Product Market Competition and Firm-Specific Investment under Uncertainty

Brent Ambrose∗
Moussa Diop†
Jiro Yoshida‡

June 4, 2014

Abstract

This paper analyzes capacity investments and the resulting product market competition. The incumbent firm first invests in inflexible firm-specific capital by taking account of its efficiency and entry deterrence effect. After observing a demand shock, the firm may rent generic capital for expansion. With greater demand uncertainty, firm-specific capital is less effective in entry deterrence and will cause larger losses under weak demand. Then, the firm employs a smaller amount of firm-specific capital, the market is more competitive, and the firm’s systematic risk is smaller. We provide empirical support of these predictions by using the US corporate data.

JEL classification: G31, L13, R33.

Keywords: strategic investment, real estate, entry deterrence, real options, flexibility, demand uncertainty.

∗Smeal College of Business, The Pennsylvania State University, University Park, PA 16802-3306, Email: bwa10@psu.edu
†Wisconsin School of Business, University of Wisconsin, Madison, 53706, WI, Email: mdiop@bus.wisc.edu.
‡Smeal College of Business, The Pennsylvania State University, University Park, PA 16802-3306, Email: jiro@psu.edu, Phone: 814-865-0392. Fax: 814-865-6284.
One of the cornerstone principles in economics and finance is the recognition that the objective of firm managers, as agents of shareholders, is to maximize the value of shareholders’ claims to the firm. However, implementing the value maximization rule is notoriously difficult. Thus, much research in corporate finance, asset pricing, and economics attempts to understand how managers maximize shareholder wealth through strategic decisions regarding financial policies and resource allocation. More recently, research has expanded to incorporate the interaction of these decisions with ideas stemming from the industrial organizations literature concerning the firm’s position within its competitive environment. For example, significant theoretical and empirical work now considers the effects of various financial policies, such as cash holdings (Hoberg, Phillips, and Prabhala 2014; Fresard 2010), debt issuance (Lyandres 2006; Brander and Lewis 1986; Maksimovic 1988; Glazer 1994; Kovenock and Phillips 1995; Chevalier 1995, and many others), and capital structure (MacKay and Phillips 2005; Leary and Roberts 2014) on the firm’s product market. In addition to seeking to maximize shareholder value through optimal financial policies, managers must also make decisions regarding the employment of capital and labor. However, this task is complicated by the need for managers to optimize among various forms of capital investments having differing degrees of efficiency.

In this paper, we recognize the heterogeneity of capital to develop a model that allows us to study how management decisions regarding capital investments affect competition within the firm’s product market. Our model is based on the observation that capital can be either inflexible, which may offer strategic advantages, or flexible, but can be utilized by multiple firms. Examples of inflexible capital include real estate (due to its fixed location), specialized equipment (such as mining machinery), airport landing slots and gates (due to their limited supply), and patent protections. In contrast, flexible capital examples include railroad rolling stock or aircraft (since they can be redeployed by new firms with little or no modification), computer equipment (which only requires altering the software), and office space (that can be quickly reconfigured to meet a variety of firm space needs).

Within the context of heterogeneous capital investments, we study the interaction between product market competition and capacity investments under demand uncertainty. This framework explicitly incorporates the fact that firms often face the choice between investing in inflexible firm-specific capital and renting flexible generic capital. The recognition that capital investment
can be either firm-specific or generic is not new. For example, He and Pindyck (1992) analyze flexible and inflexible capacity investment decisions. However, our contribution is the realization that some firms hold greater amounts of firm-specific capital than others. What creates this cross-sectional variation in firm-specific capital investment? We argue that demand uncertainty and the entry deterrence effect of firm-specific capital critically affect the attractiveness of these investment alternatives and ultimately the firm’s risk.

Our model provides a formal mechanism for answering a variety of questions concerning firm capital investments. For example, why are industries with large fixed capital investments in property, plant, and equipment (such as aircraft, computer, and automobile manufactures) characterized by few competitors? Similarly, why are industries without large capital investment (such as the legal profession, software developers, and service providers) characterized by having large numbers of competitors? A concrete example is the consolidation in the automobile manufacturing industry during the first part of the 20th Century. At the beginning of the 20th Century, the U.S. had several hundred small automobile manufacturers. However, by the 1930’s, the industry had consolidated into a handful of firms dominated by the “Big Three.” One of the factors leading to this consolidation was the Ford Motor Company’s investment in firm-specific capital in the form of the sprawling River Rouge manufacturing plant beginning in 1917. The massive River Rouge plant was capable of processing iron ore and other raw materials into finished products in a continuous production line, providing Ford with significant economies of scale. Similarly, in the retail industry, firms often make firm-specific investments in multiple outlets in an effort to preempt entry of competitors. A related area concerns questions surrounding why firms continue to own real estate assets given the development of tax efficient real property providers (i.e. real estate investment trusts.) For example, our analysis provides insights into why Apple, Inc. has proposed spending $5 billion to build a new, 2.8-million-square-foot headquarters facility. Similarly, our model provides a mechanism for addressing questions such as: Does firm-specific investment, such as Apple’s giant spaceship shaped headquarters or Google’s 2.9-million-square-foot building in New York City, offer a competitive deterrent by increasing employee loyalty or demonstrating their commitments to R&D? Do firms make firm-specific investment decisions taking into account product market competition and demand uncertainty?

To answer such questions, we build on the industrial organization literature examining the in-
interaction between capacity investment decisions and industry structure (e.g., Bain, 1954; Wenders, 1971; Spence, 1977; Caves and Porter, 1977; Eaton and Lipsey, 1980; Dixit, 1979, 1980; Spulber, 1981; Bulow, Geanakoplos, and Klemperer, 1985; Basu and Singh, 1990; Allen, 1993; Allen, De- neckere, Faith, and Kovenock, 2000) and the literature exploring the effects of capital investments on the characteristics of stock returns (e.g., Berk, Green, and Naik, 1999; Carlson, Fisher, and Giammarino, 2004; Aguerrevere, 2003; Cooper, 2006). This literature shows that capacity and output decisions are important components of a panoply of strategic tools available to firms operating in oligopolistic markets. Investments in firm-specific capital create an entry deterrence effect because they are regarded as credible long-term commitments to production, as empirically confirmed by Smiley (1988). However, as Pindyck (1988) and Maskin (1999) show, demand uncertainly reduces the ability of incumbent firms to successfully implement these strategies, unless capacity adjustments are instantaneous. Our model balances these forces of demand uncertainty and entry deterrence.

Our paper is related to the growing literature that considers the equilibrium reaction in product markets to decisions regarding firm choices of strategic investments and financial policies. For example, Ellison and Ellison (2011) use the pharmaceutical industry as a laboratory to examine the effect of strategic investments in advertising and product proliferation by incumbent firms with expiring patents to deter entry by generic drug manufacturers. Consistent with theoretical predictions, Ellison and Ellison (2011) find that firms do engage in strategic actions in an effort to deter generic drug entry. More closely related to our study, Aguerrevere (2009) studies the interaction of real investment decisions and firm product markets to show how market competition impacts the risk and returns on firm assets. The key insights from his model are that firm values in concentrated markets are less risky when demand is low but they are riskier when demand is high and an option to expand is more valuable. In deriving these insights, Aguerrevere’s model assumes a symmetric Nash equilibrium in a repeated Cournot competition among a given number of existing firms that invest in homogeneous capital.

In contrast, our analysis moves beyond the assumptions of homogeneous capital and an exogenously given market structure. We recognize the existence of firm-specific and generic capital. Firm-specific capital is inflexible, but improves efficiency in production and demonstrates a credible long-term commitment to production. On the other hand, the availability of generic capital pro-
vides the incumbent firm an option to expand production when the realized demand is sufficiently large as well as offers an opportunity for entrant firms to enter the market. We develop a two-stage investment model with a leader-follower structure that is similar to a Stackelberg competition between the incumbent firm and \(n \) potential entrant firms. To counter potential competition, the incumbent firm takes into consideration the entry deterrence effect of firm-specific capital. We endogenously derive, for a given level of demand uncertainty, the firm’s optimal investment in firm-specific and generic capital, the resulting product market competition, and the systematic risk of firm’s value (assets).

The model generates two key insights. First, market competition is negatively related to the level of firm-specific investments. This finding arises because irreversible investments in firm-specific capital have an entry deterrence effect (a causal relation), and uncertainty regarding market demand makes irreversible investments costly but creates opportunities for entrants (a confounding factor). The causal relation suggests that the incumbent firm’s investment in firm-specific capital indicates the firm’s commitment to production. As a result, other firms only enter the market when the demand is sufficiently large to support the total production by the incumbent firm and all new entrants. Thus, a larger amount of firm-specific capital increases the probability of monopolizing the market (Prediction 1). However, the confounding factor suggests that this entry deterrence effect is strong when demand uncertainty is small (Prediction 2) because low levels of uncertainty imply a small probability of experiencing a large positive demand shock that encourages entry. At the same time, when demand uncertainty is low, the optimal amount of firm-specific capital is large (Prediction 3) because the large investment is unlikely to fail. By contrast, if demand uncertainty is high, the incumbent firm will employ a small amount of firm-specific capital to avoid large losses under weak demand and rely more heavily on generic capital under strong demand. Predictions 2 and 3 together imply a positive equilibrium correlation between firm-specific capital and market concentration.

The second key insight is that market competition makes firms less risky (Prediction 4) because the entrant firms’ investment options eliminate the right tail of the incumbent firm’s value distribution. This is an often overlooked and counterintuitive benefit of market competition. This prediction is a consequence of other firms’ options to enter the market under high demand. Competitors can enter the market and take profits away from the incumbent firm when demand is
high but stay away from the market if demand is low. However, without a competitor, the incumbent firm can earn large profits under high demand by expanding its production. Thus, both the expected value and the variance of the incumbent firm’s value is greater in a more concentrated market. Although this economic mechanism is somewhat different from that employed by Aguerrevere (2009), his prediction under high demand agrees with ours.

While our model is general to any form of firm-specific capital investment, we empirically test the model’s predictions using corporate real estate investment as a laboratory. Our analysis centers on real estate investment decisions by firms whose core business activities are not directly related to the development, investment, management, or financing of real estate properties. We approach real estate as a factor of production, similar to labor or other inputs. Typically, a firm’s capital investments consist of assets necessary for production, including physical capital as well as intangible capital such as patents and human capital (labor). Real estate (including manufacturing facilities, warehouses, office buildings, equipment, and retail outlets) represents one of the largest physical capital investment categories. Far from being marginal, real estate represents an important investment that corporations must make in order to competitively produce the goods and services required by their customers. For example, the real estate owned by non-real estate, non-financial corporations was valued at $7.76 trillion in 2010, accounting for roughly 28% of total assets. However, its bulkiness, large and asymmetric adjustment costs, and relative illiquidity limit the ability to maintain an optimal level of real estate as demand fluctuates.

Our analysis uses data from Compustat on public, non-real estate firms for the period from 1984 to 2012. The results are consistent with all predictions. First, firm-specific capital investments are positively related to industry concentration and negatively related to demand uncertainty (Predictions 1 and 2). More specifically, firm-specific capital that was employed several years before has a larger impact on market concentration than the more recently invested capital, implying a time lag for changes in market structure. Also, the market structure is affected by the demand uncertainty observed at the time of production rather than previously made forecasts. We also find that these effects of firm-specific capital and demand uncertainty are counter-cyclical. Second, demand uncertainty negatively affects the amount of firm-specific capital (Prediction 3). Specifically, our result is robust to the use of 4, 8, and 12-quarter ahead forecasts of demand uncertainty and the use of 20 and 40-quarter rolling volatility measures. Finally, we report that the firm value volatility
is increasing in market concentration in both high and low demand periods (Prediction 4).

Our paper proceeds as follows. Section I gives a general presentation of the model, which is then restricted to the case of a linear demand curve. Section II presents our empirical analysis with a description of the sample in section II.A and a discussion of the main findings in section II.B. Finally, section III concludes.

I. Model

We develop a dynamic model of corporate investments under demand uncertainty. Following Dixit (1980) and Bulow, Geanakoplos, and Klemperer (1985), we assume that firms make capital investment and production decisions in a two-period (i.e., three-date) setting. The model features a leader-follower structure that is similar to a Stackelberg competition with a focus on the incumbent firm’s initial investment. We first characterize an asymmetric Nash equilibrium in a general setting without specifying functional forms for demand or production cost. Next, we numerically analyze the model by specifying a linear demand function and a quadratic cost function.

To frame the basic problem, we begin by assuming a monopoly environment where a firm (Firm 1) produces a good during the second period to sell in the market at t_2. In subsequent sections, we will consider alternative market structures (oligopoly with $n+1$ firms and full competition with an infinite number of firms).

A. Case 1: Monopoly

To begin, we assume that capital is the only factor of production. Thus, at t_0 the firm decides the initial size of production capital (e.g., amount of factories, equipment, and corporate real estate) and builds that capital during the first period. We refer to capital acquired during the first period as firm-specific capital (K_{s1}) since it is customized to an efficient production process determined at t_0, and it potentially serves as an entry deterrent as we demonstrate in the following sections.

One of the characteristics defining firm-specific capital is that the firm cannot reduce its initial firm-specific capacity even if the realized demand shock is weak. As a result, firm-specific capital incurs a high fixed cost and a low variable cost of production. The firm pays a one-time fixed cost at t_0 to enter the market and pays the costs of capital and depreciation for the firm-specific capital.
At t_2.

At t_1, the incumbent firm observes a random demand shock (ε) revealing the price level. Based on this observation, it potentially revises its production plan upward by renting additional generic capital, denoted as K_{g1}. A key advantage of generic capital is that it offers the firm flexibility in setting up its production process in the face of an uncertain demand shock. We assume that the rent payments for the generic capital are due at t_2, and this rental rate, which is determined in a competitive rental market, is less than the cost of firm-specific capital because of the higher resale value associated with generic capital. That is, generic capital is not unique to the firm’s production process and thus could be utilized by firms in other markets with little redeployment costs. However, generic capital entails a higher production cost because it is not customized to a specific production process. As a result, Firm 1 trades off production efficiencies (and their lower production costs) that accrue to investment in firm-specific capital at t_0 with less efficient (higher cost) production associated with the more flexible, generic capital acquired at t_1.

We assume a linear production function, $F(K_s, K_g) = K_s + K_g$, and an increasing and convex cost function:

$$C_1 = C_1(K_{s1}, K_{g1}) \quad s.t., \frac{\partial C_1}{\partial K_{s1}} > 0, \frac{\partial C_1}{\partial K_{g1}} > 0, \frac{\partial^2 C_1}{\partial K_{s1}^2} > 0, \frac{\partial^2 C_1}{\partial K_{g1}^2} > 0, \frac{\partial^2 C_1}{\partial K_{s1} \partial K_{g1}} > 0. \quad (1)$$

Furthermore, the firm faces an inverse demand function P with the following properties:

$$P = P(K_{s1}, K_{g1}, \varepsilon), \quad s.t., \frac{\partial P}{\partial \varepsilon} > 0, \frac{\partial^2 P}{\partial \varepsilon^2} = 0, \frac{\partial P}{\partial K_{s1}} < 0, \frac{\partial P}{\partial K_{g1}} < 0, \quad (2)$$

where ε is a random variable that represents the demand shock. The realized value of the demand shock at t_1 is denoted by $\bar{\varepsilon}$.

Solving the firm’s choices regarding capital investment by backward induction, we note that Firm 1 chooses the amount of generic capital (K_{g1}) at t_1, taking K_{s1} and $\bar{\varepsilon}$ as given. Thus, at t_1 Firm 1 solves the following profit maximization problem

$$\max_{K_{s1}} \Pi_1 \equiv P(K_{s1}, K_{g1}, \bar{\varepsilon}) \times (K_{s1} + K_{g1}) - C_1(K_{g1}). \quad (3)$$
The first order condition (FOC) and second order condition (SOC) determine the optimal K_{g1}. If the optimal K_{g1} is zero or negative, then Firm 1 does not employ generic capital. Since the sign of the optimal K_{g1} positively depends on the realized demand shock, this sign condition gives a threshold value of $\bar{\varepsilon}$. Thus, the solution is:

$$
\begin{align*}
K_{g1}^M(K_{s1}, \bar{\varepsilon}) & \quad \text{if } \bar{\varepsilon} > \varepsilon^M \\
0 & \quad \text{otherwise.}
\end{align*}
$$

Because of this nonlinearity in the optimal amount of generic capital, the maximized profit of Firm 1 is also a nonlinear function of the demand shock. This option-like feature of generic capital creates the effect of demand volatility on the initial choice of the firm-specific capital investment. Furthermore, the threshold value ε^M depends on the amount of firm-specific capital K_{s1} and thus, also affects the initial choice of firm-specific capital.

At t_0, Firm 1 chooses K_{s1} by maximizing its expected profit where the product price and the amount of generic capital are uncertain because they depend on the random variable ε. Furthermore, the amount of generic capital is a nonlinear function of $\bar{\varepsilon}$ due to the state contingency exhibited in Equation (4). Thus, Firm 1 faces the following optimization:

$$
\max_{K_{s1}} E \left[\Pi_1^M(K_{s1}, K_{g1}, \varepsilon) \right] \\
= E \left[\Pi_1^M(K_{s1}, K_{g1}^M, \varepsilon) \left| \bar{\varepsilon} > \varepsilon^M(K_{s1}) \right. \right] Pr(\bar{\varepsilon} > \varepsilon^M(K_{s1})) \\
+ E \left[\Pi_1^M(K_{s1}, 0, \varepsilon) \left| \bar{\varepsilon} \leq \varepsilon^M(K_{s1}) \right. \right] Pr(\bar{\varepsilon} \leq \varepsilon^M(K_{s1})),
$$

where Π_1^M denotes Firm 1’s profit function and the superscript “M” denotes the monopoly market environment. $Pr(A)$ denotes the probability of event A and $E[\bullet | A]$ denotes the expectation operator conditional on event A. Equation (5) exhibits state contingency; the first term represents the profit generated by both firm-specific and generic capital when the demand shock is large, and the second term represents the profit generated only by firm-specific capital when the demand shock is small. Because Firm 1 produces at full capacity even if the demand level is low, the firm compares potential losses from too large firm-specific capital in bad states with extra costs of
employing generic capital in good states. We denote the solution to this problem as

\[
\begin{cases}
K_{s1}^M & \text{if } E \left[\Pi^M(K_{s1}^M, K_{g1}, \varepsilon) \right] > 0 \\
0 & \text{otherwise}.
\end{cases}
\]

(6)

B. Case 2: Oligopoly

Having established the base conditions for the firm’s choice of firm-specific and generic capital under the assumption of a monopoly environment, we now consider the effect of such choices in an oligopoly market that is characterized by the potential entry of \(n \) identical firms (Firm \(i, i = 2, \ldots, n+1 \) without coalitions) at \(t_1 \). Firm \(i \) observes Firm 1’s firm-specific capital investment and the realized demand shock before deciding whether to pay a one-time fixed cost and enter the market. The entrants only employ generic capital \((K_{gi}) \) for production and face an increasing and convex cost function:

\[
C_i = C_i(K_{gi}), \quad \text{s.t., } \frac{\partial C_i}{\partial K_{gi}} > 0, \quad \frac{\partial^2 C_i}{\partial K_{gi}^2} > 0.
\]

(7)

In a market characterized as an oligopoly, the inverse demand function \(P \) now has the following properties:

\[
P = P \left(K_{s1}, K_{g1}, \sum_{i=2}^{n+1} K_{gi}, \varepsilon \right), \quad \text{s.t., } \frac{\partial P}{\partial \varepsilon} > 0, \quad \frac{\partial^2 P}{\partial \varepsilon^2} = 0, \quad \frac{\partial P}{\partial K_{s1}} < 0, \quad \frac{\partial P}{\partial K_{g1}} < 0, \quad \frac{\partial P}{\partial K_{gi}} < 0.
\]

(8)

As in the monopoly case, the demand curve is downward sloping.

In this market environment, firms compete in the product market at \(t_2 \). Thus, taking the competitive environment into account, each firm chooses the amount of generic capital at \(t_1 \). Firm 1 also chooses the amount of firm-specific capital at \(t_0 \) by taking into account its effect on the competitive environment of the product market. For example, as will be discussed below, a sufficiently large investment in firm-specific capital by Firm 1 could serve as a deterrent to potential entrants, leading to a monopoly product market.

At \(t_1 \), each entrant chooses \(K_{gi} \), taking \(K_{s1}, K_{g1}, K_{gj}; j \neq i \), and the realized value of demand
shock $\bar{\varepsilon}$ as given in order to solve the following profit maximization problem:

$$\max_{K_{gi}} \Pi_i \equiv P \left(K_{s1}, K_{g1}, \sum_{i=2}^{n+1} K_{gi}, \bar{\varepsilon} \right) \times K_{gi} - C_i(K_{gi}).$$

(9)

In addition to the FOC and SOC, we impose the entry condition:

$$\max \Pi_i(K_{gi}, \bar{\varepsilon}) \geq 0$$

(10)

because the maximized profit can be negative due to the fixed cost of entry. This condition implicitly gives a lower bound of the demand shock $\bar{\varepsilon}$ because $\partial \Pi_i / \partial \bar{\varepsilon} > 0$. Thus, the optimal K_{gi} is:

$$\begin{cases}
K_{gi}^O(K_{s1}, K_{g1}, K_{gj}; j \neq i, \bar{\varepsilon}) & \text{if } \max \Pi_i \geq 0 \\
0 & \text{otherwise.}
\end{cases}$$

(11)

where the “O” superscript denotes the oligopoly market environment. If Firm i decides not to enter the market due to a low demand level, then the market devolves to a monopoly of Firm 1.

Similar to Firm i, Firm 1 also chooses K_{g1} at t_1, taking K_{s1}, $K_{gi, i=2,...,n+1}$, and $\bar{\varepsilon}$ as given by solving the problem that is equivalent to Equation (3) with the respective first and second order conditions. The solution is:

$$\begin{cases}
K_{g1}^O(K_{s1}, K_{gi}; i=2,...,n+1, \bar{\varepsilon}) & \text{if } \bar{\varepsilon} > \varepsilon^O \\
0 & \text{otherwise.}
\end{cases}$$

(12)

The threshold value ε^O depends on both the entrants’ capital K_{gi} and firm-specific capital K_{s1} and thus, affects the initial choice of firm-specific capital.

When both the incumbent and the entrants employ positive amounts of generic capital, the strategic environment in the second period becomes a Cournot competition. The Cournot Nash equilibrium is symmetric among the identical entrants and asymmetric between the incumbent and entrants. The Cournot Nash equilibrium levels of generic capital, K_{g1}^E and K_{gi}^E, are expressed as:

$$K_{g1}^E(K_{s1}, \bar{\varepsilon}) = K_{g1}^O(K_{s1}, K_{g1}^O(K_{s1}, K_{g1}^E(K_{s1}, \bar{\varepsilon}), K_{gj}^E; j \neq i(K_{s1}, \bar{\varepsilon}), \bar{\varepsilon}), \bar{\varepsilon}), \bar{\varepsilon}),$$

(13)

$$K_{gi}^E(K_{s1}, \bar{\varepsilon}) = K_{gi}^O(K_{s1}, K_{g1}^O(K_{s1}, K_{g1}^E(K_{s1}, \bar{\varepsilon}), \bar{\varepsilon}), K_{gj}^E; j \neq i(K_{s1}, \bar{\varepsilon}), \bar{\varepsilon}).$$

(14)
Firm i's entry condition \[10\] gives a threshold value of demand shock ε^* such that $\Pi_i(K_E^E(K_{s1}, \varepsilon^*), \varepsilon^*) = 0$. Thus, Firm i will enter the market if $\bar{\varepsilon} \geq \varepsilon^*$. We also define the threshold value for Firm 1's expansion in this Cournot equilibrium, ε^E, which equals ε^O evaluated at K_{g1}^E. Therefore, we obtain the following entry deterrence effect of firm-specific capital:

Proposition 1: When demand function is an affine function of price, Firm 1’s firm-specific capital always has an entry deterrence effect:

\[
\frac{d\varepsilon^*}{dK_{s1}} > 0. \tag{15}
\]

For more general demand functions, the existence of the entry deterrence effect depends on parameter values.

The proof is in Appendix [A].

Firm 1’s profit is affected by whether the market becomes a monopoly or oligopoly. Thus, there are three variations in Firm 1’s problem depending on the relation among the firms’ threshold values: (1) $\varepsilon^M < \varepsilon^E < \varepsilon^*$; (2) $\varepsilon^M < \varepsilon^* < \varepsilon^E$; and (3) $\varepsilon^* < \varepsilon^M < \varepsilon^E$. We present the second variation below and other variations in Appendix [B].

In the case where $\varepsilon^M < \varepsilon^* < \varepsilon^E$,

\[
\max_{K_{s1}} E[\Pi_1(K_{s1}, K_{g1}, K_{g1}, \varepsilon)] = E[\Pi_1^O(K_{s1}, K_{g1}, K_{g1}, \varepsilon) \mid \bar{\varepsilon} > \varepsilon^E(K_{s1})] \Pr(\bar{\varepsilon} > \varepsilon^E(K_{s1}))
\]

\[
+ E[\Pi_1^O(K_{s1}, 0, K_{g1}, \varepsilon) \mid \varepsilon^*(K_{s1}) \leq \bar{\varepsilon} \leq \varepsilon^E(K_{s1})] \Pr(\varepsilon^*(K_{s1}) \leq \bar{\varepsilon} \leq \varepsilon^E(K_{s1}))
\]

\[
+ E[\Pi_1^M(K_{s1}, K_{g1}^M, \varepsilon) \mid \varepsilon^M(K_{s1}) < \bar{\varepsilon} < \varepsilon^*(K_{s1})] \Pr(\varepsilon^M(K_{s1}) < \bar{\varepsilon} < \varepsilon^*(K_{s1}))
\]

\[
+ E[\Pi_1^M(K_{s1}, 0, \varepsilon) \mid \bar{\varepsilon} \leq \varepsilon^M(K_{s1})] \Pr(\bar{\varepsilon} \leq \varepsilon^M(K_{s1})) \tag{16}
\]

where Π_1^O denotes Firm 1’s profit function in the oligopoly market. In this problem, state contingency arises from both Firm 1’s own option to expand and Firms i’s option to enter the market. The four terms in the right hand side of Equation \[16\] corresponds to four possible types of market structures: (1) Both incumbent and entrants employ generic capital in a Cournot competition; (2) Only entrants employ generic capital and compete with the incumbent; (3) The incumbent monopolizes the market with both firm-specific and generic capital; and (4) No firm employs generic
capital and the incumbent firm monopolizes the market with firm-specific capital. We denote the solution to this problem as

\[
\begin{cases}
K_{s1}^O & \text{if } E \left[\Pi_1^O(K_{s1}^O, K_{g1}^E, K_{gi}^E, \varepsilon) \right] > 0 \\
0 & \text{otherwise.}
\end{cases}
\] (17)

The solution is characterized in a usual way by FOC and SOC.\(^{15}\)

C. Case 3: Full Competition

We can easily generalize the oligopoly case to a market characterized as perfectly competitive (with an infinite number of firms) by noting that the inverse demand function is horizontal:

\[
P = P(K_{s1}, K_{g1}, K_{gi}, \varepsilon), \quad \text{s.t., } \frac{\partial P}{\partial \varepsilon} > 0, \frac{\partial^2 P}{\partial \varepsilon^2} = 0, \frac{\partial P}{\partial K_{s1}} = \frac{\partial P}{\partial K_{g1}} = \frac{\partial P}{\partial K_{gi}} = 0.
\] (18)

In the competitive market, the solutions to the optimal generic capital for Firm 1 \((K_{g1})\) becomes:

\[
\begin{cases}
K_{g1}^C(K_{s1}, \bar{\varepsilon}) & \text{if } \bar{\varepsilon} > \varepsilon^C \\
0 & \text{otherwise.}
\end{cases}
\] (19)

where as before, the threshold value \(\varepsilon^C\) depends on the amount of firm-specific capital \(K_{s1}\). As in the previous cases, Firm 1 chooses \(K_{s1}\) at \(t_0\) by maximizing its expected profit:

\[
\max_{K_{s1}} E \left[\Pi_1^C(K_{s1}, K_{g1}, \varepsilon) \right] = E \left[\Pi_1^C(K_{s1}, K_{g1}^C, \varepsilon) \mid \bar{\varepsilon} > \varepsilon^C(K_{s1}) \right] \Pr(\bar{\varepsilon} > \varepsilon^C(K_{s1})) + E \left[\Pi_1^C(K_{s1}, 0, \varepsilon) \mid \bar{\varepsilon} \leq \varepsilon^C(K_{s1}) \right] \Pr(\bar{\varepsilon} \leq \varepsilon^C(K_{s1})),
\] (20)

where \(\Pi_1^C\) denotes Firm 1’s profit function in the competitive market. The solution to this problem is given as

\[
\begin{cases}
K_{s1}^C & \text{if } E \left[\Pi_1^C(K_{s1}^C, K_{g1}, \varepsilon) \right] > 0 \\
0 & \text{otherwise.}
\end{cases}
\] (21)
D. Linear demand and quadratic cost function

To obtain more concrete predictions of the model, we specify simple functions for the demand and production costs. First, we set the inverse demand function as linear in quantity: \(P = A - BQ + \varepsilon \), where \(P \) is the product price, \(Q \) is the product quantity, \(A \) and \(B \) are non-negative constants, and \(\varepsilon \) is a random variable that represents demand shocks. \(\varepsilon \) is drawn from a uniform distribution \(U(-\sqrt{3}\sigma, \sqrt{3}\sigma) \) with \(\sigma > 0 \). Its mean and variance are \(E[\varepsilon] = 0 \) and \(\text{Var}[\varepsilon] = \sigma^2 \). This demand function is well-defined on \(\{Q : Q > 0 \text{ and } BQ < A - \sqrt{3}\sigma \} \). In a competitive market, \(B = 0 \). In the monopoly market, \(Q = K_{s1} + K_{g1} \). For the oligopoly market, we focus on the case of one entrant \((n = 1)\): \(Q = K_{s1} + K_{g1} + K_{g2} \) because analyzing a larger number of entrants does not give additional insights (nevertheless, we provide solutions of the \(n \)-entrant case in Appendix C).

The marginal cost of production is linear in quantity:

\[
\text{Firm 1: } \begin{cases}
\alpha K & \text{for } 0 \leq K \leq K_{s1}, \\
\alpha K_{s1} + \beta (K - K_{s1}) & \text{for } K > K_{s1}.
\end{cases} \quad (22) \\
\text{Firm 2: } \beta K, \quad (23)
\]

where \(\beta > \alpha > 0 \). \(\alpha \) and \(\beta \) correspond to the slope of the marginal cost line for firm-specific and generic capital, respectively. The user cost of capital, which is paid at time \(t_2 \), is \(sK_{s1} + gK_{g1} \) and \(gK_{g2} \) for Firms 1 and 2, respectively. The parameter \(s \) denotes the user cost of firm-specific capital for two periods; i.e., \(s = r(1+r) + (r+\delta) \), where \(r(1+r) \) is the compounded interest cost for the first period, and \(r+\delta \) is the sum of interest and depreciation costs for the second period. The parameter \(g \) denotes the rental rate of generic capital for one period, which compensates for the interest and depreciation costs for the lessor. The depreciation rate is smaller for generic capital than for firm-specific capital because the resale value of firm-specific capital is low due to customization. Given these costs, the total cost functions for Firms 1 and 2 become quadratic in quantity:

\[
C_1(K_{s1}, K_{g1}) \equiv (1 + r)^2 f + sK_{s1} + gK_{g1} + \int_{0}^{K_{s1}} \alpha K dK + \int_{K_{s1}}^{K_{s1}+K_{g1}} (\alpha K_{s1} + \beta (K - K_{s1})) dK \\
= (1 + r)^2 f + sK_{s1} + gK_{g1} + \frac{\alpha}{2} K_{s1}^2 + \alpha K_{s1}K_{g1} + \frac{\beta}{2} K_{g1}^2, \quad (24a) \\
C_2(K_{g2}) \equiv (1 + r)f + gK_{g2} + \int_{0}^{K_{g2}} \beta K dK = (1 + r)f + gK_{g2} + \frac{\beta}{2} K_{g2}^2, \quad (24b)
\]
where \(f \) is the fixed cost of entry. \(C_1 \) and \(C_2 \) satisfy the conditions specified in Equations (1) and (7).

Appendix C presents the solutions to both firms’ problems for each market structure; i.e., \(K_{g2}^C \) and \(K_{g2}^O \) for Firm 2, and \(K_{g1}^C, K_{g1}^M, K_{g1}^O, K_{s1}^C, K_{s1}^M, \) and \(K_{g1}^O \) for Firm 1. Because these solutions are long polynomial equations, we present numerical values for a set of parameters that satisfies the regularity conditions for the demand function and probabilities in the case of Equation (B.1a): \(B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2, \) and \(f = 3.2 \). The demand level \(A \) is set around 4. We change demand uncertainty \(\sigma \) from 0.6 to 2 to obtain our theoretical predictions.

Figure 2a depicts the optimal amount of firm-specific capital for various levels of demand uncertainty in the competitive market. For each level of demand uncertainty, we set the price level \(A \) such that the entrant’s expected profit becomes zero. The price levels vary between 3.9 and 4.3 in this exercise. Figure 2b depicts firm-specific capital in the monopoly market and the potential oligopoly market. The demand level \(A \) is fixed at 4.3. We find a negative effect of demand uncertainty on firm-specific capital in all market structures.

Figure 2a about here.

This negative effect is created by a trade-off between efficiency and inflexibility of firm-specific capital. Firm 1 compares the efficiency gain from holding a sufficient amount of firm-specific capital with a potential loss from holding an excessive amount of firm-specific capital. By using firm-specific capital, Firm 1 benefits from a more efficient production than by expanding its operations with generic capital. Thus, firm-specific capital is advantageous in a strong market to the extent of the efficiency gap between firm-specific and generic capital. However, in a weak market, greater amounts of firm-specific capital result in larger losses. Because potential losses increase with uncertainty, Firm 1 employs a smaller amount of firm-specific capital when demand is more uncertain.

Figure 2b also exhibits greater amounts of firm-specific capital in the potential oligopoly market than in the monopoly market. This gap represents Firm 1’s motive to deter entry of a potential competitor. This motive is better understood with Figure 3. Figure 3a depicts Firm 1’s expected profit. In the monopoly market, the expected profit increases with demand uncertainty because the option to expand becomes more valuable. In the potential oligopoly market, the expected profit function is U-shaped. At the high end of the uncertainty range, the function slopes upward...
because of the effect of the option to expand. In the low end of the uncertainty range, as uncertainty decreases, the expected profit approaches the monopoly profit because Firm 1 can deter entry more successfully.

[Figure 3 about here.]

Figure 3a demonstrates how the probability of deterring entry changes by uncertainty when Firm 1 adopts the optimal investment strategy. When $\sigma = 0.6$, the probability of oligopoly (i.e., entry) is only 0.1%, and Firm 1 is likely to monopolize the market. When $\sigma = 2.0$, the probability of oligopoly becomes 36.3%. Thus, the probability of monopoly is negatively related with uncertainty. Under high uncertainty, a large amount of firm-specific capital is needed to completely deter entry. However, such a large amount of capital is not optimal because it will cause a large amount of loss under weak demand. This is a novel finding. As demonstrated in the literature, uncertainty makes entry deterrence more difficult (e.g., Maskin, 1999). We further demonstrate that complete entry deterrence is not only difficult but also suboptimal under uncertainty when losses from overcapacity are taken into account.

Figure 3c exhibits these probabilities in terms of the ranges of ε that are defined by the threshold values ε^* and ε^M. The upper range ($\varepsilon \geq \varepsilon^*$) corresponds to an oligopoly when entries are accommodated. As σ increases, the probability of entry increases and approaches 0.5 because a mean-preserving spread brings greater probability mass to the range above the threshold value ε^*. The middle range (\(\varepsilon \in (\varepsilon^M, \varepsilon^*)\)) and the lower range (\(\varepsilon \leq \varepsilon^M\)) correspond to a monopoly with and without expansion, respectively. The conditional means of ε in Figure 3c drive the conditional profits depicted in Figure 3d; oligopoly profits are increasing and monopoly profits are decreasing in σ. When uncertainty is small, the oligopoly profit is smaller than the monopoly profit. But when uncertainty is large, the oligopoly profit is larger than the monopoly profit because the oligopoly is associated with a high level of demand.

Figure 3c depicts the marginal effects of increasing the amount of firm-specific capital on various components of the expected profit; i.e., components of the first order condition (C.21). When uncertainty is small, firm-specific capital makes large impacts on the expected profit through changes in probability, i.e., changes in threshold values of ε. By increasing the amount of firm-specific capital, Firm 1 has a larger probability of suffering losses (Change in Probability of Monopoly without
Expansion) and a smaller probability of earning profits (Change in Probability of Monopoly with Expansion and of Oligopoly). On the other hand, a larger amount of efficient capital increases the monopoly profit with expansion. Firm 1 chooses the amount of firm-specific capital so that these effects balance out. When uncertainty is large, altering threshold values produces smaller impacts on the probabilities. Instead, larger capital investment causes greater losses when demand is weak (Change in Monopoly Profit without Expansion).

The degree of market concentration can also be plotted against the optimal amount of firm-specific capital. Figure 4 plots the probability of monopoly, which is a measure of the degree of market concentration in the model. The figure exhibits a positive relationship between firm-specific capital and market concentration.

[Figure 4 about here.]

Figures 5 depicts distributions of Firm 1’s realized profits for different values of demand uncertainty ε based on 5,000 simulations. Figures 5a is for the monopoly market and 5b is for the potential oligopoly market. Note that the profit in our single-period production model represents periodic profits as well as the total firm value. When demand uncertainty is small, both distributions are relatively symmetric and similar to each other. However, when demand uncertainty is large, then the monopoly profit distribution exhibits positive skewness. This positive skewness is a result of exercising the expansion option; the firm earns profits from high demand while limiting losses from weak demand. In contrast, the distribution in the potential oligopoly market is bi-modal and narrower than in the monopoly case. When demand is high, the second firm enters the market and eliminates Firm 1’s opportunities to earn high profits. The downward shift of profits forms the second peak around the value of 3 in profits.

[Figure 5 about here.]

Figure 6 plots relative volatility of profits against relative volatility of demand (σ) for three market structures. The smallest volatility is normalized to unity. Note that the correlation coefficient between demand shocks and the firm value is one because the demand is the sole source of uncertainty in this economy. Thus, as Aguerrevere (2009) defines, the elasticity of the firm value
with respect to demand shocks represents the systematic risk (i.e., the market beta) of the firm value.

When the monopoly structure is imposed, the volatility of profits is almost directly proportional to demand volatility because the demand uncertainty is absorbed by one firm. In particular, the monopoly firm captures the entire profit from large demand by exercising the option to expand. In contrast, the slope is much flatter in the potential oligopoly market. In this market, the profit must be shared with a competitor that enters the market when demand is large. The large upside potential is absent for the incumbent firm due to the endogenous change in market structure. This limited upside potential is the reason why the value uncertainty is reduced. Finally, in the competitive market, the line is flat because profits are always zero. In summary, greater competition reduces the systematic risk of firm value. On one hand, competition decreases the expected firm value, but on the other hand, competition creates a benefit of decreasing the systematic risk.

E. Empirical Predictions

Our model generates four inter-related predictions. First, as seen in Figure 4, we find a positive relation between firm-specific capital and market concentration, with greater amounts of firm-specific capital creating a stronger effect of entry deterrence. In other words, existing firms can deter competitive entrants by increasing investment in firm-specific capital. This observation leads to the first prediction:

Prediction 1: Market concentration increases as the reliance on firm-specific capital increases.

Second, as noted in Figure 3b, the probability of market competition increases as demand uncertainty increases. Our model suggests that when demand uncertainty is high, a firm’s ability to deter entry is smaller for a given amount of firm-specific capital. Thus, our second prediction is:

Prediction 2: Market concentration increases as demand uncertainty declines.

Third, as seen in Figure 2, greater demand uncertainty causes the firm’s option to expand to be more valuable. In addition, uncertainty makes firm-specific capital less effective in entry deterrence. Thus, the firm employs a smaller amount of firm-specific capital when faced with
greater uncertainty. This observation leads to the third prediction:

Prediction 3: The amount of firm-specific capital utilized by firms is greater when demand uncertainty is smaller.

Finally, from Figure 6, we obtain the last prediction:

Prediction 4: The volatility of firm value is less than directly proportional to the demand volatility and the slope is steeper in a more concentrated market.

Our predictions concerning the interaction of competition and firm-specific capital were generated from a stylized two-period model. Thus, in order to empirically test these predictions, we must adjust the stylized predictions to reflect a multi-period world. For example, the model does not differentiate between a stock or flow measure of firm-specific capital investment. However, empirically testing the predictions requires that we carefully consider the application of the model to whether the various predictions apply to a stock or flow measurement of firm-specific investment.

II. Empirical Analysis

In this section, we present the formal empirical analysis of the model’s predictions using a sample of public firms listed on NYSE, AMEX, and NASDAQ that have balance sheet and income statement data available on the Compustat annual and quarterly accounting databases and monthly stock returns reported on the Center for Research in Security Prices (CRSP) database. The sample comprises firms with two-digit SIC numbers between 01 and 87, excluding real estate investment trusts (REITs) and other public real estate firms, hotels and lodging, and investment holding companies.

We restrict our analysis to firms with information recorded in the Compustat dataset over the period 1984 to 2012 that have positive total assets (TA), property, plant and equipment (PPE), net sales (Sales), and real estate data reported on the balance sheet. Our final sample consists of 11,708 firms belonging to 65 two-digit SIC code industries. Table I shows the frequency distribution of firms and industries over the sample period. The sample contains an average of 3,993 firms per year, ranging from 2,874 firms in 2012 to 5,627 firms in 1997.

In the theoretical model, we characterize firm-specific capital as (1) taking time to build, (2)
being fixed in size, (3) determining the production capacity, and (4) improving operational efficiency. Thus, in order to test the model’s predictions we use owned corporate real estate as a proxy for firm-specific capital. Corporate real estate assets include factories, warehouses, offices, and retail facilities. Investing in real estate requires a significant amount of time. Real estate largely determines production capacity, and it is difficult to adjust its size once developed. Owned real estate that is tailored for a firm improves production efficiency (e.g., a factory designed for a particular production process). We also consider long-term leased real estate as equivalent to owned real estate (e.g., a single-tenant warehouse that is designed specifically for the tenant firm). By contrast, short-term rental spaces are considered to be generic capital.

We construct the firm-specific capital measure using the Compustat PPE account, which includes buildings, machinery and equipment, capitalized leases, land and improvements, construction in progress, natural resources, and other assets. Following the literature, we measure firm-specific capital by adding buildings, land and improvements, and construction in progress in PPE (RE_Asset1). Then we construct a normalized measure of firm-specific capital \(STC1 \) by taking its ratio to PPE. For the empirical analysis that follows, we use \(STC1 \) as the primary measure of firm-specific capital.\(^{17}\)

We measure industry concentration using the Herfindahl-Hirschman Index (HHI) computed on the basis of net sales.\(^{18}\) Again, industry classifications are based on two-digit SICs, with industry concentrations computed every year using the annual net sales from Compustat.\(^{19}\)

In the theoretical model, the industry-wide demand shock is the sole source of uncertainty and affects the revenue and profits of both the incumbent firm and the entrants. To construct a proxy for the demand uncertainty, we use the year-on-year quarterly net sales growth from the Compustat data series. The sales growth is primarily driven by demand shocks rather than supply shocks because a demand shock changes price and quantity in the same direction whereas a supply shock changes price and quantity in the opposite directions. We first compute the time-series variance of the industry mean quarterly sales growth rate. The variance is measured on a rolling basis using 20 and 40-quarter look-back windows. Because this variance measure is biased due to the time-varying number of observations in an industry, we make a statistical adjustment as detailed in Appendix D to remove the effect of the number of observations. We use the standard deviation as the volatility measure.
The realized volatility at the time of production is suitable for studying the effect of volatility on HHI because the contemporaneous level of uncertainty affects firms’ entry decisions. However, this realized measure is not the best to study the effect of volatility on corporate investments because firms make their investment decisions on the basis of forecasts of the future demand uncertainty that will affect their production. In the theoretical model, this timing gap is not an issue because the demand uncertainty is constant over time. In our empirical analysis, we mimic firms’ forecasts of the industry sales volatility by estimating an ARIMA(1,1,0) model on a 20-quarter rolling basis.20

In addition, we compute the volatility of firm value to test Prediction 4. Because the theoretical model is a two-period model, firms’ profits are equivalent to the firm value. In the empirical test, periodic profits are not a good measure because profit growth is highly correlated with sales growth, which we use for demand uncertainty. Moreover, the gap between sales volatility and profit volatility is primarily determined by the operating leverage (i.e., the amount of fixed costs in production). Thus, we use the variance of quarterly changes in firm value based on the monthly CRSP data series.

A. Descriptive Statistics

Table II presents the industry level descriptive statistics for the 29-year period from 1984 to 2012. The average industry contains 69 firms and has an HHI of 0.19 - the corresponding median values are 27 firms and an HHI of 0.14. The average level of concentration among the 65 industries varies considerably from 0.02, which is characteristic of a very competitive industry, to 0.83, indicating a highly concentrated industry - we impose a cutoff of three firms minimum per industry. The most competitive industry in our sample consists of 534 firms.

Also, average firm size (whether measured by market value, sales, or total assets in 2012 U.S. dollars) increases with industry concentration. The distribution of firm sizes in our sample is positively skewed with a mean and a median total assets per firm of $615 million and $64 million, respectively. Understandably, our sample is dominated by relatively small firms mostly operating in competitive industries. As expected, leverage and industry concentration are also positively related for good reasons. As noted in the introduction, the average amount of firm-specific capital owned by firms in our sample is 27% of PPE. The average annual rent expense for our sample is roughly $2.3 million, which capitalized at a reasonable rate of return to estimate the value of the
associated real estate space, indicates a relatively small use of generic capital assets as compared to the average stock of firm-specific capital assets owned by these firms.

The bottom section of Table II presents the summary statistics of our measures of sales volatility and firm value volatility computed on the rolling 20- and 40-quarter basis. The adjusted variance of sales growth sometimes exhibits negative values because of the adjustment outlined in Appendix D. However, this does not affect our results because the relative volatilities are what matters.

B. Results

B.1. Predictions 1 and 2

Prediction 1 concerns a causal relationship that the use of firm-specific capital increases industry concentration (the entry deterrence effect). Prediction 2 indicates that demand uncertainty is a confounding factor for the causal relationship because demand uncertainty negatively affects both industry concentration and the investment in firm-specific capital. To test these predictions, we estimate via ordinary least squares (OLS) the following panel regression model with year fixed effects:

\[
HHI_{it} = \alpha + \beta \times STC_{1it} + \gamma \times VOL_{it} + y_t + \varepsilon_{it}. \tag{25}
\]

where \(HHI_{it}\) is the Herfindahl-Hirschman Index for industry \(i\) in year \(t\) and represents our proxy for market concentration; \(STC_{1it}\) represents our proxy for firm-specific capital; and \(VOL_{it}\) represents our proxy for the industry demand uncertainty.\(^{21}\)

Firm-specific capital determines the production capacity and thus, the current level of firm-specific capital is our primary measure. However, it can take several years until we observe the effect of firm-specific capital on market concentration. To estimate the effect of past values of firm-specific capital, we also estimate Equation (25) by decomposing \(STC_{1it}\) into \(STC_{1i,t-3} + \Delta STC_{1i,t-2} + \Delta STC_{1i,t-1} + \Delta STC_{1i,t}\), where \(\Delta STC_{1i,t}\) represents the change in firm-specific capital between \(t - 1\) and \(t\). Thus, the \(\beta\) coefficient on the single current variable equals the weighted average of the coefficients on the decomposed terms.

Regarding the demand uncertainty, the current level is also our primary measure because the entry decision of a competitor is based on the current level of demand uncertainty. However, previous forecasts may affect the market concentration if the entry decision was made several years
before production on the basis of volatility forecasts. Thus, we also include the 1, 2, and 3-year forecast errors of our ARIMA(1,1,0) model.

Table III reports the results, all of which are consistent with the predictions. When only $STC_{1,t}$ is included (column 1), the estimated coefficient is 0.20 and statistically significant at the 1% level. When $STC_{1,t}$ is decomposed (column 2), we see that firm-specific capital that was in place 3-years before production makes the largest impact on market concentration (0.25). The impact monotonically decreases as the timing of investment becomes closer to production. However, all coefficients are positive and statistically significant at least at the 5% level. Thus, market concentration increases with several years of lags as the reliance on firm-specific capital increases.

Columns 3 and 4 report the test results on Prediction 2 when the 20-quarter rolling volatility measure is used. The 40-quarter rolling volatility gives consistent results. The estimated coefficient on the current sales volatility is -0.28 and -0.22 for specifications with and without past forecast errors, respectively. These coefficients are both statistically significant at the 1% level but coefficients on the past forecast errors are not statistically significant. Thus, the demand volatility at the time of production negatively affects market concentration.

These results are robust when we include both firm-specific capital and demand uncertainty (columns 5 and 6): Market concentration is positively affected by firm-specific capital, especially by the 3-year old stock, after controlling for the negative effect of demand uncertainty. These results strongly support Predictions 1 and 2. The coefficients imply that, on average, a one standard deviation increase in firm-specific capital (from 27% to 39%) increases the average HHI by 0.024 points (from 0.187 to 0.211). A one standard deviation increase in demand uncertainty (from 3.9% to 13.9%) decreases the average HHI by 0.033 points (from 0.187 to 0.154).

In addition to the average relation, we also investigate the temporal variation in the effect of firm-specific capital by estimating the following regression that allows for time-varying betas:

$$HHI_{it} = \alpha + \beta_t \times STC_{1,t} + y_t + \varepsilon_{it}. \quad (26)$$
Figure 7 plots the yearly estimated coefficients. We note that in all years, we obtain a positive coefficient, which is consistent with Prediction 1. Although cycles are observed, the year-specific coefficient appears stationary. Interestingly, the coefficient is larger during the recession periods of the early 1990’s, the early 2000’s, and the late 2000’s.

Similarly, for Prediction 2, we estimate the following model with time-varying beta:

$$ HHI_{it} = \alpha + \beta_t \times VOL_{it} + y_t + \varepsilon_{it}. $$ \hspace{1cm} (27)

Figure 8 plots the yearly estimated coefficients. The estimated coefficient is negative for 26 years during the 36-year sample period when we use 20-quarter volatility. The coefficient is negative for 25 years during the 32-year period when we use 40-quarter volatility. The mean coefficient is -0.23 and -0.30 for the 20- and 40-quarter measures, respectively. These mean values are consistent with the estimated coefficient from the constant-coefficient model.

B.2. Prediction 3

We now turn to the model’s prediction concerning the negative relation between the investment in firm-specific capital and demand uncertainty. We note the timing gap between the initial investment and the demand uncertainty in the production phase. Thus, we use the ARIMA(1,1,0) volatility forecasts in the following panel regression model with year fixed effects:

$$ STC1_{it} = \alpha + \beta \times E_t[VOL_{i,t+q}] + y_t + \varepsilon_{it}, $$ \hspace{1cm} (28)

where $E_t[VOL_{i,t+q}]$ is the q-quarter ahead forecast of industry i’s level of sales volatility. We compute the 20- and 40-quarter rolling volatility measures adjusted for the time-varying sample size as described in Appendix D. Then we construct the 4, 8, and 12-quarter ahead forecasts.

Table IV reports the estimation result. Consistent with the theoretical prediction, the estimated coefficients are negative and statistically significant at the 10% level or higher in all specifications.
For the 40-quarter rolling volatility measure (columns 4, 5, and 6), the estimated coefficients are
−0.0956, −0.0677, and −0.0481 when 4-, 8-, and 12-quarter ahead forecasts are used, respectively.
The effect of uncertainty is strongest when the 4-quarter forecasting horizon is used. Thus, firms
employ a smaller amount of firm-specific capital if they expect greater demand uncertainty for the
next year. The effects are economically significant because a one percentage point change in the
ratio requires a large change in capital investment that increases the total PPE by more than one
percent after depreciation.

[Table IV about here.]

In addition to the average impact of demand uncertainty on the use of firm-specific capital, we
also investigate the time variation in the parameter coefficient by estimating the following regression
that allows for time-varying betas:

\[
STC_{1it} = \alpha + \beta_t \times E_t [VOL_{i,t+q}] + y_t + \epsilon_{it}.
\]

Figure 9 depicts the estimation result using the 8-quarter ahead forecasts of demand volatility. The estimated coefficient is negative for 17 years in the 29-year period when we use 20-quarter volatility, and for 19 years in the 27-year period when we use 40-quarter volatility. Interestingly, the coefficients are positive during recessions in the early 1990’s and early and late 2000’s especially when 20-quarter rolling volatility is used.

[Figure 9 about here.]

B.3. Prediction 4

Table V reports the result of the OLS estimation of panel regression model:

\[
VOL_{it}^{value} = \alpha_1 + (\beta_1 + \beta_2 HHI_{it}) VOL_{it}^{sales} + LD_t \{\alpha_2 + (\beta_3 + \beta_4 HHI_{it}) VOL_{it}^{sales}\} + \epsilon_{it}, \quad (30)
\]

where \(VOL_{it}^{value}\) is industry \(i\)'s firm value volatility at time \(t\) and \(LD_t\) is a dummy variable that represents the low demand state. We use three measures of \(LD_t\): the NBER recession periods, periods of low growth in aggregate sales, and periods of low growth in individual industry sales.
Our model predicts that the coefficient β_1 is positive and smaller than one and β_2 is positive. In addition we test Aguerrevere’s (2009) predictions that β_4 and $\beta_2 + \beta_4$ are negative and that $\beta_1 + \beta_3$ and $\beta_1 + \beta_2 + \beta_3 + \beta_4$ are positive.

[Table V about here.]

Columns (1) and (2) report the results when we impose $\alpha_2 = \beta_3 = \beta_4 = 0$. When $\beta_2 = 0$ is further imposed (column (1)), the estimated value of β_1 is 0.31, which represents the average slope for various concentration levels in both demand states. This estimate is consistent with our model’s prediction. When the restriction on β_2 is relaxed in column (2), the coefficient on the interaction term is positive and statistically significant. The estimated slopes are 0.13 for a perfectly competitive market (β_2) and 0.78 for a monopoly market ($\beta_1 + \beta_2$). The estimated coefficients confirm that the firm value risk is greater in a more concentrated market.

In columns (3), (4), and (5), we report the results when we condition on the low demand state. The main effects of β_1 and β_2 are positive and statistically significant at the 1% level. The estimate for β_4 is positive when the NBER period is used, but is negative when low sales growth measures are used. In particular, the coefficient is statistically significant when we use the aggregate sales growth. Although this negative coefficient is consistent with Aguerrevere’s (2009) model, the sum of β_2 and β_4 is still positive. Thus, we find that the firm value is riskier in a more concentrated market regardless of demand levels. One possible explanation for this result is that the U.S. market since 1984 has been in a sufficiently high demand state where the option to expand has a large value.

III. Conclusion

This study provides a better understanding for why firms own firm-specific capital as opposed to leasing more generic capital. We also investigate how the market structure and the firm value risk are endogenously determined by firm-specific investments. We build a model that captures realistic features of corporate investments to study the interaction between firm-specific capital and product market competition under uncertainty. In our model, firms choose investment in firm-specific capital after taking into account its effect on the product market competition and thus on
the firm value. Our four predictions and strong empirical support reveal important interactions among demand uncertainty, firm-specific capital, market competition, and the systematic risk of firms.

The key insights from our analysis are that market competition is negatively related to the use of firm-specific capital investment due to its entry deterrence effect. However, our analysis shows that demand uncertainty increases the costs associated with firm-specific investments creating opportunities for entrants. Our empirical findings support the causal entry deterrence effect of firm-specific capital after controlling for the confounding effect of demand volatility. Our second key insight is that market competition results in lower firm risk.

Our findings have implications on anti-trust policies. Our model predictions show that a positive relation between uncertainty and competition implies that a current risky economic environment naturally enhances market competition. Moreover, the positive relation between firm-specific capital investments and market concentration implies that anti-trust policies may have unwanted consequences on investments in various forms of firm-specific capital such as real estate, equipment, R&D, and employee training. As a result, recent Department of Justice antitrust actions in the telecommunications and pharmaceutical industries could result in significantly lower future research and development spending.
References

Notes

1 See Fama and Miller (1972) and the references therein for a complete discussion of the development of the ‘market value rule’ governing management decision making.

2 Although our model is predicated on the observation that capital investments can be firm-specific or generic, Gersbach and Schmutzler (2012) derive a model that allows for strategic investments in labor that produces similar insights. In their model, labor expenses associated with training serves as a firm-specific investment that affects the firm’s product market by deterring potential competitors from entering the market.

6 http://www.businessweek.com/articles/2013-04-04/apples-campus-2-shapes-up-as-en-investor-relations-nightmare

7 Both models introduce an option to expand, but Aguerrevere considers a repeated Cournot competition among existing firms and we consider a Stackelberg-type competition between an incumbent and new entrants.

8 The capital in the model obviously includes but is not limited to real estate. For example, human capital and research and development may also be considered as firm-specific capital.

9 Source: http://www.federalreserve.gov/releases/z1/20110310/

10 Dixit and Pindyck (1994) note that real estate investments may provide firms with options to grow production.

11 This is the simplest form of multi-period models to analyze long-term commitments. Extending the production period will not change our result.

12 Thus, for ease of exposition we refer to the firm in the monopoly case as Firm 1 to note that it is the first firm to enter the market.

13 This option to expand is a deviation from the Stackelberg model.
He and Pindyck (1992) make the same assumption about the cost associated to generic capital since it can interchangeably be used to produce either of two products whereas firm-specific capital is product-specific in their model.

Technically, the Leibniz integral rule is applied to conditional expectations to derive partial derivatives of the expected profit with respect to firm-specific capital.

Prior to 1984, PPE accounts were reported net of depreciations. Compustat switched to a cost basis reporting with accrued depreciation contra accounts from 1984 onward. For consistency purposes, we restrict our analyze to this period. However, reported tests based on the 40-year period from 1973 to 2012 show similar results.

We could also use capital investment as a measure of firm-specific capital because, in the theoretical model, capital investment is equivalent to the stock of capital. Our current stock measure is relevant as a proxy for capacity.

The HHI of an industry is the sum of the squares of the individual firms’ net sales to total industry net sales. The higher the number of firms in an industry is, the smaller the resulting industry’s HHI will be. The HHI is based on net sale because gross sales figures are not available on Compustat. Our industry concentration measure does not account the effect of imports from non-US listed firms. But since it omits exports by US firms, the net effect should be smaller.

We also present industry concentrations based on total assets in Table (2).

The positive autocorrelations of our volatility measure almost completely disappear when we take the first difference. Thus, we estimate a simple AR(1) model for volatility changes.

\[HHI_{it} \] is bounded between 0 and 1, with monopoly industries having a value of 1 and perfectly competitive industries having a value of 0. \[STC1_{it} \] is also bounded between 0 and 1 because it is the ratio to total PPE.

The results with other forecast horizons are almost identical.
Appendix A Proof of Proposition 1

Without loss of generality, consider the 2-firm Cournot equilibrium represented by Equations (13) and (14). When \(\varepsilon = \varepsilon^* \), Firm 2’s profit is zero:

\[
\Pi_2 = P \left(K_{s1}, K_{g1} (K_{s1}, \varepsilon^*), K_{g2} (K_{s1}, \varepsilon^*), \varepsilon^* \right) \times K_{g2} - C_2 \left(K_{g2} (K_{s1}, \varepsilon^*) \right) = 0 \quad (A.1)
\]

We rewrite Equation (A.1) by using Firm 2’s FOC:

\[
\Pi_2 = - \frac{\partial P \left(K_{s1}, K_{g1} (K_{s1}, \varepsilon^*), K_{g2} (K_{s1}, \varepsilon^*), \varepsilon^* \right)}{\partial K_{g2}} \times K_{g2}^2 (K_{s1}, \varepsilon^*) + C_2 \left(K_{g2} (K_{s1}, \varepsilon^*) \right) \times K_{g2} (K_{s1}, \varepsilon^*) - C_2 \left(K_{g2} (K_{s1}, \varepsilon^*) \right) = 0 \quad (A.2)
\]

By totally differentiating Equation (A.2), we obtain

\[
- \frac{\partial^2 P}{\partial K_{g2}^2} K_{g2}^2 \times \left(\frac{\partial K_{g2}^2}{\partial K_{s1}} dK_{s1} + \frac{\partial K_{g1}^2}{\partial \varepsilon^*} d\varepsilon^* + \frac{\partial K_{g2}^2}{\partial K_{s1}} dK_{s1} + \frac{\partial K_{g2}^2}{\partial \varepsilon^*} d\varepsilon^* \right) \\
- 2 \frac{\partial P}{\partial K_{g2}} K_{g2}^2 \times \left(\frac{\partial K_{g2}^2}{\partial K_{s1}} dK_{s1} + \frac{\partial K_{g2}^2}{\partial \varepsilon^*} d\varepsilon^* \right) + C_2'' K_{g2}^2 \times \left(\frac{\partial K_{g2}^2}{\partial K_{s1}} dK_{s1} + \frac{\partial K_{g2}^2}{\partial \varepsilon^*} d\varepsilon^* \right) \\
+ C_2' \times \left(\frac{\partial K_{g2}^2}{\partial K_{s1}} dK_{s1} + \frac{\partial K_{g2}^2}{\partial \varepsilon^*} d\varepsilon^* \right) - C_2' \times \left(\frac{\partial K_{g2}^2}{\partial K_{s1}} dK_{s1} + \frac{\partial K_{g2}^2}{\partial \varepsilon^*} d\varepsilon^* \right) = 0. \quad (A.3)
\]

By assuming an affine demand function, the first term is eliminated (\(\frac{\partial^2 P}{\partial K_{g2}^2} = 0 \)). The last two terms cancel out. By rearranging the equation, we obtain:

\[
\frac{d\varepsilon^*}{dK_{s1}} = - \left(\frac{\partial K_{g2}^2}{\partial \varepsilon^*} \right)^{-1} \left(\frac{\partial K_{g2}^2}{\partial K_{s1}} \right). \quad (A.4)
\]

Since Firm 2 chooses a larger amount of capital for a greater demand and a smaller amount of Firm 1’s firm-specific capital, \(\frac{\partial K_{g2}^2}{\partial \varepsilon^*} > 0 \) and \(\frac{\partial K_{g2}^2}{\partial K_{s1}} < 0 \). As a result, we derive Equation (15) in Proposition 1:

\[
\frac{d\varepsilon^*}{dK_{s1}} > 0. \quad (A.5)
\]

■
Appendix B Variations in Firm 1’s problem under potential oligopoly

Variation 1: If $\varepsilon^M < \varepsilon^E < \varepsilon^*$,

$$\max_{K_{s1}} E \left[\Pi_1(K_{s1}, K_{g1}, K_{g2}, \varepsilon) \right]$$

$$\equiv E \left[\Pi_1^O(K_{s1}, K_{g1}^E, K_{g2}^E, \varepsilon) \mid \varepsilon \geq \varepsilon^*(K_{s1}) \right] Pr (\varepsilon \geq \varepsilon^*(K_{s1}))$$

$$+ E \left[\Pi_1^M(K_{s1}, K_{g1}^M, \varepsilon) \mid \varepsilon^*(K_{s1}) > \varepsilon > \varepsilon^M(K_{s1}) \right] Pr (\varepsilon^*(K_{s1}) > \varepsilon > \varepsilon^M(K_{s1}))$$

$$+ E \left[\Pi_1^M(K_{s1}, 0, \varepsilon) \mid \varepsilon \leq \varepsilon^M(K_{s1}) \right] Pr (\varepsilon \leq \varepsilon^M(K_{s1})).$$ \hspace{1cm} (B.1a)

Variation 2: If $\varepsilon^M < \varepsilon^* < \varepsilon^E$, Equation [16]

Variation 3: If $\varepsilon^* < \varepsilon^M < \varepsilon^E$,

$$\max_{K_{s1}} E \left[\Pi_1(K_{s1}, K_{g1}, K_{g2}, \varepsilon) \right]$$

$$\equiv E \left[\Pi_1^O(K_{s1}, K_{g1}^E, K_{g2}^E, \varepsilon) \mid \varepsilon > \varepsilon^E(K_{s1}) \right] Pr (\varepsilon > \varepsilon^E(K_{s1}))$$

$$+ E \left[\Pi_1^O(K_{s1}, 0, K_{g2}^E, \varepsilon) \mid \varepsilon^*(K_{s1}) > \varepsilon \leq \varepsilon^E(K_{s1}) \right] Pr (\varepsilon^*(K_{s1}) > \varepsilon \leq \varepsilon^E(K_{s1}))$$

$$+ E \left[\Pi_1^M(K_{s1}, 0, \varepsilon) \mid \varepsilon < \varepsilon^*(K_{s1}) \right] Pr (\varepsilon < \varepsilon^*(K_{s1})).$$ \hspace{1cm} (B.1b)
Appendix C Solution of the model

A Firms’ Decision for the second period

A.1 Firm 1

At \(t_1 \), Firm 1 solves the problem specified in Equation (3), taking \(K_{s1}, K_{g2}, \) and \(\bar{\varepsilon} \) as given. Since the objective function is quadratic, SOC is readily satisfied. From FOC and the sign condition on \(K_{g1} \), the optimal choice of \(K_{g1} \) is:

Monopoly:
\[
K_{g1}^M = \frac{A - g - (2B + \alpha)K_{s1} + \bar{\varepsilon}}{2B + \beta} \quad \text{if } \bar{\varepsilon} > g - A + (2B + \alpha)K_{s1} \equiv \varepsilon^M
\]
\[
0 \quad \text{otherwise.}
\] \hspace{1cm} (C.1)

Oligopoly:
\[
K_{g1}^O = \frac{A - g - (2B + \alpha)K_{s1} - BK_{g2} + \bar{\varepsilon}}{2B + \beta} \quad \text{if } \bar{\varepsilon} > g - A + (2B + \alpha)K_{s1} + BK_{g2} \equiv \varepsilon^O
\]
\[
0 \quad \text{otherwise.}
\] \hspace{1cm} (C.2)

Competitive:
\[
K_{g1}^C = \frac{A - g + \bar{\varepsilon} - \alpha K_{s1}}{\beta} \quad \text{if } \bar{\varepsilon} > g - A + \alpha K_{s1} \equiv \varepsilon^C
\]
\[
0 \quad \text{otherwise.}
\] \hspace{1cm} (C.3)

A.2 Firm 2

At \(t_1 \), Firm 2 solves the problem specified in Equation (9), taking \(K_{s1}, K_{g1}, \) and \(\bar{\varepsilon} \) as given. Since the objective function is quadratic, SOC is readily satisfied. From FOC and the entry condition
the optimal choice of K_{g2} is

Oligopoly:

$$K^O_{g2} = \begin{cases}
\frac{A - g - B(K_{s1} + K_{g1}) + \bar{\varepsilon}}{2B + \beta} & \text{if } \bar{\varepsilon} \geq g - A + B(K_{s1} + K_{g1}) + \sqrt{2(2B + \beta)(1 + r)f} \\
0 & \text{otherwise.}
\end{cases}$$

(C.4)

Competitive:

$$K^C_{g2} = \begin{cases}
\frac{A - g + \bar{\varepsilon}}{\beta} & \text{if } \bar{\varepsilon} \geq g - A + \sqrt{2\beta(1 + r)f} \\
0 & \text{otherwise.}
\end{cases}$$

(C.5)

B Cournot Nash Equilibrium in the second period

When both firms employ positive amounts of generic capital, the Cournot Nash equilibrium levels of generic capital, Equations (13) and (14), are expressed as:

$$K^E_{g1} = L - (1 - M)K_{s1},$$

(C.6)

$$K^E_{g2} = L - NK_{s1},$$

(C.7)

where

$$L \equiv \frac{A - g + \bar{\varepsilon}}{3B + \beta} > 0,$$

$$M \equiv \frac{(\beta - \alpha)(2B + \beta)}{(3B + \beta)(B + \beta)} \in (0, 1),$$

$$N \equiv \frac{B(\beta - \alpha)}{(3B + \beta)(B + \beta)} > 0.$$

Firm 2’s entry condition (10) gives the threshold value of demand shock ε^*:

$$\varepsilon^*(K_{s1}) \equiv g - A + \sqrt{\frac{2(3B + \beta)^2(1 + r)f}{2B + \beta}} + \frac{B(\beta - \alpha)}{B + \beta}K_{s1}. $$

(C.8)

We confirm the entry deterrence effect (15); i.e., a larger firm-specific capital of Firm 1 makes it less unlikely for Firm 2 to enter the market. We can also rewrite Firm 1’s expansion condition
for this Cournot equilibrium:

$$
\bar{\epsilon} > g - A + \left(3B + \beta - \frac{(\beta - \alpha)(2B + \beta)}{B + \beta}\right) K_{s1} \equiv \epsilon^E(K_{s1}).
$$

(C.9)

C Initial choice of firm-specific capital

At t_0, Firm 1 solves the problems specified in Equations (5), (16), and (20). In this appendix, we solve for the optimal choice of firm-specific capital for each market structure.

C.1 Monopoly Market

In the monopoly market, Firm 1’s problem is:

$$
\max_{K_{s1}} E \left[\Pi^M_1(K_{s1}, K_{g1}, \epsilon) \right] = E \left[\Pi^M_1(K_{s1}, K_{g1}, \epsilon) \right] \Pr(\bar{\epsilon} > \epsilon^M(K_{s1})) + E \left[\Pi^M_1(K_{s1}, 0, \epsilon) \right] \Pr(\bar{\epsilon} \leq \epsilon^M(K_{s1})),
$$

(C.10a)

$$
\Pi^M_1(K_{s1}, 0, \epsilon) = -(1 + r)^2 f + \varepsilon K_{s1} + (A - s)K_{s1} - \left(B + \frac{\alpha}{2}\right) K_{s1}^2,
$$

(C.10b)

$$
\Pi^M_1(K_{s1}, K_{g1}, \epsilon) = R^M + S^M \varepsilon^2 + T^M \varepsilon + U^M \varepsilon K_{s1} + V^M K_{s1} + W^M K_{s1}^2,
$$

(C.10c)

$$
R^M \equiv -(1 + r)^2 f + \frac{(A - g)^2}{2(2B + \beta)},
$$

(C.10d)

$$
S^M \equiv \frac{1}{2(2B + \beta)},
$$

(C.10e)

$$
T^M \equiv \frac{A - g}{2B + \beta},
$$

(C.10f)

$$
U^M \equiv \frac{\beta - \alpha}{2B + \beta},
$$

(C.10g)

$$
V^M \equiv \frac{A(\beta - \alpha) + g(2B + \alpha)}{2B + \beta} - s,
$$

(C.10h)

$$
W^M \equiv \frac{-\alpha}{2} - \frac{B(\beta - \alpha)^2}{(2B + \beta)^2} + \frac{\alpha(2B + \alpha)}{2B + \beta} - \frac{\beta(2B + \alpha)^2}{2(2B + \beta)^2}.
$$

(C.10i)
The specific expression for each of eight elements is as follows.

\[
\frac{dE \left[\Pi_1^m (K_{s1}, K_{g1}, \varepsilon) \right]}{dK_{s1}} = \frac{dE \left[\Pi_1^m (K_{s1}, K_{g1}^m, \varepsilon) \right]}{dK_{s1}} \left| \varepsilon > \varepsilon^m (K_{s1}) \right| \times Pr \left(\varepsilon > \varepsilon^m (K_{s1}) \right) + E \left[\Pi_1^m (K_{s1}, K_{g1}^m, \varepsilon) \right] \left| \varepsilon > \varepsilon^m (K_{s1}) \right| \times \frac{dPr \left(\varepsilon > \varepsilon^m (K_{s1}) \right)}{dK_{s1}}
\]

\[
+ \frac{dE \left[\Pi_1^m (K_{s1}, 0, \varepsilon) \right]}{dK_{s1}} \left| \varepsilon \leq \varepsilon^m (K_{s1}) \right| \times Pr \left(\varepsilon \leq \varepsilon^m (K_{s1}) \right) + E \left[\Pi_1^m (K_{s1}, 0, \varepsilon) \right] \left| \varepsilon \leq \varepsilon^m (K_{s1}) \right| \times \frac{dPr \left(\varepsilon \leq \varepsilon^m (K_{s1}) \right)}{dK_{s1}} = 0. \quad (C.11)
\]

The first-order condition is:

\[
\frac{dE \left[\Pi_1^m (K_{s1}, K_{g1}, \varepsilon) \right]}{dK_{s1}} = \frac{dE \left[\Pi_1^m (K_{s1}, K_{g1}^m, \varepsilon) \right]}{dK_{s1}} \left| \varepsilon > \varepsilon^m (K_{s1}) \right| \times Pr \left(\varepsilon > \varepsilon^m (K_{s1}) \right) + E \left[\Pi_1^m (K_{s1}, K_{g1}^m, \varepsilon) \right] \left| \varepsilon > \varepsilon^m (K_{s1}) \right| \times \frac{dPr \left(\varepsilon > \varepsilon^m (K_{s1}) \right)}{dK_{s1}}
\]

\[
+ \frac{dE \left[\Pi_1^m (K_{s1}, 0, \varepsilon) \right]}{dK_{s1}} \left| \varepsilon \leq \varepsilon^m (K_{s1}) \right| \times Pr \left(\varepsilon \leq \varepsilon^m (K_{s1}) \right) + E \left[\Pi_1^m (K_{s1}, 0, \varepsilon) \right] \left| \varepsilon \leq \varepsilon^m (K_{s1}) \right| \times \frac{dPr \left(\varepsilon \leq \varepsilon^m (K_{s1}) \right)}{dK_{s1}} = 0. \quad (C.11)
\]
By using Leibniz rule of integration,

\[
\frac{dE}{dK_{s1}} \left[\Pi^M_{K_{s1},K_{q1},\bar{\varepsilon}} \mid \bar{\varepsilon} > \varepsilon^M(K_{s1}) \right] = \left(\frac{V^M + 2W^M K_{s1}}{2\sqrt{3}\sigma} \right) \left(\sqrt{3}\sigma - \varepsilon^M \right) + \left(\frac{U^M \left(3\sigma^2 - \varepsilon^M \right)}{4\sqrt{3}\sigma} \right) - \left(\frac{2B + \alpha}{2\sqrt{3}\sigma} \right) \left(R^M + S^M \varepsilon^M + T^M \varepsilon^M + U^M \varepsilon^M K_{s1} + V^M K_{s1} + W^M K_{s1}^2 \right). \tag{C.18}
\]

\[
\frac{dE}{dK_{s1}} \left[\Pi^M_{K_{s1},0,\varepsilon} \mid \bar{\varepsilon} \leq \varepsilon^M(K_{s1}) \right] = \left(\frac{A - s - (2B + \alpha) K_{s1}}{2\sqrt{3}\sigma} \right) \left(\varepsilon^M + \sqrt{3}\sigma \right) + \left(\frac{\varepsilon^M - 3\sigma^2}{4\sqrt{3}\sigma} \right) + \left(\frac{2B + \alpha}{2\sqrt{3}\sigma} \right) \left[- (1 + r)^2 f + \varepsilon^M K_{s1} + (A - s) K_{s1} - \left(B + \frac{\alpha}{2} \right) K_{s1}^2 \right]. \tag{C.19}
\]

The first order condition \((C.11)\) is a cubic function of \(K_{s1}\). The solution needs to satisfy non-negativity conditions on quantity and price and regularity conditions on probabilities. The existence and uniqueness of the solution depends on specific parameter values. In our numerical exercise, a unique solution exists after applying regularity conditions.
C.2 Potential Oligopoly Market

In our numerical analysis, we focus on the first variation \((\varepsilon^M < \varepsilon^E < \varepsilon^*, \)) of Firm 1’s problem \((B.1a)\) as a reasonable case:

\[
\max_{K_{s1}} E \left[\Pi^O_1(K_{s1}, K_{g1}, K_{g2}, \varepsilon) \right] \\
= E \left[\Pi^O_1(K_{s1}, K_{g1}, K_{g2}, \varepsilon) \mid \varepsilon \geq \varepsilon^*(K_{s1}) \right] \Pr (\varepsilon \geq \varepsilon^*(K_{s1})) \\
+ E \left[\Pi^M_1(K_{s1}, K^E_{g1}, K^E_{g2}, \varepsilon) \mid \varepsilon^*(K_{s1}) > \varepsilon > \varepsilon^M(K_{s1}) \right] \\
\times \Pr (\varepsilon^*(K_{s1}) > \varepsilon > \varepsilon^M(K_{s1})) \\
+ E \left[\Pi^M_1(K_{s1}, 0, \varepsilon) \mid \varepsilon \leq \varepsilon^M(K_{s1}) \right] \Pr (\varepsilon \leq \varepsilon^M(K_{s1})), \quad (C.20a)
\]

\[\Pi^O_1(K_{s1}, K^E_{g1}, K^E_{g2}, \varepsilon) = R^O + S^O \varepsilon^2 + T^O \varepsilon + U^O \kappa_{s1} + V^O K_{s1} + W^O K_{s1}^2, \quad (C.20b)\]

\[R^O \equiv -(1 + r)^2 f + \frac{(A - g)^2 (2B + \beta)}{2(3B + \beta)^2}, \quad (C.20d)\]

\[S^O \equiv \frac{2B + \beta}{2(3B + \beta)^2}, \quad (C.20e)\]

\[T^O \equiv \frac{(A - g)(2B + \beta)}{(3B + \beta)^2}, \quad (C.20f)\]

\[U^O \equiv \frac{BN + \beta - \alpha}{3B + \beta}, \quad (C.20g)\]

\[V^O \equiv g - s + \frac{(A - g)(BN + \beta - \alpha)}{3B + \beta}, \quad (C.20h)\]

\[W^O \equiv BMN + (\beta - \alpha)(M - \frac{1}{2}) - \frac{M^2}{2}(2B + \beta). \quad (C.20i)\]

39
The first-order condition is:

\[
\frac{dE}{dK_{s1}} \left[\Pi_1^O (K_{s1}, K_{g1}^E, K_{g2}^E, \bar{\epsilon}) \right] = \frac{dE}{dK_{s1}} \left[\Pi_1^O (K_{s1}, K_{g1}^E, K_{g2}^E, \bar{\epsilon}) \mid \bar{\epsilon} \geq \epsilon^* (K_{s1}) \right] \times Pr \left(\bar{\epsilon} \geq \epsilon^* (K_{s1}) \right)
\]

\[+ E \left[\Pi_1^O (K_{s1}, K_{g1}^E, K_{g2}^E, \bar{\epsilon}) \mid \bar{\epsilon} \geq \epsilon^* (K_{s1}) \right] \times \frac{dPr (\bar{\epsilon} \geq \epsilon^* (K_{s1}))}{dK_{s1}} \]

\[+ \frac{dE}{dK_{s1}} \left[\Pi_1^M (K_{s1}, K_{g1}^M, \epsilon) \mid \epsilon^M (K_{s1}) < \bar{\epsilon} < \epsilon^* (K_{s1}) \right] \times Pr \left(\epsilon^M (K_{s1}) < \bar{\epsilon} < \epsilon^* (K_{s1}) \right)
\]

\[+ E \left[\Pi_1^M (K_{s1}, K_{g1}^M, \epsilon) \mid \epsilon^M (K_{s1}) < \bar{\epsilon} < \epsilon^* (K_{s1}) \right] \times \frac{dPr (\epsilon^M (K_{s1}) < \bar{\epsilon} < \epsilon^* (K_{s1}))}{dK_{s1}} \]

\[+ \frac{dE}{dK_{s1}} \left[\Pi_1^M (K_{s1}, 0, \epsilon) \mid \bar{\epsilon} \leq \epsilon^M (K_{s1}) \right] \times Pr \left(\bar{\epsilon} \leq \epsilon^M (K_{s1}) \right)
\]

\[+ E \left[\Pi_1^M (K_{s1}, 0, \epsilon) \mid \bar{\epsilon} \leq \epsilon^M (K_{s1}) \right] \times \frac{dPr (\bar{\epsilon} \leq \epsilon^M (K_{s1}))}{dK_{s1}} \]

\[= 0. \quad (C.21) \]
The specific expression for each of twelve elements is as follows.

\[
Pr (\bar{\epsilon} \geq \epsilon^* (K_{s1}))
\]
\[
= \frac{\sqrt{3} \sigma - \epsilon^*}{2\sqrt{3} \sigma} = \frac{1}{2} + \frac{1}{2\sqrt{3} \sigma} \left(A - g - \sqrt{\frac{(2(3B + \beta)2(1 + r)f)}{2B + \beta}} \right) - \frac{1}{2\sqrt{3} \sigma} \frac{B(\beta - \alpha)}{(B + \beta)} K_{s1},
\]
(C.22)

\[
dPr (\bar{\epsilon} \geq \epsilon^* (K_{s1}))
\]
\[
= \frac{1}{2\sqrt{3} \sigma} \left(\frac{(2(3B + \beta)2(1 + r)f)}{2B + \beta} - \frac{2B + \beta}{(B + \beta)} \right) K_{s1},
\]
(C.23)

\[
Pr (\bar{\epsilon} < \epsilon^* (K_{s1}))
\]
\[
= \frac{3 \sigma - \epsilon^*}{2\sqrt{3} \sigma} = \frac{1}{2} - \frac{1}{2\sqrt{3} \sigma} \left(A - g + \frac{2B + \alpha}{2\sqrt{3} \sigma} \right) K_{s1},
\]
(C.24)

\[
dPr (\bar{\epsilon} < \epsilon^* (K_{s1}))
\]
\[
= \frac{1}{2\sqrt{3} \sigma} \left(\frac{(2(3B + \beta)2(1 + r)f)}{2B + \beta} - \frac{2B + \beta}{(B + \beta)} \right) K_{s1},
\]
(C.25)

\[
E \left[\Pi^O_1 (K_{s1}, K_{g1}^E, K_{g2}^E, \epsilon) \mid \bar{\epsilon} \geq \epsilon^* (K_{s1}) \right]
\]
\[
= \int_{\epsilon^* (K_{s1})}^{\sqrt{3} \sigma} \left(R^O + S^O \epsilon^2 + T^O \epsilon + U^O \epsilon K_{s1} + V^O K_{s1} + W^O K_{s1}^2 \right) \frac{1}{2\sqrt{3} \sigma} d\bar{\epsilon}
\]
\[
= \frac{(R^O + V^O K_{s1} + W^O K_{s1}^2) \left(\sqrt{3} \sigma - \epsilon^* \right)}{2\sqrt{3} \sigma} + \frac{(T^O + U^O K_{s1}) \left(3 \sigma^2 - \epsilon^* \right)}{4\sqrt{3} \sigma}
\]
\[
+ \frac{S^O \left(3\sqrt{3} \sigma^3 - \epsilon^*^3 \right)}{6\sqrt{3} \sigma},
\]
(C.26)

\[
E \left[\Pi^O_1 (K_{s1}, K_{g1}^M, \epsilon) \mid \bar{\epsilon} < \epsilon^* (K_{s1}) \right]
\]
\[
= \int_{\epsilon^* (K_{s1})}^{\sqrt{3} \sigma} \left(R^M + S^M \epsilon^2 + T^M \epsilon + U^M \epsilon K_{s1} + V^M K_{s1} + W^M K_{s1}^2 \right) \frac{1}{2\sqrt{3} \sigma} d\bar{\epsilon}
\]
\[
= \frac{(R^M + V^M K_{s1} + W^M K_{s1}^2) \left(\epsilon^* - \epsilon^* \right)}{2\sqrt{3} \sigma} + \frac{(T^M + U^M K_{s1}) \left(\epsilon^*^2 - \epsilon^* \right)}{4\sqrt{3} \sigma}
\]
\[
+ \frac{S^M \left(\epsilon^*^3 - \epsilon^* \right)}{6\sqrt{3} \sigma},
\]
(C.27)

\[
E \left[\Pi^O_1 (K_{s1}, 0, \epsilon) \mid \bar{\epsilon} < \epsilon^* (K_{s1}) \right]
\]
\[
= \frac{-(1 + r)^2 f + (A - s) K_{s1} - (B + \frac{2}{3}) K_{s1}^2}{2\sqrt{3} \sigma} \left(\epsilon^* + \sqrt{3} \sigma \right) + \frac{K_{s1} \left(\epsilon^*^2 - 3 \sigma^2 \right)}{4\sqrt{3} \sigma}.
\]
(C.28)
By using Leibniz rule of integration,

\[
\frac{dE}{dK_{s1}} \left[\Pi^{O}(K_{s1}, K_{g1}^{E}, K_{g2}^{E}, \varepsilon) | \varepsilon \geq \varepsilon^{M}(K_{s1}) \right]
= \left(V^{O} + 2W^{O} K_{s1} \right) \left(\sqrt{3} \sigma - \varepsilon^{*} \right) + \frac{U^{O}(3\sigma^{2} - \varepsilon^{*2})}{4\sqrt{3}\sigma}
- \frac{(B(\beta - \alpha))}{2\sqrt{3}\sigma(B + \beta)} \left(R^{O} + S^{O} \varepsilon^{*2} + T^{O} \varepsilon^{*} + U^{O} \varepsilon^{*} K_{s1} + V^{O} K_{s1} + W^{O} K_{s1}^{2} \right),
\]
\[
\frac{dE}{dK_{s1}} \left[\Pi^{M}(K_{s1}, K_{g1}^{M}, \varepsilon) | \varepsilon^{M}(K_{s1}) < \varepsilon < \varepsilon^{*}(K_{s1}) \right]
= \left(V^{M} + 2W^{M} K_{s1} \right) \left(\varepsilon^{*} - \varepsilon^{M} \right) + \frac{U^{M}(\varepsilon^{*2} - \varepsilon^{M2})}{4\sqrt{3}\sigma}
+ \frac{(B(\beta - \alpha))}{2\sqrt{3}\sigma(B + \beta)} \left(R^{M} + S^{M} \varepsilon^{*2} + T^{M} \varepsilon^{*} + U^{M} \varepsilon^{*} K_{s1} + V^{M} K_{s1} + W^{M} K_{s1}^{2} \right)
- \frac{(2B + \alpha)}{2\sqrt{3}\sigma} \left(R^{M} + S^{M} \varepsilon^{M2} + T^{M} \varepsilon^{M} + U^{M} \varepsilon^{M} K_{s1} + V^{M} K_{s1} + W^{M} K_{s1}^{2} \right),
\]
\[
\frac{dE}{dK_{s1}} \left[\Pi^{M}(K_{s1}, 0, \varepsilon) | \varepsilon < \varepsilon^{M}(K_{s1}) \right]
= \frac{[A - s - (2B + \alpha) K_{s1}] (\varepsilon^{M} + \sqrt{3}\sigma)}{2\sqrt{3}\sigma} + \frac{\varepsilon^{M2} - 3\sigma^{2}}{4\sqrt{3}\sigma}
+ \frac{(2B + \alpha)}{2\sqrt{3}\sigma} \left[-(1 + r)^{2} f + \varepsilon^{M} K_{s1} + (A - s)K_{s1} - \left(B + \frac{\alpha}{2} \right) K_{s1}^{2} \right].
\]

The first order condition (C.21) is also a cubic function of K_{s1}.
C.3 Competitive Market

In the competitive market, Firm 1’s problem is:

\[
\max_{K_{s1}} E \left[\Pi_1^C (K_{s1}, K_{g1}, \varepsilon) \right] = E \left[\Pi_1^C (K_{s1}, K_{g1}, \varepsilon) \right] \Pr (\varepsilon > \varepsilon^C (K_{s1})) + E \left[\Pi_1^C (K_{s1}, 0, \varepsilon) \right] \Pr (\varepsilon \leq \varepsilon^C (K_{s1})),
\]

(C.34a)

\[
\Pi_1^C (K_{s1}, 0, \varepsilon) = -(1 + r)^2 f + \varepsilon K_{s1} + (A - s)K_{s1} - \frac{\alpha}{2} K_{s1}^2,
\]

(C.34b)

\[
\Pi_1^C (K_{s1}, K_{g1}, \varepsilon) = R^C + S^C \varepsilon^2 + T^C \varepsilon + U^C \varepsilon K_{s1} + V^C K_{s1} + W^C K_{s1}^2,
\]

(C.34c)

\[
R^C \equiv -(1 + r)^2 f + \frac{(A - g)^2}{2 \beta},
\]

(C.34d)

\[
S^C \equiv \frac{1}{2 \beta},
\]

(C.34e)

\[
T^C \equiv \frac{A - g}{\beta},
\]

(C.34f)

\[
U^C \equiv 1 - \frac{\alpha}{\beta},
\]

(C.34g)

\[
V^C \equiv A - s - \frac{\alpha (A - g)}{\beta},
\]

(C.34h)

\[
W^C \equiv -\frac{\alpha (\beta - \alpha)}{2 \beta}.
\]

(C.34i)

The first-order condition is

\[
\frac{dE \left[\Pi_1^C (K_{s1}, K_{g1}, \varepsilon) \right]}{dK_{s1}} = E \left[\Pi_1^C (K_{s1}, K_{g1}, \varepsilon) \right] \Pr (\varepsilon > \varepsilon^C (K_{s1})) \times \frac{d \Pr (\varepsilon > \varepsilon^C (K_{s1}))}{dK_{s1}} + E \left[\Pi_1^C (K_{s1}, K_{g1}, \varepsilon) \right] \Pr (\varepsilon \leq \varepsilon^C (K_{s1})) \times \frac{d \Pr (\varepsilon \leq \varepsilon^C (K_{s1}))}{dK_{s1}}
\]

\[
= 0.
\]

(C.35)
For each element of Equation (C.35), the specific expression is as follows.

\[Pr \left(\varepsilon > \varepsilon^C (K_{s1}) \right) = \frac{\sqrt{3} \sigma - \varepsilon^C}{2 \sqrt{3} \sigma} = \frac{1}{2} + \frac{A - g}{2 \sqrt{3} \sigma} - \frac{\alpha}{2 \sqrt{3} \sigma} K_{s1}, \]
(C.36)

\[\frac{dPr \left(\varepsilon > \varepsilon^C (K_{s1}) \right)}{dK_{s1}} = -\frac{\alpha}{2 \sqrt{3} \sigma}, \]
(C.37)

\[
E \left[\Pi^C_1 (K_{s1}, K_{g1}^C, \varepsilon) \mid \varepsilon > \varepsilon^C (K_{s1}) \right]
= \int_{\varepsilon^C (K_{s1})}^{\sqrt{3} \sigma} \left(R^C + S^C \varepsilon^2 + T^C \varepsilon + U^C \varepsilon K_{s1} + V^C K_{s1} + W^C K_{s1}^2 \right) \frac{1}{2 \sqrt{3} \sigma} d\varepsilon
= \frac{R^C + V^C K_{s1} + W^C K_{s1}^2}{2} + \frac{3 \sigma (T^C + U^C K_{s1})}{4 \sqrt{3}} + \frac{\sigma^2}{2}
- \frac{(R^C + V^C K_{s1} + W^C K_{s1}^2) (\alpha K_{s1} - A + g)}{2 \sqrt{3} \sigma}
- \frac{(T^C \varepsilon + U^C \varepsilon K_{s1}) (\alpha K_{s1} - A + g)^2}{4 \sqrt{3} \sigma}
- \frac{S^C (\alpha K_{s1} - A + g)^3}{6 \sqrt{3} \sigma}.
\]
(C.38)

\[
E \left[\Pi^C_1 (K_{s1}, K_{g1}^C, \varepsilon) \mid \varepsilon \leq \varepsilon^C (K_{s1}) \right]
= \int_{-\sqrt{3} \sigma}^{\varepsilon^C (K_{s1})} \left(-(1 + r)^2 f + \varepsilon K_{s1} + (A - s) K_{s1} - \frac{\alpha K_{s1}^2}{2} \right) \frac{1}{2 \sqrt{3} \sigma} d\varepsilon
= \frac{-(1 + r)^2 f + (A - s) K_{s1} - \frac{\alpha K_{s1}^2}{2}}{2}
+ \frac{(\alpha K_{s1} - A + g)^2 K_{s1}}{3 \sqrt{3} \sigma}
+ \frac{(-1 + r)^2 f + (A - s) K_{s1} - \frac{\alpha K_{s1}^2}{2}}{2}
- \frac{3 \sigma}{4 \sqrt{3}} K_{s1}.
\]
(C.39)
By using Leibniz rule of integration,

\[
\frac{dE}{dK_{s1}} \left[\Pi^C_1(K_{s1}, K_{g1}, \varepsilon) \mid \varepsilon > \varepsilon^C(K_{s1}) \right] = \frac{V^C}{2} + W^C K_{s1} + \frac{3\sigma U^C}{4\sqrt{3}} - \frac{(V^C + 2W^C K_{s1}) \varepsilon^C}{2\sqrt{3}\sigma} - \frac{U^C (\varepsilon^C)^2}{4\sqrt{3}\sigma} - \frac{\alpha}{2\sqrt{3}\sigma} \left(R^C + S^C \varepsilon^2 + T^C \varepsilon + U^C \varepsilon K_{s1} + V^C K_{s1} + W^C K_{s1}^2 \right).
\]

(C.40)

\[
\frac{dE}{dK_{s1}} \left[\Pi^C_1(K_{s1}, K_{g1}, \varepsilon) \mid \varepsilon \leq \varepsilon^C(K_{s1}) \right] = \frac{(A - s - \alpha K_{s1}) \varepsilon^C}{2\sqrt{3}\sigma} + \frac{(\varepsilon^C)^2}{4\sqrt{3}\sigma} + \frac{(A - s - \alpha K_{s1})}{2} - \frac{3\sigma}{4\sqrt{3}} + \frac{\alpha}{2\sqrt{3}\sigma} \left(-(1 + r)^2 f + \varepsilon^C K_{s1} + (A - s) K_{s1} - \frac{\alpha}{2} K_{s1}^2 \right).
\]

(C.41)

The first order condition (C.35) is also a cubic function of K_{s1}.
Appendix D Adjusted measure of industry sales volatility

We use the following method to estimate the industry demand volatility. A measure of demand volatility is the time-series variance of the mean sales growth rates. However, the variance of sample mean depends on the sample size (i.e., the number of firms in an industry), which varies by industry and changes over time in the Compustat data. Thus, we remove the effect of the sample size on our measure of demand volatility by the following method.

The sales growth rate \(x_{it} \) for firm \(i \) in quarter \(t \) can be decomposed into the industry common factor and the firm-specific factor: \(x_{it} = c_t + f_i \), where \(c_t \) is the latent industry common factor and \(f_i \) is the firm specific disturbance. We assume homoskedasticity: \(c_t \sim N(C, \sigma^2_c) \) and \(f_i \sim i.i.d. N(0, \sigma^2_f) \), where \(\sigma^2_c \) is the constant time-series variance of \(c_t \) and \(\sigma^2_f \) is the constant cross-sectional variance of \(f_i \). Since \(f_i \) is independent random variable, \(\text{cov}[c_t, f_i] = 0 \). At time \(t \), there are \(n_t \) observations of firms.

We can compute the empirical average of \(x_{it} \) for each \(t \):

\[
\bar{x}_t = \frac{1}{n_t} \sum_{i=1}^{n_t} x_{it} = \frac{1}{n_t} \left(n_t c_t + \sum_{i=1}^{n_t} f_{it} \right) = c_t + \frac{1}{n_t} \sum_{i=1}^{n_t} f_{it}.
\] \(\text{(D.1)} \)

An unbiased estimator of \(c_t \) is the mean sales growth rate \(\bar{x}_t \) because

\[
E[c_t] = E \left[\bar{x}_t - \frac{1}{n_t} \sum_{i=1}^{n_t} f_{it} \right] = E[\bar{x}_t].
\] \(\text{(D.2)} \)

For each \(t \), we can also estimate cross-sectional variance \(\sigma^2_f \) by \(s_t^2 = \frac{1}{n_t-1} \sum_{i=1}^{n_t} (x_{it} - \bar{x}_t)^2 \), which depends on the sample size \(n_t \). The time-series variance of the mean sales growth rate is:

\[
\text{var}_t[\bar{x}_t] = \text{var}_t \left[c_t + \frac{1}{n_t} \sum_{i=1}^{n_t} f_{it} \right] = E_t \left[\left(c_t + \frac{1}{n_t} \sum_{i=1}^{n_t} f_{it} - C \right)^2 \right] = \sigma^2_c + E_t \left[\left(\frac{1}{n_t} \sum_{i=1}^{n_t} f_{it} \right)^2 \right],
\] \(\text{(D.3)} \)

where \(E_t \) is the expectation operator over time. In the last equality, we also assume that \(\text{cov}(c_t, n_t) = 0 \). If \(n_t = n \) (constant), Equation (D.3) becomes

\[
\text{var}_t[\bar{x}_t] = \sigma^2_c + \frac{1}{n^2} E_t \left[\sum_{i=1}^{n} \sum_{j=1}^{n} f_{it} f_{jt} \right] = \sigma^2_c + \frac{1}{n^2} n \sum_{i=1}^{n} E_t[f_{it}^2] = \sigma^2_c + \frac{\sigma^2_f}{n}.
\] \(\text{(D.4)} \)
Then, an unbiased estimator of σ^2_c is $\text{var}_t [\bar{x}_t] - \frac{s^2}{n}$, assuming $s^2_t = s^2$ (constant). However, if n_t changes over time, we need to evaluate $E_t \left[\frac{1}{n_t^2} (\sum_{i=1}^{n_t} f_{it})^2 \right]$. An approximation is $\frac{1}{T} \sum_{t=1}^{T} \frac{s^2_t}{n_t}$.

In our empirical tests, for each t, we compute the adjusted rolling volatility over the length of T_r:

$$\bar{\sigma}_{c,t} = \left[\frac{1}{T_r} \sum_{u=t-T_r}^{t} \left\{ \left(\bar{x}_u - \frac{1}{T_r} \sum_{v=t-T_r}^{t} \bar{x}_v \right)^2 - \frac{s^2_u}{n_u} \right\} \right]^{\frac{1}{2}}$$ \hspace{1cm} (D.5)
<table>
<thead>
<tr>
<th>Year</th>
<th>Nb. Firms</th>
<th>Nb. Industries</th>
<th>Year</th>
<th>Nb. Firms</th>
<th>Nb. Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>2,978</td>
<td>59</td>
<td>1999</td>
<td>5,355</td>
<td>65</td>
</tr>
<tr>
<td>1985</td>
<td>3,233</td>
<td>60</td>
<td>2000</td>
<td>5,206</td>
<td>64</td>
</tr>
<tr>
<td>1986</td>
<td>3,658</td>
<td>61</td>
<td>2001</td>
<td>4,721</td>
<td>63</td>
</tr>
<tr>
<td>1987</td>
<td>3,809</td>
<td>61</td>
<td>2002</td>
<td>4,224</td>
<td>61</td>
</tr>
<tr>
<td>1988</td>
<td>3,746</td>
<td>62</td>
<td>2003</td>
<td>3,893</td>
<td>62</td>
</tr>
<tr>
<td>1989</td>
<td>3,644</td>
<td>61</td>
<td>2004</td>
<td>3,522</td>
<td>63</td>
</tr>
<tr>
<td>1990</td>
<td>3,582</td>
<td>62</td>
<td>2005</td>
<td>3,782</td>
<td>63</td>
</tr>
<tr>
<td>1991</td>
<td>3,629</td>
<td>61</td>
<td>2006</td>
<td>4,003</td>
<td>63</td>
</tr>
<tr>
<td>1992</td>
<td>3,423</td>
<td>61</td>
<td>2007</td>
<td>3,872</td>
<td>64</td>
</tr>
<tr>
<td>1993</td>
<td>3,289</td>
<td>61</td>
<td>2008</td>
<td>3,577</td>
<td>63</td>
</tr>
<tr>
<td>1994</td>
<td>4,372</td>
<td>62</td>
<td>2009</td>
<td>3,376</td>
<td>64</td>
</tr>
<tr>
<td>1995</td>
<td>4,929</td>
<td>63</td>
<td>2010</td>
<td>3,320</td>
<td>64</td>
</tr>
<tr>
<td>1996</td>
<td>5,567</td>
<td>63</td>
<td>2011</td>
<td>3,092</td>
<td>64</td>
</tr>
<tr>
<td>1997</td>
<td>5,627</td>
<td>63</td>
<td>2012</td>
<td>2,874</td>
<td>63</td>
</tr>
<tr>
<td>1998</td>
<td>5,481</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I: Number of Firms and Industries. The total sample spanning 29 years from 1984 to 2012 comprises 11,708 firms belonging to 65 industries according to their 2-digit SIC numbers.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firms</td>
<td>Number of Firms per industry</td>
<td>69</td>
<td>27</td>
<td>110</td>
<td>3</td>
<td>534</td>
</tr>
<tr>
<td>HHI (Net Sales)</td>
<td>Industry Concentration Herfindahl based on Net Sales</td>
<td>0.187</td>
<td>0.142</td>
<td>0.150</td>
<td>0.017</td>
<td>0.825</td>
</tr>
<tr>
<td>HHI (Total Assets)</td>
<td>Industry Concentration Herfindahl based on Total Asset</td>
<td>0.193</td>
<td>0.157</td>
<td>0.143</td>
<td>0.017</td>
<td>0.737</td>
</tr>
<tr>
<td>Firms</td>
<td>Number of Firms per industry</td>
<td>69</td>
<td>27</td>
<td>110</td>
<td>3</td>
<td>534</td>
</tr>
<tr>
<td>MV</td>
<td>Total Market Value of all Firms</td>
<td>$195,374</td>
<td>$50,141</td>
<td>$349,077</td>
<td>$349</td>
<td>$1,675,834</td>
</tr>
<tr>
<td>TA</td>
<td>Total Assets</td>
<td>$614,940</td>
<td>$64,226</td>
<td>$1,977,151</td>
<td>$707</td>
<td>$14,777,544</td>
</tr>
<tr>
<td>Sales</td>
<td>Total Net Sales</td>
<td>$221,607</td>
<td>$69,685</td>
<td>$336,656</td>
<td>$698</td>
<td>$1,639,086</td>
</tr>
<tr>
<td>LT_Debt</td>
<td>Long-Term Debt</td>
<td>$77,902</td>
<td>$11,609</td>
<td>$207,778</td>
<td>$79</td>
<td>$1,410,921</td>
</tr>
<tr>
<td>EBITDA</td>
<td>Earnings Before Interest and Depreciation</td>
<td>$27,790</td>
<td>$5,684</td>
<td>$49,421</td>
<td>-$14</td>
<td>$278,668</td>
</tr>
<tr>
<td>Net_Income</td>
<td>Annual Net Income</td>
<td>$8,623</td>
<td>$2,219</td>
<td>$16,227</td>
<td>-$33</td>
<td>$88,430</td>
</tr>
<tr>
<td>Rent Expenses</td>
<td>Annual Rental Expenses</td>
<td>$2,336</td>
<td>$779</td>
<td>$3,615</td>
<td>$1</td>
<td>$21,194</td>
</tr>
<tr>
<td>PPE</td>
<td>Gross Properties Plants and Equipment</td>
<td>$77,492</td>
<td>$20,897</td>
<td>$141,051</td>
<td>$153</td>
<td>$668,679</td>
</tr>
<tr>
<td>RE_Assets1</td>
<td>Buildings, Construction in Progress, and Land and Improvements</td>
<td>$12,952</td>
<td>$2,905</td>
<td>$24,745</td>
<td>$57</td>
<td>$113,746</td>
</tr>
<tr>
<td>STRE1</td>
<td>RE.Assets1 to PPE</td>
<td>27.43%</td>
<td>26.26%</td>
<td>11.72%</td>
<td>7.11%</td>
<td>62.88%</td>
</tr>
<tr>
<td>Volatility Sales</td>
<td>Adjusted 20-quarter rolling standard deviation of sales growth</td>
<td>0.0392</td>
<td>0.0410</td>
<td>0.0997</td>
<td>-1.1038</td>
<td>1.2393</td>
</tr>
<tr>
<td>Volatility Firm Value</td>
<td>Adjusted 20-quarter rolling standard deviation of firm value growth</td>
<td>0.1315</td>
<td>0.1245</td>
<td>0.1137</td>
<td>-0.2668</td>
<td>1.0864</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Model</th>
<th>(2) Model</th>
<th>(3) Model</th>
<th>(4) Model</th>
<th>(5) Model</th>
<th>(6) Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic capital</td>
<td>0.2027*** (0.0174)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2015*** (0.0184)</td>
</tr>
<tr>
<td>Strategic capital (3 years before)</td>
<td>0.2545*** (0.0176)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2322*** (0.0172)</td>
</tr>
<tr>
<td>Change in strategic capital (3 years before)</td>
<td>0.1919*** (0.0378)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1841*** (0.0364)</td>
</tr>
<tr>
<td>Change in strategic capital (2 years before)</td>
<td>0.1526*** (0.0402)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1274*** (0.0381)</td>
</tr>
<tr>
<td>Change in strategic capital (previous year)</td>
<td>0.0691** (0.0347)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0566* (0.0326)</td>
</tr>
<tr>
<td>sales volatility (20-quarter)</td>
<td></td>
<td>-0.2197*** (0.0476)</td>
<td>-0.2777*** (0.0497)</td>
<td>-0.1862*** (0.0498)</td>
<td>-0.2350*** (0.0447)</td>
<td></td>
</tr>
<tr>
<td>4-qtr. forecast error (20-qtr.)</td>
<td></td>
<td>0.0367 (0.0768)</td>
<td></td>
<td></td>
<td></td>
<td>-0.0036 (0.0694)</td>
</tr>
<tr>
<td>8-qtr. forecast error (20-qtr.)</td>
<td></td>
<td>0.0270 (0.0457)</td>
<td></td>
<td></td>
<td></td>
<td>0.0513 (0.0465)</td>
</tr>
<tr>
<td>12-qtr. forecast error (20-qtr.)</td>
<td></td>
<td>-0.0224 (0.0308)</td>
<td></td>
<td></td>
<td></td>
<td>0.0166 (0.0303)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.1164*** (0.0091)</td>
<td>0.0882*** (0.0099)</td>
<td>0.1871*** (0.0177)</td>
<td>0.1676*** (0.0084)</td>
<td>0.1427*** (0.0116)</td>
<td>0.0900*** (0.0097)</td>
</tr>
<tr>
<td>Year f.e.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,088</td>
<td>6,216</td>
<td>8,699</td>
<td>6,723</td>
<td>7,072</td>
<td>6,143</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.0330 (0.0513)</td>
<td>0.0513 (0.0190)</td>
<td>0.0202 (0.0202)</td>
<td>0.0430 (0.0430)</td>
<td>0.0656 (0.0656)</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table III: Test of Predictions 1 and 2. This table reports the result of the OLS estimation of the panel regression model (Equation (25)) with year fixed effects. The dependent variable is the Herfindahl-Hirschman Index for industries by the 2-digit SIC classification. The explanatory variables are strategic real estate and demand uncertainty. White's heteroskedasticity-consistent standard errors are also reported.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Model</th>
<th>(2) Model</th>
<th>(3) Model</th>
<th>(4) Model</th>
<th>(5) Model</th>
<th>(6) Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-qtr. ahead forecast of sales volatility (20-qtr)</td>
<td>-0.0602**</td>
<td>-0.0409*</td>
<td>-0.0290*</td>
<td>-0.0956***</td>
<td>-0.0677***</td>
<td>-0.0481**</td>
</tr>
<tr>
<td></td>
<td>(0.0289)</td>
<td>(0.0213)</td>
<td>(0.0168)</td>
<td>(0.0275)</td>
<td>(0.0235)</td>
<td>(0.0253)</td>
</tr>
<tr>
<td>8-qtr. ahead forecast of sales volatility (20-qtr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-qtr. ahead forecast of sales volatility (20-qtr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-qtr. ahead forecast of sales volatility (40-qtr)</td>
<td></td>
<td></td>
<td></td>
<td>-0.0956***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0275)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-qtr. ahead forecast of sales volatility (40-qtr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0677***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0235)</td>
<td>(0.0283)</td>
<td></td>
</tr>
<tr>
<td>12-qtr. ahead forecast of sales volatility (40-qtr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0481**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0253)</td>
<td>(0.0253)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.2977***</td>
<td>0.2971***</td>
<td>0.2967***</td>
<td>0.2832***</td>
<td>0.2820***</td>
<td>0.2811***</td>
</tr>
<tr>
<td></td>
<td>(0.0077)</td>
<td>(0.0076)</td>
<td>(0.0076)</td>
<td>(0.0107)</td>
<td>(0.0107)</td>
<td>(0.0106)</td>
</tr>
<tr>
<td>Year f.e.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>6,989</td>
<td>6,989</td>
<td>6,989</td>
<td>6,141</td>
<td>6,141</td>
<td>6,141</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.0107</td>
<td>0.0102</td>
<td>0.0098</td>
<td>0.0086</td>
<td>0.0078</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table IV: Test of Prediction 3. This table reports the result of the OLS estimation of the panel regression model (28) with year fixed effects. The dependent variable is the industry-average strategic real estate based on the 2-digit SIC classification. The explanatory variable is the 4, 8, and 12-quarter ahead forecasts of industry sales growth volatility. The sales growth volatility is measured on the basis of 20-quarter and 40-quarter rolling estimation. Forecasts are based on an ARIMA(1,1,0) model that is estimated with the previous 20 quarter observations. White’s heteroskedasticity-consistent standard errors are also reported.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Model</th>
<th>(2) Model</th>
<th>(3) Model</th>
<th>(4) Model</th>
<th>(5) Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1) Sales volatility</td>
<td>0.3071***</td>
<td>0.1300***</td>
<td>0.2173***</td>
<td>0.1568***</td>
<td>0.1619***</td>
</tr>
<tr>
<td></td>
<td>(0.0277)</td>
<td>(0.0343)</td>
<td>(0.0382)</td>
<td>(0.0548)</td>
<td>(0.0539)</td>
</tr>
<tr>
<td>(\beta_3) Sales volatility</td>
<td>0.0264</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) NBER recession</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_3) Sales volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) Aggregate low growth</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_3) Sales volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) Aggregate low growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_2) Sales volatility (\times) H.H.I.</td>
<td>0.6518***</td>
<td>0.5912***</td>
<td>0.9613***</td>
<td>0.7918***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1719)</td>
<td>(0.1920)</td>
<td>(0.2900)</td>
<td>(0.2717)</td>
<td></td>
</tr>
<tr>
<td>(\beta_4) Sales volatility (\times) H.H.I.</td>
<td>0.2249</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) NBER recession</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_4) Sales volatility (\times) H.H.I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) Aggregate low growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_4) Sales volatility (\times) H.H.I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) Industry low growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_2) NBER recession</td>
<td>0.0102*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0054)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_2) Aggregate low growth</td>
<td>0.0162***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0033)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_2) Industry low growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0034)</td>
</tr>
<tr>
<td>(\alpha_1) Constant</td>
<td>0.1223***</td>
<td>0.1258***</td>
<td>0.1248***</td>
<td>0.1201***</td>
<td>0.1281***</td>
</tr>
<tr>
<td></td>
<td>(0.0047)</td>
<td>(0.0046)</td>
<td>(0.0018)</td>
<td>(0.0023)</td>
<td>(0.0025)</td>
</tr>
<tr>
<td>Year f.e.</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>6,989</td>
<td>6,989</td>
<td>6,989</td>
<td>6,989</td>
<td>6,989</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.1423</td>
<td>0.1575</td>
<td>0.0882</td>
<td>0.0972</td>
<td>0.0872</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table V: Test of Prediction 4. This table reports the result of the OLS estimation of regression equation (30). The dependent variable is the volatility of the average corporate value growth rates for each industry with the 2-digit SIC classification. The explanatory variables are the industry sales volatility and the interaction terms of the sales volatility and the Herfindahl-Hirschman Index. The low demand variables are also used as a conditioning variable. The volatility is measured on the basis of 40-quarter rolling estimation and adjusted for the number of observation as outlined in Appendix D. White’s heteroskedasticity-consistent standard errors are also reported.
Figure 1: Time line

t_0 Period 1 t_1 Period 2 t_2

Demand shock is realized.

Firm 1: Chooses K_{x1}, pays fixed cost.

Builds K_{x1}

Firm $i = 2, ..., n$:

Chooses K_{yi} pays fixed cost.

Production

Sells products, pays costs of capital & production.

Sells products, pays costs of capital & production.
Figure 2: Strategic capital and demand uncertainty. The demand uncertainty σ is on the horizontal axis. For a competitive market, the price level A is adjusted for each value of σ so that an entrant earns zero profit. Parameter values are: $B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2$, and $f = 7$. For monopoly and potential oligopoly markets, parameter values are: $A = 4.3, B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2, f = 3.2$.
Figure 3: Comparative statics in a potential oligopoly market. The demand uncertainty σ is on the horizontal axis. Parameter values are: $A = 4.3, B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2, \text{ and } f = 3.2.$
Figure 4: Strategic capital and market structure. The amount of strategic capital is on the horizontal axis. \(A = 4.3, B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2, \) and \(f = 3.2. \)
Figure 5: Distribution of Firm 1's realized profits for different values of σ. Parameter values are: $A = 4.3, B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2$, and $f = 3.2$.
Figure 6: Relative volatilities of demand and profits. $A = 4.3, B = 0.5, \alpha = 0.8, \beta = 1.4, r = 0.05, s = 0.3, g = 0.2,$ and $f = 3.2.$
Figure 7: Relation between the Herfindahl-Hirschman Index and strategic real estate. This figure depicts the OLS estimation result of a regression equation (26), which corresponds to Prediction 1. White’s heteroskedasticity-consistent standard errors are also reported.
Figure 8: Relation between the Herfindahl-Hirschman Index and the industry volatility. This figure depicts the OLS estimation result of a regression equation (27), which corresponds to Prediction [2]. White’s heteroskedasticity-consistent standard errors are also reported.
Figure 9: Relation between strategic capital and the demand uncertainty. This figure depicts the OLS estimation result of a regression equation (29), which corresponds to Prediction 3. The 8-quarter ahead volatility forecast is used. White’s heteroskedasticity-consistent standard errors are also reported.