presents the same comparison with the introduction of a secondary market. This secondary

market allows the investor to sell their private equity fund investment, chopping off the right

tale of the allocation distribution. The result is that ex-ante and average allocations differ

by less, and the investor increases his or her initial pledge. However, both with and without

the secondary market, there is a large gap between how much the investor pledges, and what

fraction of wealth the investor expects to allocate to private equity ex-post.

4.2 Policies and Allocations

Figure 2 shows the investors consumption and liquid portfolio policies (c, θ) with and without

the ability to default on pledges. First, we consider panels C and D, which show the policies

after capital has been called. There appears to be only one line because after capital is

called, strategic default has almost no effect on consumption or portfolio policies. Both

consumption policy and portfolio policy show the existence of a disaster state: after the

investor has turned over their capital to the private equity fund, a decline in liquid wealth
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causes the investor to sharply cut back on consumption and to reduce allocations to the

liquid risky asset. This is the same result as in Ang et al. (2013). Figure 2, Panels A and B,

appear to show a similar sort of disaster state during the pledge-to-call wait. When a pledge

is large relative to wealth, and the investor cannot default (dashed line), the investor reduces

both consumption and the liquid risky asset allocation. In fact, the investor’s policies are

very similar to the creation of an endogenous ‘escrow’ account, meaning that the investor

puts his or her pledge entirely in the riskless bond and waits for the call. When the investor

can strategically default (solid line), there is no need for such an account, and consumption

and portfolio policies are kept at the higher level.

Strategic default has a large impact on policies away from the optimal pledge. However,

the ability to default is almost worthless for an investor who has made the optimal pledge.

In our standard calibration, the investor would only be willing to trade a fraction 0.022%

(2 basis points) of his or her wealth to switch from an economy without strategic default to

one with strategic default. In contrast, an investor who has just made an optimal pledge

would be willing to trade 6.7% of his or her wealth to switch from an economy without a

secondary market to an economy with a secondary market. This means that the ability to

avoid an excessive private equity allocation is very valuable after a call, but almost useless

after a pledge.

Figure 3 displays the drift and volatility for ξt and total wealth. After a capital call,

ξt is both very volatile and has a positive drift. The positive drift is consistent with the

results in Figure 1, Panels C and D: because private equity has a return premium and

consumption is taken out of liquid wealth, the investor’s wealth composition tilts toward

private equity in the absence of trade. The result is that ξt can easily become very large;

Figure 1, Panel C shows that without a secondary market, the average allocation to private

equity for standard parameters is 1.6× the optimal pledge. In contrast, before capital is

called, ξt cannot become very large: the pledge is constant and so the only thing changing is

the denominator – the agent’s liquid wealth. Because the agent’s liquid wealth drifts up over

time – asset returns exceed consumption by a small margin – ξt drifts down over time and

is less volatile. Informally, having an excessive pledge is bad, but the probability of realizing

the event starting from the optimum is very low.
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5 Liquidity Premiums with One Private Equity Fund

The description of private equity funds in Section 3.2 creates two separate sources of risk

from private equity pledges: timing and quantity. Timing risk results from the fact that the

wait between pledge and call is uncertain and so the investor does not know if he will be

able to make his allocation soon or not. This uncertainty creates consumption volatility as

in any model where investment opportunities are uncertain.

Quantity risk results from the fact that the pledge cannot be changed over time. The

investor would like to invest a constant fraction of his wealth in a PE fund, but his wealth

level changes between the time of the pledge and the time of the call. This requires only a

deterministic wait between pledge and call, but one might expect timing risk to exacerbate

the welfare cost of quantity risk.

Throughout this section, we will make reference to welfare premiums. To assign a pre-

mium, we will ask “What fraction of his wealth would the investor be willing to pay to switch

from economy A to economy B?”. We measure this at time 0, just before the investor makes

an optimal pledge. Thus, the premium is ζs such that

HA(ξsA∗, s, S = C) = (1− ζs)1−γHB(ξsB∗, s, S = C) (11)

In general, this premium will be different in the liquid and illiquid states of the economy, so

we measure them separately.

5.1 Timing Risk

We assess the welfare cost of ‘timing risk’ – the fact that the arrival of the call and distribution

times are uncertain. To do this, we will go through two constructions. The first is to change

the working of the Poisson clock. In the baseline economy there is one clock with intensity

λC , and so the time between pledge and call has an exponential distribution with parameter

λC . The mean wait is 1
λC

and the variance is 1
λ2C

. Our goal is to go through a sequence

of economies in which the exponential distribution shrinks to a point, keeping the mean

constant but reducing the variance to zero. To do so, we will use the fact that the sum of

M exponentially distributed variables with parameter MλC has a distribution Γ(M,MλC).

The mean time for all M clocks to hit in series, each M times as intense as the single clock,

is 1
λC

, the same as the mean for the single clock. However the variance of the sum of times

is 1
Mλ2C

, which goes to zero as M becomes large. Thus, by increasing the value of M , we can
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see the effect of changing the variance of the timing of the capital call, without changing its

mean. We can do the same thing with the timing of the capital return to investors:

Problem 2 (M-clock Call) The investor solves the Baseline problem, except that M Pois-

son clocks, each with intensity MλsC must hit in series before the pledge is called.

Problem 3 (M-clock Return) The investor solves the Baseline problem, except that M

Poisson clocks, each with intensity MλsD must hit in series before capital is returned.

Figure 4 presents the resulting premiums for the M -clock economies, where each economy

is compared to the baseline (M = 1) economy. The premium for timing risk on the eventual

return of capital is large and positive (as in Ang et al. (2013)), but the premium associated

with timing risk for the capital call is very small and negative.6

To proceed, we will use a second, more direct construction: we will simulate the investor’s

realized utility in the baseline model, conditional on the first call or return time being realized

at a particular value. We start with the solution to the standard problem with stochastic

time, and we assign the investor 1 unit of liquid wealth. We then simulate the economy,

using the optimal policies from Proposition 1 and assuming that the first capital call is made

at time T . We assign that simulation run a utility value of∫ T

0

e−βt
1

1− γ
C1−γ
t dt+ e−βT (WT +XT )1−γH(ξT , ·, D)

We repeat the simulation 100,000 times to find the average realized utility in which the first

call occurs at time T ; then we vary T . We repeat the procedure for capital returns, starting

at the time of a call and assigning a pledge-to-wealth ratio drawn from the appropriate

distribution (Figure 1, Panel A, lashed line).

We present the results of these simulations in Figure 4, Panels B and C. In Panel B, we

see that over six years ( 1
λC
× 3), conditional expected utility from the pledge-to-call wait is a

decreasing and almost linear function of time.7 As a result, there is little premium associated

with call uncertainty.

6The benefit of examining the M -clock economies is that the change is simple, but the cost is that
uncertainty is resolved in M different steps, and so the agent can update portfolio and consumption policies
at each step. In our model (in un-reported results), we verify that this effect is very small, but it is of the
same order of magnitude as the (very small) negative timing premium.

7One might ask what this graph would look like if we made T large enough. Our belief is that the
conditional utility would continue to decline asymptotically to the welfare value of an economy without
private equity. Thus, our expectation is that this graph is on average convex. A similar result will hold for
the far right tail of the call-to-return plot in Panel C.
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In contrast, Panel C shows that conditional expected utility from waiting for capital to be

returned is concave over 12 years ( 1
λD
× 3). This result is intuitive: if the delay is zero, there

is no value to this round of private equity because there is no time to accumulate returns.

Similarly, if the delay is very large, then there is a risk of entering the high-ξ disaster state.

The best realizations of the Poisson clock are moderate – and the curve is concave in the

important region.

5.2 Quantity Risk

Next, we assess the welfare cost of ‘quantity risk’ – the fact that even with a constant

pledge, the pledge-to-wealth ratio will change between pledge and call times. To proceed,

we compare the baseline economy to one in which the investor can change his pledge at the

time of the capital call:

Problem 4 (Change Pledge) The investor solves the Baseline problem, except that the

investor can change the pledge amount Xn
t at the time of the capital call.

We can continue by assessing the premium associated with eliminating the pledge process

entirely

Problem 5 (No Pledge Time) The investor solves the Baseline problem, except that all

pledges are called immediately.

One of the costs of the pledge-to-call wait that has nothing to do with risk is the fact

that the investor does not have any way to diversify his asset holdings during this period.

In our standard calibration, the average wait time between pledge and call is 1
λC

= 2 and

between call and return is 1
λD

= 4. Thus, the investor is constrained to have a zero allocation

to private equity over 1/3 of his life. Since we have already concluded that timing risk is

relatively unimportant, we can compare the ‘Change Pledge’ economy to the ‘No Pledge

Time’ economy to determine the welfare cost of the expected wait time – the constrained

zero allocation.

Finally, we will compare our illiquid economies to ones in which all investments, including

private equity, are fully liquid (e.g. the Merton two-risky-asset model):

Problem 6 (Fully Liquid) Private equity is fully liquid and can be adjusted continuously.

Table 2 and 3 present the welfare premium results. The columns are meant to be un-

derstood “step-by-step”: the premium associated with the ‘Baseline Model’ is the amount
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of wealth the investor would give up to switch from an economy with no private equity to

our baseline model. The premium associated with ‘Change Pledge’ is the amount of wealth

the investor would give up to switch from the baseline economy to one in which pledges

could be changed at the time of the call, etc. For the standard parameters, we conclude

that quantity risk is relatively unimportant: The investor will give up half a percent of his

wealth to switch to an economy in which pledges can be changed. This compares to a 9.5%

premium to acquire access to private equity, and a 5.5% premium to eliminate the pledge

process entirely. Alternatively, the investor would also pay half a percent of his wealth to

switch to an economy in which the expected return on private equity (ν) increases by 0.37%.

Thus we conclude that the welfare cost of quantity risk is small in our standard calibration.

To test the robustness of this result, we change parameters and institutional details:

allowing default on pledges, increasing call and return waits, changing the risk free-rate, and

removing intermediate consumption8 all have little effect on the quantity risk premium.

Two changes that significantly increase the premium are lowering the investor’s risk aver-

sion and adding a secondary market. Both of these changes increase the premium by making

the endogenous escrow account more expensive. In the baseline economy, the need for an en-

dogenous escrow account has a small welfare cost because the change in the agent’s portfolio

policy is small. If there were no private equity, the agent would invest a fraction µ−r
γσ2 = .89

of his wealth in the liquid risky asset, leaving 0.11 in the riskless bond. The investor’s opti-

mal pledge to private equity is a .167 fraction of wealth, meaning that the investor is very

close to the necessary escrow account without making any changes. Additionally, the 0.89

liquid asset allocation is the fully liquid optimal policy, and by standard first-order condi-

tion arguments, the cost to reducing the liquid-risky allocation by a small amount will be

second-order.

In contrast, with a secondary market available, the investor is willing to pledge much

more – there is no longer a disaster state in which he cannot consume his illiquid wealth.

The pledge amount rises to 0.364, and so the investor must significantly change his liquid

risky asset allocation in order to ensure he can honor the pledge. Another way to think

about this result is that different aspects of liquidity are complements: increasing secondary

market liquidity increases the quantity of investment, which makes increasing primary market

liquidity more valuable.

8For no-intermediate consumption economies, the agent is assumed to maximize E
[
(Wτ +Xτ1S=D)1−γ

]
,

where τ is exponentially distributed with parameter β.
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The impact of reducing risk aversion works through the opposite channel. When γ = 2

instead of 4, the investor’s desired liquid risky asset allocation is 1.78 times wealth. Reducing

this enough to ensure that the investor can honor the pledge is very costly, and this effect is

numerically more important that the more risk averse investor’s tolerance for consumption

volatility.

We find that the optimal pledge declines as we move from the ‘Change Pledge’ economy

to the ‘No Pledge Time’ economy. This is a mechanical effect: when there is a pledge-to-call

delay, the investor’s liquid wealth grows during the wait, and so the pledge is a smaller

fraction of wealth on average at the time of the call. In fact, in unreported results, the

difference in the average realized allocation across the two economies is less than 1% (see

Appendix A for our numerical methods).

Adding a private equity cycle does not change the basic liquidity premium result. Whether

liquidity is positively or negatively correlated with private equity returns, public equity re-

turns, or public-private correlations, there is very little effect on the premium associated

with quantity risk. This does not mean that the cycle is does not impact the value of private

equity – Table 3 shows that the premium the investor is willing to pay to switch from an

economy with only the liquid risky asset to an economy with private equity is variable.

Our conclusion is that neither timing nor quantity risk is important when N = 1. In

fact, timing risk may actually be a small benefit. Instead, the cost of commitment is almost

entirely due to the expected wait. We will now introduce multiple private equity funds and

show this result no longer holds when there is an interaction between different funding needs.

6 The Funding Mismatch

We now turn to an analysis of the economy where there is more than one private equity fund.

We will look explicitly at economies with N = 2 and N =∞. Our analysis will focus on the

gains or losses from liquidity diversification, and so we set ρPE = 1. This assumption means

that all funds have perfectly correlated returns, and so any welfare changes from changing N

must be the result of diversifying liquidity. To simplify, we will remove private equity cycles

from the analysis.

The important point is that there is an interaction effect between the funding needs of

multiple funds: when an investor has allocations to two funds, he runs the risk that the

second fund will call his pledge before the first fund returns his capital. This effect is not

possible with N = 1 because the fund cannot call for new pledges until after returning
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capital to its investors. The investor would like to take advantage of liquidity diversification

– by spreading out his allocation across different funds, the investor can smooth his capital

inflows and outflows. As with all risk-averse investors, smoothing wealth flows results in

higher risky asset allocation; in this case the sum of allocations to two funds is greater than

the allocation to in the N = 1 problem. However, there is always the possibility that both

funds will call capital before either returns capital, requiring a larger endogenous ‘escrow’

account and resulting in a total allocation to PE that is higher than desired. As a result,

the investor is more willing to pay a premium to avoid quantity risk.

In contrast to the standard diversification intuition, the funding interaction becomes more

acute as we increase the number of funds the investor has access to. At N grows, the timing

of calls and returns within the population becomes more predictable. As a result, the investor

increases his allocation to private equity as a whole, while reducing it to any individual fund.

However, the investor’s total investment in private equity is still uncertain because he cannot

freely liquidate his positions. The frequency of fund call arrival (continuous with N = ∞)

means that being able to change pledge amounts grant much more control over the total

amount invested. Notice that the intuition is slightly different than for the N = 2 case: the

investor wants to control his allocation overall, and he values controlling the pledge process

because he cannot control the return timing process.

6.1 Two Funds

Our analysis of the N = 2 case proceeds similarly to the proceeding N = 1 case. The primary

difference is that the value function now admits two state variables and two fund states:

H(ξ1, ξ2, S1, S2). Pledge policy is now a function Ξ1(ξ2, S2) = arg maxξ1 H(ξ1, ξ2, S1 =

C, S2), and similarly for Ξ2. At time zero, the investor will pledge Ξ∗ in both funds,

where Ξ∗ solves the fixed point problems Ξ∗ = Ξ1(Ξ2(Ξ∗, C), C) and by symmetry Ξ∗ =

Ξ2(Ξ1(Ξ∗, C), C).

Figure 5 presents value function and the optimal consumption and allocation policies. We

present the investor’s pledge policy in Panel A, where the dashed line plots Ξ2(ξ1, S1 = C)

(before call) and the solid line plots Ξ2(ξ1, S1 = D) (after call). The vertical dashed line is

Ξ∗, and the horizontal dashed line is the optimal pledge in the N = 1 economy. Pledges to

individual funds are smaller than in the N = 1 economy, but the aggregate private equity

pledge is higher. As with N = 1, the value function is concave (Panel B), but now we must

examine three different penalty functions. The dashed line corresponds to the value of H
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as ξ2 changes when neither fund has yet called capital and ξ1 is held constant at Ξ∗. The

solid line corresponds to the value of H after fund 1 has called its pledge. The dotted line

corresponds to the value of H after fund 1 and 2 have both called their pledges. The key

point is that the penalty to having too high a pledge to fund 2 is higher after fund 1 is called

than before, consistent with the funding interaction mentioned earlier.

6.2 Many Funds

We next examine an economy in which N = ∞. To do so, we will make an assumption

analogous to a ‘law of large numbers’ result: if funds have a pledge-to-call wait that is

exponentially distributed with parameter λC , then a fraction λCdt of funds call capital over

the interval dt. We will make a similar assumption for the time between a capital call and

return for parameter λD. In addition, we assume there are an infinity of funds calling at

any given time, so the investor can fully diversify his holdings, taking no idiosyncratic risk

across funds. Since all funds returns are perfectly correlated (ρPE = 1), we need only keep

track of the stock of capital invested in all funds (X∞t ) rather than each individual fund

separately. Similarly, we need only to keep track of the aggregate amount pledged (P∞t ).

These assumptions imply

dP∞t
P∞t

=
dIt
P∞t
− λCdt (12)

dX∞t
X∞t

= λC
P∞t
X∞t

dt− λDdt+ νdt+ ψ
(
ρLdZ

L
t +

√
1− ρL2dZPE

t

)
(13)

dWt

Wt

= (r + (µ− r) θt − ct) dt+ θtσdZ
L
t − λC

P∞t
X∞t

dt+ λD
X∞t
Wt

dt (14)

As in the case with finite N , we will define composition variables: πt ≡ P∞t
X∞t +Wt

and ξt ≡
X∞t

X∞t +Wt
to denote the fraction of wealth pledged and invested.

Problem 7 (N =∞) The investor’s problem is to maximize 4 subject to the budget con-

straints (12-14) and the constraint that It is non-decreasing.

Proposition 2 (N =∞) For Problem 7, the investor’s value function can be written as

(W +X)1−γH(π, ξ), where H(π, ξ) exists and is finite, continuous, and concave for ξ ∈ [0, 1)

and π ∈ [0, 1− ξ).

The investor chooses dIt = max(0, π∗(ξt)− πt), where π∗(ξ) is characterized by the value

matching and super-contact conditions Hπ(π∗, ξ) = Hππ(π∗, ξ) = 0.
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On π ∈ [π∗(ξ), 1− ξ) and ξ ∈ [0, 1), H(π, ξ) is characterized by

0 = max
c,θ

[
1

1− γ
c1−γ(1− ξ)1−γ − βH + A(π, ξ, c, θ)H +B(π, ξ, c, θ)Hξ (15)

+C(π, ξ, c, θ)
1

2
Hξξ +D(π, ξ, c, θ)Hπ + E(π, ξ, c, θ)

1

2
Hππ + F (π, ξ, c, θ)Hξπ

]
where

A(π, ξ, c, θ) = (1− γ) ((1− ξ)(r + θ(µ− r)− c) + ξλD − πλC) + (1− γ) (ξν + πλC − ξλD)

+
γ

2
(γ − 1)

(
ξ2ψ2 + σ2θ2(1− ξ)2 + 2ξ(1− ξ)ρLψσθ

)
B(π, ξ, c, θ) = − ξ(1− ξ)(r + θ(µ− r)− c) + (1− ξ) (ξν + πλC − ξλD)

+ γ
(
−ψ2ξ2(1− ξ) + σ2θ2(1− ξ)2ξ − ξ(1− ξ)(1− 2ξ)ρLψσθ

)
C(π, ξ, c, θ) = ξ2(1− ξ)2

(
ψ2 − 2ρLσθψ + σ2θ2

)
D(π, ξ, c, θ) = − π ((1− ξ)(r + θ(µ− r)− c)− ξλD + πλC)− π (λC + πλC − ξλD + ξν)

+
γ

2

(
ξ2ψ2 + σ2θ2(1− ξ)2 + 2ξ(1− ξ)ρLψσθ

)
E(π, ξ, c, θ) = π2ξ2ψ2 + 2ξπ2(1− ξ)ρLσθψ + π2(1− ξ)2σ2θ2

F (π, ξ, c, θ) = − ξ(1− ξ)π
(
ξψ2 + (1− 2ξ)ρLσθψ − (1− ξ)σ2θ2

)

We also examine the impact of changes in liquidity on welfare, particulary the investor’s

ability to change his pledge. With N = ∞, there are an infinity of funds calling capital

at any given time, o the ability to change pledges implies that the investor can free adjust

upward his investment in private equity. Thus the investor’s problem becomes

Problem 8 (N =∞, Change Pledge) The investor’s problem is to maximize 4 subject to

the budget constraints

dX∞t
X∞t

=
dIt
X∞t
− λDdt+ νdt+ ψ

(
ρLdZ

L
t +

√
1− ρL2dZPE

t

)
dWt

Wt

= (r + (µ− r) θt − ct) dt+ θtσdZ
L
t −

dIt
Wt

+ λD
X∞t
Wt

dt

and the constraint that It is non-decreasing.

Proposition 3 (N =∞, Change Pledge) For Problem 8, the investor’s value function

can be written as (W +X)1−γH(ξ), where H(ξ) exists and is finite, continuous, and concave
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for ξ ∈ [0, 1).

The investor chooses dIt = max(0, ξ∗−ξt), where ξ∗ is characterized by the value matching

and super-contact conditions Hξ(ξ
∗) = Hξξ(ξ

∗) = 0.

On ξ ∈ [ξ∗, 1), H(ξ) is characterized by

0 = max
c,θ

[
1

1− γ
c1−γ(1− ξ)1−γ − βH + A(0, ξ, c, θ)H +B(0, ξ, c, θ)Hξ + C(0, ξ, c, θ)

1

2
Hξξ

]
where A, B, and C, are defined in Proposition 2.

We present the optimal pledging policies and the resulting distribution of allocations in

Figure 6. In Panel A, the solid line shows the value of π∗(ξ) when the investor cannot adjust

pledges, while the dashed vertical line depicts ξ∗ when the investor can adjust pledges. Panel

B shows the distribution of allocations for both Problems 7 and 8. The solid line shows

that the distribution of allocations is much less variable when pledges can be adjusted.

Importantly, the ability to adjust pledges reduces the right tail as well as the left because

there is no stock of un-called pledges to contribute to private equity when the allocation is

already too high.

6.3 Implied Return Premium

Finally, we calculate welfare and an implied return premium, and we present the results in

Table 4. The welfare premiums are reported in the same ‘step-by-step’ method as in Tables

2 and 3. The implied return premium answers the question ‘By how much do private equity

returns (ν) have to increase in the Baseline Model to generate the same investor welfare as

allowing the investor to change his or her pledge amounts?’. For a well diversified private

equity investor, the implied premium is 1.37%.

7 Conclusion

In this paper, we present a model to investigate the effects of capital commitment and

commitment risk on asset allocation and welfare. We calibrate our model with and without

commitment risk – certain timing and the ability to adjust pledges at the time of capital

calls. We find that with only one private equity fund, the welfare premium associated

with commitment risk is essentially zero. However, the welfare premium associated with

commitment risk with many funds is equivalent to the welfare premium gained by increasing
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private equity returns by 1.63%. The standard intuition that illiquidity can be diversified

away is only partially correct: individual shocks be diversified away, but this induces the

investor to use the proceeds from previous funds to honor pledges made to later funds. This

policy creates a possible funding mismatch that an investor will pay to avoid.
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A Numerical Methods

We use the numerical methods of Kushner and Dupuis (2001) to evaluate the Hamilton-
Jacobi-Bellman linked-ODE and linked-PDE equations (linked by state of the economy).
For the N = 1 case, we use logged, scaled variables (e.g. x = log(X/W )) on a grid from
−10 to 5 with intervals of dx = 1

100
. We stop the procedure when the sum of the absolute

value of all innovations was below 10−6:
∑

j |Hi+1(xj) − Hi(xj) < 10−6. For N = 2 and

N∞ we used grid intervals of 1
50

and a total tolerance of 10−3. We note that because N = 2
and N =∞ require two state variables, we are solving linked-PDEs on 751× 751 = 564, 001
points, rather than linked-ODEs on 1501 points.

For probability distributions we use Monte Carlo methods: we use dt = 1
100

(dt = 1
50

for

N = 2,∞) and simulate wealth shocks using dZt = ε ∼ N(0,
√
dt). We create a single times

series lasting for 1, 000, 000 years, taking the evolution of wealth from the budget equations
and optimal allocations and consumption from the HJB equation.

Our standard parameters are shown in Table 1.

Table 1: Standard Numerical Parameters

Parameter Symbol Value Source
Private equity expected returns ν .15 Mean US buyout fund IRR, Preqin
Private equity volatility ψ .15 Std dev. US buyout fund IRR, Preqin
Liquid asset expected returns µ .11 Mean CRSP value-weighted index
Liquid asset volatility σ .15 Std dev. CRSP value-weighted index
Risk-free rate r .03 Mean 3-month T-bill rate
Liquid, private equity return correlation ρL .5 Arbitrary
Inter-private-equity fund return correlation ρPE 1 Arbitrary
Pledge-to-call intensity λC .5 Private equity fund cash flow, Calpers
Call-to-return intensity λD .25 Lopez-de Silanes et al. (2013)
Investor time discounting β .1 Standard / arbitrary
Investor risk aversion γ 4 Standard / arbitrary
Secondary market value α 0 Arbitrary
Pledge default welfare −∞ Arbitrary
With cycle pledge-to-call intensity λsC {1

3
, 2

3
} Arbitrary

With cycle call-to-Return intensity λsD {1
6
, 2

6
} Arbitrary

Cycle H to L Poisson intensity χH .33 Arbitrary
Cycle L to H Poisson intensity χL .33 Arbitrary
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Table 4: Liquidity Premiums for N ≥ 1

N = 1 N = 2 N =∞
No Private Equity - - -
Baseline Model 0.095 0.162 0.236
Change Pledge 0.005 0.012 0.040
No Pledge Time 0.055 0.064 0
Fully Liquid 0.303 0.235 0.192

Implied Return Premium 0.377 0.667 1.631

We report welfare premiums (defined in Equation 11) for economies with different numbers of

private equity funds (N). Each row is references an economy with a different illiquidity fraction.

‘No Private Equity’ is a version of the model in which private equity does not exist (e.g. it is the

classic Merton one-risky-asset model). ‘Baseline Model’ is the model of private equity described in

Section 3 and Problem 1. ‘Change Pledge’ corresponds to Problem 4; ‘No Pledge Time’ corresponds

to Problem 5; ‘Fully Liquid’ corresponds to Problem 6. The premiums are listed in a ‘Step-by-Step’

fashion: each row gives the fraction of wealth the investor would trade to move from the economy

listed above to the current economy. Thus in the standard calibration (first column, N = 1) the

investor would be willing to trade 5.5% of his or her wealth to move from a the ‘Change Pledge’

economy to the ‘No Pledge Time’ Economy.
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Figure 1: Wealth Distributions and Welfare

Panel A: Wealth Distributions Panel B: Welfare
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We present analysis of the economy with N = 1 under our standard calibration (Table 1). Panel A presents the distribution of ξ

at three different stopping times. The dotted line is the value of ξ just after a pledge is made. The dashed line is the distribution

of ξ at the time capital is called. the solid line is the distribution of ξ at the time capital is returned to investors. Panel B

shows the value function H for three times: at the time of a pledge (dotted line), during the pledge to call wait (S = C), and

during the call-to-return wait (S = D). Panel C presents the optimal pledge (dashed line) and the average simulated allocation

(solid line) for different values of ν. Panel D does the same, but in an economy in which a secondary market with α = .99 has

been added.
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Figure 2: Consumption and Liquid Asset Allocation

Panel A: Consumption Policy Before Call Panel B: Liquid Asset Allocation Before Call
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We present analysis of the economy with N = 1 under our standard calibration (Table 1). For each panel, the dashed line is

for an economy in which there is no strategic default – the cost of not honoring a pledge is infinite. The solid line is for an

economy in which strategic default is possible and the cost is to lose access to private equity thereafter. The dashed and dotted

lines overlap in Panels B and C. In all panels, the dotted line is the Merton one-asset economy baseline policy. The small solid

vertical lines in Panels A and B represent the point of strategic default: is ξ is above this point, the investor will not honor his

or her pledge.
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Figure 3: Drift and Volatility of Wealths

Panel A: Drift and Volatility of ξ
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Panel B: Drift and Volatility of Total Wealth
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We present analysis of the economy with N = 1 under our standard calibration (Table 1). For each panel, the dashed line is

the value the drift or volatility takes during the pledge-to-call wait, and the solid line is the value the drift or volatility takes

during the call-to-return wait. Total wealth and ξ are defined in Section 3.3.
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Figure 5: N = 2 Welfare and Policies

Panel A: Pledge Policy and Welfare
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Panel B: Consumption and Liquid Risky Asset Allocation
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We present analysis of the economy with N = 2. Panel A (left side) presents the optimal pledge policy for fund 2, given the

current allocation to fund 1. The grey vertical line is the optimal value of ξ1 (Ξ∗), and the dotted line in the optimal value of a

pledge in the N = 1 economy. The dashed line shows the optimal pledge amount before fund 1 has called capital, and the solid

line shows the optimal pledge value afterwards. Panel A (right side) presents the value function as ξ2 varies and ξ1 is held at

Ξ∗. The dashed line shows the value before either fund 1 or 2 has called capital. The solid line shows the value after fund 1 has

called but before fund 2 has called. The dotted line shows the value after both have called. Panel B presents the consumption

policy and the liquid risky asset allocation, both as a fraction of total wealth, for the same three states of the economy.
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Figure 6: N =∞ Welfare and Policies

Panel A: Pledge Policy and Distributions
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We present analysis of the economy with N = ∞. Panel A (left side) presents the optimal pledge policy for the standard

economy (Problem 7, dashed line). The dotted line is the minimum value of ξ in the economy in which the pledge can be

changed (Problem 8, solid line). Panel A (right side) shows the distribution of ξ in the same two economies, simulated as

described in Appendix A. Here the dotted line is the minimum value of ξ in the ‘Change Pledge’ economy and the solid line

the PDF of ξ in that economy. The dashed line is the PDF of xi in the standard economy. Panel B presents the consumption

policy and the liquid risky asset allocation, both as a fraction of total wealth.
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