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Abstract

We study contests where, in addition to exerting effort, agents can design fair risk to strate-

gically add noise to their performance. Strategic risk taking removes inefficiencies associated

with randomization of effort in the contest, but introduces moral hazard. We show that Pareto

improvements over contests without risk taking can be achieved. Moreover, under an appro-

priate “stop-loss” restriction imposed on risk taking, maximum feasible effort can be extracted

from the agents.
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1 Introduction

Contests—pay schemes based on ordinal performance comparisons—are used extensively to moti-
vate agents in organizations and other settings.1 A popular model of contests is the all-pay contest,
where agents exert effort at a cost, and are then rewarded on the basis of their rank of output. In
such models, output is a deterministic function of effort. On the other hand, a distinct but nonethe-
less useful approach was pioneered by Lazear and Rosen (1981), where once again agents are
compensated on the basis of the rank of their output, but where the link between effort and output
is stochastic.

*Kim: Department of Economics, Emory University (email: kyungmin.kim@emory.edu); Krishna: Depart-
ment of Economics, Florida State University (email: rvk3570@gmail.com); Ryvkin: Department of Economics,
Florida State University (email: dryvkin@fsu.edu);

1Examples include promotions and bonuses (Bognanno, 2001; Baker et al., 1988), sales contests (Lim et al., 2009),
forced ranking systems (Bretz Jr. et al., 1992), and R&D competition (Terwiesch and Ulrich, 2009).
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The assumption of noisy output is both natural and compelling. For instance, in a contest for
a contract to build a public utility, say, the competing firms will (obviously) spend a lot of time
perfecting their design, but the final choice will not depend on the amount of time spent, or any
particular detail necessarily. Instead, it will depend on the decision-maker’s preferences (which
itself may consist of a committee), and so may be random in the sense that certain aspects of each
proposal may appeal to the decision maker in different—and from the point of view of the firm,
random—ways.

An important caveat to the justification above is that how the decision maker reacts to a proposal
depends on the proposal itself. That is, by choosing the particulars of the proposal, be it the size
or the shape or the functionality and style of certain elements of the design, the firm is effectively
choosing the nature of the randomness in the choice. This is tantamount to letting the firm gamble,
in addition to choosing a base level of effort. Thus, a common feature in many real world contests
is that, in addition to exerting effort, agents have an opportunity to take calculated risks that may
further increase or decrease their performance. For another example, consider a researcher who
can choose to spend resources to pursue a conventional project with predictable returns or a risky
project with the same expected returns, but a much larger variance in possible outcomes. Similarly,
investors and portfolio managers can manipulate asset allocations to choose how much and what
types of risk to take.

In this paper, we study contests where agents can choose both effort and risk. Specifically,
agents can add fair gambles to modify their effort. As compared to the existing literature, we
introduce two important and realistic innovations: (i) risk taking is restricted by a “stop-loss” non-
negativity constraint on output; and (ii) risk is otherwise unrestricted. In other words, agents can
design arbitrary fair gambles around their effort, as long as their output remains non-negative.2

These two ingredients allow us to resolve the puzzle outlined above. We show that allowing agents
to gamble can be Pareto-improving, i.e., lead to higher effort and higher earnings for the agents as
compared to conventional contests without gambling.3 Moreover, by further restricting risk taking
it is possible to extract maximum feasible effort from the agents.

As a starting point, and for a stark comparison, we consider a symmetric winner-take-all contest
where agents compete for a fixed prize only by exerting effort. In equilibrium, agents randomize
effort and earn no rents. When the cost of effort is convex, such randomization is inefficient.
Indeed, the same (expected) effort exerted deterministically would be less costly or, equivalently, a

2Unrestricted risk taking in contests has been considered in the literature (e.g., Myerson, 1993; Seel and Strack,
2013); however, those models study “pure” risk taking without effort choice. For a detailed review of the literature,
see below.

3Relatedly, Morgan et al. (2018) show that “too much meritocracy”—having too little noise in the winner determi-
nation process—can be detrimental for aggregate effort in contests. In their setting, noise is exogenous and the effect
is driven by agents dropping out of the contest when noise becomes small.
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higher effort can be reached at the same expected cost. Randomization, however, is necessary for
the agents to remain in equilibrium in this complete information environment.

Suppose now that agents can gamble with their performance by adding zero-mean noise to
their—in general, still stochastic—effort. Suppose also that the resulting output is restricted to
be non-negative; that is, downside risk can be at most the agent’s realization of effort. The in-
troduction of gambling has two effects. First, agents no longer need to randomize their effort in
equilibrium, which raises efficiency. Second, the game turns into a rank-order tournament where
the symmetric equilibrium effort is deterministic, and the distribution of noise is determined en-
dogenously following a concavification argument similar to the one used in the information design
literature (e.g., Kamenica and Gentzkow, 2011). The noise introduces moral hazard and, in gen-
eral, allows agents to earn positive rents. Yet, we show that in sufficiently large contests a higher
expected effort can be achieved as compared to the contest without gambling, i.e., the introduc-
tion of gambling is Pareto-improving. We also obtain a number of stochastic dominance results
showing, in particular, that expected top performance is also large in the contest with gambling.

The effect of endogenous gambling in such contests has another important feature. It simpli-
fies, tremendously, the analysis of the optimal schedule of rank-dependent rewards for a principal
allocating a fixed budget. The analysis of the all-pay contest model suggests that more equitable
prize schedules induce more effort when costs are convex (Fang et al., 2020).4 For rank-order
tournaments with exogenous noise, the optimal allocation of prizes changes between winner-take-
all and equitable prize sharing depending on the details of noise (Drugov and Ryvkin, 2020). In
contrast, we show that when risk taking is endogenous, effort is independent of the allocation of
prizes, and under an appropriate stop-loss restriction (so that output must be above some minimum
levels), the maximum feasible effort can be achieved under any prize schedule.

To put our results in context, observe that risk taking adds an element of luck, or noise, to
performance, which is generally believed to have a detrimental effect on incentives to exert effort
in contests. For example, Lazear and Oyer (2012), p 485, write: “An important variable in the
Lazear and Rosen (1981) model is the amount of noise—that is, the degree to which luck affects the
probability of winning. When there is more noise (so that luck becomes relatively more important
and effort relatively less important), workers will try less hard to win, because effort has a reduced
effect on whether they win.” Thus, received wisdom suggests that when agents can choose how
much noise to inject into their performance, they should, in equilibrium, take the largest possible
amount of risk and reduce effort to a minimum. Indeed, this is the central finding of Hvide (2002).
Yet, contest-like incentives are very common in settings such as R&D competition and the financial
sector, where high effort coexists with significant and endogenous risk taking. We resolve this
puzzle by observing that real world competitions feature both stop-loss restrictions (which are

4Similar results are obtained by Moldovanu and Sela (2001) for all-pay contests with private information.
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crucially absent in Hvide (2002)) as well as endogenous gambles. This suggests that real world
contests are more efficient than previous analyses might suggest.

Our stop-loss restriction requires that gambles can only result in output above a certain, pre-
specified level, which may typically be thought to be zero. Of course, the restriction of gambling
to non-negative performance is only one possibility. As noted above, we show that if the downside
risk of gambling is further restricted to a positive threshold performance, the principal can extract
all the rents and push the equilibrium effort to the largest achievable level satisfying the agents’
participation constraint. This optimal gambling scheme is rather intuitive, and also practical: The
agents are allowed to gamble with the output they produce, but only up to a point.5

Related literature Our paper contributes to the vast literature on contests and tournaments utiliz-
ing the complete information all-pay auction model (e.g., Hillman and Riley, 1989; Siegel, 2009;
Fang et al., 2020) and the noisy tournament model (e.g., Lazear and Rosen, 1981; Ryvkin and Dru-
gov, 2020; Drugov and Ryvkin, 2020). To the best of our knowledge, we are the first to explore a
unified framework combining both models and to provide a direct comparison of effort in the two
settings, albeit with endogenously selected noise.

We also contribute to the literature on strategic risk-taking, or gambling, in contests. The most
relevant strand of this literature is the one dealing with (partially) “unrestricted” risk-taking, where
agents compete by choosing fair gambles with arbitrary distributions subject to some constraints.
Such gambles arise naturally in equilibrium in models of political competition (Myerson, 1993;
Lizzeri, 1999) and competition for status (Becker et al., 2005; Ray and Robson, 2012). Fang and
Noe (2018) explore risk-taking in contests of heterogeneous agents where the principal’s goal is
to select a high-ability employee. Seel and Strack (2013) consider a dynamic contest where each
agent’s score is a Brownian motion with a drift and an absorbing state at zero. The agents privately
observe their states and decide when to stop; the agent with the highest score at stopping wins.
In this setting, agents effectively choose the distribution of their stopping time, and its feasibility
is demonstrated using a result on Skorokhod embeddings. Importantly, these papers focus on
gambling only and abstract from costly effort choices as the additional strategic dimension. A
number of authors look at the effects of “restricted” risk-taking, whereby agents can only choose
a parameter, such as variance, of a fixed distribution of noise. Here, too, most authors focus on
pure risk-taking Gaba and Kalra (1999); Hvide and Kristiansen (2003); Taylor (2003); Gaba et al.
(2004), but two papers—Hvide (2002) and Gilpatric (2009)—allow agents to choose both effort
and the variance of noise. Hvide (2002) shows that the largest possible variance, and lowest effort,
is chosen in equilibrium. Gilpatric (2009) considers a model where increasing variance is costly

5We also consider an alternative setup where agents can gamble as long as their performance is non-negative, but
only receive a prize if it exceeds a positive threshold. In this case, the equilibrium distribution of output acquires a
mass at zero, and efficiency is lost.
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and shows that first-best effort and flexible levels of variance can be implemented by an appropriate
choice of prizes that includes a reward for top performers and a punishment for bottom performers.

The rest of the paper is structured as follows. In Section 2, we set up a model of contests with
strategic gambling, characterize the equilibrium, and compare it to the baseline model without
gambling. In Section 3, we study the effects of additional restrictions on gambling and characterize
optimal contest design. Several extensions and robustness checks are discussed in Section 4, and
Section 5 concludes.

2 The Gambling Contest

2.1 Setup

As a starting point, we consider the canonical winner-take-all contest. There are n ě 2 risk-neutral
players (contestants) competing for a prize whose value is normalized to 1. They simultaneously
choose their effort subject to symmetric convex costs.6 We use xi P R` to denote player i’s effort
choice and cpxiq to denote the associated cost.7 We assume that cp¨q is twice differentiable, strictly
increasing from zero, and strictly convex (i.e., cp0q “ 0 and c1pxq, c2pxq ą 0 for all x ą 0). We
also impose a mild technical restriction that the elasticity of the cost function is bounded at zero
(i.e., lim supxÑ0 xc

1pxq{cpxq ă 8).8

Given xi, each player i can run any fair gamble to obtain a distribution Hi of non-negative
output. Specifically, each player i can add a random noise εi to his effort xi, so that his final
output is a random variable Yi ” xi ` εi. Unlike in the canonical stochastic-output model (e.g.,
Lazear and Rosen, 1981), but as in models of strategic risk taking (e.g., Myerson, 1993), each
player can choose any random noise εi subject to the constraints that Eirεis “ 0 (fair gamble)
and Yi “ xi ` εi ě 0 almost surely (no bankruptcy). Note that this flexible risk-taking situation
naturally arises if the set of available fair gambles is sufficiently rich, or a player can design a
gamble and propose it to a risk-neutral third party.

The player who produces the highest realization of output yi wins the contest and earns the
prize. For completeness, we assume that ties are broken through fair randomization; that is, if
multiple players produce the same highest output then each of them is selected as the winner with
equal probability. However, as is often the case and clarified shortly, ties occur with probability
zero in equilibrium. In what follows, we simplify the notation by ignoring the possibility of ties.

6As we formally explain in Section 4.2, strategic risk taking plays no role if effort costs are concave.
7In general, players are allowed to randomize their effort; however, such randomization is never optimal when

costs are strictly convex.
8This condition holds for any analytic function or when cpxq “ Axk (with A, k ą 0). It fails, for example, for

cpxq “ e´1{x, which rises at zero slower than any polynomial.
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Specifically, we assume that each individual player chooses his effort xi and a fair gamble εi so as
to maximize

PtYi “ xi ` εi ą Yj “ xj ` εj for all j ‰ iu ´ cpxiq s.t. ErYis “ xi and Yi ě 0 almost surely.

2.2 Equilibrium Characterization

Suppose all players choose the same deterministic effort x.9 Then, since effort costs are sunk,
our model reduces to the canonical strategic risk-taking model, in which each player i chooses
a random variable Yi (equivalently, a distribution of output Gi) subject to the mean constraint
ErYis “

ş8

0
ydGipyq “ x in order to maximize PtYi ą Yj for all j ‰ iu. The following characteri-

zation is well-known in the literature (see, e.g., Theorem 2 of Myerson, 1993).

Lemma 1 Consider a game in which each player i independently chooses a non-negative random

variable Yi subject to ErYis “ xpą 0q and his payoff is given by PtYi ą Yj for all j ‰ iu.

The game has a unique symmetric Nash equilibrium in which each player chooses Yi with the

distribution G such that Gpyqn´1 “ minty{pnxq, 1u.

To understand Lemma 1, consider an individual player’s problem when all other players follow
G. The player’s problem can be written as

max
GiP∆pR`q

ż

Gpyq
n´1dGipyq s.t.

ż

ydGipyq “ x.

This is a linear programming problem familiar in the literature on Bayesian persuasion (Kamenica
and Gentzkow, 2011; Aumann and Maschler, 1995) and strategic risk taking (e.g., Myerson, 1993;
Fang and Noe, 2018), for which the method of concavification can be used to identify an optimal
solution.10 Given the concave piece-wise linear structure of Gpyqn´1 “ minty{pnxq, 1u (see the
left panel of Figure 1), it is immediate that Gi is optimal if and only if it assigns all probability
to r0, nxs. Clearly, the given distribution G satisfies this property, so G is indeed a symmetric
equilibrium.11

9It will be shown that in our gambling contest with convex costs, the equilibrium effort choice is indeed determin-
istic. In other words, there is no symmetric equilibrium in which the players randomize over efforts. As shown in
Section 4.2, this result does not hold if effort costs are concave. In that case, however, gambling plays no role in our
gambling contest, so the resulting equilibrium is identical to that of the standard contest without gambling.

10Any optimal distribution should assign probability only to those y’s that lie on the concave upper envelope of the
value function Gpyqn´1, and the maximized value coincides with the value of the concave envelope at the mean x.

11The uniqueness of symmetric equilibrium follows from the fact that if Gpyqn´1 is not linear over its support, then
an individual player’s optimal distribution, denoted by G˚

i , cannot coincide with the given distribution. For example,
if Gpyqn´1 is strictly concave over its support, then G˚

i is the degenerate distribution on x, which cannot coincide
with the given G. If Gpyqn´1 is strictly convex over its support, then G˚

i is a binary distribution that puts probability
mass on the lower and the upper bounds of supppGq, which also cannot coincide with the given G.
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, c1pxq

Figure 1: The left panel depicts the value function Gpyqn´1 “ minty{pnxq, 1u in Lemma 1 and
Proposition 1 (solid) and the cost function cpxq (dashed), while the right panel shows their first
derivatives. This is based on the following parametric specification: n “ 3 and cpxq “ x2.

The main innovation of our gambling contest, as compared to existing models of (flexible)
strategic risk taking, is that the players’ choice of efforts xi is endogenous. To find a symmetric
equilibrium, suppose all players j ‰ i choose effort x and follow the gambling strategy as in
Lemma 1. Then, player i’s effort choice problem is given by

max
xiPR`

upxiq ´ cpxiq, where upxiq ” max
GiP∆pR`q

ż

Gpyq
n´1dGipyq s.t.

ż

ydGipyq “ xi.

In other words, if upxiq represents player i’s indirect (maximized) expected benefit with effort xi

then his problem is to choose xi that maximizes upxiq ´ cpxiq. The concave structure of Gpyqn´1

implies that the degenerate distribution δxi
is always optimal, so we have upxiq “ Gpxiq

n´1 “

mintxi{pnxq, 1u for all xi. It then follows that the symmetric equilibrium value of x should satisfy

u1
pxq ´ c1

pxq “
1

nx
´ c1

pxq “ 0 ô xc1
pxq “

1

n
.

Proposition 1 In the gambling contest, there exists a unique symmetric equilibrium, in which each

player i chooses effort xg such that xgc
1pxgq “ 1{n and adds noise εi so that the distribution of

output Yi “ xg ` εi satisfies Gpyqn´1 “ minty{pnxgq, 1u.

Proof. The previous argument suffices to prove that the given strategy profile is indeed an equilib-
rium. In Appendix A, we prove that there does not exist any other equilibrium (in particular, the
one in which the players randomize over efforts).

The symmetric equilibrium of the gambling contest has two notable properties. First, it induces
a deterministic effort, which, as illustrated in the next section, is the most crucial difference from
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the pure-effort model. Second, the players obtain positive rents: either see the shaded region in the
right panel of Figure 1, or observe that each player’s equilibrium expected payoff is equal to

1

n
´ cpxgq ą

1

n
´ xgc

1
pxgq “ 0,

where the inequality is because cpxq is strictly convex, so cpxgq{xg ă c1pxgq. Both of these are
driven by the equilibrium “linearization” effect of strategic risk taking, namely, that in equilibrium,
each player should face a value function that is linear over a relevant region.

2.3 Pure Effort vs. Strategic Risk Taking

In this section, we compare the equilibrium effort xg from the gambling contest to the equilibrium
(expected) effort from the pure-effort contest (i.e., the standard all-pay contest). The following
characterization is well known in the literature.

Proposition 2 In the pure-effort contest, there exists a unique symmetric equilibrium, in which

each player randomizes effort over r0, c´1p1qs according to the distribution F such that

F pxq
n´1

“ mintcpxq, 1u.

Effort randomization is necessary because a player has an incentive to outpace the other players
as long as his effort is below c´1p1q, but he also has an incentive to minimize his effort. As is well-
known, in a symmetric contest this dissipates all rents to the players, i.e., the players’ expected
payoffs are equal to zero. Provided all other players randomize according to F , if a player chooses
effort x then he wins the contest with probability F pxqn´1. Combining this with the structure of F
in Proposition 2, his effort choice problem becomes

max
xPR`

F pxq
n´1

´ cpxq “ mintcpxq, 1u ´ cpxq “

#

0 if x ď c´1p1q

1 ´ cpxq ă 0 if x ą c´1p1q.

Therefore, the player is indifferent over all efforts in r0, c´1p1qs—each yielding zero expected
payoff—and prefers them to any effort above c´1p1q.

In order to evaluate the incentive-provision effect of strategic risk taking, we compare the
(deterministic) equilibrium effort xg of our gambling contest to the expected equilibrium effort xe

of the pure-effort contest. By Proposition 2, the latter is given as follows:

xe ”

ż

xdF pxq “

ż c´1p1q

0

xdcpxq
1

n´1 .
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At first glance it may seem that xe ą xg is likely to hold. Intuitively, gambling dampens an
agent’s incentive to exert effort, as he can compensate lower effort with more aggressive gambling.
Furthermore, as shown above, the players receive zero rents in the pure-effort contest, while they
earn strictly positive rents in the gambling contest. Since the prize is fixed at 1 and each player wins
with probability 1{n in both contests, this seems to suggest that the players exert higher efforts in
the pure-effort contest.

The following result—the main economic result of this section—shows that the above intuition
clearly fails. As shown below with specific examples, the comparison is ambiguous for n relatively
small. However, if n is sufficiently large then the gambling contest necessarily induces higher
efforts than the pure-effort contest.12

Proposition 3 For any strictly convex cp¨q, xg ą xe for n sufficiently large.

Proof. Recall that xe “
şc´1p1q

0
xdcpxq1{pn´1q, while xgc

1pxgq “ 1{n. Clearly, both xe and xg

converge to zero as n Ñ 8; therefore, to analyze their large-n behavior it is convenient to consider
aggregate efforts, nxe and nxg. For the pure-effort contest, we have

lim
nÑ8

nxe “ lim
nÑ8

n

ż c´1p1q

0

xdcpxq
1

n´1 “ lim
nÑ8

n

n ´ 1

ż c´1p1q

0

xc1pxq

cpxq
n´2
n´1

dx “

ż c´1p1q

0

xc1pxq

cpxq
dx ă 8,

where we used that the elasticity of the cost function is bounded over r0, c´1p1qs.
For xg, let ϕpxq ” xc1pxq. Since ϕ1pxq “ c1pxq ` xc2pxq ą 0 for all x ą 0, its inverse ϕ´1 is

well-defined. Then, we have

lim
nÑ8

1

nxg

“ lim
nÑ8

1

nϕ´1p1{nq
“ lim

zÑ0

z

ϕ´1pzq
“ lim

xÑ0

ϕpxq

x
“ lim

xÑ0
c1

pxq “ c1
p0q. (1)

The above implies that for n sufficiently large,

xg ą xe ô c1
p0q

ż c´1p1q

0

xc1pxq

cpxq
dx ă 1.

This inequality trivially holds if c1p0q “ 0. For the case when c1p0q ą 0, note that strict convexity
of cp¨q implies that c1p0qx ă cpxq for all x ą 0. Then, we have

c1
p0q

ż c´1p1q

0

xc1pxq

cpxq
dx ă

ż c´1p1q

0

cpxqc1pxq

cpxq
dx “

ż c´1p1q

0

c1
pxqdx “ cpc´1

p1qq “ 1.

12The simplified proof below uses the assumption that elasticity c1pxqx{cpxq is bounded at zero. A more general
proof is in Appendix A.
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Figure 2: Both panels compare xg (solid red) to xe (dashed blue) and x (dotted black). In the left
panel cpxq “ x2, while cpxq “ 0.75x ` 0.25x8 in the right panel.

Example 1 Suppose cpxq “ xk for some k ą 1. In this case, xg and xe can be obtained in closed

form as follows:

xe “
k

k ` n ´ 1
and xg “

ˆ

1

nk

˙
1
k

.

It can be shown that for any k ą 1, if n “ 2 then xe ą xg.13 On the other hand, for any k, there

exists npkqpą 2q such that xe ă xg if and only if n ě npkq. For example, npkq “ 5 for k “ 2, ..., 8;

np1.5q “ np9q “ 6; and np50q “ 8.

To understand Proposition 3, first notice that the pure-effort equilibrium in Proposition 2 is
inefficient because each player’s randomization itself produces a deadweight loss: if the players
simply chose xe deterministically then they would obtain strictly positive rents, because cp¨q is
strictly convex and F is a non-degenerate distribution, so by Jensen’s inequality and Proposition 2,

1

n
´ cpxeq “

1

n
´ c

ˆ
ż

xdF pxq

˙

ą
1

n
´

ż

cpxqdF pxq “ 0.

In contrast, in the gambling equilibrium in Proposition 1, the players choose a deterministic effort
xg, so there is no deadweight loss due to effort randomization. However, they obtain positive rents,
implying that they incur insufficient effort costs.

Which contest induces a higher expected effort depends on which of the above two types of
13This result is non-generic. Even for n “ 2, there are cost functions such that xg ą xe. For example, consider

cpxq “ αx ` p1 ´ αqxk for some α P p0, 1q and k ą 1. In this case,

xgc
1pxgq “ αxg ` p1 ´ αqkxk

g “
1

2
and xe “

ż 1

0

xdcpxq “
α

2
`

p1 ´ αqk

k ` 1
.

It can be directly shown that if k is sufficiently large then xg ą xe.
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inefficiency prevails. This immediately explains why the comparison between xe and xg is am-
biguous in general. The clear result for n sufficiently large holds because the inefficiency due
to insufficient effort costs asymptotically vanishes as n tends to infinity. To see this clearly, let
x˝ “ c´1p1{nq denote the highest symmetric effort level the players can choose subject to their
participation constraint—namely, that their expected payoffs should be non-negative. Now observe
that

lim
nÑ8

1

nx˝
“ lim

nÑ8

1{n

c´1p1{nq
“ lim

zÑ0

z

c´1pzq
“ c1

p0q “ lim
nÑ8

1

nxg

,

where the last equality is from (1) in the proof of Proposition 3. Thus, when c1p0q ą 0, all three
efforts—xe, xg and x˝—approach zero at the same rate Op1{nq as n tends to infinity. However,
the ratio xe{xg (and xe{x

˝) remains less than 1, whereas xg{x˝ converges to 1, i.e., the gambling
contest asymptotically achieves the maximum effort while the pure-effort contest never does. The
difference is even starker when c1p0q “ 0. In this case xe still tends to zero as Op1{nq, but xg and
x˝ converge to zero at a slower rate.14

In fact, an even stronger result can be established.

Proposition 4 For any strictly increasing function u : R` Ñ R` such that up0q is finite and the

integral
şa

0
upxq

x
dx exists for any a ą 0,

ż

upxqdGpxq ą

ż

upxqdF pxq (2)

for n sufficiently large.

Proof. Recall that supppF q “ r0, c´1p1qs and supppGq “ r0, nxgs. First, we show that nxg ą

c´1p1q for n sufficiently large. For c1p0q “ 0 the result follows immediately because nxg is un-
bounded for n Ñ 8. Suppose c1p0q ą 0. In this case,

lim
nÑ8

nxg “
1

c1p0q
“ pc´1

q
1
p0q ą c´1

p1q,

where the inequality is due to the strict concavity of c´1p¨q.

14Exactly what rate it is depends on the shape of cp¨q. For example, xg, x
˝ “ Opn´1{kq for cpxq “ xk, k ą 1. To

see how xg and x˝ converge relative to each other, note that

xg

x˝
“

ϕ´1p1{nq

c´1p1{nq
Ñ lim

zÑ0

ϕ´1pzq

c´1pzq
“ lim

zÑ0

c1pc´1pzqq

ϕ1pϕ´1pzqq
ě lim

zÑ0

c1pϕ´1pzqq

ϕ1pϕ´1pzqq
“ lim

xÑ0

1

1 ` xc2pxq{c1pxq
.

Therefore, if the elasticity of marginal cost, xc2pxq{c1pxq, does not tend to infinity for x Ñ 0, xg and x˝ converge to
zero at the same rate.
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Now fix an admissible upxq. For c1p0q ą 0, we can show that Gpxq ď F pxq for any x when n is
sufficiently large. We only need to check the inequality within the support of F , where F pxqn´1 “

cpxq and Gpxqn´1 “ x
nxg

, i.e., it is sufficient to show that asymptotically cpxq ě x
nxg

for all
x P r0, c´1p1qs. For c1p0q ą 0, we have

lim
nÑ8

x

nxgcpxq
“

c1p0qx

cpxq
ď 1,

where the inequality is due to the strict convexity of cp¨q.
Consider now the case c1p0q “ 0. Note that the usual FOSD order cannot be established here

because for any n there exists a unique xn ą 0 such that cpxnq “ xn

nxg
and hence F and G cross at

xn. However, we still have

lim
nÑ8

n

ż

upxqdF pxq “ lim
nÑ8

n

n ´ 1

ż c´1p1q

0

upxqcpxq
´n´2

n´1 c1
pxqdx “

ż c´1p1q

0

upxqc1pxq

cpxq
dx ă 8.

To show the finiteness of the last expression, we used that upxq

x
is integrable on r0, c´1p1qs and the

elasticity of the cost function c1pxqx
cpxq

is bounded.
Further, define an “

şnxg

0
upxq

x
dx and obtain

lim
nÑ8

n

an

ż

upxqdGpxq “ lim
nÑ8

n

pn ´ 1qan

ż nxg

0

upxq

ˆ

x

nxg

˙´n´2
n´1 1

nxg

dx

“ lim
nÑ8

n

pn ´ 1qan

1

pnxgq
1

n´1

ż nxg

0

upxq

x
n´2
n´1

dx “ 1.

We used that pnxgq
1

n´1 Ñ 1. Indeed, pnxgq
1

n´1 “ e´
lnpnxgq

n´1 , and

lim
nÑ8

lnpnxgq

n ´ 1
“ lim

tÑ8

lnptϕ´1p1
t
qq

t ´ 1
“ lim

tÑ8

ϕ´1p1
t
q ´ pϕ´1q1p1

t
q 1
t2

tϕ´1p1
t
q

“ 0,

where we used that ϕ´1 has a bounded elasticity.15

It is easy to see that an is unbounded. For any a P p0, nxgq, we have

an “

ż nxg

0

upxq

x
dx ě

ż nxg

a

upxq

x
dx ě upaq

ż nxg

a

dx

x
“ upaq ln

nxg

a
,

15This holds because for any z ě 0

0 ď
pϕ´1q1pzqz

ϕ´1pzq
“

z

ϕ´1pzqrc1pϕ´1pzqq ` ϕ´1pzqc2pϕ´1pzqqs
“

z

z ` ϕ´1pzq2c2pϕ´1pzqq
ď 1.
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and the last expression is unbounded as n Ñ 8. Therefore, n
ş

upxqdGpxq is also unbounded, and
the result follows.

The requirement that upxq

x
is integrable in bounded intervals r0, as is very mild. It holds, for

example, for any function of the form upxq “ xα, α ą 0. An example of upxq for which it oes not
hold is upxq “ ´1{ lnx.

2.4 Ordering Output across Contests

In winner take all contests, recall that the equilibrium distribution of effort is F pxq “ cpxq1{pn´1q

for x P r0, x̄ “ c´1p1qs, while the equilibrium distribution of output in the risk-taking model is
Gpxq “ px{nxgq1{pn´1q for x P r0, nxgs, where xg satisfies xgc

1pxgq “ 1{n. Because c is convex, it
follows that nxg Ñ 1{c1p0q as n Ñ 8, and so c´1p1q ă nxg for sufficiently large n.

The next proposition tells us that G is larger than F in some stochastic sense.

Proposition 5 For all n large enough, the following hold:

1. G dominates F in the convex transform order whereby G´1pF pxqq is convex in x P supppF q.

2. Moreover, G dominates F in the increasing convex order whereby
ş

udF ď
ş

udG for all

increasing and convex u P RR` .

Proof. To establish part (i), elementary calculations show that G´1pzq “ zn´1nxg, so that G´1
`

F pxq
˘

“
`

cpxq1{pn´1q
˘n´1

nxg “ cpxqnxg, which is convex in x.
To see part (ii), note that by Theorem 3 above,

ş

xdF ď
ş

xdG for all n large enough. There-
fore, by Theorem 4.B.4 of Shaked and Shanthikumar (2007), which says that if G dominates F in
the convex transform order and has a greater mean, then G dominates F in the increasing convex
order, we prove our claim.

Another consequence of dominance in the convex transform order is that VarpF q ď VarpGq.
The next result shows that the order statistics can also be ordered stochastically.

Corollary 1 Let Xi denote the i-th player’s realised effort (ie, output) in the pure effort model, and

Yi denote the i-th player’s realised output in the risk-taking model, and let Xpiq and Ypiq denote the

corresponding order statistics.16 Then, for all n sufficiently large, Ypjq dominates Xpjq in the convex

transform order, and hence also in the increasing convex order, for all j “ 1, . . . , n.

16Thus, Xp1q ě ¨ ¨ ¨ ě Xpnq, and similarly for Y . We will often write Xpj:nq when we want to be explicit about the
number of players.
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Proof. By Proposition 5, Xi is dominated by Yi in the convex transform order for all i “ 1, . . . , n.
The claim now follows from Theorem 4.B.15 in Shaked and Shanthikumar (2007). The proof of
Proposition 5 shows that if ErXis ď ErYis (which it is for sufficiently large n, by Theorem 3), it
follows that Ypjq dominates Xpjq in the increasing convex order for all j “ 1, . . . , n.

Dominance in the increasing convex order has a useful implication for the maximal levels of
output in the two models.

Corollary 2 We have maxtY1, . . . , Ynu dominates maxtX1, . . . , Xnu in the convex transform or-

der, and hence for all n sufficiently large, also in the increasing convex order. Moreover, the ratio

ErYp1:nqs{ErXp1:nqs is increasing in n.

Proof. Taking j “ 1 as the highest (first) order statistic in Corollary 1 establishes the first part of
the claim. The second part follows from Theorem 4.B.18(c) in Shaked and Shanthikumar (2007).

3 Contest Design: Modified Gambling Contests

In this section, we consider two natural modifications of the baseline gambling contest that can be
pursued by a principal designing the contest. In the first one, the principal can impose a minimum
output requirement. That is, agents are allowed to design any fair gambling strategy around their
efforts xi subject to a “stop-loss” requirement that their output does not fall below some level y.
We show that by appropriately choosing y the principal can extract any effort from the agents up
to the maximum individually rational level x˝.

In the second modification, the principal sets a minimum output standard, ŷ, which the agents
must surpass in order to be considered for a prize. However, there is no stop-loss mechanism to
preclude the agents from producing output below ŷ if they so choose. In this setting, we show that
increasing ŷ is counterproductive and hence the baseline gambling contest is optimal.

3.1 Minimum Output Requirement

Suppose the principal can enforce a minimum output level, denoted by y, provided that a player
participates (i.e., his expected payoff is non-negative). Our baseline model can be interpreted as a
special case where y “ 0. Note that y can be either positive or negative.

Proposition 6 In the gambling contest with the minimum output requirement y P R, assuming that

all players participate in the contest, there exists a unique symmetric equilibrium, in which each

14



player chooses effort xg and adds noise so that Gpyqn´1 “ mintpy ´ yq{py ´ yq, 1u for all y ě y,

where

pxg ´ yqc1
pxgq “

1

n
and y “ y ` npxg ´ yq. (3)

In this equilibrium, the equilibrium effort xg is strictly increasing, while the players’ expected

payoffs are strictly decreasing, in y.

Proof. As for Proposition 1, we focus on verifying that the given G indeed yields a symmetric
equilibrium. The uniqueness proof is effectively identical to that of Proposition 1 and so omitted.

Given his effort choice xi and the other players’ strategies Gpyqn´1, player i solves

max
GiP∆pry,8qq

ż

Gpyq
n´1dGipyq “

ż 8

y

min

"

y ´ y

y ´ y
, 1

*

dGi s.t.
ż

ydGipyq “ xi.

As in the proof of Proposition 1, Gpyqn´1 is concave, so no gambling (i.e., the degenerate distri-
bution at xi) is always the player’s optimal strategy. His maximized payoff depends only on xi as
follows:

upxiq “ min

"

xi ´ y

y ´ y
, 1

*

´ cpxiq.

Again, as in the proof of Proposition 1, it can be shown that upxq is maximized by xg (as defined
in (3)) and the player is indifferent between δxg

and G (so G is a best response to Gn´1).
The result that xg is strictly increasing in y follows from the first equation in (3): since cp¨q is

strictly convex, as y increases, the left-hand side stays equal to 1{n only when xg increases. Given
this, the payoff result is immediate, because a player’s expected payoff is equal to 1{n ´ cpxgq.

Corollary 3 The maximum feasible effort x˝ “ c´1p1{nq—the highest implementable effort level

subject to the players’ participation constraint—can be implemented by setting the minimum output

requirement to y˚ “ x˝ ´ 1{pnc1px˝qq ą 0.

Proof. In a symmetric equilibrium, each player wins the contest with probability 1{n, and hence
the highest expected effort that can be induced while giving a non-negative payoff to the players is
x˝ “ c´1p1{nq. By Proposition 6, this effort level can be implemented when the minimum output
requirement is such that

px˝
´ yqc1

px˝
q “

1

n
ô y “ x˝

´
1

nc1px˝q
.
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The inequality y˚ ą 0 follows from the strict convexity of cp¨q that gives nc1px˝qx˝ ą ncpx˝q “ 1.

Proposition 6 helps understand the discrepancy between our results and those of Hvide (2002),
who imposes no restrictions on y (i.e., y “ ´8). In this case, regardless of the value of n, the
equilibrium effort xg “ 0. The following results are also straightforward.

Corollary 4 (a) For any minimum requirement y ě 0, if n is sufficiently large then xg ą xe.

(b) For any n, if y P R is sufficiently low then xg ă xe.

3.2 Minimum Output Standard (To Be Considered for a Prize)

Now suppose that the principal considers a player for a prize (e.g., promotion) only when the
player’s output exceeds a standard pypě 0q, but cannot punish players or otherwise enforce the
standard if their output falls short of py. We also maintain the non-negativity constraint yi ě 0.

Proposition 7 In the gambling contest with the minimum output standard py P R`, there exists

a unique symmetric equilibrium, in which each player chooses effort pxg and adds noise so that

Gpyqn´1 “ mintmaxty, pyu{y, 1u for all y P R`, where

pxgc
1
ppxgq “

1

n

´

1 ´ pc1
ppxgqpyq

n
n´1

¯

and y “
1

c1ppxgq
. (4)

In this equilibrium, the equilibrium effort pxg is strictly decreasing, while the players’ expected

payoffs are increasing in, py.

Proof. As in the proof of Proposition 6, we only verify that the given G yields a symmetric
equilibrium. Given his effort xi and Gpyqn´1, player i solves

max
GiP∆pR`q

ż

Gpyq
n´1χtyěpyupyqdGipyq “

ż 8

py

min

"

y

y
, 1

*

dGipyq s.t.
ż

ydGpyq “ xi,

where χApxq denotes the indicator function (χApxq “ 0 if x R A and χApxq “ 1 if x P A). The
value function Gpyqn´1χtyěpyupyq is not concave, so the degenerate distribution δxi

is not necessar-
ily optimal. Nevertheless, by the usual concavificatioon argument, it is easy to see that the player’s
maximized payoff is still

upxiq “ min

"

xi

y
, 1

*

´ cpxiq,
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which he can achieve, for example, by mixing between 0 and py if xi ă py and adding no noise
(choosing δxi

) if xi ě py. Again, upxq is maximized at pxg, and the given G (on whose support
Gpyqn´1 “ y{y) also yields upxq to the player. Therefore, G is a best response to Gn´1.

The result that pxg is strictly decreasing in py follows from the first equation in (4): an increase of
py lowers the right-hand side. For the equation to continue to hold, pxg should decrease. Given this,
the payoff result is immediate, because the players’ expected payoffs are equal to 1{n ´ cppxgq.

4 Discussion

4.1 General prize schedules

Suppose the players are rewarded based on the ranking of their performance according to a prize
schedule v “ pv1, . . . , vnq. We assume that prizes are non-negative, monotone, and satisfy a budget
constraint: v1 ě . . . ě vn ě 0,

řn
i“1 vi “ 1. The winner-take-all prize structure is a special case

with vi “ χti“1u; and the prize scheme with m equal top prizes is vi “ 1
m
χtiďmu.

Pure effort Without loss, we set vn “ 0, which is the player’s outside option. The resulting
unique symmetric equilibrium involves mixing in r0, c´1pv1qs with distribution F satisfying

cpxq “

n
ÿ

i“1

ˆ

n ´ 1

i ´ 1

˙

F pxq
n´i

r1 ´ F pxqs
i´1vi.

As shown by Fang et al. (2020), for strictly convex costs, effort is FOSD-increasing when
prizes become more equitable, in the sense of the majorization order. The effort-maximizing prize
schedule is, therefore, vi “ 1

n´1
χtiďn´1u, which awards the same prize to everyone except the

player ranked last. This scheme is sometimes referred to as “punishment at the bottom,” as opposed
to the winner-take-all rewarding at the top. The resulting equilibrium distribution of effort has
support r0, c´1p 1

n´1
qs and satisfies

cpxq “
1 ´ r1 ´ F pxqsn´1

n ´ 1
,

which gives
F pxq “ 1 ´ r1 ´ pn ´ 1qcpxqs

1
n´1 .
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Suppose first that c1p0q ą 0. The expected effort can be written as

xe “

ż c´1p 1
n´1

q

0

xdF pxq “ ´

ż c´1p 1
n´1

q

0

xdr1 ´ pn ´ 1qcpxqs
1

n´1

“

ż c´1p 1
n´1

q

0

r1 ´ pn ´ 1qcpxqs
1

n´1dx “
1

n ´ 1

ż 1

0

p1 ´ zq
1

n´1

c1pc´1p z
n´1

qq
dz.

In the limit, we obtain

lim
nÑ8

nxe “ lim
nÑ8

n

n ´ 1

ż 1

0

p1 ´ zq
1

n´1

c1pc´1p z
n´1

qq
dz “

1

c1p0q
.

Note that the efficient level of effort satisfies cpx̄q “ 1
n

, and in the limit we have

lim
nÑ8

nx̄ “ lim
nÑ8

nc´1
p
1

n
q “ lim

zÑ0

c´1pzq

z
“ lim

xÑ0

x

cpxq
“

1

c1p0q
.

Suppose now that c1p0q “ 0. For this case, we write

xe “

ż c´1p 1
n´1

q

0

xdF pxq “

ż c´1p 1
n´1

q

0

xc1pxqdx

r1 ´ pn ´ 1qcpxqs
n´2
n´1

“
1

n ´ 1

ż 1

0

c´1p z
n´1

qdz

p1 ´ zq
n´2
n´1

.

This gives

xe

x̄
“

1

n ´ 1

ż 1

0

c´1p z
n´1

qdz

c´1p 1
n

qp1 ´ zq
n´2
n´1

“

ż 1

0

c´1p 1´z
n´1

q

c´1p 1
n

q
dz

1
n´1 ě

ż 1

0

p1 ´ zqdz
1

n´1 “ 1 ´
1

n
.

The last inequality follows from the concavity of c´1p¨q whereby

c´1

ˆ

1 ´ z

n ´ 1

˙

ě c´1

ˆ

1 ´ z

n

˙

ě p1 ´ zqc´1

ˆ

1

n

˙

.

We can also show using Jensen’s inequality that this ratio is below 1 for any finite n:

xe “

ż 1

0

c´1

ˆ

1 ´ z

n ´ 1

˙

dz
1

n´1 ă c´1

ˆ
ż 1

0

1 ´ z

n ´ 1
dz

1
n´1

˙

“ c´1

ˆ

1

n

˙

“ x̄,

due to strict concavity of c´1p¨q. Together, the two bounds imply limnÑ8
xe

x̄
“ 1.

Thus, under the optimal allocation of prizes full efficiency is asymptotically achieved with
pure effort. In contrast, with optimal gambling efficiency can be achieved for any finite n and any
allocation of prizes, as shown next.
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Gambling Following the same approach as above, we have

βpy ´ yq “

n
ÿ

i“1

ˆ

n ´ 1

i ´ 1

˙

Hpyq
n´i

r1 ´ Hpyqs
i´1vi

for some β ą 0 and y P ry, ys. Then βpxg ´ yq “
şy

y
βpy ´ yqdHpyq “ 1

n

řn
i“1 vi “ 1

n
as before,

and β “ c1pxgq, which gives pxg ´ yqc1pxgq “ 1
n

, and the results above go through.

4.2 Concave Costs

Pure effort “ Gambling!

4.3 Gambling Costs

In this section, we introduce gambling costs into our baseline model and construct a sequence of
symmetric equilibria that converges to the gambling equilibrium in Proposition 2 as the unit cost
of gambling vanishes.

Output-separable gambling costs. Let Φ : R` Ñ R denote a strictly concave function. We
assume that it is twice continuously differentiable and strictly decreasing from 0; this latter as-
sumption incurs no loss of generality, because our analysis below depends only on strict concavity
of Φ. Given Φ, we assume that the gambling cost of a player’s inducing a distribution Gi from his
effort xi is given by

cgpGiq ” λ

ż

pΦpxiq ´ Φpyqq dGipyq “ λ

ˆ

Φpxiq ´

ż

ΦpyqdGipyq

˙

,

where λpą 0q represents the unit cost of gambling. This modeling of gambling costs is effectively
identical to that of posterior-separable costs in the literature on information costs (see, e.g., Caplin
et al., 2019; Bloedel and Zhong, 2020) and so inherits all desirable properties from the latter.
Among other things, it satisfies an essential property of gambling costs: if Gi is a mean-preserving
spread of G1

i then

cgpGiq ´ cgpG1
iq “ λ

ˆ
ż

ΦpyqdG1
ipyq ´

ż

ΦpyqdGipyq

˙

ě 0.

In addition, it can accommodate various forms of gambling costs. In particular, the usual variance
cost–gambling costs being proportional to the variance of the induced distribution–is a special case
with Φpyq “ ´y2.

19



Candidate equilibrium structure. As in Section 2.2, consider the game in which each player
chooses a distribution Gi given the common mean x. If all other players follow G then, due to
gambling costs, an individual player’s problem is given by

max
GiP∆pR`q

ż

Gpyq
n´1dGipyq ´ cgpGiq “

ż

“

Gpyq
n´1

` λΦpyq
‰

dGipyq ´ λΦpxq.

In other words, the only difference from the baseline model is that now Gpyqn´1 ` λΦpyq (not
Gpyqn´1) serves as the value function for an individual player. Then, by effectively the same logic
as for the baseline model, in symmetric equilibrium, Gpyqn´1 ` λΦpyq must be affine in y over
supppGq. Furthermore, if λ is sufficiently small then it would be that for some β ą 0 and y ą 0,

Gpyq
n´1

` λΦpyq “ βy for all y P supppGq “ r0, ys. (5)

Given the above result, the rest can be characterized just as in the baseline model. Let vpxiq

denote a player’s indirect payoff of exerting effort xi. Since Gpyqn´1 ` λΦpyq is concave, vpxiq “

Gpxiq
n´1 ` λΦpxiq “ maxtβxi, βyu. The equilibrium (deterministic) effort x should maximize

vpxiq ´ cpxiq, leading to

β ´ λϕpxq ´ c1
pxq “ 0 ô β “ c1

pxq ` λϕpxq. (6)

Equilibrium existence. The three equations connecting x, β and y can be considered as the
system of equations

A1px, β, y;λq “ c1
pxq ´ β ` λϕpxq “ 0,

A2px, β, y;λq “ βy ´ 1 ´ λΦpyq “ 0,

A3px, β, y;λq “ x ´

ż

ydGpyq “ x ´
1

nβ
´

λ

β

ż

ΦpyqdGpyq “ 0

that defines implicit functions xpλq, βpλq and ypλq such that xp0q “ x0, βp0q “ β0 and yp0q “ y0

is the solution corresponding to λ “ 0. The Jacobian of this system evaluated at px0, β0, y0; 0q is

J0 “

ˆ

BpA1, A2, A3q

Bpx, β, yq

˙

0

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c2px0q ´1 0

0 y0 β0

1 1
nβ2

0
0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´
c2px0q

nβ0

´ β0 ă 0.

Functions Ak, k “ 1, 2, 3, are C1 in some neighborhood of px0, β0, y0; 0q, and hence the Implicit
Function Theorem implies that there exist a λ̄ ą 0 and unique C1 functions xpλq, βpλq and ypλq

solving the system of equations for any λ P r0, λ̄s.
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Example. Suppose n “ 2, cpxq “ ´Φpxq “ x2, and λ ă 1. Then, (6) simplifies to

β “ c1
pxq ` λϕpxq “ 2p1 ´ λqx.

In addition, the equation for A2 becomes

1 ` λΦpyq “ 1 ´ λy2 “ βy ñ y “
2

β `
a

β2 ` 4λ
“

1

p1 ´ λqx `
a

p1 ´ λq2x2 ` λ
.

Applying these to the equation for A3, we arrive at

x “

ż y

0

ydGpyq “

ż y

0

yd
`

βy ` λy2
˘

“
β

2
y2 `

2λ

3
y3 “

2y

3
´

βp1 ´ βyq

6λ

“
p1 ´ λqx ` 2

a

p1 ´ λq2x2 ` λ

3
´

p1 ´ λqx `
a

p1 ´ λq2x2 ` λ
¯2 .

If λ “ 0 then this equation reduces to 4x2 “ 1, leading to x0 “ 1{2, which is consistent with xg in
our baseline model.

4.4 Risk taking in the presence of exogenous noise

Suppose that in addition to endogenous gambling the contestants face exogenous noise they cannot
control. That is, player i’s output is Yi “ xi ` εi `ηi, where εi is chosen as before, but ηi with zero
mean and absolutely continuous distribution Fη is exogenously given. Let rη, ηs denote its support
(possibly infinite). We will also allow for a general lower bound y for output. Player i’s problem
then becomes to maximize

PtYi ą Yj for all j ‰ iu ´ cpxiq s.t. Yi is a mean-preserving spread of xi ` ηi, Yi ě y a.s.

Based on Lemma 1, the only way gambling can work in a symmetric equilibrium is if Gpyqn´1

is linear in the support of Yi, i.e., Gpyqn´1 “ py´yq{py´yq. The equilibrium effort and y are then
determined as in Proposition 6. Thus, the question is whether or not Gpyq given by Proposition 6
is a mean-preserving spread of xg ` ηi. If the answer is yes, we have a gambling equilibrium as
before.

Proposition 8 Suppose c1p0q “ 0, η is finite, and y ď xg ` η. Then the gambling equilibrium

exists for n large enough.

Proof. It is sufficient to show that for n large enough Yi with distribution Gpyq from Proposition 6
is a mean-preserving spread of xg ` ηi. The latter is distributed with Fηpy ´ xgq. It is, therefore,
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sufficient to prove that for n large enough

ż y

y

Gptqdt ě

ż y

y

Fηpt ´ xgqdt for all y ě y.

Note that y Ñ 8 for n Ñ 8 because c1p0q “ 0. We have

ż y

y

Gptqdt “

ż y

y

ˆ

t ´ y

npxg ´ yq

˙
1

n´1

dt “ npxg ´ yq

ż

y´y

npxg´yq

0

z
1

n´1dz

“ pn ´ 1qpxg ´ yq

ˆ

y ´ y

npxg ´ yq

˙
n

n´1

Ñ y ´ y as n Ñ 8,

and
ż y

y

Fηpt ´ xgqdt “ tFηpt ´ xgq|
y
y ´

ż y

y

tdFηpt ´ xgq “ yFηpy ´ xgq ´

ż y

y

tdFηpt ´ xgq

“ yFηpy ´ xgq ´ Epxg ` η|xg ` η ă yqFηpy ´ xgq

ď yFηpy ´ xgq ´ pxg ` ηqFηpy ´ xgq ď y ´ y.

The inequality is strict for y ą xg ` η because the conditional expectation is then strictly greater
than xg ` η ě y. The result follows.

5 Conclusions

In this paper, we study contests in which agents can strategically choose both effort and risk. This
approach provides a natural connection between two distinct classes of models of contests—the
all-pay contest (or pure-effort) model where performance is determined entirely by effort, and
the noisy rank-order tournament model where performance is determined jointly by effort and
(exogenous) noise. We endogenize the noise by allowing agents to choose arbitrary fair gambles
around their effort, subject to a natural stop-loss constraint.

There are three main results. First, we provide a full characterization of the unique symmetric
equilibrium. The equilibrium always exists, and features pure effort. This is a nice feature com-
pared to the standard Lazear-Rosen model with exogenous noise where a pure strategy equilibrium
only exists when noise is sufficiently dispersed, and under further constraints on the cost function.

Second, we show that the equilibrium effort in the contest with endogenous risk-taking exceeds
the expected effort in the pure-effort contest with the number of agents is sufficiently large, and
agents earn positive rents. Moreover, by modifying the stop-loss constraint on output, it is possible
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to extract the maximum feasible effort from the agents in the gambling contest.
Third, we show that effort in the gambling contest is invariant to prize allocations. This result is

in contrast to both the pure-effort model and the Lazear-Rosen model. In the former, it is shown by
Fang et al. (2020) that under convex costs it is optimal to share the prize equally among all agents
except the one ranked last. In the latter, the optimal allocation of prizes depends on the distribution
of noise (Drugov and Ryvkin, 2020).
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A Omitted Proofs

Proof of Proposition 1.
Suppose player i has chosen his effort xi. Given xi and Gpyqn´1, (??) reduces to

max
GiP∆pR`q

ż

max

"

y

y
, 1

*

dGipyq subject to
ż

ydGipyq “ xi.

This is a familiar linear programming problem in the literature on Bayesian persuasion (Kamenica
and Gentzkow, 2011; Aumann and Maschler, 1995) and strategic risk taking (e.g., Myerson, 1993;
Fang and Noe, 2018; Seel and Strack, 2013), for which the method of concavification can be used
to identify an optimal solution. Since the value function Gpyqn´1 “ minty{y, 1u is concave, it is
straightforward that one optimal distribution is the degenerate one at xi, regardless of the value of
xi. This implies that the player’s maximized payoff is given as follows:

upxiq ” max

"

xi

y
, 1

*

´ cpxiq.
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This function is maximized at x˚,17 implying that x˚ is an individual player’s optimal effort level.
The individual optimality of G follows from a player’s indifference between δx˚ and G, that is,

ż

max

"

y

y
, 1

*

dGpyq “

ż y

0

y

y
dHpyq “

Erys

y
“

x˚

y
“

ż

max

"

y

y
, 1

*

dδx˚ .

In this appendix, we prove that G such that Gpyqn´1 “ minty{y, 1u yields the unique symmet-
ric equilibrium of our gambling model. Specifically, we show that G is the only distribution that
satisfies a necessary condition for symmetric equilibrium.

Let H denote a symmetric equilibrium distribution. Then, H must be a solution to

max
HiP∆pR`q

ż

Hpyq
n´1dHipyq ´ c pEHi

rysq .

This implies that H must be also a solution to

max
HiP∆pR`q

ż

Hpyq
n´1dHipyq s.t.

ż

ydHipyq “ EHrys. (7)

For this second problem, the following result is well known.

Lemma 2 A distribution H˚
i solves (7) if and only if there exists a linear function ϕpyq such that

ϕpyq ě Hpyq
n´1 for all y P R` and ϕpyq “ Hpyq

n´1 whenever y P supppH˚
i q.

Let y1 and y1 denote the lower and the upper bounds of supppHq, respectively. We first show
that y1 “ 0. Suppose y1 ą 0. Clearly, H cannot have an atom at y1: if so, it is a profitable deviation
for a player to marginally move the mass point above y1. Now, consider the linear function ϕpyq in
Lemma 2. It should satisfy ϕpyq ě Hpyqn´1 ě 0 for all y, and ϕpy1q “ 0. The only linear function
that satisfies these properties is ϕpyq “ 0 for all y. This implies Hpyq “ 0 for all y, which clearly
cannot be an equilibrium.

The fact that y1 “ 0, y1 P supppHq, and Lemma 2 together imply that Hpyqn´1 ď ϕpyq “ y{y1.
Now, we show that Hpyqn´1 “ ϕpyq “ y{y1 for all y ď y1. Suppose there exist y1 P r0, y1q and
y2pP py1, y

1s such that py1, y2q X supppHq “ H. Without loss of generality, assume that py1, y2q is
the largest such interval so that y1, y2 P supppHq. This implies that H is flat over ry1, y2q but has

17Given the particular shape of maxtxi{y, 1u and strict monotonicity and convexity of cpxiq, upxiq is maximized
either at x˚ or at y. The latter requires that limyÑy´ u1pyq “ 1{y ´ c1pyq ě 0, which necessarily fails because

1 ě yc1pyq “ nx˚c1pnx˚q ą nx˚c1px˚q “ 1.
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a jump at y2 (so that Hpy2q
n´1 “ ϕpy2q). But, such an atom cannot be sustained in equilibrium,

because a player can marginally move the mass point slightly above y2.
The above result implies that supppHq “ r0, y1s and Hpyqn´1 “ minty{y1, 1u. Given this, by

the same arguments used in the main text, the equilibrium effort x1 satisfies 1{y1 “ c1px1q and

x1
“

ż

ydHpyq “

ż y1

0

yd

ˆ

y

y1

˙
1

n´1

“
1

n ´ 1

ż y1

0

ˆ

y

y1

˙
1

n´1

dy “
y1

n
.

It is then straightforward that H “ G.

Proof of Proposition 3 in the general case.
Consider the ratio xe{xg. Integrating by parts and splitting the integral, obtain:

xe

xg

“
1

xg

ż c´1p1q

0

xdcpxq
1

n´1 “
1

xg

«

xcpxq
1

n´1

ˇ

ˇ

c´1p1q

0
´

ż c´1p1q

0

cpxq
1

n´1dx

ff

“
1

xg

«

c´1
p1q ´

ż c´1p1q

0

cpxq
1

n´1dx

ff

“
1

xg

ż c´1p1q

0

”

1 ´ cpxq
1

n´1

ı

dx

“
1

xg

ż xg

0

”

1 ´ cpxq
1

n´1

ı

dx `
1

xg

ż c´1p1q

xg

”

1 ´ cpxq
1

n´1

ı

dx.

From the mean-value theorem for definite integrals, there exists a ξn P p0, xgq such that the first
term in the last line is equal 1 ´ cpξnq

1
n´1 , which converges to zero for n Ñ 8. The second term

can be bounded as

ż c´1p1q

xg

1 ´ cpxq
1

n´1

xg

dx “

ż c´1p1q

xg

1 ´ cpxq
1

n´1

1
n´1

pn ´ 1qxg

dx ă

ż c´1p1q

xg

´ ln cpxq

pn ´ 1qxg

dx,

where the inequality holds because, for each x P pxg, c
´1p1qq, spαq “ 1 ´ cpxqα is a strictly

concave function of α and hence spαq{α ă s1p0q “ ´ ln cpxq for any α ą 0. Furthermore, using
the definition of xg,

ż c´1p1q

xg

´ ln cpxq

pn ´ 1qxg

dx “
n

n ´ 1

ż c´1p1q

xg

´ ln cpxq

nxg

dx “ ´
n

n ´ 1

ż c´1p1q

xg

c1
pxgq ln cpxqdx. (8)

From the strict convexity of cpxq, the last integral can be bounded above as

´

ż c´1p1q

xg

c1
pxgq ln cpxqdx ă ´

ż c´1p1q

xg

c1
pxq ln cpxqdx “ ´

ż 1

cpxgq

ln z dz ă 1.

Here, the first inequality holds independent of n; moreover, the difference between the two terms
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is decreasing in xg and hence increasing in n:

B

Bxg

«

´

ż c´1p1q

xg

pc1
pxq ´ c1

pxgqq ln cpxqdx

ff

“

ż c´1p1q

xg

c2
pxgq ln cpxqdx ă 0.

Therefore, the limit of the last term in (8) as n Ñ 8 is strictly less than one, which gives the result.
It can also be seen from (8) that, if c1p0q “ 0 and

şc´1p1q

0
ln cpxqdx ă 8 (which holds in many

cases), we have xe{xg Ñ 0 for n Ñ 8.
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