• What is the winning idea? How to prioritize new product ideas?

• How can we always get discriminating results when consumers say everything is “very important”?

• How can we identify segments with distinctly different preferences?
What’s wrong with asking people to rate or rank items?

Problems with RATING:
• Results may not be discriminating (rate everything as important)!
• The scale is arbitrary, does not tell the strength of importance
• People in different countries use scale differently
• Cannot handle a long list

Problems with RANKING:
• People are good at picking the extremes but their preferences for anything in between might be fuzzy and inaccurate
• Only tells you the order of importance, not the strength of importance
• Cannot handle a long list
How does Best-Worst Scaling (MaxDiff) solve these problems?

Each respondent will go through a number of exercises to select the BEST and WORST option. In each exercise, the items to be evaluated will vary. Below is an example:

You indicated that you are planning to buy a new refrigerator in the next 6 months.

On the following pages, we will show you a few refrigerator features. On each page, please read the features carefully and select the one that is the MOST APPEALING and one that is the LEAST MOTIVATING to you.

<table>
<thead>
<tr>
<th>LEAST Appealing</th>
<th>MOST Appealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 stars energy saving</td>
<td></td>
</tr>
<tr>
<td>An auto ice-maker</td>
<td></td>
</tr>
<tr>
<td>A separate compartment to chill party tray</td>
<td></td>
</tr>
<tr>
<td>An outside ice-dispenser</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAST Appealing</th>
<th>MOST Appealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is a stainless steel refrigerator</td>
<td></td>
</tr>
<tr>
<td>Adjustable shelves</td>
<td></td>
</tr>
<tr>
<td>Anti-bacterial interior material</td>
<td></td>
</tr>
<tr>
<td>Wi-Fi LCD display on the door to check news, recipes, etc</td>
<td></td>
</tr>
</tbody>
</table>

Best-Worst Scaling...

- **Always generates discriminating results** as respondents are asked to choose the BEST and WORST option which simulates real-world behaviour – people make choices and trade-offs.

- The results will tell you the order and strength of importance of all items.

- There is no scale-bias and results are NOT subject to cultural differences.

- Can handle a long list of items as people are given a few items in each task to evaluate.

- Can get accurate preferences of all items as respondents evaluate only a few items in each exercise.
WHAT RESEARCH QUESTIONS CAN BEST-WORST SCALING SOLVE?

To get preferences of anything, for instance:
- New product feature prioritization
- To measure the appeal and brand fit of potential value propositions
- To identify the best name from various potential names for a new product/concept

Tips: it is the best method to use if you are doing multi-country studies and want to compare the preferences across countries because BWS does not have scale-bias.

Best-Worst Scaling elicits discriminating preferences - prioritize new product ideas, identify the best name for a new product, etc.

EXAMPLE QUESTION: APPEAL OF NEW PRODUCT FEATURES

You indicated that you are planning to buy a new refrigerator in the next 6 months.

On the following pages, we will show you **A FEW REFRIGERATOR FEATURES**. On each page, please read the features carefully and select the one that is the **MOST APPEALING** and one that is the **LEAST MOTIVATING** to you.

<table>
<thead>
<tr>
<th>LEAST Appealing</th>
<th>MOST Appealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 stars energy saving</td>
<td></td>
</tr>
<tr>
<td>An auto ice-maker</td>
<td></td>
</tr>
<tr>
<td>A separate compartment to chill party tray</td>
<td></td>
</tr>
<tr>
<td>An outside ice-dispenser</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE QUESTION: BRAND FIT OF NEW PRODUCT NAMES

Below are some potential names for the **NEW KIDS LUNCH PACK** that you just read and saw on the previous page, please choose the name that you think is the **BEST FIT with [insert client brand]** and the one you think is the **WORST FIT with [insert client brand]**.

<table>
<thead>
<tr>
<th>WORST fit with [insert client brand]</th>
<th>BEST fit with [insert client brand]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name A</td>
<td></td>
</tr>
<tr>
<td>Name B</td>
<td></td>
</tr>
<tr>
<td>Name C</td>
<td></td>
</tr>
<tr>
<td>Name D</td>
<td></td>
</tr>
</tbody>
</table>
WHAT WILL THE RESULTS LOOK LIKE?

DELIVERABLE #1:
Best-Worst scores on an the aggregate level (total sample)

• Best-Worst scores =
 \[\frac{\text{No. of times an item chosen as BEST}}{\text{No. of times an item appears}} - \frac{\text{WORST}}{\text{WORST}} \]

• The higher the score, the more the feature is appealing to respondents
 – A positive score: it is chosen as MOST appealing more often than least appealing
 – A negative score: it is chosen as LEAST appealing more often than most appealing
 – A zero score: it is chosen as MOST and LEAST appealing an equal number of times OR it has never been chosen as most and least appealing

• If a score of an item is two times bigger than another item, it can be interpreted that it is twice as appealing

DELIVERABLE EXAMPLE #1:
Best-Worst scores on the aggregate level (total sample)

Best-Worst Scores
Appeal of Refrigerator Features

Wi-Fi LCD display on the door to check news, recipes, etc. 0.90
It is a stainless steel refrigerator 0.88
A separate area to chill soft drinks in 5 minutes 0.80
An outside ice-dispenser 0.77
A new light technology to prolong the life of fruits & veggies 0.75
A special design to hold cans on the inside of door for easy access 0.66
5 stars energy saving 0.65
Adjustable shelves 0.50
A separate compartment to chill party tray 0.50
A water dispenser on the door 0.40
Anti-bacterial interior material 0.35
An auto ice-maker -0.10

“Wi-Fi LCD” is 80% more likely than “Adjustable shelves” to be chosen as MORE appealing
Calculation: \[0.8 = \frac{0.9 - 0.5}{0.5} \]

A negative score means it is selected as the least appealing more often than most appealing
WHAT WILL THE RESULTS LOOK LIKE?

DELIVERABLE #2:
Best-Worst percentages on an the aggregate level (total sample)

- % chosen as BEST
- % chosen as WORST
- % not chosen as BEST or WORST

If the % of chosen as BEST and WORST are high, that implies bi-polar preferences (people show strong positive and negative preferences)

DELIVERABLE EXAMPLE #2:
Best-Worst Percentages on the aggregate level (total sample)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Most Appealing</th>
<th>Least Appealing</th>
<th>Not Chosen at All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi LCD display on the door to check news, recipes, etc.</td>
<td>93%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>It is a stainless steel refrigerator</td>
<td>93%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>A separate area to chill soft drinks in 5 minutes</td>
<td>88%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>An outside ice-dispenser</td>
<td>79%</td>
<td>2%</td>
<td>20%</td>
</tr>
<tr>
<td>A new light technology to prolong the life of fruits & veggies</td>
<td>76%</td>
<td>1%</td>
<td>23%</td>
</tr>
<tr>
<td>A special design to hold cans on the inside of door for easy access</td>
<td>69%</td>
<td>3%</td>
<td>27%</td>
</tr>
<tr>
<td>5 stars energy saving</td>
<td>65%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Adjustable shelves</td>
<td>56%</td>
<td>6%</td>
<td>39%</td>
</tr>
<tr>
<td>A separate compartment to chill party tray</td>
<td>74%</td>
<td>24%</td>
<td>2%</td>
</tr>
<tr>
<td>A water dispenser on the door</td>
<td>50%</td>
<td>10%</td>
<td>40%</td>
</tr>
<tr>
<td>Anti-bacterial interior material</td>
<td>37%</td>
<td>2%</td>
<td>61%</td>
</tr>
<tr>
<td>An auto ice-maker</td>
<td>15%</td>
<td>81%</td>
<td></td>
</tr>
</tbody>
</table>
WHAT WILL THE RESULTS LOOK LIKE?

DELIVERABLE #3:
Best-Worst scores on the individual level

Once clients get the Best-Worst scores on the individual level, they have the flexibility to do further analysis, for instance:

- To look at the results by subgroups:
 - Frequent vs. non-frequent users
 - By regions/countries
 - By age, gender, etc.

- To create segments based on differences in preferences by doing cluster analysis or other techniques

Using the individual scores, clients have the flexibility to:
- Look at the results by subgroups (e.g., frequent vs. non-frequent users, by regions, etc.)
- Use it to create segments by doing cluster analysis or other techniques

NOTE: further analysis on the individual scores are NOT a deliverable. This is just to illustrate what kind of analysis can be done by clients on their own.
Background of BEST-WORST SCALING

Best-Worst Scaling (MaxDiff) was invented by Professor Jordan Louviere in 1987. He is the founder of CenSoC.

CenSoC conducts applied research to bring Best-Worst Scaling to industry with the goal of creating more insightful results from research.

CenSoC Vision
• To build an organisation that is operationally sound, financially sustainable and, through its people, delivering impact through staying at the forefront of the field.

CenSoC Mission
• To develop innovative and scientific understandings of choice behaviour and use them to make practical improvements to society now and into the future.

Industry Experience
• Airlines, motor vehicles, banking, mobile phones, wine, fast food, media and entertainment, home entertainment, soft drinks, housing, retirement, superannuation, health, etc.