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Abstract

We study how misperceptions of others’ tastes influence beliefs, demand, and prices in a mar-
ket with observational learning. Consumers infer the commonly-valued quality of a good
based on the quantity demanded and price paid by other consumers. When consumers exag-
gerate the degree to which others’ tastes resemble their own, such “taste projection” leads to
erroneous and disparate quality perceptions across consumers (i.e., “quality is in the eye of
the beholder”). In particular, a consumer’s biased estimate of the good’s quality is negatively
related to her own taste. Moreover, consumers’ quality estimates are increasing in the observed
price, even when the price would have no influence on the beliefs of rational consumers. These
biased beliefs result in perceived valuations that exhibit too little dispersion relative to ratio-
nal learning and a demand function that is excessively price sensitive. We then analyze how
a sophisticated monopolist optimally sets prices when facing short-lived taste-projecting con-
sumers. Projection leads to a declining price path: the seller uses an excessively high price
early on to inflate future buyers’ perceptions (e.g., creating “hype”), and then lowers the price
to induce a larger-than-rational share to buy. When consumers can instead time their purchase,
projection causes late buyers to under-appreciate selection effects, thereby exposing them to
systematic disappointment. A final application examines how projection of risk preferences
distorts portfolio choice when learning from asset prices.
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1 Introduction

We often use the popularity of a product to assess its quality. We may naturally expect, for in-
stance, that a new electric car has better performance when more people buy it, that a new health
trend provides greater benefits when more of our friends adopt it, or that an investment has a higher
expected return when our colleagues flock to it. Indeed, a large theoretical and empirical literature
has emphasized how observational learning shapes the adoption of new products, spanning con-
sumer goods, entertainment, insurance plans, agricultural technologies, and financial products.1

But how does social learning operate when people don’t fully appreciate how others’ prefer-
ences differ from their own? In all the examples above, choices are not driven purely by perceptions
of a commonly-valued quality, but also depend on idiosyncratic tastes and motives. For instance,
some consumers driving electric vehicles might have a distinct desire to reduce their carbon foot-
prints; and some people investing in cryptocurrencies might be more risk tolerant than others. Yet,
do consumers and investors properly account for the fact that others’ choices reflect private infor-
mation as well as their tastes? Long-standing literatures in psychology on social projection and the
false-consensus effect, along with mounting evidence from economics, suggest the answer is no. In
particular, people often exaggerate the degree to which others’ tastes are similar to their own (Ross
et al., 1977; Marks and Miller, 1987; Krueger and Clement, 1994; Engelmann and Strobel, 2012;
Orhun and Urminsky, 2013). For example, those with specific tastes for certain consumer products
tend to overestimate how many share these tastes. Such misperceptions also arise when evaluat-
ing others’ risk preferences (Faro and Rottenstreich, 2006), political preferences (Delavande and
Manski, 2012), and taste for effort (Bushong and Gagnon-Bartsch, 2021). Moreover, a recent meta-
analysis (Bursztyn and Yang, 2021) demonstrates that misperceptions of others are widespread in
the field, underlining the importance of further understanding their market implications.

In this paper, we analyze how such “taste projection” distorts consumers’ beliefs, market de-
mand, and prices in a dynamic social-learning environment where consumers’ valuations for a
product have both a common and private component. The common component—the product’s
intrinsic quality—is initially unknown to (some) consumers, who try to infer it from the quantity
demanded by others at a given price. While each consumer knows the private component of their
valuation (i.e., their idiosyncratic taste for the product), they wrongly “project” this onto others:
they exaggerate how similar others’ tastes are to their own. We show that taste projection leads
consumers to systematically mislearn a product’s quality. We characterize how these biased beliefs
depend on an individual’s own taste and the observed price, and how they ultimately shape market
demand. Furthermore, we analyze the optimal pricing strategy of a sophisticated seller who is
aware of consumers’ projection. The seller will use a high-to-low price path to inflate consumers’

1For a review, see Mobius and Rosenblat (2014).
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beliefs, thereby inducing projectors to buy even when they should not. More broadly, we contribute
to a recent literature studying biased social learning among individuals who hold misperceptions of
others (e.g., Gagnon-Bartsch, 2016; Frick et al., 2020; Bohren and Hauser, 2021). While most of
this literature focuses on the convergence of long-run beliefs in settings resembling the canonical
models of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), we instead
examine how taste projection in particular interacts with the market environment (e.g., prices) to
shape biased learning and how this, in turn, affects a seller’s incentives and consumer welfare.

Our implications are particularly relevant for markets where consumers with heterogeneous
tastes actively rely on others’ choices to guide their own—e.g., those with prominent best-seller
lists or a tendency to trend on social media. For instance, consider the health and wellness industry,
where new products—whose quality is ex-ante uncertain and difficult to ascertain—are routinely
introduced; e.g., novel workout equipment, “innovative” fitness classes, or “revolutionary” dietary
regimens. Consumers’ willingness to pay for such products and services is of course influenced by
(perceptions of) their potential health benefits. Yet, consumers might differ in their idiosyncratic
tastes for exercise or a particular diet. For a concrete example, consider Inês and Peter who are
independently contemplating whether to enroll in a fitness program touting some of these new
products. Inês has an active lifestyle and enjoys hiking. Peter, instead, is not very active, and his
physician has encouraged him to get in shape. While they have different tastes for fitness, both
would be more willing to join the program the stronger is their belief in its potential health benefit
(i.e., its “quality”); Peter, however, would need to perceive a larger benefit than Inês.

Suppose that Inês and Peter each see an article reporting the number of people who joined the
program in the past six months. Projection will lead them to draw different inferences about the
program’s potential benefits based on this number because, fixing the true benefit, Inês expects to
see a higher number than Peter. Inês, projecting her love of fitness onto others, will find the take-up
rate disappointingly low; conversely, the number of adopters will look very high to Peter. Hence,
they draw conflicting conclusions despite observing exactly the same signal—inferred quality is
“in the eye of the beholder.” In particular, Inês, who likes exercise, forms a more pessimistic
inference. Taste projection therefore induces consumers with a stronger idiosyncratic taste for a
product to inadvertently be more critical when judging its popularity. By contrast, Peter becomes
too eager to join the program, exaggerating its benefits and potentially over-consuming in various
ways (e.g., enrolling in unnecessary classes or subscribing to an unproven diet plan).

Moreover, because Inês and Peter’s inferences are negatively related to their idiosyncratic taste,
their (perceived) total valuations for the program will be too similar. Although the difference
between these valuations should be driven solely by the difference in their private values, Inês’s
pessimistic inference deflates her total perceived valuation, whereas the opposite holds for Peter’s.
Hence, taste projection is self-fulfilling: because buyers believe that idiosyncratic tastes are less
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dispersed than they actually are, they will draw divergent inferences about the common value in a
way that results in total (perceived) valuations that are indeed less dispersed.

While the direction of Inês’s and Peter’s misperceptions will depend on their specific tastes,
a perhaps more subtle implication of taste projection is that they will each form inferences that
are increasing in the program’s price, irrespective of their taste. Indeed, because projectors under-
estimate the heterogeneity in others’ valuations, they both believe market demand is more elastic
than it really is. Therefore, although they correctly predict the take-up rate to decrease with the
program’s price, they expect to see even fewer patrons than what a rational consumer would pre-
dict as the price increases. To rationalize this higher-than-expected demand, they will conclude the
quality is higher when the price is higher. More broadly, projectors systematically overestimate
the quality of a product when they see others buying it at a price they themselves are not initially
willing to pay: they over-attribute these purchases to positive information rather than differences
in tastes. Hence, projection provides a simple yet novel explanation for why quality perceptions
are often swayed by prices.

The properties of misinference described above create new incentives for a seller that would not
arise under rational learning. First, the fact that perceived quality is increasing in the observed price
introduces a “belief-manipulation effect”: in a dynamic setting, a monopolist will set high prices
early on to inflate future consumers’ beliefs about the value of its product. This holds even when
consumers think the seller does not have an informational advantage, and hence it is not driven by
classical signaling motives. Second, the fact that projectors’ perceived valuations are excessively
similar introduces an “elasticity effect”: the demand of projectors is more elastic than that of
rational agents, and thus a slight reduction in the current price has an enhanced effect on attracting
new consumers. Together, these effects imply that a monopolist’s optimal pricing strategy follows
a declining path. The seller uses high prices in earlier periods to inflate later consumers’ quality
perceptions (i.e., creating “hype”), and then reaps the benefits of such manipulation by lowering
the price to induce adoption among a larger-than-rational share of these consumers.2

We present our model in Section 2. In each period n, a new generation of consumers enters the
market and decides whether or not to adopt a product with an uncertain quality, ω ∈ R, at a price
pn. Each consumer i’s valuation for the product is increasing in both ω and their private value, or
“taste,” ti. Some consumers observe a signal s correlated with ω while others are uninformed and
rely on social learning to estimate ω. In particular, we assume that individuals observe the quantity
demanded and price from the previous round. We focus on a setting with a continuum of consumers
acting in each period, which allows rational observers to perfectly infer their predecessors’ signal.

2In this way, we provide a novel explanation for why advertising high previous prices can be particularly effective
at encouraging consumers to buy at a new lower price. This stands in contrast to other explanations based on salience
(e.g,. Bordalo et al., 2013, 2020) or intrinsic “tastes for bargains” (e.g., Jahedi, 2011; Armstrong and Chen, 2020), and
it arises even when prices do not rationally signal quality (as in, e.g., Bagwell and Riordan, 1991; Taylor, 1999).
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This provides a simple environment to study the effects of taste projection, since any learning
failures arise from projection itself rather than rational frictions to information aggregation.

Our model of taste projection adapts Gagnon-Bartsch et al.’s (2021a) more general model to
our setting. Individuals hold misspecified models about the distribution of tastes: private values are
in fact independently drawn from a distribution F , yet an individual with private value ti mistakes
F for a distribution F̂ (·|ti) that is overly concentrated around his own value, ti. Specifically,
individual i perceives the private value of individual j as t̂j = αti + (1− α) tj; that is, a convex
combination of his own value and individual j’s true value.3 The parameter α measures the extent
of this bias, where α = 0 corresponds to the rational benchmark. We close the model with a
solution concept in which individuals are naive about their own bias and that of others, but are
otherwise rational. Hence, each individual i believes he faces an environment in which all players
agree that private values are distributed according to F̂ (·|ti).

Before analyzing the dynamic model, we begin in Section 3 by studying a static model. The
purpose is twofold. First, it allows us to simply demonstrate comparative statics that are fundamen-
tal to understanding how biased beliefs evolve in the dynamic case. Furthermore, since the static
model can be seen as the steady-state of our dynamic model, this analysis establishes that these
comparative statics are not merely short-run effects, but are also robust steady-state phenomena.
The steady-state analysis reflects the logic of a rational-expectations equilibrium (Grossman, 1976;
Grossman and Stiglitz, 1980), albeit with agents forming diverse and misspecified expectations. In
equilibrium, uninformed agents form beliefs about ω that are consistent with the observed quantity
demanded (given their misspecified models), and this observed demand is in turn consistent with
the adoption decisions of agents holding those beliefs.

As previewed by our example, taste projection has three main effects in this static equilibrium.
First, an agent’s perceived quality is negatively related to his taste. To those with high private
values—who wrongly believe the good is very attractive to others—demand will appear rather
weak. They therefore infer low quality. To those with low private values—who wrongly believe
the good is unattractive to others—demand will appear surprisingly strong. They infer high quality.
Second, each agent’s perceived quality is increasing in the price. The fact that projectors underesti-
mate the heterogeneity in valuations leads to a simple implication central to studying the economics
of taste projection: a projecting agent’s conjectured demand curve is a counter-clockwise rotation
of the true one. As a result, projectors exaggerate the local elasticity in demand. If the price were to
increase, then the quantity demanded would fall by less than what a projector would predict under
the beliefs he formed at the original price. Hence, projectors’ beliefs about quality must increase
to compensate for this less-than-predicted drop in quantity demanded. Third, projecting agents’

3This approach is an interpersonal analogue of Loewenstein, O’Donoghue and Rabin’s (2003) model of in-
trapersonal projection bias in which an individual exaggerates the similarity between his future and current tastes.
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perceived total valuations are less dispersed than under rational learning. Although a buyer with a
high private value (i.e., a “high type”) perceives a greater benefit from adoption than a low type,
the wedge between these perceptions is diminished relative to the rational benchmark.

How would a profit-maximizing monopolist set prices over time to exploit these biases? We
turn to this question in Section 4, where we analyze our dynamic model. As an initial result
building from the intuition above, we show that consumers’ demand overreacts to a price change:
a price cut attracts too many consumers since it moves the margin into the region of types who
overestimate quality, whereas a price hike excludes too many for the opposite reason.

More generally, projection induces an intertemporal link in the seller’s pricing incentives that
is absent under rational inference. In our simple environment, the optimal strategy under rational
learning is to continually charge the static monopoly price. With projection, however, the seller
prefers a decreasing price path. This results from a balancing of the effects described above in
the static model, which analogously emerge in the dynamic case. On the one hand, since demand
overreacts to price changes, undercutting the previous price would attract a magnified mass of con-
sumers in the current period. On the other hand, increasing the current price boosts the perceived
quality of future consumers at the cost of forgoing current sales. The seller’s pricing strategy opti-
mally balances these effects by setting an inflated initial price above the static monopoly price and
then gradually reducing it. High initial prices inflate future consumers beliefs, while also providing
scope to reduce prices over time and hence capitalize on consumers’ overreaction to price cuts.4

Our analysis of optimal pricing first considers the two-period case. There, we show that a high
initial price followed by a low subsequent price is a general feature of our model. We also show
that the seller’s profit is increasing in the degree of projection and discuss how projection affects
consumer welfare. Although the expansion of sales in the second period can shrink the traditional
deadweight loss associated with monopoly pricing, projection can introduce new forms of ineffi-
ciency. Since low types tend to overestimate quality, they are systematically lured into buying even
when they should not. Indeed, the seller’s manipulative pricing scheme induces excessive take-up
among uninformed buyers, consistent with notions of herding or bandwagon effects. Moreover,
when projection is sufficiently strong, even consumers with negative valuations can be induced to
buy the good. We then consider longer horizons, focusing on the particularly tractable case of uni-
formly distributed tastes. There, we show that a declining price path—with an initial price above
the rational monopoly price—emerges for a horizon of any arbitrary length.

4This manipulating role of high initial prices is reminiscent of other signaling strategies discussed in the marketing
literature. For instance, Stock and Balachander (2005) show that a monopolist might choose to make a product scarce
in order to signal its quality to uninformed consumers; similarly, Miklós-Thal and Zhang (2013) argue that in the
early life of a product, “demarketing” strategies that discourage consumers (e.g., limited advertising, understocking
inventory) can raise the product’s perceived quality. Compared to this literature, we emphasize a different mechanism
through which restraining initial sales via high prices can inflate later consumers’ quality perceptions.
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Section 5 considers three extensions of our model. First, we consider a two-period setting with
“long-lived” consumers who can buy in either period, and show that projectors still over-adopt the
good even when the price is fixed. A selection effect naturally emerges, where high types buy early
and uninformed low types delay in order to glean information from initial adopters. Projectors who
delay under-appreciate this selection effect, since they underestimate the taste difference between
early adopters and themselves. Thus, they overestimate quality when observing high initial de-
mand, which causes too many to buy and generates systematic disappointment among those who
do. Empirical studies showing that second-wave consumers tend to display greater dissatisfaction
suggest that this may stem from selection neglect (e.g., Li and Hitt, 2008; Dai et al., 2018); our
model provides a specific mechanism explaining why consumers may under-appreciate these se-
lection effects. Second, we revisit the static equilibrium from Section 3 but allow for multi-unit
demand. Since perceived quality is negatively related to taste, projectors with a strong taste for the
product will under-consume while those with a weak taste will over-consume. Thus, all projectors
experience inefficiencies, and those with more esoteric tastes suffer more. Finally, we show how
these results extend to a setting where agents only observe the price and not others’ actions. We
consider a canonical portfolio-choice problem where traders learn about the expected return of a
risky asset based on its equilibrium price (e.g., Grossman, 1976; Grossman and Stiglitz, 1980) but
project their idiosyncratic taste for risk. Traders who are more risk averse become overly optimistic
about the expected return and hold too much of the asset (relative to the optimal portfolio), while
traders who are less risk averse become overly pessimistic and hold too little.5

Section 6 concludes by discussing some additional applications of our framework. We sus-
pect that taste projection may have important consequences for how people value their information
sources. For instance, suppose that individuals entertain the possibility that others are biased in fa-
vor of a particular option (e.g., a brand or politician), supporting it regardless of their information.
Even when such blind support is absent in reality, projectors are prone to think it exists. For exam-
ple, a projector who realizes that she despises an option will see far too many people supporting it.
To explain this discrepancy, she may come to believe that others’ support stems from some ulterior
motive, neglecting that it may come from mere differences in taste. Such skepticism of others’
motives may lead people to discredit others’ actions, which may shed light on why some factions
are unmoved by others’ actions even when they reveal valuable information.

Related Literature

We contribute to a recent literature that explores how specific behavioral biases, along with more
general forms of model misspecification, interfere with social learning. Much of this literature

5Bastianello and Fontanier (2021) examine other forms of model misspecification in this context.
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examines the convergence of long-run beliefs in environments similar to the sequential “herding”
models of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), identifying
when long-run beliefs may converge on a false state of the world or fail to converge at all. For
instance, Eyster and Rabin (2010), Bohren (2016), and Gagnon-Bartsch and Rabin (2021) examine
how neglecting the redundancy of information in others’ actions can lead society to grow convinced
of a false state. Bohren and Hauser (2021) and Frick et al. (2021) provide frameworks for studying
the convergence of beliefs under a wide range of misspecified models. Closer to the specific error
we study, Frick et al. (2020) shows that when agents share a common misperception of the type
distribution, even small amounts of misspecification can cause incorrect learning almost surely.
Gagnon-Bartsch (2016) considers a simple variant of taste projection with two types who hold
conflicting misperceptions, showing how it can cause different types to grow confident in distinct
states or generate beliefs that perpetually cycle. In contrast, instead of asking whether or not
information aggregates in the long-run, we study the comparative statics of projectors’ erroneous
beliefs in cases where they necessarily mislearn. Moreover, unlike the papers above, we focus on
market outcomes in a context where prices explicitly influence agents’ beliefs, and we examine
how a sophisticated seller would optimally use prices to strategically distort those beliefs.

In this way, we similarly contribute to an IO literature on pricing in the presence of observa-
tional learning, as this literature has largely concentrated on rational inference.6 This literature
primarily considers settings with frictions to information aggregation, analyzing how the seller’s
optimal behavior either alleviates or intensifies these frictions. For instance, Bose et al. (2006,
2008) consider a pure common-value environment with a long-lived monopolist who, in each pe-
riod, sells to an uninformed, short-lived buyer. Buyers learn about the common value based on
the history of prices and their predecessors’ purchase decisions. Information aggregates slowly
because there is a single buyer in each period with a discrete signal, and the monopolist maximizes
profits by setting prices that reveal as much information as possible.7 Using a similar setting,
Parakhonyak and Vikander (2021) show that a monopolist may want to strategically create prod-
uct scarcity in order to trigger a “buying herd.” More similar to our setup, Caminal and Vives
(1996, 1999) consider a model with a continuum of short-lived consumers who are privately but
imperfectly informed about the quality of two competing products. Consumers in a later gener-
ation don’t observe past prices, but try to infer a product’s quality from its market share in the
previous period; the presence of “noisy” traders prevents learning from happening immediately in
their model. Differently from us, because consumers cannot see the previous price, sellers set low
introductory prices to boost sales in an attempt to convince buyers that their quality is high.8

6There is a similar finance literature on sequential trading and social learning; see Welch (1992), Chemmanur
(1993), Avery and Zemsky (1998), and Goldstein and Guembel (2008).

7Bhalla (2013) shows that Bose et al.’s (2008) qualitative results extend to cases with multiple buyers per period.
8More recently, articles incorporating observational learning with consumer search have also emerged; see Kircher
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The literature described above mainly focuses on cases where the seller does not have an infor-
mational advantage over buyers, and we follow in this tradition. However, another related strand
of the IO literature examines how a privately informed seller can signal the quality of its good
through prices and other means. While we do not analyze such signaling, some of our predictions
resemble those from this literature.9 For instance, Bagwell and Riordan (1991) analyze a monopo-
listic market with a mix of informed and uninformed consumers (like us), and show that high and
declining prices can signal higher quality to uninformed consumers when the high-quality seller
has a sufficiently high cost. In contrast, our mechanism generates quality perceptions that are in-
creasing in price even when a seller’s quality is not tightly linked to their costs. Furthermore, since
consumers in their model are rational, the seller’s price beyond the first period is never lower than
the static monopoly price, whereas in our model it can be.10 Taylor (1999) considers a two-period
model with private and common values where a seller is privately informed about the quality of its
house, and short-lived consumers try to learn this quality from its time on the market. The seller’s
optimal price path is declining due to an incentive to signal jam: a higher first-period price sends a
less negative signal when the house is not sold. At a broader level, relative to both strands above,
we differ by considering a setting that neutralizes the informational frictions that impede rational
learning (e.g., incomplete learning, search costs, or classical signaling motives) in order to isolate
how taste projection itself interferes with learning.

Our modeling approach is related to others in which players misperceive the link between
others’ types and behavior (e.g., Eyster and Rabin 2005; Esponda 2008; Jehiel and Koessler 2008;
Madarász 2021). In particular, Madarász (2012) formalizes “information projection” in which
players exaggerate the extent to which their private information is known by others. Our paper
differs from Madarász (2012, 2021) both because we focus on (i) projection of preferences rather
than information and (ii) an environment with observational learning. There is also a small but
growing theoretical literature studying the implications of taste projection and the false-consensus
effect in domains different from ours.11 For instance, Goeree and Grosser (2007) examine how
a false-consensus effect can lead to inefficient election outcomes. Frick et al. (2019) show how
the false-consensus effect may arise when agents neglect the assortative nature of matching when
interacting with others. Gagnon-Bartsch et al. (2021a) study how projection of private values can
lead to overbidding and inefficient allocations in auctions.

and Postlewaite (2008), Hendricks et al. (2012), Mueller-Frank and Pai (2016), and Garcia and Shelegia (2018).
9Although placed in the first strand, Caminal and Vives (1996) consider an extension with signaling.

10The optimal price path with signaling can also be increasing if consumers learn about quality or their idiosyncratic
tastes from repeat purchases, as in Milgrom and Roberts (1986) and Judd and Riordan (1994). In such cases, the seller
may use introductory offers to induce learning and repeat purchases. We focus on a setting without repeat purchases.

11Although we focus on the projection of preferences, the term “false-consensus effect” is also used to describe sit-
uations where people exaggerate the prevalence of their beliefs or actions. For other models capturing these alternative
forms of projection, see Williams (2013), Rubinstein and Salant (2016), Jimenez-Gomez (2019), and Wang (2020).
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2 Model

In this section, we introduce the basic features of the environment we study and present our model
of taste projection. Subsequent sections examine projection in various contexts (e.g., static versus
dynamic settings). We will describe the specific features of those settings in each section, and we
introduce their common core here.

2.1 Environment

Preferences. Agents attempt to learn the commonly-valued quality of a good, denoted by ω ∈ R,
based on others’ purchase decisions. Each individual i’s total valuation for the good derives from
both the common value, ω, and a private value (or “taste”), denoted by ti ∈ T ≡ [t, t] ⊆ R. For
simplicity, we assume individual i’s total valuation for the good is u(ω, ti) = ω + ti; we discuss at
various points how our results extend to more general utility functions. Adopting the good at price
p yields a payoff of u(ω, t) − p, while rejecting it yields a payoff normalized to zero. We allow
T to include values such that some types may have a negative valuation for the good; this lets us
show how projection may lead to inefficient adoption.

Private values are i.i.d. across individuals with a CDF F : T → [0, 1]. We assume that F
admits a smooth, positive density f ≡ F ′ and an increasing hazard rate. In our formulation of
taste projection detailed below, we assume each agent has a misspecified model of F , treating it as
excessively concentrated around his own taste relative to the true distribution.

Actions and Timing. A sequence of consumers decide whether to buy the good. In each period
n ∈ {1, ..., N}, a unit mass of new agents with tastes independently drawn from F enters the
market. They simultaneous choose once-and-for-all whether to buy at price pn ≥ 0 and then exit.
These choices maximize each agent’s expected utility given their subjective beliefs over ω. Let dn
denote the resulting quantity demanded in period n.

Information Structure. Agents begin with a non-degenerate common prior over ω and also
have private information about ω. We primarily focus on a simple signal structure: there is a
single signal in the economy and, in each period, a fraction of agents observe its realization, s ∈
R. Let ω̄(s) ≡ E[ω|s] denote the Bayesian posterior expectation of ω conditional on s and the
common prior. We assume the signal has a continuous CDFG(·|ω) that obeys the (strict) Monotone
Likelihood Ratio Property in ω so that ω̄(s) is strictly increasing in s. Informed agents will thus
take actions based on ω̄(s) and uninformed agents try to infer ω̄(s) from these actions.

We also assume that ω̄(s) has full support on R. This simplifies the analysis by guaranteeing
that projectors will draw a coherent Bayesian inference from any possible market outcome (i.e.,
they will never observe outcomes that their model deems impossible). This signal structure is
consistent, for instance, with the familiar Gaussian structure where the signal and prior are both
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normally distributed. While it is useful to keep that example in mind, our results hold more gener-
ally. Additionally, we assume the signal structure is common knowledge.12

This “single-signal” structure is sufficient to study several features of misinference due to taste
projection, and we therefore focus on it unless explicitly noted otherwise. For sake of robustness,
Appendix A shows that the main effects of projection on beliefs continue to emerge in two richer
structures: (i) “fully heterogeneous signals,” where each agent observes a distinct independent
signal; (ii) “heterogeneous signals across periods,” where all agents acting within each period n
observe a common signal, Sn

iid∼G(·|ω), that is unobserved by agents acting in other periods.
Social Learning. We assume that each Generation n ≥ 2 observes the price and quantity

pair from the previous generation, (pn−1, dn−1). They use this data to infer their predecessors’
beliefs over ω. Since we assume ω̄(s) has full support on R, any observed pair (p, d) is uniquely
rationalized by a feasible value of ω̄(s) whenever d ∈ (0, 1), although the value that rationalizes the
data will differ across projectors with differing misspecified models. Moreover, as we describe in
our specific applications, the fact that a continuum of consumers act in each period implies that the
behavior of a preceding generation perfectly reveals ω̄(s) in the rational equilibrium (via the law
of large numbers).13 Correct social learning is therefore immediate in the rational benchmark of
our setup. Taste projecting agents will nevertheless mislearn: since they have misspecified models,
they will extract biased signal estimates.

Prices. Throughout our analyses, we consider two cases regarding the origin of prices. First,
we sometimes consider exogenously determined prices (e.g., a price-taking seller) and describe
beliefs as a function of those fixed prices. Second, we consider a profit-maximizing monopolist
who sets a price pn at the start of each period n. In the latter case, we assume the seller has
a constant marginal cost normalized to zero and, importantly, is aware of consumers’ projection
bias, setting prices to exploit it. Additionally, the seller observes s prior to period 1 but does not
have any private information about ω beyond that of the informed buyers. Since the settings we
consider always allow rational uninformed agents to extract s from their predecessors’ actions, this
assumption guarantees that the seller and rational agents effectively have symmetric information.14

12We assume individuals have correct perceptions of the signal structure in order to isolate the effects of taste pro-
jection from other biases. In particular, individuals project tastes but not information. Taste projection will, however,
distort an individual’s perception of others’ information.

13This environment is somewhat similar to models of sequential observational learning with common preferences
in which a single agent acts in each period and takes a continuous action (e.g., Lee, 1993; Eyster and Rabin, 2010). In
the rational equilibrium of these models, an agent can perfectly deduce a predecessors’ beliefs based on their action. In
our setup, an individual agent’s action does not reveal their information in the rational equilibrium, but the aggregate
behavior of agents acting in a single period does reveal their collective information.

14As we discuss further below, uninformed agents who do not directly observe s think they can perfectly extract
s form the market outcome they observe, regardless of the seller’s chosen price. Thus, although the seller and some
buyers might have asymmetric information ex ante, buyers expect symmetric information at the interim stage. This
expectation is correct for rational buyers. And projecting buyers who misinfer s still think (albeit wrongly) that they
share common information with the seller at the interim stage.
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In this way, we neutralize classical motives for the seller to use prices as signals about ω, which
allows us to isolate pricing dynamics that arise entirely due to taste projection.

As such, our focus is on agents drawing inference from demand rather than prices per se.
Agents in period n ask themselves what signal s best predicts a quantity demanded equal to dn−1

when the price is pn−1, but do not attempt to draw any inference about s based on the seller’s
particular choice of price. While this assumption is admittedly strong, it helps simplify and focus
our analysis.15 Yet, this assumption does not imply that consumers completely ignore prices when
drawing inference. Indeed, the price is essential for interpreting aggregate demand—conditional
on s, observers reasonably expect fewer sales when pn−1 is higher. Put differently, agents in our
model infer from others’ reaction to prices, rather than the chosen price itself. Additionally, the
environment we consider is conducive to this assumption since agents believe that dn−1 alone is
sufficient to reveal s once they know pn−1, regardless of why pn−1 was chosen.16 And perhaps
most importantly, we suspect that the basic effects of projection on beliefs that we analyze would
continue to hold if projectors drew inferences exclusively based on the realized price; Section 5.3
and Appendix B verify this for some specific cases.

2.2 Taste Projection

Gagnon-Bartsch et al. (2021a) provide a general model of taste projection that is applicable to
a wide range of Bayesian games. Here, we present that model and extend it to our particular
inferential context. Broadly, the model assumes that each agent’s own idiosyncratic taste t has
undue influence on their perceived distribution of others’ tastes: they misperceive F to be F̂ (·|t),
which—relative to the true distribution—overweights the likelihood of values near t. Agents are
also naive about this bias: each agent neglects that they (and others) misperceive the distribution.

First, we briefly review the motivating evidence (for further discussion, see Gagnon-Bartsch
et al., 2021a). Several strands of research suggest that people systematically mispredict others’
preferences. A large literature in psychology studies “social projection” and the “false-consensus
effect”: the tendency for people to perceive their own tastes and attitudes as more common than
they really are. The seminal study by Ross et al. (1977)—along with numerous studies that
followed—find a positive correlation between subjects’ own stated preferences and their estimates

15We are not unique in this approach. As noted in our discussion of the related literature, most existing papers
on pricing in markets with observational learning either abstract from cases in which the seller uses prices to signal
private information or impose other simplifying assumptions.

16As emphasized by Gagnon-Bartsch et al. (2021b), subjectively rational inattention (with respect to an agent’s
misspecified model) may lead an agent to “channel his attention” toward seemingly sufficient data to update his beliefs,
while forgoing careful attention to other aspects of the data (e.g., pricing strategy). Indeed, when the seller’s cost is
subject to noise that is unobserved by buyers—and hence the seller’s strategy cannot perfectly reveal her information—
then our results are “attentionally stable” in the sense of Gagnon-Bartsch et al. (2021b): under their solution concept,
an agent in our model will not confront data that deems his misspecified model as false relative to the true model.
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of others’ preferences across many domains (e.g., art, sports, wine, consumer products, politics,
risk).17 While this correlation may be rational when there is uncertainty about others’ preferences
(Dawes, 1989, 1990; Prelec, 2004), later studies suggest that these perceptions reflect a system-
atic bias, whereby subjects weight their own preference too heavily relative to information about
others’ preferences when making predictions about others (e.g., Krueger and Clement, 1994). In
incentivized experiments, Engelmann and Strobel (2012) and Ambuehl et al. (2021) similarly find
that a false-consensus bias remains if subjects must exert minimal effort to view information about
others’ choices. Preference misperceptions therefore appear robust even in settings with ample op-
portunity to observe others, where rational explanations due to limited information are tenuous.18

There is also evidence that people project their transient preference states onto others.19 For
instance, Van Boven and Loewenstein (2003) find that subjects asked to predict whether others
would prefer food or water made predictions that were strongly biased in the direction of their own
exercise-induced thirst. Bushong and Gagnon-Bartsch (2021) show that workers in a real-effort
experiment project their sense of fatigue onto others when predicting others’ willingness to work.
Additionally, Van Boven et al. (2000) and Van Boven et al. (2003) show that sellers who experience
an endowment effect project their high valuation of a good onto the valuations of potential buyers,
causing sellers to set inefficiently high prices. Our model captures a similar intuition, yet we focus
on buyers projecting their own valuations onto other buyers when learning from their actions.

Our model of taste projection channels Loewenstein et al.’s (2003) model of intrapersonal
projection bias by assuming that each agent i perceives the private value of any other agent j’s
as closer to his own than it really is. For simplicity, we take a convex-combination approach: i
believes j’s private value is t̂j(ti) ≡ αti + (1−α)tj for some α ∈ [0, 1). The parameter α captures
the “degree of projection”: α = 0 is the rational benchmark, while α → 1 represents the extreme
case where an agent believes that others share his exact taste. For tractability, we assume the degree
of projection is identical across agents.

Perceptions of the Taste Distribution. The convex-combination specification above implies that

17Marks and Miller (1987) document the false-consensus effect in 45 studies published in the decade following
Ross et al. (1977), and Mullen et al. (1985) find robust evidence of the effect in a large meta-study. More recently,
Bursztyn and Yang (2021) find that correlations consistent with the false-consensus effect are widespread in a meta-
analysis of economics field studies. Evidence on the false-consensus effect also spans a broad range of domains,
including political preferences (e.g., Brown 1982), preferences over income redistribution (e.g., Cruces et al. 2013),
and risk preferences (e.g., Faro and Rottenstreich 2006).

18Delavande and Manski (2012) show that survey respondents demonstrate a false-consensus bias with respect to
preferences over political candidates in both the 2008 U.S. presidential election and 2010 U.S. congressional election.
Moreover, respondents continue to exaggerate the similarity between their own and others’ preferences even after the
release of poll results, further indicating that rigidity of (mis)perceptions despite abundant contrary information.

19This represents an interpersonal analogue of intrapersonal projection bias, whereby people exaggerate the degree
to which their future tastes will resemble their current tastes (Loewenstein et al., 2003). Several recent studies within
economics document such a bias (see, e.g., Conlin et al., 2007; Simonsohn, 2010; Busse et al., 2015; Chang et al.,
2018; Augenblick and Rabin, 2019).
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agent i’s perception of others’ private values is described by the random variable

T̂ (ti) ≡ αti + (1− α)T, (1)

where T ∼ F is the true random variable describing private values. Hence, each agent i perceives
a distribution of tastes that, relative to reality, is overly concentrated around his own taste, ti.20

This formulation of projection pins down the perceived distributions held by projecting agents,
{F̂ (·|t)}t∈T , in terms of the true distribution, F , and the projection parameter, α. Each agent
perceives a distribution with the same shape as F , but with the probability mass compressed around
his own value. The support of this distribution is also compressed when T is bounded: Equation
(1) implies that an agent with type t has a perceived support of T̂ (t) ≡ [t(t), t(t)] ⊂ T , where
t(t) ≡ αt+ (1− α)t and t(t) ≡ αt+ (1− α)t.21 Moreover, this type’s perceived CDF is

F̂ (x|t) = Pr
(
T̂ (t) ≤ x

)
=


0 if x < t(t)

F
(
x−αt
1−α

)
if x ∈ [t(t), t(t)]

1 if x > t(t).

(2)

These perceived distributions inherit our assumptions on F : each F̂ (·|t) admits a smooth, positive
density and an increasing hazard rate.22 Going forward, let Ê[·|t] denote expectations with respect
to type t’s model, F̂ (·|t), and let E[·] denote expectations with respect to the true distribution, F .

As described in Gagnon-Bartsch et al. (2021a), the family of perceived distributions exhibits
several intuitive properties which will be useful for our analysis.

Observation 1. Consider a projecting agent with an arbitrary private value t ∈ T .

1. Self-Centered Mean: The agent believes the mean private value is Ê[T |t] = αt+(1−α)E[T ].

2. Underestimated Variance: The agent believes the variance in private values is (1−α)2Var[T ].

20Gagnon-Bartsch et al. (2021a) discusses how this approach naturally extends to cases where players are not
symmetric—and thus values are not identically distributed—and to cases where values are correlated. Since we focus
on settings with i.i.d. types, we forgo these elaborations.

21Our results do not hinge on misperceptions of the support per se. All of our qualitative results would hold with
perceived distributions that are approximately the same as Equation (1), yet slightly modified to have support T . For
instance, an agent with private value t could believe that others’ private values are drawn from T̂ (ti) with probability
1 − ε, and from T̃ ∼ U(t, t) with probability ε. For ε sufficiently small, this distribution has the same support as the
true one, yet leads to the same qualitative conclusions delivered by our simpler approach.

22We similarly denote type t’s perceived density of valuations by f̂(·|t), which is obtained by differentiating (2):

f̂(x|t) =

(
1

1− α

)
f

(
x− αt
1− α

)
for x ∈ T̂ (t).
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3. Ordered Misperceptions: The agent’s perceived distribution first-order stochastically domi-

nates (FOSD) that of any projecting agent with private value t′ < t.

4. Rotation Property: The agent’s perceived distribution is a counterclockwise rotation of the

true distribution: F̂ (x|t) < F (x) if x < t; F̂ (x|t) > F (x) if x > t; and F̂ (t|t) = F (t).

To give an example, suppose that in reality T ∼ U(t, t). Our model implies that an agent with
private value t still thinks T is uniform, but compressed around t; namely, T̂ (t) ∼ U(αt + (1 −
α)t, αti+(1−α)t). For a visual example, Figure 1 considers normally-distributed values and shows
the perceived CDFs and PDFs of two agents with different tastes. The perceived CDF of the high-
value agent first-order stochastically dominates that of the low-value agent, and both perceived
distributions are less dispersed than the true one. Furthermore, the perceived distributions are
counter-clockwise rotations of F , and the degree of this rotation will increase with α.

(a) Perceived CDFs for various t’s (b) Perceived PDFs for various t’s

Figure 1: Perceived CDFs and PDFs of a bidder with a below-average valuation, tL, and an above-
average valuation, tH .

1

Figure 1: Perceived CDFs and PDFs of agent’s with private values tL and tH > tL.

Higher-Order Beliefs. We assume each projector is naive about his bias: he neglects that he
and others mispredict the distribution of tastes and therefore fails to appreciate that others form
discrepant perceptions of this distribution. An agent with private value t thus believes that (i) all
others think that private values are distributed according to F̂ (·|t), and (ii) this mutual perception
is common knowledge. In essence, people imagine they are playing a game with common knowl-
edge of the environment when in fact perceptions are heterogeneous across players. Our naivete
assumption is motivated by the idea that people who are ignorant about their own projection bias
are likely not carefully attending to others’ projection bias.23 Naivete differentiates our model

23Although studies on the false-consensus effect rarely elicit second-order beliefs, the few that do, e.g. Egan et al.
(2014), find that people greatly overestimate how many share their second-order beliefs, which suggests naivete. Of
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from rational models in which an agent’s own taste influences his beliefs about others’ tastes; e.g.,
correlated private values or uncertainty about F . However, as detailed in Gagnon-Bartsch et al.
(2021a), our framework naturally extends to these settings as well: in such cases, a projector is
aware of heterogeneous priors, but does not fully appreciate the dispersion in those priors.

Solution Concept. Aside from misperceptions about F (and about others’ misperceptions of
F ), we assume projecting agents are otherwise rational and believe their opponents are rational.
Each player maximizes his expected payoff according to his distorted beliefs and the presumption
that others share his misspecified model. Therefore, each Player i plays a BNE strategy of the
“perceived game” in which F̂ (·|ti) is indeed the commonly-known taste distribution. We call the
resulting profile of strategies a Naive Bayesian Equilibrium (NBE).

Our application of this concept slightly modifies the definition in Gagnon-Bartsch et al. (2021a)
due to differences in the environment. We first present the formalism from Gagnon-Bartsch et al.
(2021a) applied to a symmetric game to elucidate how we adapt it. Suppose the true symmetric
game under consideration is Γ with an action spaceA ⊆ R. Let Γ(F̂ ) denote that same game when
the type distribution is F̂ instead of F ; all other elements of Γ

(
F̂
)

are identical to Γ. A player with
type t thinks the game is Γ

(
F̂ (·|t)

)
and presumes that players will follow a BNE of Γ

(
F̂ (·|t)

)
. Let

σ̃(·|t) denote a symmetric pure strategy profile within the perceived game Γ(F̂ (·|t)).

Definition 1. A symmetric strategy profile σ̂ : T → A is a symmetric Naive Bayesian Equilibrium

(NBE) of Γ if, for all t ∈ T , there exists a symmetric strategy profile σ̃(·|t) : T̂ (t) → A that is a

BNE of Γ
(
F̂ (·|t)

)
and σ̂(t) = σ̃(t|t).

To provide some intuition, each player with taste t introspects about others’ behavior within his
perceived game, and this process leads him to a conjectured BNE strategy profile, σ̃(·|t), of that
game.24 He then follows the strategy prescribed by this conjectured equilibrium; i.e., he takes ac-
tion σ̃(t|t). A NBE is the strategy profile that emerges when each player engages in this reasoning.

In our setting, new agents enter each period and decide whether to buy after observing their
predecessors’ choices. Importantly, an agent’s action has no direct effect on the payoff of any other
agent, aside from the information it reveals. As such, a full equilibrium concept is not needed to
close our model—a concept describing how individuals best respond to inferences from others’
behavior is sufficient. We assume that players form these inferences according to a NBE. Each ob-
server with taste t thinks the sequence of generations is playing a BNE in which F̂ (·|t) is common
knowledge. Thus, any player i in Generation n ≥ 2 thinks that each player in any previous Gener-
ation k < n took the action that maximized her expected utility, where that expectation was with

course, our assumption of complete naivete is likely an oversimplification; in the domain of information projection,
Danz et al. (2018) find evidence of partial naivete.

24Because F̂ (·|t) inherits our assumptions on F , existence of such a BNE in the perceived game Γ(F̂ (·|t)) follows
from the existence of a BNE in the original game Γ.
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respect to i’s erroneous model (due to naivete). Player i consequently thinks that the behavior he
observes, dn−1, represents the aggregate behavior of a generation with tastes distributed according
to F̂ (·|ti) who best respond to the beliefs they formed under i’s model given their information.

Note that a BNE strategy in this setting is just a map σ from (t, ω̂, p) to a binary purchase
decision, where ω̂ is the agent’s expectation of ω and p is the price. A projecting player correctly
understands another player’s strategy conditional on (t, ω̂, p). However, the aggregate behavior
that the projecting player observes depends on the distribution of t and ω̂ in the market. He thus
misinterprets aggregate behavior due to two mistakes about these distributions: (i) he misperceives
the distribution of types, t, acting in the market; and (ii) he mispredicts others’ quality expectations,
ω̂, since he neglects that those with different types employ inferential strategies different from his.

3 Static Case

We begin by showing how taste projection distorts beliefs in a static model, which can be inter-
preted as the steady-state equilibrium of the dynamic model we consider in the next section. This
analysis allows us to establish a few key implications of mislearning due to taste projection before
moving to the more complex dynamic setting; it also demonstrates that the comparative statics
that arise in the dynamic context robustly emerge in the steady-state as well. Namely, an agent’s
perceived quality is (i) decreasing in his private taste, and (ii) increasing in the price. As a further
implication, the perceived total valuations of agents in equilibrium are excessively similar to one
another, leading to a market demand that would overreact to price changes.

The setup mirrors the environment from Section 2.1. A continuum of potential buyers with unit
mass face a fixed price p. Each agent’s total valuation for the good is u(ω, t) = ω+ t (although our
results here apply more generally).25 A fraction λ of the agents privately observe the realization of
S ∼ G(·|ω) and the remaining fraction 1−λ do not. The “uninformed agents”—those who do not
observe the signal—attempt to extract this information from the equilibrium level of demand.

3.1 Steady-State Equilibrium and Comparative Statics on Perceptions

The steady-state equilibrium follows a logic similar to a rational-expectations equilibrium (e.g.,
Grossman, 1976; Grossman and Stiglitz, 1980), except agents wrongly use their misspecified mod-
els to extract signals. More specifically, suppose the fraction of agents who buy is d ∈ [0, 1]. Each
uninformed agent follows an inference rule that maps d into an expectation over ω, and then buys
the good if their expected valuation given this expectation exceeds p. In equilibrium, agents’ infer-
ences about ω must be consistent with the observed quantity demanded, and this quantity must in

25Our proofs of Propositions 1 and 2 in Appendix C establish these results for more general utility functions.
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turn be consistent with agents’ inferences.
We now derive the equilibrium more concretely. Informed agents base their buying decisions

entirely on s, as they know there is nothing more to learn. Thus, an informed agent with taste t buys
if ω̄(s) + t ≥ p, and the demand among informed agents is DI(p; ω̄(s)) ≡ Pr [ω̄(s) + T ≥ p] =

1− F (p− ω̄(s)). Reflecting our interest in states where consumers should rationally take hetero-
geneous actions, we say that the pair (p, s) admits interior demand when DI(p; ω̄(s)) ∈ (0, 1).

Uninformed agents infer ω̄(s) from the aggregate quantity demanded, d. To build intuition, we
first describe agents’ inferences in the rational benchmark. Let ω̂(d) denote the inferred value of
ω̄(s) upon observing d. Demand among the uninformed is thus Pr[ω̂(d) + T ≥ p] = 1 − F (p −
ω̂(d)), and the total demand is

d = λ ·
(
1− F

(
p− ω̄(s)

))︸ ︷︷ ︸
Demand among the informed

+(1− λ) ·
(
1− F

(
p− ω̂(d)

))︸ ︷︷ ︸
Demand among the uninformed

. (3)

We require that ω̂(d) is Bayes-rational given an agent’s model. Hence, in the rational benchmark—
where players share common knowledge of F—the unique symmetric inference rule is ω̂(d) = p−
F−1(1− d). When following this rule, the observed quantity demanded d is such that uninformed
agents infer ω̂(d) = ω̄(s) and hence mimic the buying decisions of the informed agents. This
follows from the fact that, in equilibrium, d reveals the marginal type. For instance, if 30% of the
market buys at p, then the marginal buyer has a private value at the 70th percentile of F . Thus,
rational uninformed agents who observe d simply choose to buy if their taste is above the 70th

percentile and decline otherwise. This strategy leads uninformed buyers to act exactly as they
would if they too were informed.

This strategy of identifying others’ information off of the inferred marginal type leads pro-
jectors astray since their distorted perceptions of F cause them to misinfer the marginal valua-
tion. More specifically, a projecting agent thinks the market is in the rational equilibrium de-
scribed above, and draws inferences following that logic. They do so, however, using their mis-
specificed model. A buyer with taste ti thinks the demand function among informed agents is
D̂I(p; ω̄(s)|ti) ≡ 1− F̂

(
p− ω̄(s)|ti

)
. Furthermore, naivete about projecting implies that he thinks

others share his perception of F—and hence of the demand function—and thus he thinks that oth-
ers will draw the same inference from the quantity demanded as him. Thus, an agent with taste ti
thinks the rational symmetric inference rule is ω̂(d|ti) and that, in equilibrium, ω̂(d|ti) must satisfy

d = λ ·
(

1− F̂
(
p− ω̄(s)|ti

))
︸ ︷︷ ︸

Perceived demand among the informed

+(1− λ) ·
(

1− F̂
(
p− ω̂(d|ti)|ti

))
︸ ︷︷ ︸

Perceived demand among the uninformed

. (4)
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An agent with taste ti therefore comes to believe the value of ω̄(s) is

ω̂(d|ti) = p− F̂−1(1− d|ti).26 (5)

This inferential strategy would correctly extract others’ information if agent i’s misspecified model
were correct—that is, if it were indeed true that T ∼ F̂ (·|ti) and that agents shared this belief.
Furthermore, F̂−1(1 − d|ti) → F−1(1 − d) for all ti as α → 0, and hence each agent’s inference
collapses to the common rational inference as projection vanishes.

Notice that the misinference described above involves two distinct errors. One stems from an
error in first-order beliefs: agent i’s conjectured equilibrium condition (Equation 4) wrongly posits
that tastes are distributed according to F̂ (·|ti) instead of F . Additionally, due to naivete, agent i’s
erroneous second-order beliefs cause him to think others draw the same inference as him, ω̂(d|ti),
since he neglects that others employ discrepant models.

In truth, the demand among uninformed agents arises from each type of agent acting on their
distinct equilibrium inference. The equilibrium quantity demanded is then the value of d solving

d = λ ·DI (p; ω̄(s)) + (1− λ) · Pr[ω̂(d|T ) + T ≥ p]︸ ︷︷ ︸
Demand from Uninformed Agents

, (6)

where ω̂(d|t) is given by (5) for each t ∈ T . This equilibrium quantity, call it d∗, pins down the
profile of agents’ perceptions of ω̄(s). We denote this profile by ω̂(t); that is, ω̂(t) = ω̂(d∗|t). The
following proposition establishes that a unique equilibrium exists whenever (p, s) admits interior
demand and characterizes two central properties of misinference under taste projection.27

Proposition 1. Suppose λ ∈ (0, 1) and consider (p, s) that admits interior demand. For any α > 0,

there exists a unique equilibrium profile of beliefs, and it has the following properties:

1. ω̂(t) is strictly decreasing in t. Moreover, there exists an interior type t̃ such that agents with

t > t̃ underestimate ω while those with t < t̃ overestimate ω.

2. For each type t ∈ T , the perception ω̂(t) is strictly increasing in p.

Part 1 of Proposition 1 establishes that quality perceptions are inversely related to tastes. If
agent i has a high private taste, he expects that others do too and exaggerates the fraction of people
who would buy at price p and belief ω̄(s). Accordingly, the demand he observes at price p is
weaker than he would expect from consumers with belief ω̄(s), and he rationalizes this lower-
than-expected demand by inferring that the signal is lower than it truly is. Conversely, if agent i

26Since agents with the same taste have the same model of others’ preferences, they will make identical inferences.
27Appendix A shows that these properties extend to richer signal structures.
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has a low private taste, then he infers that the signal is higher than it truly is. In other words, the
interpretation of a good’s popularity is in the eye of the beholder.

Where is the divide between types who overestimate quality and those who underestimate it?
As noted above, inference in this setting stems from identifying the valuation of the marginal con-
sumer. The nature of projectors’ misinference can thus be understood from how they misidentify
the marginal type. Suppose that in equilibrium a fraction z of consumers turn down the good.
The marginal type thus has a private value t∗ at the zth percentile of the taste distribution. An
uninformed consumer tries to deduce t∗ since this would reveal ω̄(s) via the indifference condition
t∗ = p − ω̄(s). However, a projector misperceives the private value at each percentile other than
his own. To see this, let t̂(z|ti) be the perceived type at the zth percentile according to an agent
with taste ti, and let t∗(z) denote the true type. From (2), this value solves

z = F̂ (t̂(z|ti)|ti) = F

(
t̂(z|ti)− αti

1− α

)
⇒ t̂(z|ti) = αti + (1− α)t∗(z). (7)

Reflecting the idea that projectors think others’ values are compressed around their own, type ti’s
perception of the type at the zth percentile is shifted toward his own. This recasts the intuition
from above: those with high private values overestimate the marginal type, and thus underestimate
the good’s quality; those with low private values do the opposite. Furthermore, this means that
a projector who is at the zth percentile himself—who has a taste matching that of the informed
marginal type—is the unique type who infers ω̄(s) correctly. To summarize: (i) ω̂(t∗) = ω̄(s)

where t∗ = p − ω̄(s) is the rational marginal type; (ii) ω̂(t) < ω̄(s) for all agents with t > t∗;
and (iii) ω̂(t) > ω̄(s) for all agents with t < t∗. It is worth nothing that, in equilibrium, agents’
perceived total valuations, ω̂(t) + t, are still increasing in t even though ω̂(t) is decreasing in t; we
return to this point in Proposition 2.

Part 2 of Proposition 1 shows that agents form higher perceptions of the common value when p
is higher, irrespective of their private taste. This stems from the fact that projectors underestimate
the heterogeneity in others’ private values. A projector therefore underestimates the fraction of
types who would remain in the market at a higher price. Thus, if the price were to increase,
a projector would see more remain than expected. To rationalize this discrepancy, a projector
must infer a higher quality than he would have at the original, lower price. Figure 2 depicts
this intuition. First, note that a projector’s inferred quality ω̂ is such that their perceived demand
function given ω̂, D̂(·; ω̂|t), passes through the observed outcome, (d, p). As the price increases
from p′ to p′′, the observed quantity demanded adjusts along the true demand curve, D(·; ω̄(s)).
The new quantity, however, is inconsistent with the projectors’ demand curve that rationalized the
outcome at p′: since a projector underestimates heterogeneity, their perceived demand curve is a
counter-clockwise rotation of D(·; ω̄(s)) (see Johnson and Myatt, 2006) and is thus more price
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Figure 2: True and Perceived Equilibrium Demand Functions.

elastic. Hence, to rationalize the observed demand at price p′′, the projector will form a higher
expectation of ω, consistent with an outward shift of his perceived demand curve.

Another intuition for this result comes from the discussion above about identifying the marginal
type. The farther a type is from the margin, the more distorted is his perception of the marginal
type. Thus, a high type who is above the margin at price p will be closer to the margin after a small
price increase. Since this high type originally underestimates ω, he will underestimate ω by less if
the price increases. A similar logic holds for those below the margin at price p: they will be farther
from the margin after a price increase, and hence they will subsequently overestimate ω by more.
In other words, the higher is the true marginal type, the higher is each projector’s perception of ω.

While the results of Proposition 1 hold more generally, they are particularly transparent when
u(ω, t) = ω + t.28 In this case,

ω̂(t) = (1− α)ω̄(s) + α(p− t). (8)

The degree of projection, α, drives both the positive distortionary effect of p and the negative
distortionary effect of an individual’s taste. Furthermore, an uninformed agent’s perceived total

value of the good is ω̂(t) + t = (1 − α)(ω̄(s) + t) + αp. Thus, as α increases, a projector’s
idiosyncratic taste t has less influence on their perceived valuation. Importantly, this implies that

28In addition to holding for more general utility functions, these results hold for additional signal structures as well.
We discuss this in more detail in Appendix A.
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the perceived values among uninformed agents exhibit less variation than they would under rational
inference.

Proposition 2. Suppose λ ∈ (0, 1) and consider (p, s) that admits interior demand. For any α > 0,

the (mis)perceived valuations of agents in the steady-state have diminished variance relative to the

rational benchmark.

Proposition 2 reveals a sense in which taste projection is self-fulfilling: when agents initially
believe that idiosyncratic tastes are more similar than they really are, their distorted inferences lead
to perceived valuations that are, in fact, more similar than they ought to be. In other words, the
agents’ initial misperception of the environment generates data that confirms that misperception.

This result also suggests caution when measuring heterogeneity in consumers’ preferences.
When social learning shapes consumers’ valuations, their stated willingness to pay will underes-
timate the true heterogeneity in valuations if they suffer from projection bias. Furthermore, mea-
suring the degree of taste projection in markets must also account for this endogeneity problem:
while it may appear that there is low variance in valuations and that consumers correctly believe
that there is low variance, the low apparent variance in valuations may be caused by consumers’
erroneous beliefs about others and the distortionary effect they have on learning.

Proposition 2 additionally implies that demand among misinformed consumers will overreact
in the short run to a change in price. That is, if consumers use their perceptions of ω̂(t) formed in
an equilibrium with price p to decide whether they should buy at a new price p′, then the demand
response to this price change will exceed the rational benchmark. For an intuition, recall that pro-
jecting consumers who are above the margin at price p underestimate ω. Thus, relative to rational
consumers, they are less willing to continue buying after a price increase. Similarly, projecting
consumers who are initially below the margin overestimate ω, and thus they are too willing to buy
after a price reduction. We return to this point when analyzing dynamic pricing (Section 4).

3.2 Optimal Monopoly Pricing

Taste projection in this setting does not distort the quantity demanded: in equilibrium, the same set
of consumers adopt the good regardless of whether they are rational or suffer from taste projection.
As noted above, this happens because the type with a taste matching that of the rational marginal
type learns correctly and is therefore still marginal under projection. Thus, even though projection
causes almost all types to mislearn ω, a profit-maximizing monopolist in this market would set the
rational monopoly price regardless of whether she faces rational consumers or taste projectors.

The reason why projection does not affect behavior here is an artifact of the particular setting.
Although this setting is ideal for developing intuitions on why and how projection distorts beliefs,
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the following sections show that relaxing particular features will cause biased beliefs to directly
influence market outcomes. Namely, this happens with dynamic pricing or multi-unit demand.

4 Dynamic Case

We now turn to the dynamic setup introduced in Section 2. Section 4.1 first presents some prelim-
inary observations describing how beliefs and aggregate behavior evolve under an arbitrary price
path. Section 4.2 then analyzes dynamic monopoly pricing. Although we consider a setting where
the optimal dynamic price is constant under rational learning, projection will induce an optimal
price path that starts higher than the rational benchmark and declines over time.

Our dynamic setup closely mirrors the static model. In each period n = 1, 2, . . . , N , a unit mass
of new consumers with tastes independently drawn from F enters the market. Each consumer in
Generation n makes a once-and-for-all decision whether to adopt the good at price pn and then
exits; dn denotes the fraction of these consumers who adopt. In each generation n ≥ 2, (i) all
individuals observe the price and aggregate demand from the previous generation, (pn−1, dn−1),
and (ii) a fraction λ ≤ 1 privately observe s. Thus, 1−λ uninformed consumers in each generation
n ≥ 2 engage in social learning while the informed consumers simply follow the signal.

In period 1, consumers must make decisions based solely on their private information. To
simplify matters, we assume all consumers in period 1 observe s. There are two interpretations of
this assumption: (i) early consumers have greater access to information than later consumers (e.g.,
initial advertising or “hands-on” promotions spread information more widely early on); (ii) the
market begins in the steady-state equilibrium derived in Section 3. Under the second interpretation,
our results here describe the short-run dynamics of beliefs and behavior when price changes move
the market out of the steady state. This assumption also simplifies the analysis by ensuring that the
seller does not have an informational advantage over buyers, thereby neutralizing any incentive for
the seller to use prices to signal quality (see the discussion at the end of Section 2.1).29

Rational learning is straightforward. Since a continuum of agents act in each period, the aggre-
gate demand from the previous period perfectly reveals the signal when there is common knowl-
edge of F (and of rationality). While agents learn immediately in rational benchmark, projectors
do not: they wrongly extract the signal as if it were common knowledge that T ∼ F̂ (·|ti).

29While the assumption that all consumers in Generation 1 are privately informed simplifies the analysis in various
ways, it does not significantly influence the results. For instance, if a fraction λ < 1 of consumers observe s in each
period n = 1, 2, . . . and face a fixed price, then the environment corresponds to the dynamic analog of the static model
in Section 3: as n→∞, beliefs and behavior converge to the steady-state values described in Section 3.
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4.1 Preliminary Observations

We first describe how beliefs evolve under an arbitrary price path. We begin by characterizing the
beliefs and behavior of uninformed consumers in period 2 upon observing (p1, d1).

In period 1, aggregate demand is equal to the rational benchmark: d1 = DI(p1; ω̄(s)) =

1−F (p1− ω̄(s)).30 In period 2, an individual with taste t thinks that when buyers in period 1 have
expectations equal to ω̂, their demand is

D̂I(p1; ω̂|t) = 1− F̂ (p1 − ω̂|t) = 1− F
(
p1 − ω̂ − αt

1− α

)
. (9)

This individual will then infer a value of ω̂ that solves D̂(p1; ω̂|t) = d1. Denoting this value by
ω̂2(t), the previous condition yields

ω̂2(t) = (1− α)ω̄(s) + α(p1 − t). (10)

Notice that the misinferences among observers in this dynamic context exhibit the same steady-
state properties described in Propositions 1 and 2 from the static case, above. Indeed, (10) exactly
matches the steady-state perceptions derived in Equation (8). These perceptions are decreasing in
an observer’s taste, increasing in the price, and give rise to perceived total valuations that exhibit
too little heterogeneity relative to the rational benchmark.

Building on that final point, we can show that the demand function of uninformed types in
period 2 is locally more elastic with respect to p2 than the rational one (Johnson and Myatt, 2006).
More specifically, it is a counter-clockwise rotation of the demand function of informed types,
and the rotation point is the market outcome from the previous period, (p1, d1). Notice that if we
let ω̄2 ≡ (1 − α)ω̄(s) + αp1 denote the “taste-independent” (mis)perception of ω̄(s) among con-
sumers in period 2, then (10) implies that each uninformed consumer i’s perceived total valuation
is u (ω̂2(ti), ti) = ω̄2 + (1− α)ti. The demand among uninformed consumers in period 2 is thus

DU(p2; ω̄2) ≡ Pr [u (ω̂2(T ), T ) ≥ p2] = 1− F
(
p2 − ω̄2

1− α

)
. (11)

By contrast, under rational inference, this demand would match that of informed consumers; i.e.,
DI(p2; ω̄(s)) = 1− F (p2 − ω̄(s)). It is clear that α > 0 implies that DU(p2; ω̄2) is more sensitive
to p2 than demand among rational observers with those same beliefs (see Figure 3). The rationale
builds from intuitions developed in the static case: in period 2, perceptions of ω̄(s) are declining in
consumers’ private values, and the buyer with a private value equal to that of the marginal type from
period 1, denoted t∗1, is the unique uninformed type who infers ω̄(s) correctly. Those with private

30This follows from our assumption that all consumers in period 1 are informed.
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values above t∗1 see a weaker demand in period 1 than anticipated in state ω̄(s) and consequently
underestimate ω. If p2 > p1, then only those types with overly pessimistic beliefs will be served in
period 2, and the quantity demanded will thus fall below the rational benchmark at p2. In contrast,
those with t < t∗1 see a stronger demand than anticipated in state ω̄(s) and overestimate ω. If
p2 < p1, then those with overly optimistic beliefs will be served—the marginal type will be among
this contingent—and hence the quantity demanded will exceed the rational benchmark.

p

d2

DI(p2; ω̄(s))

DU(p2; ω̄2)

p1

d1

Figure 3: Demand Functions of the Informed and Uninformed in Period 2.

Now we analyze how beliefs and aggregate behavior evolve over time. Generation 3 forms
their quality expectations based on the quantity demanded in period 2, which is

d2 = D(p2; ω̄2; ω̄(s)) ≡ λDI(p2; ω̄(s)) + (1− λ)DU(p2; ω̄2). (12)

While misinference among Generation 2 stemmed directly from misunderstanding others’ tastes
(i.e., an error in first-order beliefs), the misinference among Generation 3 also includes a “social
misinference” effect stemming from naivete about others’ projection. Namely, individuals neglect
that their predecessors failed to reach consistent beliefs. Since uninformed consumers expect to
extract s form their predecessors’ behavior, an individual in period 3 accordingly thinks that the
uninformed consumers in period 2 consistently and correctly inferred s and are thus now informed.
This presumption is false: projectors in period 2 draw distinct, type-dependent beliefs (as in Equa-
tion 10). Nevertheless, a naive observer in Generation 3 with taste t thinks period-2 demand is de-
termined by the function D̂I(p2; ω̂|t) in (9)—she does not realize that it derives from a composition
of demand functions as in (12). This observer then infers a value of ω̂ that solves d2 = D̂I(p2; ω̂|t),

24



which we denote by ω̂3(t). As with Generation 2, if we let ω̄3 denote the taste-independent part of
ω̂3(t), then we can write ω̂3(t) = ω̄3 − αt. Aggregate demand among Generation 3 then follows
the same form as Generation 2: d3 = D(p3; ω̄3, ω̄(s)) where D is as defined in (12).

A similar logic unfolds in each period n ≥ 2. The perceived quality among uninformed agents
in Generation n can be written in terms of a taste-independent component, denoted by ω̄n, which
we refer to as the aggregate biased belief in period n.

Lemma 1. In each period n = 2, . . . , N , the quality that an uninformed agent with taste t expects

is ω̂n(t) = ω̄n − αt, where ω̄n is independent of t. Thus, the sequence of aggregate biased beliefs,

(ω̄n), is a sufficient statistic for each type’s belief over time.

Despite a continuum of types forming distinct beliefs from each observation, Lemma 1 implies
that we can account for this infinite-dimensional process by studying the evolution of the uni-
dimensional sequence, (ω̄n). Since this sequence describes the path of uninformed consumers’
beliefs, the quantity demanded in each period n, dn, is determined by the functional form in (12):

D(pn; ω̄n, ω̄(s)) = λ
[
1− F (pn − ω̄(s))

]︸ ︷︷ ︸
Informed Demand

+ (1− λ)

[
1− F

(
pn − ω̄n
1− α

)]
︸ ︷︷ ︸

Uninformed Demand

. (13)

However, an uninformed consumer in period n+ 1 then thinks dn is determined by

D̂(pn; ω̄n+1) ≡ 1− F
(
pn − ω̄n+1

1− α

)
.31

Furthermore, ω̄n+1 must be consistent with dn for all n ≥ 2; that is, dn = D̂(pn; ω̄n+1). Hence, the
law of motion describing the process (ω̄n) is characterized by the equality

D̂(pn; ω̄n+1) = D(pn; ω̄n, ω̄(s)), (14)

starting from the initial condition of ω̄2 = (1− α)ω̄(s) + αp1.
Before turning to the optimal price path given this belief process, we describe outcomes under

two natural scenarios: (i) a constant price, and (ii) a single change in price. First, if the price is
fixed at p (e.g,. the market is in a competitive equilibrium or other frictions mandate a fixed price),
then ω̄n = ω̄2 for all n > 2. Beliefs remain constant over time, and the quantity demanded in
each period matches the rational benchmark at price p. Intuitively, since the type in Generation
2 who learns correctly has a private value equal to the rational marginal type, this type will again
be marginal given that the price is constant. Hence, Generation 2 demands the same quantity as

31More precisely, an uninformed consumer in period n + 1 with taste t thinks dn is determined by
D̂I(pn; ω̂n+1(t)|t) as in (9). Applying the fact that ω̂n+1(t) = ω̄n+1 − αt yields the expression here.
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Generation 1. Since Generation 3 then observes the same quantity as Generation 2 did, they draw
the same inference. This result reflects the notion that our dynamic process can be viewed as
starting from the steady-state: when the price stays constant, the system remains fixed.

On the other hand, when the price changes, aggregate demand will initially overreact and then
slowly converge back to the rational level given the new price. The logic is similar to the rea-
son why demand among the uninformed in Generation 2 is excessively sensitive to p2 (e.g., the
discussion around Figure 3). For instance, suppose the price permanently drops in period 2. All
uninformed types with a private value below the marginal type from Generation 1 overestimate
ω; hence, relative to the rational benchmark, a larger measure of those who were originally sub-
marginal buy once the price drops. A similar overreaction occurs if the price instead increases.

Proposition 3. Let α > 0 and λ ∈ (0, 1). Suppose there exists a period n∗ ≥ 1 such that pn = p

for n ≤ n∗, and pn = p̃ 6= p for all n > n∗. Consider s such that both (p, s) and (p̃, s) admit

interior demand, and let d̃ denote the quantity demanded at price p̃ under rational learning.

1. Initial Overreaction: If p̃ > p, then dn < d̃ for all n > n∗. If instead p̃ < p, then dn > d̃ for

all n > n∗.

2. Convergence to Rational Equilibrium: |dn− d̃| is decreasing in n and limn→∞ |dn− d̃| = 0.

Social learning under taste projection therefore offers a novel explanation for temporary overre-
action to price changes, thereby complementing other existing, yet conceptually distinct, explana-
tions. For instance, a change in the price could momentarily increase attention or salience to the
price shortly thereafter (Bordalo et al., 2013, 2020). Or consumers with a “taste for bargains” may
experience additional elation when buying the good at a price below some reference level (e.g., the
previous price), thereby leading more to buy while the new price still feels like a “deal” (Jahedi,
2011; Armstrong and Chen, 2020).

4.2 Optimal Monopoly Pricing

We now analyze how a sophisticated seller optimally sets prices over time when facing taste-
projecting consumers. The seller chooses a sequence of prices (p1, . . . , pN) to maximize

Π ≡ p1D
I(p1; ω̄(s)) +

N∑
n=2

pnD(pn; ω̄n, ω̄(s)) (15)

subject to the dynamic constraint in (14) for all n ≥ 2.32 In order for the next generation to draw a
well-defined inference from quantity demanded, we require that the seller serves a positive fraction

32For simplicity, we abstract from the seller discounting future profits. All of our results would continue to hold if
the seller exponentially discounted future profits with a discount factor δ ∈ (0, 1).
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of consumers in each period. We operationalize this by imposing a price ceiling that is arbitrarily
close to the valuation of the highest informed type: p̄ ≡ ω̄(s) + t− κ for some κ > 0.33

Let p∗n denote the seller’s profit-maximizing price in period n. Under rational learning, all
consumers will correctly infer s, and the seller essentially faces an identical market of informed
consumers in each period. Let pM denote the static optimal monopoly price when facing informed
consumers. The price path in the rational benchmark (i.e., α = 0) is to simply charge p∗n = pM for
all n. As we emphasize below, this is not so when facing projecting consumers (i.e., α > 0).

Our analysis first considers the two-period case, which will be sufficient for showing how
prices influence and respond to the key features of taste-projectors’ erroneous beliefs. We then
consider longer horizons. Unlike in the two-period case, projectors in later rounds form beliefs
after observing the irrational behavior of projectors who acted previously. While this difference
introduces a richer set of incentives for the seller’s pricing strategy, we show that the optimal price
path still starts high and gradually declines.

4.2.1 Two-Period Model

Taste projection among consumers introduces dynamic pricing incentives for the seller. Since
the current price inflates the beliefs of consumers in later periods, the seller may benefit from
increasing today’s price—at the cost of losing immediate sales—in order to increase perceptions
and demand among future consumers. Notably, projection induces these dynamic interpendencies
even in settings, such as ours, where there is no temporal link in pricing in the rational model.

The benefit from such manipulation is clearly suggested by the distorted beliefs formed in
Generation 2, as described in (10). The private value of the marginal type in Generation 1 deter-
mines the threshold in the taste distribution where ω̂2(t) switches from overestimating quality to
underestimating it. As this threshold is increasing in p1, a higher p1 will result in a larger share of
individuals in Generation 2 who overestimate quality. But is it worthwhile for the seller to forego
sales today in order to boost demand in the future?

The answer is unambiguously yes. To provide intuition, consider two pricing strategies: (i)
constant pricing, where p1 = p2 = pM and (ii) declining prices such that p1 = pM + ε and
p2 = pM−ε for some ε > 0. The first strategy generates profits identical to the rational benchmark.
While the second strategy generates diminished sales in period 1 relative to the rational benchmark,
it generates a disproportionate expansion in period 2. This happens because the demand curve in
Generation 2 is a counter-clockwise rotation around p1 of the demand curve from the previous

33This price ceiling will have little effect on projectors’ beliefs and behavior since projectors can never be induced
to have a willingness to pay above the highest informed type. The price ceiling is also not consequential for our
qualitative results: the optimal price path still involves an inflated price in period 1 and a subsequent price reduction
regardless of whether p1 is at the ceiling or not. Furthermore, for every value of α, there exists a value λ̄ such that
λ > λ̄ guarantees an interior solution to the seller’s problem, rendering the ceiling irrelevant.
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generation. Locally, a small reduction of p2 below pM leads to a greater expansion in period-2
sales compared to the contraction of period-1 sales induced by a commensurate increase of p1

above pM . This follows from the fact that those who were previously submarignal hold inflated
perceptions; hence, a price cut attracts an exaggerated share of consumers (as in Proposition 3).
As a result, the profits gained in period 2 more than offset those lost in period 1.34 This intuition
holds more generally.

Proposition 4. Suppose λ < 1 and consider any s such that (pM , s) admits interior demand.

1. For any α > 0, we have p∗1 > pM and p∗1 > p∗2.

2. The seller’s profit under the optimal price path is increasing in α and decreasing in λ.

Intuitively, as α increases, there is greater scope to manipulate beliefs, thereby increasing the
seller’s profit above the rational benchmark. The seller’s profit is instead decreasing in λ: with
fewer uninformed agents in the market, it becomes more costly to deviate from the rational-
benchmark price. Additionally, although p∗1 always exceeds pM (i.e., the rational-benchmark
price), the relationship between p∗2 and pM depends on the degree of projection. When α is low and
projectors’ beliefs are only mildly distorted by p1, the seller optimally chooses p2 < pM in order
to induce a large share of overoptimistic types to buy. When α is high and beliefs are strongly
distorted by p1, then even a p2 > pM can induce these types to buy.

Pricing under projection clearly harms consumers in period 1 since p∗1 > pM . But it also harms
some consumers in period 2: beliefs are manipulated in a way that induces some consumers to buy
at a price they would refuse under rational learning. While some of this harm to consumers’ surplus
simply represents a transfer to the seller, sufficiently strong projection can also induce consumers
with truly negative valuations to adopt the good. Such adoption is clearly inefficient.

Proposition 5. Suppose λ < 1 and consider any s such that (pM , s) admits interior demand.

1. Under the profit-maximizing price path, there exists a positive measure of types who buy and

overpay: for these types, ω̄(s) + t < p2.

2. If there exist types with truly negative valuations, i.e., ω̄(s)+t < 0, then there exists a thresh-

old α̃ such that for α > α̃ the profit-maximizing price path induces inefficient adoption: there

exists an interval of types t who buy despite ω̄(s) + t < 0.

Another interpretation of this proposition is that the seller’s optimal pricing scheme always induces
excessive take-up among uninformed buyers, consistent with familiar notions of herding or band-
wagon effects in markets. It is straightforward to show that the marginal uninformed type in period

34By similar logic, choosing p2 > p1 is particularly costly for the seller, as this would exclude optimistic consumers
while targeting just the pessimistic ones.
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2, t̂2, is strictly below the marginal informed type, t∗2, and the interval of uninformed types who
wrongly adopt the good has measure t∗2 − t̂2 = α

1−α [p∗1 − p∗2] > 0.
To elucidate the welfare effects of projection and other comparative statics more concretely,

consider the case where T is uniform on [t, t]. This generates linear demand curves; the (interior)
demands of informed agents (in either period) and uninformed agents (in period 2) are

DI
(
p; ω̄(s)

)
=
ω̄(s) + t− p

t− t
and DU(p; ω̄2) =

ω̄2 + (1− α)t− p
(1− α)(t− t)

, (16)

respectively, where ω̄2 = (1−α)ω̄(s) +αp1. It is straightforward to show that the interior solution
is such that p∗1 > pM > p∗2. Moreover, p∗n → pM for both n = 1, 2 as either α → 0 or λ → 1.
Intuitively, as either the distortion in beliefs or the fraction of agents with distorted beliefs vanishes,
the seller’s problem converges to the rational monopoly problem.
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Figure 1: Effect of Projection on Total Surplus and Market Coverage.
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Figure 4: Optimal price and quantity demanded in each period as a function of α.

Panel (a) of Figure 4 shows how each p∗n changes with α in the uniform case.35 As α increases,
p1 has a stronger positive effect on the beliefs of Generation 2, and hence p∗1 increases in α. By
contrast, p∗2 is not monotone in α. Since the consumers who would be submarginal at p∗1 are those
with inflated beliefs, p∗2 will necessarily fall below p∗1. Moreover, when α is small, the perceived
valuations of consumers in Generation 2 exhibit near-rational levels of variation, so a reduction in
p2 will not attract many more buyers than it would under rational learning. Hence, there is little
benefit in deviating from the rational monopoly price. But as α increases, perceived valuations

35In this example, t = 10, t = −10, ω̄(s) = 0, and λ = 0. We plot outcomes for α ≤ 2/3 since this is the region
that admits an interior solution (shown in the figure). For α > 2/3, we necessarily have a corner solution at which the
seller sets p1 at the price ceiling (see footnote 33).
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become more clustered around ω̄2, meaning that a price drop will attract a bigger proportion of the
market and will thus be more profitable. This explains why p∗2 initially decreases in α. However,
once α is sufficiently large—and thus beliefs are substantially inflated due to a high p∗1—the seller
can capture a significant fraction of the market with a smaller deviation from pM .

p

d2

DU(p; ω̄2)

DI(p; ω̄(s))

d2

p∗1

d1

p∗2

pM

dM dI2

Consumers’ Gain from Beneficial Adoption

Consumers’ Loss Due to Erroneous Adoption

Efficiency Loss from Erroneous Adoption

Figure 5: Demand functions in Period 2 (for both informed and uninformed agents).

Turning to welfare in the uniform case, it is immediate that projection harms consumers in
Generation 1 since p∗1 > pM . In Generation 2, however, projection can positively or negatively
effect consumers, depending on their type. Informed consumers clearly benefit from projection
when p∗2 < pM since they face a lower price. The welfare effects for uninformed consumers are
more subtle. Figure 5 shows the demand curves among informed (blue) and uninformed consumers
(red) in period 2. The demand curve among informed consumers, DI(p; ω̄(s)), reflects the rational
valuation of the marginal buyer for any level of market coverage d. The demand curve among un-
informed consumers, DU(p; ω̄2), instead reflects the willingness to pay of the marginal consumer
given d. Thus, for any d, the vertical distance between the red and blue curves shows the wedge
between the marginal uninformed consumer’s willingness to pay and his true valuation. Manipula-
tive pricing under projection causes a range of uninformed types to buy the good when they should,
in fact, abstain given p∗2: the rational level of demand at p∗2 is dI2, yet a market of projectors would
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demand a quantity d2 > dI2. Projectors’ consumer surplus is no longer simply the area below their
demand curve and above the price, since all consumption beyond dI2 involves overpaying. Instead,
projectors’ surplus is the area above p∗2 yet below their valuation curve (the area in blue) minus the
area below p∗2 yet above their valuation curve (the area in red)—the latter area represents a loss to
consumers.

0 0.1 0.2 0.3 0.4 0.5 0.6
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(a) Change in Total Surplus

0 0.1 0.2 0.3 0.4 0.5 0.6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

(b) Total Quantity Demanded

Figure 1: Effect of Projection on Total Surplus and Market Coverage.

1

Figure 6: Total surplus and and quantity demanded across both periods.

From a broader welfare perspective, projection can actually increase total surplus so long as
the degree of projection is not too high. This follows from the fact that the total quantity de-
manded across both periods can be higher under projection than the rational benchmark. This
reduces the traditional deadweight loss due to monopoly pricing. However, this inflated level of
sales can sometimes be detrimental to total surplus, since sufficiently strong projection can induce
consumers who have truly negative valuations to buy the good (as in Proposition 5). Such adoption
is clearly inefficient. Figure 5 depicts a case where this inefficiency emerges; it is represented by
the dark red triangle. Figure 6 shows how total surplus and total quantity demanded (across peri-
ods) change in the uniform example as a function of α; total surplus begins to fall once sales have
expanded to the point that those with negative valuations are lured into buying.36

4.2.2 Arbitrary Horizon

We now demonstrate how our declining-price result extends beyondN = 2. Namely, we show that
the initial price is inflated above the static monopoly price, and prices gradually decline thereafter.
This result follows from a novel trade-off the seller faces in any given period (except for the first
or last one). On the one hand, lowering the current price allows the seller to reap high current sales

36Figure 6 considers the same parameter values as Figure 4.
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by exploiting the inflated beliefs generated by high prices in previous periods. On the other hand,
keeping the price high and restraining current sales helps maintain inflated beliefs further into the
future. This inter-temporal trade-off results in a declining optimal price path.

For this analysis, we continue to focus on the case in which private values are uniformly dis-
tributed over [t, t], and we restrict attention to interior cases where it is never optimal to serve the
lowest type (which amounts to assuming t is sufficiently low).37 Equation (14) implies that the
aggregate biased beliefs evolve according to

ω̄n+1 = λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n. (17)

Building from this recursive structure of beliefs, the following lemma shows how the aggregate
belief in Generation n depends on each previous price.

Lemma 2. Suppose (pk, s) admits interior demand for all k ≤ n. The aggregate belief in period

n is ω̄n = (1− α)ω̄(s) + αp̃n−1, where p̃n−1 is a weighted average of past prices:

p̃n−1 ≡ (1− λ)n−2p1 +
n−1∑
k=2

λ(1− λ)n−1−kpk. (18)

Since the weights on all past prices in (18) sum to one (by virtue of being a weighted average), the
overall effect of past prices on ω̄n is always equal to α. Notably, however, more recent prices tend
to carry more weight on the current belief than earlier ones.

The “stock variable” p̃n−1 captures the sway of past prices on current beliefs. As such, the
features of the optimal price path are illuminated by re-writing the demand for Generation n in
terms of p̃n−1 rather than ω̄n. From (13) and Lemma 2, demand in period n as a function of each
previous price is

D(pn; p̃n−1, ω̄(s)) =
(1− α)

(
t+ ω̄(s)

)
+ α(1− λ)p̃n−1 − (1− λα)pn

(1− α)(t− t)
. (19)

Given the objective function in Equation (15), we then arrive at the following first-order condition
for the price in a non-terminal period n ≥ 2:

pn =
1

1− λα

(
(1− α)pM +

α(1− λ)

2

[
p̃n−1 +

N∑
k=n+1

pk
∂p̃k−1

∂pn

])
, (20)

where we’ve used the fact that pM =
(
t+ ω̄(s)

)
/2 when (pM , s) admits interior demand. The final

37 With uniform tastes, our usual assumption that (pM , s) admits interior demand is equivalent to ω̄(s) + t > 0 and
ω̄(s) < t− 2t. It is never optimal to serve the lowest projecting type if we also have (1− α)ω̄(s) + αp̄ < t− 2t.
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sum in Equation (20) highlights the intertemporal incentives in pricing. Namely, the seller has a
greater incentive to inflate the current price in order to manipulate future consumers’ beliefs when:
(i) the current period is earlier in the horizon, and thus influences a greater number of subsequent
generations, and (ii) the current price has a stronger effect on any future generation’s beliefs (i.e.
when ∂p̃k−1

∂pn
= λ(1−λ)k−1−n is larger). This leads to an optimal price path that declines over time.

Proposition 6. Suppose λ ∈ (0, 1). Consider any α > 0 and any s such that (pM , s) admits

interior demand.

1. The initial price is inflated: p∗1 > pM .

2. The optimal price path is declining: For all n ≥ 2, we have p∗n < p∗n−1.

As discussed above, this result follows from the seller balancing the trade-off between exploit-
ing consumers’ current beliefs by undercutting the previous price versus manipulating the beliefs
of future consumers by maintaining a high current price. While our model introduces a clear incen-
tive to initially inflate the price and then drop it, it does not predict occasional sales where the price
temporally drops and then returns to a high level. Rather, we predict a gradual decline in prices,
which is consistent with the pricing pattern observed for novel products (e.g., a new smartphone
or a new fitness program), where consumers are uncertain about the product’s quality; see Bayus
(1992), Krishnan et al. (1999), Jain et al. (1999), Nair (2007), and Liu (2010).
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Figure 7: Example Price path for N = 20 for various degrees of projection. The example assumes
t = 10 and ω̄(s) = 0.
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Figure 7 provides an example of the optimal price path for N = 20 for different degrees of
projection. Intuitively, the extent to which prices deviate from the monopoly price increases when
α is high, since in this case prices have more sway on beliefs. Although it’s not captured in Figure
7, a similar intuition holds as λ decreases: deviating from the monopoly price is less costly when
there are fewer informed agents.

This declining price path has natural implications for the path of aggregate beliefs and demand,
as well. Since the current aggregate belief is a convex combination of the previous belief and price,
a declining price path implies that beliefs also decline over time: later generations of consumers
perceive a lower quality, on average, than earlier generations. Additionally, the quantity demanded
in periods with distorted beliefs (i.e., for period 2 onward) is “U -shaped”: the inflated price in
the first period leads Generation 2 to demand an aggregate quantity above the rational benchmark.
However, as the price levels off near the rational monopoly price, the aggregate demand converges
to the rational monopoly level.38 Finally, near the end of the horizon—once there is little remaining
incentive to maintain high prices to manipulate future generations—the seller will lower the price
below pM , which again leads to significantly more sales than the rational monopoly benchmark.

5 Extensions and Further Applications

In this section, we discuss further implications of taste projection when we relax our assumptions
that consumers (i) are short lived and (ii) have unit demand. We also consider how projection
distorts portfolio choice in an application where agents learn from asset prices.

5.1 Endogenous Timing: Underappreciation of Selection Effects

Section 4 showed how high-to-low pricing can induce “short-lived” low-valuation projectors to
excessively adopt the good. We now show that such over-adoption can arise even if the price is
fixed when “long-lived” consumers can choose when to buy the good. Thus, the idea that projection
causes uninformed consumers to be overly influenced by earlier purchases is not limited to settings
with changing prices. To demonstrate the logic, we consider a two-period model. Uninformed
consumers with low private values defer their decisions until the second period in order learn from
the quantity demanded by early-adopters. But since they fail to appreciate the difference in tastes
between themselves and those with an incentive to adopt early, they treat high initial demand as an
overly-optimistic signal about the good’s quality. As such, they systematically over-consume and
face greater disappointment relative to the rational benchmark.

38This reflects the fact that aggregate demand in the steady state of our model matches the aggregate demand under
rational learning (Section 3). Hence, when the price is near constant for many periods, the resulting quantity demanded
converges to the rational level given that (near) constant price; see Proposition 3.
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More broadly, this application speaks to the empirical finding that late adopters exhibit greater
disappointment with a product, as reflected by declining consumer reviews (e.g., Li and Hitt, 2008;
Dai et al., 2018). In particular, we argue that taste projection provides a specific mechanism for why
selection effects may be under-appreciated in this particular context: while projectors understand
that there is selection across periods, they systematically underestimate the strength of this effect.

We consider a two-period variant of our dynamic model from Section 4. Instead of assuming a
new mass of consumers in each period, there is a single group of consumers with unit demand who
can buy in either period 1 or 2 (or not at all). We focus on the case where the price p is fixed across
periods. We additionally assume T is uniform to ease exposition, but the logic will transparently
generalize. Finally, as above, a fraction λ of consumers observe s while 1− λ are uninformed.

Informed agents buy in period 1 or never, since they have nothing to learn from delaying; they
buy immediately if ω̄(s) + t ≥ p.39 Uninformed agents with low private values may defer their
purchase decision to period 2 in order to learn from those adopting in period 1. Specifically, an
uninformed agent buys in period 1 if ω̄0 + t ≥ p, where ω̄0 reflects the expected quality among
uninformed agents.40 Otherwise, they observe the quantity demanded in period 1, form an updated
expectation ω̂, and then buy in period 2 if ω̂ + t ≥ p.

The quantity demanded in period 1 is d1 = λD(p; ω̄(s)) + (1 − λ)D(p; ω̄0) where D(p;ω) =

1 − F (p − ω). As usual, a projecting agent in period 2 with taste t updates their belief to ω̂2(t),
which is the value ω̂ that fits their model to the observed outcome: ω̂ solves d1 = λD̂(p; ω̂|t) +

(1 − λ)D̂(p; ω̄0|t), where D̂(p;ω|t) = 1 − F̂ (p − ω|t). To state our result, we impose some
convenient technical assumptions to ensure that there are well-defined marginal types in period 2
under both rational inference and projection, denoted by t∗2 and t̂2, respectively. Namely, suppose
that D(p; ω̄0) ∈ (0, 1), D̂(p; ω̄0|t) > 0, and d1 ≤ λ + (1 − λ)D̂(p; ω̄0|t). The first condition
means that an interior fraction of uninformed agents delay. The final two conditions mean that
all projectors expect an interior fraction to delay and the observed demand is consistent with their
models; this happens when λ is sufficiently large compared to α.

Proposition 7. Consider the setup above. Suppose (p, s) admits interior demand and λ > α > 0.

1. Suppose informed agents have positive information about the good; i.e., ω̄(s) > ω̄0. (i)

The quantity demanded in period 2 exceeds the rational benchmark, and the range of types

who suboptimally adopt,
[
t̂2, t

∗
2

]
, is increasing in both α and ω̄(s) − ω̄0. (ii) There exists a

threshold value t̃ > t∗2 such that all types t ∈
[
t̂2, t̃
]

will, on average, receive lower quality

than they expect; i.e., t < t̃ implies E[ω − ω̂2(t)|s] < 0.

39This relies on a mild (unmodeled) assumption that delaying consumption is costly to consumers, or that indiffer-
ence is broken in favor of buying sooner rather than later.

40Our conclusions in this application would not change if ω̄0 were to depend on p—which might naturally occur if
p partially signals quality—so long as informed consumers have additional information that is not revealed by p.
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2. Suppose informed agents have negative information about the good; i.e., ω̄(s) < ω̄0. Then

there is zero demand in period 2, as in the rational benchmark.

Proposition 7 stems from projectors underestimating the natural selection effect that emerges
in such environments: consumers who decide to buy in period 1 tend to have higher private values
than those who delay. Those who delay are aware of this selection effect, but they underestimate
it. Since the delayers systematically underestimate the private values of those with stronger tastes
than them, they over-attribute observations from period 1 to quality rather than this difference in
tastes. When d1 is stronger than expected, delayers become too optimistic and too many of them
buy—they are subsequently disappointed by the quality they receive. When d1 is weaker than
expected, delayers become too pessimistic and don’t buy. However, they would not buy based on
this bad news even if rational: since they were unwilling to buy with belief ω̄0, they are only willing
to buy in period 2 if they receive good news. Hence, projection generates an asymmetric bias in
behavior, leading to over-adoption among delayers, but not under-adoption. Additionally, insofar
as unmet quality expectations drive negative product reviews, the fact that over-adoption is coupled
with systematic disappointment suggests that high initial reviews for a product will too frequently
be followed by negative reviews (Li and Hitt, 2008; Papanastasiou et al., 2015; Dai et al., 2018).

5.2 Static Case with Multi-Unit Demand

We now revisit the static equilibrium from Section 3 but allow for consumers to have multi-unit
demand. As before, consumers still form type-dependent beliefs that are negatively related to their
tastes. In contrast to that previous case, however, projectors now fine-tune their actions to their
erroneous beliefs. Thus, all projecting types will generically consume a sub-optimal amount in
equilibrium, leading to potentially large inefficiencies. In particular, since perceptions are nega-
tively related to tastes, high types underconsume while low types overconsume.41

For simplicity, we consider the familiar case of quadratic utility (see, e.g., Judd and Riordan,
1994; Caminal and Vives, 1996), where a consumer’s valuation for x units of the good is given by
u(x;ω, t) = (ω + t)x − x2/2. A consumer with a quality expectation of ω̂ facing a per-unit price
of p then demands a quantity x∗(p; ω̂, t) = ω̂+ t−p if ω̂+ t−p ≥ 0 and x∗(p; ω̂, t) = 0 otherwise.

As in Section 3, a fraction λ of consumers observe s and form a quality expectation of ω̄(s).
The remaining fraction 1 − λ form this expectation based on the aggregate demand (and price
p). The steady-state equilibrium is analogous to the one defined above: uninformed agents make
inferences that are consistent with the observed quantity demanded and their misspecified model,

41Although this is straightforward given our earlier results on biased perceptions, it is nevertheless important to
verify whether projection indeed creates steady-state inefficiencies—the reason such inefficiencies were absent in
Section 3 was an artifact of the unit-demand structure.
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and the resulting quantity is consistent with those beliefs. More specifically, let ω̂(t) be type t’s
quality expectation in equilibrium; this type will then demand x∗

(
p; ω̂(t), t

)
units. The aggregate

demand in equilibrium is thus

d = λ ·
∫
T
x∗
(
p; ω̄(s), t

)
dF (t)︸ ︷︷ ︸

Informed Demand

+ (1− λ) ·
∫
T
x∗
(
p; ω̂(t), t

)
dF (t)︸ ︷︷ ︸

Uninformed Demand

. (21)

Since uninformed agents expect that all types reach a common and correct expectation of ω in equi-
librium, each ω̂(t) is the value that predicts quantity d under type t’s model given the presumption
that all types have inferred this same value.

Proposition 8. Suppose λ ∈ (0, 1) and consider (p, s) that admits positive aggregate demand

among informed consumers. For any α > 0, there exists a unique equilibrium profile of beliefs,

ω̂(t), and it has the following properties:

1. Quality perceptions are negatively related to tastes: ω̂(t) is strictly decreasing in t.

2. Relative to the rational benchmark, demand along the extensive margin increases: the lowest

uninformed type who buys a positive quantity is lower than the lowest type who buys a

positive quantity in the rational benchmark.

3. Relative to the rational benchmark, high types demand too little and low types demand too

much: there exists an interior threshold type t̃ such that t > t̃ implies that x∗
(
p; ω̂(t), t

)
<

x∗
(
p; ω̄(s), t

)
and t < t̃ implies that x∗

(
p; ω̂(t), t

)
> x∗

(
p; ω̄(s), t

)
.

4. More extreme types exhibit greater inefficiency:
∣∣x∗(p; ω̂(t), t

)
− x∗

(
p; ω̄(s), t

)∣∣ is strictly

increasing in |t− t̃|.

The intuition for Part 1 of Proposition 8 is identical to the unit-demand case. However, con-
sumers now tailor their individual demand to their idiosyncratic beliefs. This underlies Part 2:
since high types are typically underwhelmed by the observed demand, they consume too little;
low types instead consume too much. In this sense, consumption along the intensive margin is
reduced, since projection reduces the quantity demanded among the high types who consume the
most. But consumption along the extensive margin increases (Part 3). That is, the set of types
who consume the good in equilibrium expands: some low types who would entirely abstain under
rational inference are now persuaded to use the product. Parts 2 and 3 together imply that, relative
to the rational benchmark, consumption is spread more thinly across a wider range of buyers.

The logic behind these results is quite transparent as α→ 1. In this case, observers think there
is essentially no heterogeneity in tastes, and that aggregate demand derives from all individuals
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consuming roughly the same quantity. From a projector’s point of view, the average quantity
demanded is then a near perfect signal about how much he himself should consume—he should
consume that same amount, since he is just like everybody else. Thus, in equilibrium, the difference
in consumption across types narrows, while the set of types who consume expands.

Finally, among the segment of consumers who adopt in equilibrium, those with types closer to
the extremes make worse decisions (Part 4). Intuitively, these types are farther from the average
buyer, and thus their mental model provides a worse interpretation of the data. A truly average
projecting consumer is fairly accurate when she imagines that most people share her tastes. But
those with more esoteric tastes form a more distorted world view when assuming their tastes are
typical. Proposition 8, along with the results of Section 4, reveal that where the burden of projection
falls depends on the demand structure: with single-unit demand, it is only low types who can be
manipulated into inefficiently adopting a product; with multi-unit demand, the burden primarily
falls on extreme types, either high or low.

5.3 Inference from Price and Portfolio Choice

In our final application, we consider a setting where agents observe only the market price and not
others’ actions. This allows us to demonstrate that taste projection continues to distort perceptions
about a commonly-valued feature in similar ways even when agents draw inferences from prices
alone. In showing this, we also shed light on how taste projection may influence asset markets.

Specifically, we consider a canonical portfolio-choice problem where traders learn about the
expected return of a risky asset based on its equilibrium price. Similar to the classical mod-
els of Grossman (1976) and Grossman and Stiglitz (1980), we consider a competitive rational-
expectations equilibrium of a market in which traders exchange a risky asset for a riskless one over
one period. As in the standard setup, we assume that traders have constant absolute risk aversion
and face a Gaussian information structure. However, we assume that traders differ in their de-
gree of risk aversion and project their taste for risk onto one another. For brevity, the details and
formal analysis are in Appendix B.1. The basic results mirror those above: traders who are less
risk tolerant become overly optimistic about the expected return and hold too much of the risky
asset (relative to their optimal portfolio), while traders who are more risk tolerant become overly
pessimistic and hold too little.

We also show that projection puts downward pressure on the market-clearing price. This stems
from the fact that, relative to less risk-tolerant traders, the individual demands of more risk-tolerant
ones are more sensitive to their expectations over the risky asset’s return. Thus, the perceptions
formed by these traders have greater influence on the market price. And since these percep-
tions tend to be overly-pessimistic, the market price under projection drops below the rational-
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benchmark price. Of course, this conclusion relies on our assumption that all traders have the
same degree of projection. If, for instance, the risk-tolerant traders tend to be institutional in-
vestors who do not suffer from projection, then the overly-optimistic perceptions of the risk-averse
traders may inflate the price above the rational benchmark.

6 Conclusion

Evidence suggests that people often misperceive others’ tastes, attitudes, and motives by exagger-
ating the similarity between others and themselves. In this paper, we have examined some basic
market implications that arise when consumers interpret market data through the lens of these mis-
perceptions. In contexts where consumers aim to learn the commonly-valued quality of a product
from others’ demand, we showed that projection leads to systematically distorted beliefs. Namely,
projecting consumers will form estimates of the quality that are negatively related to their tastes,
and these estimates are increasing in the product’s price. These misinferences create new pricing
incentives for a monopolistic seller: in a dynamic setting, the seller will charge high initial prices
to inflate future consumers’ beliefs and then will gradually lower the price to capitalize on these
distorted beliefs. Projection also has implications for efficiency. For instance, either the seller’s
manipulative pricing or a failure to appreciate selection effects can lead projectors to over-adopt
a good even when such adoption is inefficient under rational learning. It is worth emphasizing
that our statements about efficiency implicitly disregard externatlities; indeed, projection could be
beneficial from a social-welfare perspective when large-scale adoption is a critical objective (e.g.,
adoption of clean-energy technologies). We leave this analysis for future work.

There are several other potential applications of our framework. As discussed above, projection
leads to lower dispersion in consumers’ valuations and hence to a counter-clockwise rotation of the
market demand curve. Johnson and Myatt (2006) study how demand rotations influence various
features of a monopolist’s marketing strategies. In this sense, the insights from Johnson and Myatt
(2006) should apply to a market with projectors. For instance, in a setting where the seller engages
in second-degree price discrimination by offering a menu of multi-unit bundles, they show that a
counter-clockwise rotation of the demand curve can lead the seller to prefer a smaller menu. Thus,
a seller should have a similar preference when facing projecting consumers versus rational ones.

Finally, projection may also distort an individual’s perception of her information sources in
various ways. For instance, consider an individual who is uncertain about the variance in signals
conditional on ω and updates her belief over this value after consuming the good and learning ω.
This belief revision will depend on the deviation between ω and her expectation, ω̂(t). Since ω̂(t) is
typically biased, projectors will, on average, perceive greater deviations between the realized qual-
ity and their expectations, leading them to overestimate the variance in signals. Thus, projectors
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may come to underweight valuable information. Alternatively, suppose consumers entertain the
possibility that others may be biased in favor of a particular option (e.g., a particular brand, author,
or politician), supporting it even when they know it has low quality. If a projector forms beliefs
about whether such a bias exists ex post, she will be predisposed to think others are systematically
biased against options that suit her tastes. This is because the observed popularity of the option will
be inconsistent with a projector’s misspecified model once she learns its true quality. For example,
a projector who realizes that she dislikes an option will observe a stronger demand than expected;
she may therefore conclude that others’ support stems from some ulterior motive, neglecting that
it may come from mere differences in tastes. Such skepticism of others’ motives may lead people
to discredit others’ actions, which may shed light on why some groups are unmoved by others’
actions even when they reveal valuable information.
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Appendix

A Alternative Signal Structures
In this appendix, we show that our key comparative statics emerge in settings with richer hetero-
geneity in private information. We also note a few additional implications that emerge in these
settings.

A.1 Fully-Heterogeneous Private Signals
In this section, we consider the case in which each agent receives a private signal correlated with
ω. We show that a projector’s inferred quality upon observing the aggregate quantity demanded by
these privately informed agents is still: (i) negatively related to her taste; and (ii) positively related
to the price that predecessors paid. We will show this in a two-period model similar to Section 4.

As in the main text, suppose that individuals share a common prior over ω with support R.
In each generation n = 1, 2, individual i observes the realization of a private signal Si,n that is
correlated with ω. We assume that signals are i.i.d. across all individuals in both periods, and
that no signal realization perfectly reveals ω. Let Zi,n ≡ E[ω|Si,n] denote a consumer’s “private
belief”—their expected quality conditional on their signal and the prior. We work directly with the
distribution of Zi,n conditional on ω rather than conditional distributions over signals. As such, let
Z(ω) denote the random variable representing individuals’ private beliefs conditional on ω. We
assume that Z(ω) can be expressed as Z(ω) = m(ω) + Y for some strictly increasing function m
and a random variable Y that is independent of ω (and T ) and has a log-concave density.42 This
implies that consumers’ interim valuations for the good in period 1 are distributed according to
V (ω) ≡ m(ω) +Y +T . Let H(·;ω) denote the CDF of V (ω). In period 1, individuals act on their
private signals alone. Thus, the demand function in period 1 is D1(p;ω) ≡ 1−H(p1;ω).

Fixing the true quality ω, we are interested in the inferred quality of consumers in period 2
upon observing d1 = D(p1;ω) and price p1. Let ω̂(t; p1) denote the quality inferred by a consumer
with taste t.

Proposition A.1 (Comparative Statics in the Heterogeneous-Signal Model). Consider the signal
structure of Section A.1. Fix ω, and consider any p1 such that demand in period 1 is interior (i.e.,
d1 ∈ (0, 1)). For any α > 0, the inferred quality of a projector with type t who observes d1 is: (i)
decreasing in t (ii) increasing in p1.

The proof, presented below, follows a similar logic to the graphical argument in Figure 2.
Since a projector thinks interim valuations are less dispersed than they truly are, her perceived
demand curve intersects the true demand curve at a point where the perceived demand curve has
a greater price elasticity. Thus, to explain a market outcome at a higher price, the projector must
consider a demand curve that is shifted outward relative to the initial perceived demand. This
outward shift corresponds to a higher perceived quality. The key difference between this case and
the one considered in the main text is that the observed quantity demanded now results from both
variation in consumers’ tastes and variation in their signals. We therefore make use of results on the

42This structure nests the familiar Gaussian structure noted in the main text, but is also more general.
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“dispersion ordering” of convolutions of log-concave random variables to prove that the perceived
and true demand curves continue obey a single-crossing property crucial to the logic depicted in
Figure 2 even when consumers’ have disperse private information.

Proof of Proposition A.1. Fix ω, and consider any p1 such that the quantity demanded in period
1 is interior (i.e., d1 ∈ (0, 1)). We examine how ω̂(t; p1) varies in t and p1. Note that ω̂(t; p1) is the
value of ω̂ that solves D̂1(p1; ω̂|t) = D1(p1;ω), where D̂1(p1; ω̂|t) is type t’s misperceived demand
function: D̂1(p1; ω̂|t) = 1− Ĥ(p; ω̂|t) where Ĥ(·; ω̂|t) is the CDF of V̂ (ω̂|t) ≡ m(ω̂) +Y + T̂ (t).
Hence ω̂(t; p1) is the value of ω̂ that solves L(ω̂; t, p1) ≡ D̂1(p1; ω̂|t)−D1(p1;ω) = 0.

Part 1: The Effect of t on Perceived Quality. By the Implicit Function Theorem (IFT):

∂ω̂(t; p1)

∂t
= −∂L(ω̂; t, p1)

∂t

(
∂L(ω̂; t, p1)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(t;p1)

. (A.1)

Notice that, for any p1 that generates interior demand and any t, ∂
∂ω̂
L(ω̂; t, p1) = ∂

∂ω̂
D̂1(p1; ω̂|t) > 0

given our mild assumption that demand is increasing in quality (i.e., m is a strictly increasing
function). Thus

sgn
(
∂ω̂(t; p1)

∂t

)
= sgn

(
−∂L(ω̂; t, p1)

∂t

∣∣∣∣
ω̂=ω̂(t;p1)

)
. (A.2)

Note that

− ∂L(ω̂; t, p1)

∂t
= − ∂

∂t
D̂1(p1; ω̂|t) < 0. (A.3)

This follows from the fact that t′ > t implies that V̂ (ω̂|t′) first-order stochastically dominates
V̂ (ω̂|t) since in this case T̂ (t′) first-order stochastically dominates T̂ (t); accordingly, Ĥ(p; ω̂|t) is
decreasing in t and thus D̂1(p; ω̂|t) is increasing in t.

Part 2: The Effect of p on Perceived Quality. Invoking the IFT again, the discussion following
(A.1) implies that

sgn
(
∂ω̂(t; p)

∂p

)
= sgn

(
−∂L(ω̂; p)

∂p

∣∣∣∣
ω̂=ω̂(t;p1)

)
. (A.4)

Note that

− ∂L(ω̂; p)

∂p
=

∂

∂p
D1(p;ω)− ∂

∂p
D̂1(p; ω̂|t). (A.5)

With downward-sloping demand functions, the previous expression is positive when evaluated at
ω̂(t; p1) iff ∣∣∣∣ ∂∂pD1(p1;ω)

∣∣∣∣ < ∣∣∣∣ ∂∂pD̂1(p1; ω̂(t; p1)|t)
∣∣∣∣ ; (A.6)

that is, iff the perceived demand function is locally more price sensitive at the original market
outcome than the true demand function.

Since ω̂(t; p1) is a state in which type t’s perceived demand curve intersects the true demand
curve at the observed market outcome (d1, p1) (i.e., D̂1(p1; ω̂(t; p)|t) = d1 = D1(p1;ω)), a suffi-
cient condition for Condition (A.6) is that for any arbitrary ω̂, D̂1(·; ω̂|t) crosses D1(·;ω) at most
once and does so from above. That is, there exists at most one price p∗ such that D̂1(p∗; ω̂|t) =
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D1(p∗;ω), and p∗ is such that D̂1(p∗; ω̂|t) < D1(p∗;ω) for all p > p∗ and D̂1(p; ω̂|t) > D1(p;ω)
for all p < p∗. (Note that the demand curves in Figure 2 are drawn, as usual, with p on the y-axis;
from that perspective, the previous condition implies that the perceived demand curve crosses the
true one from below.)

To complete the proof, we prove the sufficient condition above: for any arbitrary ω̂ and t, there
exists at most one price p∗ such that D̂1(p∗; ω̂|t) = D1(p∗;ω), and p∗ is such that D̂1(p∗; ω̂|t) <
D1(p∗;ω) for all p > p∗ and D̂1(p; ω̂|t) > D1(p;ω) for all p < p∗. Given that D1(p;ω) = 1 −
H(p; ω̂) and D̂1(p; ω̂|t) = 1− Ĥ(p; ω̂|t), it suffices to show that Ĥ(p|ω̂; t) crosses H(p|ω) at most
once and does so from below (i.e., there exists at most one price p∗ such that Ĥ(p|ω̂; t) < H(p;ω)

if p < p∗ and Ĥ(p|ω̂; t) > H(p;ω) if p > p∗).
We prove this using the concept of dispersive ordering defined by Shaked (1982) and Shaked

and Shanthikumar (2007). For any arbitrary random variables X and Y with CDFs FX and FY , we
say that X is less dispersed than Y , denoted X ≤disp Y , if F−1

X (b)− F−1
X (a) ≤ F−1

Y (b)− F−1(a)
whenever 0 ≤ a ≤ b ≤ 1. By Theorem 2.1 of Shaked (1982), X ≤disp Y iff FX crosses
FY at most once and does so from below. Thus, it suffices to show that V̂ (ω̂; t) ≤disp V (ω),
which is equivalent to T̂ (t) + Z(ω̂) ≤disp T + Z(ω). Since Z(ω) = m(ω) + Y , the previous
condition is equivalent to T̂ (t) + m(ω̂) + Y ≤disp T + m(ω) + Y , where m(ω̂) and m(ω) are
constants given that we are conditioning on ω and ω̂. As noted in Comment 3.B.2 of Shaked and
Shanthikumar (2007), the order ≤disp is location invariant, meaning that T̂ (t) + m(ω̂) + Y ≤disp
T+m(ω)+Y ⇔ T̂ (t)+Y ≤disp T+Y . Since Y has a log-concave density and is independent of T
and T̂ (t), Theorem 3.B.8 of Shaked and Shanthikumar (2007) implies that T̂ (t) + Y ≤disp T + Y

if T̂ (t) ≤disp T . Thus, to complete the proof it suffices to show that T̂ (t) ≤disp T . Again by
Theorem 2.1 of Shaked (1982), this holds so long as F̂ (·|t) crosses F only once and does so from
below. This is true by Part 4 of Observation 1, completing the proof. �

A.2 Heterogeneous Signals Across Periods
In this section, we consider the structure in which each generation of consumers observes a distinct
signal. All consumers in each Generation n observe the same signal realization, which we denote
by sn. We assume that sn is i.i.d. for all n. Furthermore, sn is “quasi-public”: it is observed by
all agents within Generation n, but not by agents in any other generation.43 As in the main text
(and the previous appendix section), we again show that the perceived quality of each agent in each
Generation n ≥ 2 is: (i) negatively related to their taste; and (ii) positively related to the price that
predecessors paid.

Setup. Agents in Generation n attempt to infer the posterior beliefs of agents in period n − 1
from their quantity demanded. If agents are rational, then all agents in each generation hold a
common expectation over ω. Let ω̃n−1 denote this rational expectation among Generation n − 1
for n ≥ 2. Agents in Generation n can then perfectly extract ω̃n−1 from the observed market
coverage in Generation n− 1 (assuming this value is interior).

To make matters concrete, we consider the familiar Gaussian information structure: ω ∼

43If generations consisted of a single agent, this structure would resemble the canonical sequential herding model
(e.g., Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000).
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N(ω̄0, ρ
2), and sn ∼ N(ω, η2). Rational updating then takes the form

ω̃n = γnsn + (1− γn)ω̃n−1, where γn =
1

n+ η2/ρ2
. (A.7)

As the updating process in A.7 suggests, a rational Generation n will combine their own signal, sn,
with the inferred posterior belief of Generation n− 1, ω̃n−1, to reach their posterior estimate of ω.

With projection, an agent in Generation n thinks he can perfectly extract the posterior expecta-
tion of ω held by the previous generation, but does so incorrectly. As usual, his incorrect inference
will depend on his taste, t. Denote this (mis)extracted value of ω̃n−1 by ω̂n−1(t). The projector
will then use A.7 to form a posterior estimate of γnsn + (1− γn)ω̂n−1(t). Below, we analyze how
projectors’ beliefs evolve within this structure.

We first consider how beliefs evolve within the first few periods. For simplicity, we normalize
ω̄0 = 0. Since Generation 1 does not observe others, their is no scope for mislearning in period 1.
Hence, agents in Generation 1 share a common (rational) estimate of ω equal to ω̃1 = γ1s1. Thus,
an agent buys iff ω̃1 + ti ≥ p1 ⇔ ti ≥ p1 − ω̃1, and hence demand in period 1 is

D1(p1; ω̃1) = 1− F (p1 − ω̃1). (A.8)

Distorted Beliefs in Generation 2. An agent in Generation 2 with taste t thinks that, conditional
on Generation 1 holding a posterior expectation of ω̂, their demand is given by

D̂1(p1; ω̂|t) = 1− F̂ (p1 − ω̂|t) = 1− F
(
p1 − ω̂ − αt

1− α

)
. (A.9)

This agent wrongly infers that the posterior expectation in Generation 1 is the value of ω̂ that solves
D(p1; ω̃1) = D̂(p1, ω̂|t), which we denote by ω̂1(t). Hence,

ω̂1(t) = (1− α)ω̃1 + α(p1 − t). (A.10)

This misperception is identical to the one formed by agents in Generation 2 of the baseline model
in the main text (see Equation 10). Furthermore, given that ω̃1 = γ1s1, the preceding equation
implies that an agent with taste t misinfers the signal to be

ŝ1(t) = (1− α)s1 +
1

γ1

α(p1 − t). (A.11)

An immediate implication of (A.10) and (A.11) is that, under projection, an observer underweights
the true information of the previous generation. Moreover, they wrongly put weight on irrelevant
factors (i.e., the price and their own taste), and this erroneous weight is larger when signals are
less precise relative to the prior (i.e., when γ1 is smaller). There is a straightforward intuition
for this. A projector will, on average, observe a level of demand that deviates from their initial
expectations since they incorrectly predict demand conditional on the signal. They attribute this
deviation to the value of s1. Thus, when a projector anticipates that the signal will have little effect
on predecessors’ beliefs (i.e,. γ1 is small), they require a more extreme value of s1 to rationalize
the deviation between the observed demand and their biased predictions.

Now consider demand in Generation 2. An agent with taste t forms an expectation of ω based
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on s2 and ω̂1(t) equal to E[ω|s2, ω̂1(t)] = γ2s2 + (1 − γ2)ω̂1(t). Using the expression for ω̂1(t)
above, the expected valuation of an agent in Generation 2 with taste t is

E[u(ω, t)|s2, ω̂1(t)] = γ2s2 + (1− γ2)

(
(1− α)ω̃1 + αp1

)
+

(
1− α(1− γ2)

)
t. (A.12)

Let v̂2(t) denote the expected valuation in (A.12). Similar to the approach in the main text, we can
write this perceived valuation in terms of a taste-independent component, denoted by ω̄2, where

ω̄2 ≡ γ2s2 + (1− γ2)

(
(1− α)ω̃1 + αp1

)
. (A.13)

In the rational model (i.e., α = 0), ω̄2 reduces to ω̃2—the rational expectation of ω given (s1, s2).
Given (A.13), we can write perceived valuations in Generation 2 as v̂2(t) = ω̄2 + β2t, where
β2 ≡ 1− α(1− γ2).

The Evolution of Beliefs. In fact, the perceived valuations of consumers in all Generations
n ≥ 2 can be expressed as v̂n(t) = ω̄n + βnt where ω̄n is independent of tastes. Thus, the
dynamics of the model are described by the evolution of the sequences of (ω̄n) and (βn).

To verify for this claim, suppose that, as in Generation 2, the perceived valuations of agents in
any Generation n > 2 are given by v̂n(t) = ω̄n + βnt. The demand in period n ≥ is then

Dn(pn; ω̄n) ≡ 1− F
(

1

βn
(pn − ω̄n)

)
. (A.14)

A projecting agent in Generation n + 1 with taste t thinks that agents in Generation n share a
common expectation of ω, denoted ω̂, and thus have a demand given by

D̂n(pn; ω̂|t) = 1− F̂ (pn − ω̂|t) = 1− F
(
pn − ω̂ − αt

1− α

)
. (A.15)

The agent thus infers that the posterior expectation of Generation n is the value of ω̂ that equates
(A.14) and (A.15), yielding

ω̂n(t) =

(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn − αt. (A.16)

Thus, the updated expectation of ω for an agent with taste t in Generation n+ 1 is

E[ω|sn+1, ω̂n(t)] = γn+1sn+1 + (1− γn+1)

[(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn − αt

]
. (A.17)

This agent’s total perceived valuation is v̂n+1(t) = E[ω|sn+1, ω̂n(t)] + t; hence,

v̂n+1(t) = γn+1sn+1 + (1− γn+1)

[(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn

]
︸ ︷︷ ︸

≡ω̄n+1

+

(
1− α(1− γn+1)

)
︸ ︷︷ ︸

≡βn+1

t.
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This reveals how (βn) and (ω̄n) evolve:

βn+1 = 1− α(1− γn+1), (A.18)

ω̄n+1 = γn+1sn+1 + (1− γn+1)

[(
1− α
βn

)
ω̄n +

(
1− 1− α

βn

)
pn

]
. (A.19)

Thus, for all n ≥ 2, the perceived valuations of consumers in period n are given by v̂n(t) =
ω̄n + βnt, where βn and ω̄n and follow the processes in (A.18) and (A.19), respectively, starting
from the initial conditions of β1 = 1 and ω̄1 = ω̃1 = γ1s1. Furthermore, the quantity demanded in
each period n is given by dn = Dn(pn; ω̄n) as in (A.14).44

There are a few features of this process worth noting. First, since γn is monotonically decreas-
ing in n with limn→∞ γn = 0, it follows that βn monotonically decreases from 1 and converges
to 1 − α. Thus, in every period, a consumer’s perceived valuation puts too little (yet positive)
weight on his own taste. In the limit, this diminished weight is equal to 1 − α. This is identical
to our results in both the static and dynamic cases of our baseline model in the main text. See, for
instance, the discussion preceding Proposition 2.

Additionally, since βn ∈ (1− α, 1) for all n, the term (1− α)/βn that appears in the transition
equation for (ω̄n) must take a value in (0, 1). Thus, the term in square brackets in Equation (A.19)
is a convex combination of ω̄n and pn, implying that the aggregate biased belief in each period n
is strictly increasing in the price faced by the previous generation. Furthermore, the weight on ω̄n
(i.e., (1 − α)/βn) converges to 1 as n → ∞, and thus the effect of the preceding price on current
beliefs diminishes over time.

Finally, we can use Equation (A.19) to write the beliefs of the current generation in terms of
the entire history of signals and prices. Toward that end, let λn ≡ (1 − α)/βn ∈ (0, 1). For all
k = 1, 2, . . . and all n ≥ k + 2, define ank =

∏n−1
j=k+1 λj . We then have:

ω̄n = γnsn + (1− α)γn

(
1

βn−1

sn−1 +
n−2∑
k=1

ank
βk
sk

)

+ αγn

(
1

βn−1

pn−1 +
n−2∑
k=2

ank
βk
pk +

an1
γ1

p1

)
. (A.20)

The key implications of this expression are that aggregate biased beliefs put too little weight on
predecessors’ signal values and instead erroneously put positive weight on all past prices.

The next result summarizes some of the points above, emphasizing that the comparative statics
in our baseline model of the main text continue to hold within this richer signal structure.

Proposition A.2 (Comparative Statics in the Quasi-Public-Signal Model). Consider the signal
structure of Section A.2. Beliefs and valuations in each period n follow the process described in
(A.19) so long as demand remains interior (i.e., dk ∈ (0, 1) for all k < n). In this case, the
perceived quality of each agent in each period n ≥ 2 is decreasing in their private value and
increasing in the price charged in each preceding period.

44Note that the transition equations in (A.18) and (A.19) characterize the process in the case where the quantity
demanded in each period prior to n+ 1 is interior (i.e., dk ∈ (0, 1) for k ≤ n).
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B Inference from Price
In this appendix, we consider two ways in which projection can distort inferences from prices. The
first considers traders’ inferences about the expected return of a risky asset. The second considers
consumers’ inferences about the quality of a good when they observe the price a monopolist offers
to fully-informed consumers.

B.1 Inference from Price and Portfolio Choice
In this section, we examine the effect of projection in a canonical portfolio-choice problem in
which agents learn about the fundamental value of a risky asset from its equilibrium price. We
consider a variant of the competitive rational-expectations equilibrium in a linear-normal model.
Traders differ in their degree of risk tolerance, and they project their tolerance onto others. Traders’
erroneous perceptions of others’ risk attitudes lead them to misinfer from the risky asset’s equilib-
rium price. More specifically, projection again leads to a negative relationship between an individ-
ual’s idiosyncratic taste and her perception of the common value: traders who are more risk tolerant
underestimate the expected return of the risky asset, while those who are less risk tolerant over-
estimate it. These misperceptions mirror our results obtained in the case where consumers learn
from the quantity demanded (Proposition 1), and they additionally imply inefficient allocations as
in Proposition 8.

We also show that projection reduces the equilibrium price of the risky asset. This is because
the demand of more risk-tolerant agents is more sensitive to their beliefs about the return, and thus
the pessimistic inferences formed by these types outweigh the the optimistic inferences formed by
less-risk-tolerant types. Thus, on aggregate, projection dampens the equilibrium price.

B.1.1 Setup

There are two periods, n = 1, 2. In period 1, traders divide their wealth between two assets. One
asset is riskless, and we normalize its price and gross rate of return to 1. The other asset is risky
and yields a payoff of ω ∼ N(ω0, τ

−1
0 ) in period 2. The risky asset is in fixed supply Q, and let p

denote its price in period 1.
Consider a continuum of traders with unit measure. As in the main text, a fraction λ ∈ (0, 1)

of agents are informed: each of these agents observes a common signal s = ω + ε, where ε ∼
N(0, τ−1

s ). The remaining fraction of agents (measure 1 − λ) have no private information. These
agents attempt to infer s from p. Put differently, each agent i receives a private signal si ∈ {s,∅}
and λ = Pr[si = s].

Preferences and Misperceptions. Each agent has constant absolute risk aversion (CARA) pref-
erences over terminal wealth. Agent i’s coefficient of absolute risk aversion is θi. It is well-known
that, under these preferences, agent i with information set Ii will invest xi in the risky asset where

xi =
E[ω|Ii]− p
θiVar[ω|Ii]

; (B.1)

for instance, see Grossman (1976). As it will simplify the exposition below, let ti = 1/θi denote
the reciprocal of an agent’s measure of risk aversion (i.e., an agent with lower risk aversion has a
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stronger “tolerance” for risk, captured by ti). Agents differ in their taste for risk: as in the main
text, suppose ti is i.i.d. across agents according to a CDF F with positive support, and suppose ti
is independent of si. Furthermore, Agent i thinks that t ∼ F̂ (·|ti) as specified by (2).

Individual and Aggregate Demand. As in the main text, suppose that informed agents base
their demand on the true signal. Uninformed agents, however, attempt to infer the signal from
the market price. The solution below will involve uninformed agents misinferring the signal as a
function of their type. As such, let ŝ(t) denote the perception of the signal formed by agents with
with type t. With this (supposed) knowledge of the signal, an agent with information Ii = {ŝ(ti)}
will form beliefs such that

E[ω|Ii] = ω0 +
τs

τs + τ0

(ŝ(ti)− ω0) (B.2)

Var[ω|Ii] = (τs + τ0)−1. (B.3)

From (B.1), this implies that an individual’s demand as a function of (i) the price, (ii) her perceived
signal, and (iii) her taste for risk is

x(p; ŝ(ti), ti) = ti

(
E
[
ω
∣∣Ii = {ŝ(ti)}

]
− p

Var
[
ω
∣∣Ii = {ŝ(ti)}

] ) = ti
(
τ0ω0 + τsŝ(ti)− (τ0 + τs)p

)
.45 (B.4)

Conditional on uninformed agents’ perceived signals, which will be determined endogenously in
equilibrium, the aggregate demand for the risky asset is then

D(p; s) = λ

∫
T
x(p; s, t)f(t)dt︸ ︷︷ ︸

Demand from Informed Agents

+(1− λ)

∫
T
x(p; ŝ(t), t)f(t)dt︸ ︷︷ ︸

Demand from Uninformed Agents

. (B.5)

B.1.2 (Ir)rational Expectations Equilibrium

We now analyze a variant of the classical competitive rational-expectations equilibrium. Follow-
ing our NBE solution concept, we assume that each uninformed agent believes the market is in a
rational-expectations equilibrium, but wrongly thinks the equilibrium is with respect to her mis-
specified model. It is worth noting that in the rational benchmark of this model, uninformed agents
correctly infer s from p, which is the standard result of the rational-expectations equilibrium in
this simple setup without shocks. Thus, under our solution concept with projection, each mis-
specified agent believes that: (i) all others share her perception of the distribution of types, (ii) all
uninformed agents properly extract the signal s from p with respect to this perception and use that
extracted signal to form their own demand, and (iii) the price clears the market.

Biased Extracted Signals. Given that a projecting trader i thinks that all others correctly extract
the true signal, her perceived aggregate demand function in equilibrium conditional on signal ŝ is

D̂(p; ŝ|ti) =

∫
T
x(p; ŝ, t)f̂(t|ti)dt. (B.6)

Her perceived market-clearing condition is then D̂(p, ŝ|ti) = Q. As such, trader i’s inferred signal
45We put no constraints on traders’ positions or prices. Negative values of x represent shares sold.
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given p can be obtained by inverting this condition. From (B.4), note that∫
T
x(p; ŝ, t)f̂(t|ti)dt =

(
τ0ω0 + τsŝ− (τ0 + τs)p

)
Ê [T |ti] . (B.7)

This implies that trader i believes the relationship between the equilibrium price and s is given by

p̂(s|ti) ≡
τs

τs + τ0

s+
1

τs + τ0

(
τ0ω0 −

Q

Ê [T |ti]

)
. (B.8)

An uninformed trader i’s perceived signal in equilibrium is the value ŝ(ti) that equates the pre-
ceding function with the observed price; i.e., p̂(ŝ(ti)|ti) = p. Hence, fixing p, trader i’s perceived
signal is

ŝ(ti) =
τs + τ0

τs
p− 1

τs

(
τ0ω0 −

Q

Ê [T |ti]

)
. (B.9)

Notice that for α > 0, Ê[T |ti] is increasing in ti since those who are more tolerant of risk believe
that the population distribution of t is stochastically higher. Thus, ŝ(ti) is decreasing in ti.

Proposition B.1. Consider the setup above. For any α > 0, an uninformed trader’s expectation of
ω conditional on p is increasing in her level of risk aversion (i.e., decreasing in her risk tolerance).

This mirrors the negative relationship between perceived quality and taste obtained in the main
text (e.g., Propositions 1 and 8). Since an uninformed trader’s individual demand is linearly in-
creasing in her expectation of ω, this result implies that those traders with relatively high risk
aversion will overinvest in the risky asset while those with low risk aversion will underinvest.

The Effect of Projection on the Market Price. The equilibrium price equates the true aggregate
demand with supply: from (B.5), p solves

Q = λ

∫
T
x(p; s, t)f(t)dt+ (1− λ)

∫
T
x(p, ŝ(t), t)f(t)dt. (B.10)

Using the expressions above for the individual demand of informed and uninformed agents, we
thus have

Q =

(
τ0ω0 + λτss− (τ0 + τs)p

)
E [T ] + (1− λ)τs

∫
T
tŝ(t)f(t)dt, (B.11)

where E[·] is w.r.t. the true distribution, F . Notice that (B.9) implies that

τs

∫
T
tŝ(t)f(t)dt =

(
(τs + τ0)p− τ0ω0

)
E [T ] +Q

∫
T

(
t

Ê[T |t]

)
f(t)dt. (B.12)

Let B(α) ≡
∫
T

(
t

Ê[T |t]

)
f(t)dt. Notice that B(α) is a constant that depends on the degree of

projection. In the rational benchmark with α = 0, we have B(α = 0) = 1. By contrast, if
α ∈ (0, 1), then B(α) < 1. This follows from the fact that z(t) = t/Ê[T |t] is strictly concave, and
thus Jensen’s inequality implies that B(α) = E[z(T )] < z(E[T ]) = 1.
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Substituting (B.12) into the equilibrium condition in (B.11) yields

Q = λ

(
τ0ω0 + τss− (τ0 + τs)p

)
E [T ] + (1− λ)B(α)Q. (B.13)

As expected, in the rational benchmark we have α = 0 ⇒ B(α) = 1, and the previous condition
reduces to the rational market-clearing condition

Q =

(
τ0ω0 + τss− (τ0 + τs)p

)
E [T ] , (B.14)

which simply means that the aggregate demand of fully-informed agents equals the supply.
With projection, the market price is given by

p =

(
τs

τs + τ0

)
s+

(
τ0

τs + τ0

)
ω0 −

[
1− (1− λ)B(α)

λ

]
︸ ︷︷ ︸

Distortion from Projection

Q

(τs + τ0)E [T ]
. (B.15)

This pricing function is identical to the standard one except there is a price “distortion” factor equal
to

χ(α) ≡
[

1− (1− λ)B(α)

λ

]
. (B.16)

In the rational benchmark, we have χ(0) = 1. But since B(α) < 1 for α ∈ (0, 1), we have
χ(α) > 1 under projection. As evident from (B.15), the effect of projection on the equilibrium
price is similar to the effect of an increased supply of the risky asset. Projection therefore puts
downward pressure on the price.

The intuition from why projection dampens the price stems from the fact that more risk-tolerant
traders are the ones who form more pessimistic beliefs. These traders’ individual demands are more
sensitive to their expectations over the risky asset’s return. Thus, relative to traders who are less
risk tolerant, the misperceptions of the risk-tolerant traders have a stronger effect on the aggregate
demand. And since these miseperceptions tend to be pessimistic, they reduce the equilibrium price.

This setting is one in which the price would efficiently transmit traders’ private information
under rational inference. Projection clearly induces inefficient transmission. In turn, this leads to
inefficient behavior among investors. The risk-tolerant investors hold too little of the risky asset,
and the risk-averse hold too much. While this effect of projection harms uninformed traders, it
helps the informed: they face a lower price for the risky asset. As discussed in Grossman (1976),
models of competitive markets can sometimes be “over-informationally” efficient—when the price
fully reveals private information, the traders who were initially informed earn no return on their
information. In this example, we show that even though the price would fully reveal the signal to
rational traders, projection generates a clear benefit to those who have private information.

B.2 Inference from a Monopolist’s Price
We now argue that our basic comparative statics emerge even in the simple case where an observer
infers ω from the price a monopolist offers to fully-informed consumers. Namely, an observer with
a stronger taste infers a lower quality. Intuitively, high types overestimate the price a monopolist
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would charge conditional on any level of quality; they consequently underestimate ω conditional
on the observed price. The opposite logic holds for low types.

Suppose a projecting observer with taste t thinks that that pmaximizes p[1− F̂ (p− ω̂|t)] where
ω̂ is the expected quality among informed consumers. Hence, this agent thinks p is the solution to

p =
1− F̂ (p− ω̂|t)
f̂(p− ω̂|t)

≡ 1/ĥ(p− ω̂|t), (B.17)

where ĥ(x|t) denotes the perceived hazard rate of a projector with taste t. From (2), we have

ĥ(x|t) =
1

1− α
f
(
x−αt
1−α

)
1− F

(
x−αt
1−α

) =
1

1− α
h

(
x− αt
1− α

)
, (B.18)

where h is the hazard rate associated with F . Since we assume h is increasing, ĥ(x|t) is also in-
creasing on type t’s perceived support for all t ∈ T . Furthermore, for a fixed x, (B.18) reveals that
ĥ(x|t) is decreasing in t, and hence perceived distributions exhibit strict Hazard-Rate Dominance
(HRD) with respect to t; that is, for any t > t′ and any x interior to both T (t) and T (t′), we have
ĥ(x|t) < ĥ(x|t′).

Let ω̂(t) be a projector’s estimated value of ω. This is the value of ω̂ that solves (B.17), and
thus

ω̂(t) = p− ĥ−1(1/p|t). (B.19)

Given that the family of perceived distributions satisfies HRD, ĥ−1(x|t) > ĥ−1(x|t′)⇔ t > t′, and
hence ω̂(t) is decreasing in t—higher types form more pessimistic estimates of ω.

C Proofs
Proof of Proposition 1. We prove this result for a more general utility structure than assumed
in the main text. Here, we assume that each agent’s valuation for the good is given by a utility
function u(ω, t) that is strictly increasing and differentiable with respect to both variables and
satisfies ∂2

∂ω∂t
u(ω, t) > 0 for all t ∈ T and ω ∈ R. For simplicity, we also assume u is linear in

ω.46 Our model of projection easily accommodates such a generalization: An agent with private
value t believes the utility of any agent with taste t′ is û(ω, t′|t) = αu(ω, t) + (1−α)u(ω, t′). This
misperceived utility function then pins down type t’s perceived distribution of valuations in each
state ω. We begin by proving the following lemma.

Lemma C.1. Consider any u satisfying the assumptions above, and suppose that (p, s) admits
interior demand. For any λ > 0 and α ∈ [0, 1), there exists a unique steady-state equilibrium; in

46The intuitions from the proof generalize beyond this risk-neutral case. However, we assume risk neutrality so
that, as in the main text, each agent’s mean belief, ω̂, is a sufficient statistic for their behavior irrespective of further
details on their posterior distribution over ω. Thus, as in the main text, uninformed agents here attempt to extract the
mean belief of informed agents, ω̄(s). The proof below holds without the linearity assumption when informed agents
are perfectly informed. And an analogous argument would hold beyond the linear case so long as we impose a similar
structure on U(s, t)—an agent’s expected utility conditional on s and t.
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that equilibrium, the quantity demanded is equal to the quantity demanded in the full-information
benchmark (i.e., λ = 1).

Step 1: Inference rules. We first derive an uninformed agent’s inference from the observed
quantity demanded, d. Since we focus on symmetric strategies, it is sufficient to derive the infer-
ence rule of an arbitrary agent with taste t. Let D̂(p; ω̂|t) denote this agent’s conjectured demand
among a population of agents who believe the expected value of ω is ω̂;

D̂(p; ω̂|t) = Pr

[
αu(ω̂; t) + (1− α)u(ω̂;T ) ≥ p

]
= Pr

[
u(ω̂;T ) ≥ p− αu(ω̂; t)

1− α

]
= Pr

[
T ≥ t∗

(
p− αu(ω̂; t)

1− α
; ω̂

)]
= 1− F

(
t∗
(
p− αu(ω̂; t)

1− α
; ω̂

))
, (C.1)

where t∗(p; ω̂) is the inverse of u(ω̂; t) w.r.t. t evaluated at ω̂ and p. That is; t∗(p; ω̂) is such that
u(ω̂; t∗(p; ω̂)) = p for all p ≥ 0 and ω̂ ∈ R. Note that t∗ is well defined given our assumptions
on u. Furthermore, let t∗1(p; ω̂) and t∗2(p; ω̂) denote the partial derivative of t∗ w.r.t. the first and
second argument, respectively; our assumptions on u also imply that for all p ≥ 0 and ω̂ ∈ R, we
have t∗1(p; ω̂) > 0 and t∗2(p; ω̂) < 0.

An uninformed agent with taste t’s inference rule is then given by the function ω̂(·|t, p) :
[0, 1]→ R such that for all d ∈ (0, 1), ω̂(d|t, p) is equal to the unique value of ω̂ that solves

d = 1− F
(
t∗
(
p− αu(ω̂; t)

1− α
; ω̂

))
, (C.2)

and ω̂(d|t, p) represents the agent’s perceived expected value of ω. An uninformed agent with taste
t buys if d is such that u (ω̂(d|t, p), t) ≥ p. The steady-state condition for the static equilibrium is
then:

d = λDI(p; ω̄(s)) + (1− λ) Pr [u (ω̂(d|T, p), T ) ≥ p] . (C.3)

Under our solution concept, a projecting agent with taste t believes that all agents (i) follow
the same inference rule as him; (2) form an expectation of ω equal to ω̂(d|t, p); and (3) take their
expected-utility-maximizing action given this expectation. He therefore believes that, in equilib-
rium, his inference rule allows him to perfectly extract the signal of the informed agents. To see
this, note that an agent with taste t thinks that demand among the informed is

D̂(p; ω̄(s)|t) = 1− F
(
t∗
(
p− αu(ω̄(s); t)

1− α
; ω̄(s)

))
, (C.4)

and thinks that

Pr [u (ω̂(d|T, p), T ) ≥ p] = Pr [u (ω̂(d|t, p), T ) ≥ p]

= 1− F
(
t∗
(
p− αu(ω̂(d|t, p); t)

1− α
; ω̂(d|t, p)

))
= d (C.5)

where the third equality follows from the fact that, by definition, ω̂(d|t, p) is the value of ω̂ that
solves (C.2). Thus, substituting (C.4) and (C.5) into (C.3) reveals that the agent believes that, in
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equilibrium, the aggregate quantity demanded is such that

d = λ

(
1− F

(
t∗
(
p− αu(ω̄(s); ti)

1− α
; ω̄(s)

)))
+ (1− λ)d

⇒ d = 1− F
(
t∗
(
p− αu(ω̄(s); ti)

1− α
; ω̄(s)

))
. (C.6)

Within this agent’s model, both (C.5) and (C.6) must hold, and hence the agent believes

1− F
(
t∗
(
p− αu(ω̄(s); t)

1− α
; ω̄(s)

))
= 1− F

(
t∗
(
p− αu(ω̂(d|t, p); ti)

1− α
; ω̂(d|t, p)

))
, (C.7)

which implies that ω̂(d|t, p) = ω̄(s) since ω̂(d|t, p) is the unique value of ω̂ that solves (C.2).
By this logic, this inference rule does perfectly reveal the informed agents’ private informa-

tion when all agents are rational (i.e., α = 0), since in this case (C.7) reduces to t∗(p; ω̄(s)) =
t∗(p; ω̂(d|t, p)) and thus in reality we have ω̂(d|t, p) = ω̄(s) since t∗ is strictly decreasing in ω̂.

Step 2: ω̂(d|t, p) is strictly decreasing in t. Next, we show that ω̂(d|t, p) is strictly decreasing
in t. Recall that for any fixed d ∈ (0, 1), Condition (C.2) implies that ω̂(d|t, p) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂; t)

1− α
; ω̂

)
− F−1(1− d) = 0. (C.8)

By the implicit function theorem (IFT), we have

∂ω̂(d|t, p)
∂t

= −
(
∂L(ω̂|t, p)

∂t

)(
∂L(ω̂|t, p)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

. (C.9)

Notice that
∂L(ω̂|t, p)

∂t
= −t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

)(
α

1− α

)
∂u(ω̂; t)

∂t
< 0, (C.10)

and

∂L(ω̂|t, p)
∂ω̂

= −t∗1
(
p− αu(ω̂; t)

1− α
; ω̂

)(
α

1− α

)
∂u(ω̂; t)

∂t
+ t∗2

(
p− αu(ω̂; t)

1− α
; ω̂

)
< 0, (C.11)

and hence (C.9) implies that ∂ω̂(d|t,p)
∂t

< 0.
Step 3: Total perceived valuations, u(ω̂(d|t, p), t), are increasing in t. Although perceived

quality is decreasing in t (Step 2), total perceived valuations remain increasing in t. Notice that

∂u(ω̂(d|t, p), t)
∂t

=
∂u(ω̂(d|t, p); t)

∂ω̂

∂ω̂(d|t, p)
∂t

+
∂u(ω̂(d|t, p); t)

∂t
, (C.12)

and thus ∂u(ω̂(d|t,p),t)
∂t

> 0 iff

∂ω̂(d|t, p)
∂t

> −
(
∂u(ω̂; t)

∂t

)(
∂u(ω̂; t)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

. (C.13)
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Substituting (C.10) and (C.11) into (C.9) implies that

∂ω̂(d|t, p)
∂t

= −
(
∂u(ω̂; t)

∂t

)(
∂u(ω̂; t)

∂ω̂
+K

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

, (C.14)

where

K = −
(

1− α
α

)
t∗2

(
p− αu(ω̂; t)

1− α
; ω̂

)
︸ ︷︷ ︸

<0

(
t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

))−1

︸ ︷︷ ︸
>0

∣∣∣∣
ω̂=ω̂(d|t,p)

, (C.15)

and hence (C.13) holds given that K ≥ 0. Note that K is strictly positive if α > 0 and hence
equilibrium total perceived valuations are strictly increasing in t under projection.

Step 4: The fraction of uninformed agents who buy follows a cutoff rule and is equal to frac-
tion of informed agents who buy. The equilibrium condition in (C.3) depends on the fraction of
uninformed agents who buy in the steady state, Pr [u (ω̂(d|T, p), T ) ≥ p]. Since Step 3 ensures
that u (ω̂(d|t, p); t) is strictly increasing in t, there must exist a threshold value t̂(d) such that, in
equilibrium, types with with t ≥ t̂(d) buy and those with t < t̂(d) do not. That is, there is a
well-defined “marginal uninformed type”, t̂(d), that naturally separates the type space into buyers
and non-buyers.

We now show that, for any value of d ∈ (0, 1), it must be that t̂(d) = F−1(1− d). That is, the
marginal uninformed type is such that the fraction of uninformed agents who buy is equal to d. To
see this, the inference of an agent of any type t, ω̂(d|t, p), must satisfy

u

(
ω̂(d|t, p); t∗

(
p− αu(ω̂(d|t, p), t)

1− α
; ω̂(d|t, p)

))
=
p− αu(ω̂(d|t, p), t)

1− α
; (C.16)

this follows from the fact that, by definition, t∗(ũ; ω̂(d|t, p)) is the value of t such that u(ω̂(d|t, p), t) =
ũ. Furthermore, recall that for all t, the inference rule ω̂(d|t, p) is such that (C.8) holds as an iden-
tity; substituting this identity into (C.16) and rearranging implies that

p = αu(ω̂(d|t, p); t) + (1− α)u
(
ω̂(d|t, p);F−1(1− d)

)
. (C.17)

Given that the condition above must hold for all t ∈ T , it must hold for type t̂(d) ≡ F−1(1 −
d) whose private value lies at the (1 − d)-percentile in the taste distribution. Condition (C.17)
evaluated at t̂(d) = F−1(1− d) implies

p = αu
(
ω̂(d|t̂(d), p);F−1(1− d)

)
+ (1− α)u

(
ω̂(d|t̂(d), p);F−1(1− d)

)
= u

(
ω̂(d|t̂(d), p); t̂(d)

)
. (C.18)

Thus, an agent with type t̂(d) = F−1(1−d) forms an inference that leaves him indifferent between
buying or not. By Step 3, above, we know that an agent with t > t̂(d) must form an inference such
that he has a strict preference to buy, while one with t < t̂(d) must form an inference such that
he has a strict preference to not buy. Thus t̂(d) represents the marginal uninformed type, and
the fraction of uninformed agents who buy is thus Pr [u (ω̂(d|T, p), T ) ≥ p] = 1 − F

(
t̂(d)

)
=

1− F (F−1(1− d)) = d.
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Step 5: The total fraction of agents who buy in equilibrium is equal to the fraction of informed
agents who buy. Recall from (C.3) that, in equilibrium, the aggregate quantity demanded must
satisfy

d = λDI(p; ω̄(s)) + (1− λ) Pr [u (ω̂(d|T, p), T ) ≥ p] . (C.19)

From Step 4, we know that Pr [u (ω̂(d|T, p), T ) ≥ p] = d, and hence the equilibrium condition
reduces to

d = λDI(p; ω̄(s)) + (1− λ)d ⇒ d = DI(p; ω̄(s)). (C.20)

This completes the proof of the lemma. We now establish each part of Proposition 1.
Part 1. Let ω̂(t) denote the steady-state inference of an uninformed agent who has taste t; that

is, ω̂(t) ≡ ω̂(d∗|t, p), where d∗ ≡ DI(p; ω̄(s)) is the quantity demanded in equilibrium. The fact
that ω̂(t) is strictly decreasing in t is established in Step 2 in the proof of Lemma C.1.

Recall from Step 4 of Lemma C.1 that the marginal uninformed type is t̂(d) = F−1(1 − d).
Since d = DI(p; ω̄(s)) = [1−F (t∗(p; ω̄(s)))] in equilibrium, we therefore have t̂(d) = t∗(p; ω̄(s))
in equilibrium. That is, the marginal uninformed type is equal to the marginal informed type.
This further implies that the an uninformed agent with t = t∗(p; ω̄(s)) is the unique uninformed
type who correctly estimates the state: substituting t̂(d) = t∗(p; ω̄(s)) into (C.18) implies that
this type forms an inference that leaves him indifferent between buying or not, which means
that he must form the same expectation as the informed agent who is truly indifferent; hence,
ω̂(d|t∗(p; ω̄(s)), p) = ω̄(s) at the equilibrium value of d. Since ω̂(t) is strictly decreasing in t,
this implies that uninformed agents with t > t∗(p; ω̄(s)) underestimate the state, while those with
t < t∗(p; ω̄(s)) overestimate the state.

Part 2. We know argue that ω̂(t) is increasing in p for each t ∈ T . Condition (C.2) implies that
ω̂(d|t, p) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂; t)

1− α
; ω̂

)
− F−1(1− d) = 0. (C.21)

In the steady-state, d = DI(p; ω̄(s)) = 1 − F (t∗(p; ω̄(s))) and hence F−1(1 − d) = t∗(p; ω̄(s));
the preceding condition implies that ω̂(t) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂; t)

1− α
; ω̂

)
− t∗(p; ω̄(s)) = 0. (C.22)

The IFT then implies

∂ω̂(t)

∂p
= −

(
∂L(ω̂|t, p)

∂p

)(
∂L(ω̂|t, p)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(t)

, (C.23)

and (C.11) shows that ∂L(ω̂|t,p)
∂ω̂

< 0. Hence, ∂ω̂(t)
∂p

> 0 iff ∂L(ω̂|t,p)
∂p

∣∣
ω̂=ω̂(t)

> 0. Notice that

∂L(ω̂|t, p)
∂p

= t∗1

(
p− αu(ω̂; t)

1− α
; ω̂

)(
1

1− α

)
− t∗1(p; ω̄(s)). (C.24)

We first show that (C.24) is positive at the margin; i.e., for type t = t∗(p; ω̄(s)). In this case,
ω̂(t) = ω̄(s) and thus u(ω̂, t) = u(ω̄(s), t) = p, implying that t∗1

(
p−αu(ω̂;t)

1−α ; ω̂
)

= t∗1(p; ω̄(s)).
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Hence, (C.24) is positive if and only if α > 0. To see why this condition must hold more generally,
let ω̂(t|p) denote the equilibrium perception of an agent with taste t facing price p, and consider p0

and p1 > p0. Let t∗0 ≡ t∗(p0; ω̄(s)). The preceding argument establishes that ω̂(t∗0|p1) > ω̂(t∗0|p0).
Furthermore, from Part 1, we know that ω̂(t|p) is strictly decreasing in t for each p ∈ {p0, p1}.
Since ω̂(t∗0|p1) > ω̂(t∗0|p0), we must have ω̂(t|p1) > ω̂(t|p0) for all t if ω̂(·|p0) and ω̂(·|p1) do not
cross; that is, if there exists no t̃ ∈ T such that ω̂(t̃|p1) = ω̂(t̃|p0). Toward a contradiction, suppose
such a t̃ exists, and let ω̃ = ω̂(t̃|p1) = ω̂(t̃|p0). By definition, ω̃ must rationalize the observed
levels of demand at prices p0 and p1. But this contradicts the fact that the agent must infer distinct
estimates of ω from these different levels of demand. Moreover, it is immediate that (C.24) is
strictly positive, as desired, for the functional form for u considered in the main text whenever
α > 0 since in this case t∗1 is a constant. �

Proof of Proposition 2. We prove this result for the more general class of utility functions intro-
duced at the beginning of the proof of Proposition 1 (i.e.,u(ω, t) is strictly increasing and differn-
tiable w.r.t. both variables, satisfies ∂2

∂ω∂t
u(ω, t) > 0, and is linear in ω). Thus, the results of the

generalized version of Proposition 1 apply.
The random variable describing valuations of the uninformed agents in the rational steady-state

equilibrium is v(T ) ≡ u(ω̄(s), T ). Under projection, this random variable is v̂(T ) ≡ u(ω̂(T ), T ).
We argue that v̂(·) is a clockwise rotation of v(·). First, note that v̂(t∗) = u(ω̂(t∗), t∗) = u(ω̄(s), t∗) =
v(t∗), which follows from the proof of Part 1 of Proposition 1 where we show that ω̂(t∗) = ω̄(s).
Thus, v and v̂ intersect at t∗. Next, for t > t∗, v̂(t) = u(ω̂(t), t) < u(ω̄(s), t) = v(t) since
ω̂(t) < ω̄(s) for t > t∗ given that ω̂(t) is strictly decreasing in t (as shown in Part 1 of Propo-
sition 1). Similarly, for t < t∗, v̂(t) = u(ω̂(t), t) > u(ω̄(s), t) = v(t) since ω̂(t) > ω̄(s) for
t < t∗, which again follows from ω̂(t) being strictly decreasing in t. Thus, v̂ is clockwise rotation
of v. Since v and v̂ are both strictly increasing functions, this rotation property implies that v̂(T )
is less disperse than v(T ) in the sense of the dispersion order defined by Shaked and Shanthiku-
mar (2007); i.e., v̂(T ) ≤disp v(T ) (see the end of the proof of Proposition A.1 in Appendix A.1
for the definition of this order). Thus, by Theorem 3.B.16 of Shaked and Shanthikumar (2007),
Var
(
v̂(T )

)
< Var

(
v(T )

)
. �

Proof of Lemma 1. We will prove the claim by induction on n = 2, . . . , N . As argued in the main
text preceding Equation (11), ω̂2(t) = ω̄2 − αt for some ω̄2 independent of t. This establishes the
base case. Now suppose that in period n, ω̂n(t) = ω̄n−αt. The marginal uninformed type in period
n has taste t̂n such that ω̂n(t̂n) + t̂n = pn ⇒ t̂n = (pn − ω̄n)/(1− α) and thus aggregate demand
in period n is dn = λ

[
1 − F (pn − ω̄(s))

]
+ (1 − λ)

[
1− F

(
pn−ω̄n

1−α

)]
. An observer in generation

n + 1 then forms a perception of ω equal to ω̂n+1(t) such that dn = 1 − F̂ (pn − ω̂n+1(t)) =

1 − F (pn−ω̂n+1(t)−αt
1−α ) ⇒ ω̂n+1(t) = [pn − (1 − α)F−1(1 − dn)] − αt = ω̄n+1 − αt, where

ω̄n+1 = pn − (1− α)F−1(1− dn) is independent of t. �

Proof of Proposition 3. Part 1: Initial Overreaction. We will focus on the case with p̃ < p; the
case with p̃ > p is analogous and thus omitted.

Step 1: Quantity demanded is constant prior to the price change. Suppose n∗ ≥ 2. For ease of
exposition, let dI ≡ DI(p; ω̄(s)) and d̃I ≡ DI(p̃; ω̄(s)) denote the fraction of informed agents who
buy at p and p̃, respectively. In period 1, d1 = DI(p; ω̄(s)) = dI . The aggregate biased belief in
period 2 is ω̄2 = (1−α)ω̄(s) +αp, and Equation (11) then implies that the fraction of uninformed
agents who buy in period 2 is DU(p; ω̄2) = dI . Thus, the overall fraction of agents who buy in
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period 2 is d2 = dI . Equation (14) then implies that ω̄3 = ω̄2. Hence, if n∗ ≥ 3, then d3 = d2 = dI .
It is straightforward that this logic giving rise to a constant aggregate biased belief and quantity
demanded will continue until the first period with the new price, p̃.

Step 2: Quantity demanded increases beyond the rational benchmark when the price drops.
Since the quantity demanded is constant prior to the price change, we can (without loss of gener-
ality) assume from now on that n∗ = 1. That is, p1 = p and pn = p̃ for all n ≥ 2. In all periods
n ≥ 2, the fraction of informed agents who buy is d̃I . By contrast, in period 2, the fraction of
uninformed agents who buy is d̃U2 ≡ DU(p̃; ω̄2) = 1 − F

(
p̃−ω̄2

1−α

)
. Importantly, d̃U2 > d̃I . To see

this, note that ω̄2 = (1− α)ω̄(s) + αp and hence

d̃U2 = 1− F
(
p̃− (1− α)ω̄(s)− αp

1− α

)
= 1− F

(
p̃− ω̄(s)− α

1− α
(p− p̃)

)
> 1− F (p̃− ω̄(s)) = d̃I , (C.25)

where the inequality follows from p − p̃ > 0. Thus, the total quantity demanded in period 2 is
d2 = λd̃I + (1− λ)d̃U2 , which exceeds the rational benchmark of d̃I .

Step 3: Quantity demanded remains above the rational benchmark in all subsequent periods.
We now consider the path of d̃Un ≡ DU(p̃; ω̄n) = 1 − F

(
p̃−ω̄n
1−α

)
for n > 2 starting from the initial

condition of d̃U2 = 1− F
(
p̃−ω̄2

1−α

)
. From the law of motion in Equation (14), we must have that for

all n ≥ 2,
d̃Un+1 = DU(p̃; ω̄n+1) = λd̃I + (1− λ)d̃Un . (C.26)

Thus, if d̃Un > d̃I , then d̃Un+1 > d̃I . Since we start from the base case of d̃U2 > d̃I , induction on n
implies that d̃Un > d̃I for all n ≥ 2. Thus, the aggregate quantity demanded in any period n ≥ 2 is
dn = λd̃I + (1− λ)d̃Un > d̃I , and dn therefore exceeds the rational benchmark.

Part 2. We now show that the dn converges to the rational benchmark level of d̃I as n → ∞.
Toward this end, we first show that for all k ≥ 1,

d̃Uk+2 =
[
1− (1− λ)k

]
d̃I + (1− λ)kd̃U2 . (C.27)

We will show by induction that in each period k + 2, we have d̃Uk+2 = ak+2d̃
I + bk+2d̃

U
2 , and that

the coefficients ak+2 and bk+2 satisfy ak+2 + bk+2 = 1 and bk+2 = (1− λ)k. The base case (k = 1)
is immediate from (C.26), since d̃U3 = λd̃I + (1− λ)d̃U2 For the induction step, suppose the claim
is true for k > 1. Thus, d̃Uk+2 = ak+2d̃

I + bk+2d̃
U
2 . From (C.26), this implies that

d̃Uk+3 = λd̃I + (1− λ)[ak+2D
I + bk+2d̃

U
2 ] = [λ+ (1− λ)ak+2]︸ ︷︷ ︸

≡ak+3

d̃I + (1− λ)bk+2︸ ︷︷ ︸
≡bk+3

d̃U2 . (C.28)

It is then immediate that bk+3 = (1− λ)k+1 as required given the induction assumption of bk+2 =
(1− λ)k. To show that ak+3 + bk+3 = 1, note that ak+2 + bk+2 = 1 implies

ak+3 + bk+3 = λ+ (1− λ)ak+2 + (1− λ)bk+2 = λ+ (1− λ)[ak+2 + bk+2] = 1. (C.29)

The deviation between the quantity demanded in period n under projection and the rational
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benchmark quantity is |dn− d̃I | = |λd̃I + (1− λ)d̃Un − d̃I | = (1− λ)|d̃Un − d̃I |, and (C.27) implies
that for n ≥ 2, |d̃Un − d̃I | = (1− λ)n−2|d̃U2 − d̃I |. Thus,

|dn − d̃I | = (1− λ)n−1|d̃U2 − d̃I |. (C.30)

This value is clearly decreasing in n and converges to 0 as n → ∞. Thus, dn converges to the
rational benchmark, d̃I , as n→∞. �

Proof of Proposition 4. Part 1. The seller’s objective is

max
p1,p2

Π(p1, p2;α, λ), (C.31)

subject to the dynamic constraint ω̄2 = αp1 + (1− α)ω̄(s). Note that

Π(p1, p2;α, λ) = p1D1(p1; ω̄(s)) + p2D2(p2; ω̄2, ω̄(s)), (C.32)

where, from Equation (12), we have

D1(p1; ω̄(s)) = DI(p; ω̄(s)), (C.33)
D2(p2; ω̄2, ω̄(s)) = λDI(p2; ω̄(s)) + (1− λ)DU(p2; ω̄2), (C.34)

with DI(p; ω̄(s)) = 1− F (p− ω̄(s)) and DU(p; ω̄2) = 1− F
(
p−ω̄2

1−α

)
.

Potential Cases and Outline. We first describe the potential mix of interior and corner solutions
and argue which of these are possible at the optimum. Then, for each possible case, we proceed to
show that p∗1 > pM and p∗1 > p∗2.

Fixing s, let v = ω̄(s) + t and v = ω̄(s) + t denote the expected valuations of the lowest and
highest informed types, respective. The set of valuations among informed types is thus V = [v, v].
As a function of p1, an uninformed consumer’s valuation in period 2 is (1 − α)(ω̄(s) + t) + αp1.
Notice that at any optimum, p1 ∈ [v, p̄], where, recall, the price ceiling is p̄ = v−κ for some κ > 0
arbitrarily small such that p̄ > pM . Hence, given p1 and α > 0, the set of valuations of uninformed
consumers in period 2, denoted V̂ ≡ [(1− α)v + αp1, (1− α)v + αp1], is a strict subset of V .

First, notice that it is never optimal for the seller to serve all consumers in period 1. Since
(pM , s) admits interior demand, it is not optimal to serve all consumers in the rational benchmark;
moreover, doing so under projection leads to the least attractive distribution of perceived valuations
in period 2. Hence, in period 1 we either have an interior solution or a price equal to the price
ceiling: p∗1 ∈ (v, p̄].

Now consider possible corner cases in period 2. Since the valuations of uninformed types are
a strict subset of the valuations of informed types, demand in period 2 is D2(p; ω̄2; ω̄(s)) =

λDI(p; ω̄(s)) + (1− λ) if p ∈ [v, (1− α)v + αp1),

λDI(p; ω̄(s)) + (1− λ)DU(p; ω̄2) if p ∈ [(1− α)v + αp1, (1− α)v + αp1],

λDI(p; ω̄(s)) if p ∈ ((1− α)v + αp1, p̄].

(C.35)

We now argue that the seller will never operate strictly within the first or third region of the
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demand function above, but may operate at the corner pc2 ≡ (1−α)v+αp1 at which all uninformed
types are served. First consider the third region. It is clearly sub-optimal to serve only informed
types in period 2 since the strategy p1 = p2 = pM yields the seller the rational static monopoly
profit in each period. Thus, deviating from these prices would require the seller to strictly benefit
by serving consumers with manipulated beliefs, which is not possible when serving only informed
types. Now consider the interior of the first region, where the seller sets a price below the lowest
perceived valuation of uninformed types. This cannot happen at the optimum since it involves
using p1 to inflate the beliefs of uninformed types to an inefficient extent: since all uninformed
types strictly prefer to buy at p2 given ω̄2, a slight reduction in p1 would have no effect on the
demand of the uninformed (or informed) agents in period 2 but would strictly increase the seller’s
profit in period 1. Thus, p∗2 ≥ pc2 and in period 2 we either have an interior solution (in the middle
region of C.35) or the corner solution such that p∗2 = pc2.

We now show that p∗1 > pM and p∗1 > p∗2 in any of the possible cases noted above (i.e., interior
or ceiling in period 1, and interior or corner in period 2).

Case 1: Interior Solutions. Substituting the dynamic constraint intoD2 in (C.33), the first-order
conditions of C.31 are:

∂

∂p1

p1D1(p1; ω̄(s)) + p2
∂

∂ω̄2

D2(p2; ω̄2, ω̄(s))
∂ω̄2

∂p1

= 0, (C.36)

∂

∂p2

p2D2(p2; ω̄2, ω̄(s)) = 0. (C.37)

Define the following functions, which each correspond to the price derivatives of the seller’s profit
in period n w.r.t. pn for n = 1, 2:

M1(p; ω̄(s)) ≡ ∂

∂p
pD1(p; ω̄(s)), (C.38)

M2(p; ω̄2, ω̄(s)) ≡ ∂

∂p
pD2(p; ω̄2, ω̄(s)). (C.39)

Substituting these expressions along with the relevant derivatives into the FOCs above yields:

M1(p1; ω̄(s)) + p2

(
α(1− λ)

1− α

)
f

(
p2 − ω̄2

1− α

)
= 0, (C.40)

M2(p2; ω̄2, ω̄(s)) = 0. (C.41)

Step 1: p∗1 > pM . Since (pM , s) admits interior demand under rational inference and since F
has an increasing hazard rate, M1 is strictly decreasing in p and has exactly one root at pM > 0.
Note that FOC (C.40) implies that p∗1 solves

M1(p∗1; ω̄(s)) = −p∗2
(
α(1− λ)

1− α

)
f

(
p∗2 − ω̄2

1− α

)
, (C.42)

where the right-hand side is strictly negative at an interior solution whenever α > 0. Thus, since
M1 is decreasing in p and M1(pM ; ω̄(s)) = 0, we must have p∗1 > pM .

Step 2: p∗2 < p∗1. FOC (C.41) implies that p∗2 solves M2(p∗2; ω̄2, ω̄(s)) = 0. Toward a contradic-
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tion, suppose that p∗2 = p∗1. We argue that M2(p∗1; ω̄2, ω̄(s)) < M1(p∗1; ω̄(s)). Note that

M2(p; ω̄2, ω̄(s)) = D2(p; ω̄2, ω̄(s))− p
[
λf(p− ω̄(s)) +

(
1− λ
1− α

)
f

(
p− ω̄2

1− α

)]
. (C.43)

At p = p∗1, we have ω̄2 = (1− α) + αp∗1 and (p− ω̄2)/(1− α) = p∗1− ω̄(s), which further implies
that D2(p∗1; ω̄2, ω̄(s)) = 1− F (p∗1 − ω̄(s)) = D1(p∗1; ω̄(s)). Thus, evaluating M2 at p = p∗1 yields

M2(p∗1; ω̄2, ω̄(s)) = D1(p∗1; ω̄(s))− p∗1f(p∗1 − ω̄(s))

(
1− αλ
1− α

)
. (C.44)

However, note that M1(p∗1; ω̄(s)) = D1(p∗1; ω̄(s)) − p∗1f(p∗1 − ω̄(s)), and thus M2(p∗1; ω̄2, ω̄(s)) <
M1(p∗1; ω̄(s)) ⇔

− p∗1f(p∗1 − ω̄(s))

(
1− αλ
1− α

)
< −p∗1f(p∗1 − ω̄(s)), (C.45)

which holds for any α > 0. However, this presents a contradiction: since M1(p∗1; ω̄(s)) < 0 by
FOC (C.40), M2(p∗1; ω̄2, ω̄(s)) < M1(p∗1; ω̄(s)) ⇒ M2(p∗1; ω̄2, ω̄(s)) < 0, which violates FOC
(C.41). Thus, if M2(p; ω̄2, ω̄(s)) is decreasing in p, we must have p∗2 < p∗1 in order for both FOCs
to hold. To complete the proof, we only need to show that M2(p; ω̄2, ω̄(s)) is decreasing in p.

Step 3: M2 is decreasing in p. Notice that

M2(p; ω̄2, ω̄(s)) = λ

[
∂

∂p
pDI(p; ω̄(s))

]
︸ ︷︷ ︸

≡MI(p;ω̄(s))

+(1− λ)

[
∂

∂p
pDU(p; ω̄2)

]
︸ ︷︷ ︸

≡MU (p;ω̄2)

= λM I(p; ω̄(s)) + (1− λ)MU(p; ω̄2). (C.46)

It is immediate that M I(p; ω̄(s)) = M1(p; ω̄(s)) and is hence decreasing in p. Moreover, we
can show that MU is also decreasing in p given our assumptions on F . The following Lemma
establishes this.

Lemma C.2. Suppose the family of distributions {F (x− ω̄)}ω̄∈R is such that for any ω̄(s),
M I(p; ω̄(s)) ≡ ∂

∂p
p[1− F (p− ω̄(s))] is decreasing at all p such that F (p− ω̄(s)) ∈ (0, 1). Then

for any α ∈ [0, 1) and ω̄2 ∈ R, MU(p; ω̄2) ≡ ∂
∂p
p[1 − F (p−ω̄2

1−α )] is decreasing at all p such that
F (p−ω̄2

1−α ) ∈ (0, 1).

We now prove Lemma C.2. Consider an arbitrary value of ω̄(s) ∈ R. Notice thatM I(p; ω̄(s)) =
1−F (p− ω̄(s))−pf(p− ω̄(s)), and hence the assumption of the lemma implies ∂

∂p
M I(p; ω̄(s)) <

0⇔ −f(p− ω̄(s))− f(p− ω̄(s))− pf ′(p− ω̄(s)) on the relevant domain, which is equivalent to

− 2f(p− ω̄(s))− pf ′(p− ω̄(s)) ≤ 0 (C.47)

for all ω̄(s) (and strictly so for p − ω̄(s) on the interior of the support of F ). Now note that
MU(p; ω̄2) ≡ ∂

∂p
p[1 − F (p−ω̄2

1−α )] = 1 − F (p−ω̄2

1−α ) − pf(p−ω̄2

1−α ) 1
1−α . To show that MU(p; ω̄(s)) is
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decreasing in p, note that

∂

∂p
MU(p; ω̄2) = −f

(
p− ω̄2

1− α

)
1

1− α
− f

(
p− ω̄2

1− α

)
1

1− α
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)2

= −2f

(
p− ω̄2

1− α

)
1

1− α
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)2
. (C.48)

The expression above is weakly negative iff

− 2f

(
p− ω̄2

1− α

)
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)
≤ 0. (C.49)

Under a change of variables with p̃ = p
1−α and ω̃ = ω̄2

1−α , the previous condition is then equivalent
to

− 2f(p̃− ω̃)− p̃f ′(p̃− ω̃) ≤ 0. (C.50)

This condition is equivalent to Condition (C.47), which holds by assumption. Furthermore, Con-
dition (C.47) additionally implies that Condition (C.50) holds with a strict inequality when p−ω̄2

1−α is
on the interior of the support of F . This completes the proof of Lemma C.2.

Since F satisfies the assumption of Lemma C.2 (because we assume F has an increasing hazard
rate), MU is decreasing and thus M2 is decreasing since it is the convex combination of decreasing
functions. This completes Case 1.

Case 2: p∗1 = p̄. Suppose the optimal price in period 1 is the price ceiling. Then p∗1 > pM

given that p̄ > pM . To show p∗1 > p∗2, suppose that p∗2 = p̄ for a contradiction. Recall that
if p1 = p2, then DU(p2; ω̄2) = DI(p2; ω̄(s)) ⇒ D2(p2; ω̄2, ω̄(s)) = DI(p2; ω̄(s)). Thus, the
seller’s total profit from p∗1 = p∗2 = p̄ would be 2DI(p̄; ω̄(s)) < 2DI(pM ; ω̄(s)) since pM uniquely
maximizes pDI(p; ω̄(s)). Thus, p1 = p2 = pM is strictly preferred to p∗1 = p∗2 = p̄, contradicting
the presumption that the latter path is optimal. Thus, we must have p∗2 < p∗1.

Case 3: p∗1 interior yet p∗2 = pc2. In this case, p∗2 = pc2 = (1 − α)v + αp∗1. Note that p∗1 >
p∗2 ⇔ p∗1 > v, which is true given that is sub-optimal to serve all consumers in period 1. Thus, we
need only show that p∗1 > pM when p∗1 is interior (the ceiling case is considered above). The seller
chooses p∗1 to maximize p1D

I(p1; ω̄(s)) + pc2[λDI(p2; ω̄(s)) + 1− λ], yielding a FOC of

M1(p∗1; ω̄(s)) + α[λDI(pc2; ω̄(s)) + 1− λ− λpc2f(pc2 − ω̄(s))] = 0, (C.51)

and thus
M1(p∗1; ω̄(s)) + αλM1(pc2; ω̄(s)) + α[1− λ] = 0. (C.52)

Recall that M1(pM ; ω̄(s)) = 0 and M1(p; ω̄(s)) > 0 for all p < pM . Thus, since pc2 < p∗1, if
p∗1 ≤ pM , then M1(p∗1; ω̄(s))+αλM1(pc2; ω̄(s)) > 0, contradicting the FOC above. This completes
the proof of Part 1.

Part 2. Effect of α. First consider the case in which p∗1 and p∗2 are interior solutions to the
optimization program in (C.32). From the Envelope Theorem, ∂p

∗
n

∂α
= 0 for n = 1, 2, and hence

∂

∂α
Π(p1, p2;α, λ) = −p∗2

[
λf(t∗2)

∂t∗

∂α
+ (1− λ)f

(
t̂2
) ∂t̂2
∂α

]
, (C.53)
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where we’ve defined t∗2 ≡ p2 − ω̄(s) and t̂2 ≡ p∗2−(1−α)ω̄(s)−αp∗1
1−α . Since t∗2 is the marginal informed

type, ∂t
∗

∂α
= 0. Now note that

∂t̂

∂α
=

(1− α)[ω̄(s)− p∗1] + [p∗2 − (1− α)ω̄(s)− αp∗1]

(1− α)2
= − p∗1 − p∗2

(1− α)2
. (C.54)

Substituting these values back into (C.53) yields

∂

∂α
Π(p1, p2;α, λ) = (1− λ)p∗2f

(
p∗2 − (1− α)ω̄1 − αp∗1

1− α

)[
p∗1 − p∗2
(1− α)2

]
. (C.55)

Since we have assumed λ < 1, the expression above is positive whenever p∗1 > p∗2, which is true
by Part 1 of this proposition. The case in which p∗1 = p̄ and p∗2 is interior yields ∂

∂α
Π(p1, p2;α, λ)

that is identical to expression (C.55). Finally, consider the case in which p∗2 = pc2 = (1−α)v+αp1

(i.e., the corner case described in Part 1 in which all uninformed types are served in period 2). In
period 1, the seller chooses p1 to maximize

Πc(p1;α, λ) = p1[1−F (p1− ω̄(s))]+[(1−α)v+αp1]

[
1−λF ((1−α)v+αp1− ω̄(s))

]
. (C.56)

Note that this profit function accounts for the fact that all uninformed types buy in period 2. Let
p∗1 be the value of p1 that maximizes the expression above, and let pc2(p∗1) ≡ (1 − α)v + αp∗1. For
either an interior value p∗1 or p∗1 = p̄, we have

∂Πc(p1;α, λ)

∂α
= (p∗1− v)

[
1−λF (pc2(p∗1)− ω̄(s))

]
− pc2(p∗1)λf

(
pc2(p1)− ω̄(s)

)
(p∗1− v), (C.57)

and hence ∂
∂α

Πc(p1;α, λ) > 0 if and only if[
1− λF (pc2(p∗1)− ω̄(s))

]
− pc2(p∗1)λf

(
pc2(p∗1)− ω̄(s)

)
> 0. (C.58)

The previous condition must hold given that we are focusing on the case in which all uninformed
types are served: as argued above, it is optimal to set the highest possible price in the first region
of D2 in (C.35), and hence the previous inequality must hold for all p2 ≤ (1− α)v + αp1.

Effect of λ. Similar to the approach above, if p∗2 is interior and either p∗1 is interior or p∗1 = p̄,
then we have

∂

∂λ
Π(p1, p2;α, λ) = p∗2

[
−F (t∗2) + F

(
t̂2
)]
, (C.59)

where neither t∗2 nor t̂2 depend on λ. This expression is negative whenever t̂2 < t∗2. Notice that

t̂2 =
p∗2 − (1− α)ω̄(s)− αp∗1

1− α
= p∗2 − ω̄(s)− α

1− α
[p∗1 − p∗2] = t∗2 −

α

1− α
[p∗1 − p∗2]. (C.60)

Since α > 0, t̂2 < t∗2 ⇔ p∗1 − p∗2 > 0, which is again true by Part 1 of this proposition. If instead
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we have a corner solution in period 2, then the profit function is as in (C.56) and

∂Πc(p1;α, λ)

∂λ
= −pc2(p∗1)F

(
pc2(p1)− ω̄(s)

)
, (C.61)

which is clearly negative. �

Proof of Proposition 5. Part 1. Consider the optimal price pair (p∗1, p
∗
2). Let t∗2 ≡ p∗2−ω̄(s) denote

the marginal informed type in period 2, and and let t̂2 ≡ p∗2−ω̄2

1−α denote the marginal uninformed
type. Note that if t̂2 < t∗2, then the interval of types who adopt the good in period 2 at a price
above their true expected valuation is [t̂2, t

∗
2]. From (C.60), we have t∗2 − t̂2 = α

1−α [p∗1 − p∗2]. Since
p∗1 − p∗2 > 0 for all α > 0 (by Proposition 4 Part 1), we know that t̂2 < t∗2. Thus, the width of the
interval of types who wrongly adopt is

t∗2 − t̂2 =
α

1− α
[p∗1 − p∗2], (C.62)

which is strictly positive.
Part 2. Suppose that ω̄(s) + t < 0. We show that α sufficiently large will induce the seller to

set the “corner” price in period 2 at which all uninformed types are served. Recall from the proof
of Proposition 4 that this price is pc2 = (1−α)v+αp1, where v = ω̄(s) + t. We will show that the
price derivative of the period-2 profit function is necessarily negative at pc2 for α sufficiently large,
implying that p∗2 = pc2, and thus that all uninformed types are served. Toward this end, recall that
the period-2 profit is

Π2(p2; p1) = p2

(
1− λF (p2 − ω̄(s))− (1− λ)F

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
, (C.63)

and hence

∂Π2(p2; p1)

∂p2

=

(
1− λF (p2 − ω̄(s))− (1− λ)F

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
− p2

(
λf(p2 − ω̄(s)) +

(1− λ)

(1− α)
f

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
. (C.64)

To evaluate ∂Π2(p2;p1)
∂p2

∣∣
p2=pc2

, notice that p
c
2−(1−α)ω̄(s)−αp1

1−α = t. Since F (t) = 0, we have

∂Π2(p2; p1)

∂p2

∣∣∣∣
p2=pc2

= 1− λ
(
F (pc2 − ω̄(s))− pc2f(pc2 − ω̄(s))

)
− p2

c

(1− λ)

(1− α)
f (t) , (C.65)

and thus a sufficient condition for ∂Π2(p2;p1)
∂p2

∣∣
p2=pc2

< 0 is

p2
c

(1− λ)

(1− α)
f (t) > 1. (C.66)
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Since pc2 = (1− α)v + αp1, the previous condition is equivalent to

v +
α

(1− α)
p1 >

1

(1− λ)f(t)
. (C.67)

From Proposition 4 Part 1, we know that along the optimal price path, p1 > pM for all α > 0.
Hence, a sufficient condition for (C.67) is

v +
α

(1− α)
pM >

1

(1− λ)f(t)
. (C.68)

The right-hand side of (C.68) is positive and finite given that f is positive on T . Thus, since
pM > 0, there exists α̃ ∈ (0, 1) such that v + α̃

(1−α̃)
pM = 1

(1−λ)f(t)
. Then α > α̃ implies that

Condition (C.68) holds, and hence the seller chooses pc2 such that all uninformed types are served
in period 2. �

Proof of Lemma 2. As noted in the text, we restrict attention to the case in which it is never
optimal to serve the lowest type. In this case, Equation (13) implies that the true demand function
in period n ≥ 2 is D(pn; ω̄n, ω̄(s)) = λDI(pn; ω̄(s)) + (1− λ)DU(pn; ω̄n), where DI and DU are
specified in Equation (16). Hence,

D(pn; ω̄n, ω̄(s)) =
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − (1− λα)pn

(1− α)(t− t)
. (C.69)

In period n + 1, an uninformed observer with taste t thinks that when the preceding generation
holds a common expectation of ω equal to ω̂, then their demand is given by

D̂(pn; ω̂|t) =
(1− α)t+ ω̂ − pn + αt

(1− α)(t− t)
. (C.70)

The inferred value of this observer, denoted ω̂n+1(t), is the value of ω̂ that solves D̂(pn; ω̂|t) =
D(pn; ω̄n, ω̄(s)). By Lemma 1, ω̂n+1(t) = ω̄n+1 − αt. Substituting this into the previous equality
and solving for ω̄n+1 in terms of ω̄n yields the following law of motion:

ω̄n+1 = λ
[
(1− α)ω̄(s) + αpn

]
+ (1− λ)ω̄n, (C.71)

starting from ω̄2 = (1− α)ω̄(s) + αp1. We complete the proof using induction on n ≥ 2. Define

p̃n−1 ≡ (1− λ)n−2p1 +
n−1∑
k=2

λ(1− λ)n−1−kpk. (C.72)

For the base case, note that (C.71) implies that ω̄3 = λ
[
(1−α)ω̄(s)+αp2

]
+(1−λ)[(1−α)ω̄(s)+

αp1] = (1−α)ω̄(s) +α[(1− λ)p1 + λp2] = (1−α)ω̄(s) +αp̃2. Now suppose that for any n > 2,
we have ω̄n = (1− α)ω̄(s) + αp̃n−1. Again, (C.71) implies that ω̄n+1 = λ

[
(1− α)ω̄(s) + αpn

]
+

(1− λ)[(1− α)ω̄(s) + αp̃n−1] = (1− α)ω̄(s) + α[(1− λ)p̃n−1 + λpn] = (1− α)ω̄(s) + αp̃n. �

Proof of Proposition 6. As noted in the text, we restrict attention to the case in which it is never
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optimal to serve the lowest type. Thus, the optimal price path is characterized by the first-order
conditions, aside from the possibility of pricing at the ceiling. We discuss the price-ceiling case at
the end of the proof and focus on the interior case first. In the interior case, profit in period n ≥ 2
is

Π(pn; ω̄n, ω̄(s)) = pnD(pn; ω̄n, ω̄(s)) = pn

(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − (1− λα)pn

(1− α)(t− t)

)
;

in period n = 1, profit is Π̃(p1; ω̄(s)) = p1

(
t+ω̄1−p1
t−t

)
. The seller’s maximization problem is thus

max
{pn}Nn=1

(
Π̃(p1; ω̄(s)) +

N∑
n=2

Π(pn; ω̄n)

)
s.t. ω̄n+1 = ϕ(ω̄n, pn) ∀n = 2, . . . , N, (C.73)

where ϕ(ω̄n; pn) ≡ λ
[
(1−α)ω̄(s) +αpn

]
+ (1−λ)ω̄n is the transition function derived in Lemma

2. The Lagrangian is then

L = Π̃(p1; ω̄1) +
N∑
n=2

Π(pn; ω̄n) +
N∑
n=1

γn(ω̄n+1 − ϕ(ω̄n, pn)), (C.74)

where {γn}Nn=1 are Lagrange multipliers.
The plan for the proof is to first develop a set of equations (first-order conditions and Euler

equations) that characterize the optimal price path. We will then argue that the price in the final
period, pN , must be lower than pN−1 by the same logic underlying the two-period case (Proposition
4). We then argue by induction that if for any n we have pn > pn+1 > · · · > pN , then pn−1 > pn,
which establishes the declining price path (i.e. Part 2 of the proposition). Finally, we will note that
p1 > pM (i.e,. Part 1).

We begin by deriving a set of first-order conditions that characterize the system of prices. Given
the functional forms of Π, Π̃, and ϕ, we have the following collection of first-order conditions: (i)
the FOC w.r.t. p1 is

t̄+ ω̄(s)− 2p1

t− t
= γ1α; (C.75)

(ii) the FOC w.r.t. pn for n = 2, . . . , N − 1 is(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄n − 2(1− λα)pn

(1− α)(t− t)

)
= γnλα; (C.76)

(iii) the FOC w.r.t. pN is(
(1− α)t+ λ(1− α)ω̄(s) + (1− λ)ω̄N − 2(1− λα)pN

(1− α)(t− t)

)
= 0, (C.77)

which follows from the fact that γN = 0 given the FOC w.r.t. to ω̄N+1; and (iv) the FOC w.r.t. ω̄n
for n = 2, . . . , N is

pn

(
1− λ

(1− α)(t− t)

)
+ γn−1 = γn(1− λ). (C.78)
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From these FOCs, we can derive an “Euler equation” by using the FOC for pn−1 in (C.76) to
solve for γn−1 and then substituting this value into (C.78). The result provides a link between pn−1

and pn in terms of the current beliefs. Equations (C.75) and (C.78) imply that the Euler equation
linking periods 1 and 2 is

p2 =

(
2λ(1− α) + α(1− λ)2

(1− λ)(2− λα)

)
p1 −

2(2λ− 1)(1− α)

(1− λ)(2− λα)
pM . (C.79)

For n > 2, equations (C.76) and (C.78) along with the expression for ω̄n in terms of past prices
(from Lemma 2) imply that the Euler equation linking periods n− 1 and n is:

pn = φ−1pn−1 − φMpM − φ̃p̃n−2 (C.80)

where we’ve introduced the following positive constants:

φ−1 =
(2− αλ)− αλ2(2− λ)

(1− λ)(2− αλ)
, (C.81)

φM =
2λ(1− α)

(1− λ)(2− λα)
, (C.82)

φ̃ = α
λ(2− λ)

(2− λα)
. (C.83)

To characterize the solution, we will combine these Euler equations with the FOCs for each
pn. Using the our expression for ω̄n in terms of past prices (from Lemma 2), the FOCs w.r.t. pn for
n ≥ 2 from above can be equivalently written as

0 = (1− α)(t+ ω̄(s)) + α(1− λ)p̃n−1 − 2(1− λα)pn + α(1− λ)
N∑

k=n+1

pk
∂p̃k−1

∂pn

= 2(1− α)pM + α(1− λ)p̃n−1 − 2(1− λα)pn + αλ
N∑

k=n+1

(1− λ)k−npk, (C.84)

where we’ve used the fact that ∂p̃
k−1

∂pn
= λ(1−λ)k−n−1 and pM = (t+ ω̄(s))/2 in the uniform case.

Given that the demand function in period 1 is different from the one in n ≥ 2, the FOC w.r.t. p1 is

0 = (1− α)pM − 2(1− α)p1 + α
N∑
k=2

(1− λ)k−1pk (C.85)

since ∂p̃k−1

∂p1
= (1 − λ)k−2. To summarize, the N prices must solve the following system of N
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equations:

p1 = pM +
α

2(1− α)

( N∑
k=2

(1− λ)k−1pk

)
...

pn =

(
1− α

1− λα

)
pM +

(
α

2(1− λα)

)(
(1− λ)p̃n−1 + λ

N∑
k=n+1

(1− λ)k−npk

)
...

pN =

(
1− α

1− λα

)
pM +

(
α

2(1− λα)

)(
(1− λ)p̃N−1

)
. (C.86)

Going forward, we will streamline notation by letting cn ≡ pn/p
M denote the “normalized”

price in each period n. This allows us to characterize the system for (c1, . . . , cN) without any
explicit dependence on the value of pM . Similarly, for all n, let c̃n−1 = p̃n−1/pM = (1−λ)n−2c1 +∑n−1

k=2 λ(1−λ)n−1−kck. Additionally, let ĉn+1 ≡
∑N

k=n+1(1−λ)k−npk/p
M =

∑N
k=n+1(1−λ)k−nck.

We now prove the following via induction: for n > 2, if cn > cn+1 > · · · > cN , then cn−1 > cn.
Base Case: cN−1 > cN . We prove the base case by showing cN−1 > cN . From (C.84), the

FOC w.r.t. cN−1 is 2(1− α) + α(1− λ)c̃N−2 − 2(1− λα)cN−1 + αλ(1− λ)cN = 0, and the FOC
w.r.t. cN is 2(1− α) + α(1− λ)c̃N−1− 2(1− λα)cN = 0. The definition of c̃N−1 implies that that
c̃N−1 = (1 − λ)c̃N−2 + λcN−1. Substituting this value into the latter FOC and equating the two
FOCs yields the following necessary condition:

αλ(1− λ)c̃N−2 =

(
2(1− λα) + αλ(1− λ)

)
[cN−1 − cN ]. (C.87)

It is straightforward to verify that 2(1− λα) + αλ(1− λ) = 2− αλ[1 + λ] > 0 for any α ∈ (0, 1)
and any λ ∈ (0, 1). Thus, since the left-hand side of (C.87) is strictly positive (it is a weighted sum
of normalized prices), we have cN−1 > cN .

Induction step: cn > cn+1 for n ≥ 2. Consider n ∈ {3, . . . , N − 1} and suppose that
cn > cn+1 > · · · > cN . We will show that cn−1 > cn. To do so, we first derive an expres-
sion for cn−1 purely in terms of (cn, . . . , cN). Note that neither the Euler equation for cn−1 nor
the FOC w.r.t. cn−1 provides this: the former characterizes cn−1 as a function of previous prices,
(c1, . . . , cn−1) and the latter characterizes cn−1 as a function of previous and future prices. To ob-
tain this expression, note that (C.80) implies c̃n−2 = (φ−1cn−1 − cn − φM) /φ̃. Substituting this
value into the FOC w.r.t. cn−1 (Equation C.84) yields

2(1− λα)cn−1 = 2(1− α) + α(1− λ)
1

φ̃

(
φ−1cn−1 − cn − φM

)
+ αλĉn. (C.88)

From the definition of ĉn, note that ĉn = (1 − λ)cn + (1 − λ)ĉn+1. Substituting this expression
into (C.88) and substituting the values of constants φ−1, φM , and φ̃ from above (Equations C.81 to
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C.83) and simplifying reveals that

cn−1 = φ−1cn + φM −
(

λ

1− λ

)
φ̃ĉn+1. (C.89)

Recall that, by assumption, cn > cn+1 > · · · > cN , and we want to show cn−1 > cn. From (C.89),
this condition is equivalent to φ−1cn + φM −

(
λ

1−λ

)
φ̃ĉn+1 > cn, and hence equivalent to

[φ−1 − 1]cn >

(
λ

1− λ

)
φ̃ĉn+1 − φM . (C.90)

From the definition of φ−1, we have φ−1 − 1 > 0. Notice that (C.89) must hold for all n ∈
{3, . . . , N − 1}, and hence cn = φ−1cn+1 +φM −

(
λ

1−λ

)
φ̃ĉn+2. Moreover, note that the definitions

of φ−1 and φ̃ are such that φ−1 = (1−λφ̃)/(1−λ); substituting this into the previous equality along
with the fact that ĉn+1 = (1−λ)cn+1 +(1−λ)ĉn+1 implies that

(
λ

1−λ

)
φ̃ĉn+1 = −(1−λ)cn+(1−

λ)φM +cn+1. Substituting this into the inequality of interest (Condition C.90) yields the equivalent
condition of [φ−1−λ]cn > cn+1−λφM . Since we know cn > cn+1 and since φ−1−λ > 0 (because
φ−1 > 1, as noted above), the previous condition will hold at cn > cn+1 if it holds at cn = cn+1.
Thus, it suffices to show that [φ−1 − λ]cn+1 > cn+1 − λφM ⇔ [φ−1 − λ − 1]cn+1 > −λφM . The
previous condition holds so long as φ−1 − λ − 1 > 0, which can be directly confirmed from the
definition of φ−1 in (C.81). This completes the induction step.

So far, we have verified that cN−1 > cN implies that cn > cn+1 for all n ≥ 2. To complete
the proof, we must show that c2 > c3 > · · · > cN implies that c1 > c2. Since the Euler equation
linking periods 1 and 2 is different from one in all other periods, we cannot rely on (C.89) as
above. Instead, consider the FOCs in periods 1 and 2 (Equations C.85 and C.84), which are
2(1 − α) − 2(1 − α)c1 + αĉ2 = 0 and 2(1 − α) + α(1 − λ)c̃1 − 2(1 − λα)c2 + αλĉ3 = 0,
respectively. Using the fact that ĉ2 = (1 − λ)c2 + (1 − λ)ĉ3, equating two FOCs and simplifying
yields the condition

α[(1− 2λ)ĉ2 + 2(1− λ)c2] = ζ[c1 − c2], (C.91)

where ζ = [2(1 − α) + α(1 − λ)] = 2 − α(1 + λ); note that ζ ∈ (0, 2) for all α ∈ (0, 1).
Thus, we have c1 > c2 so long as (1 − 2λ)ĉ2 + 2(1 − λ)c2 > 0 ⇔ 2(1 − λ)c2 > (2λ − 1)ĉ3.
While this holds immediately whenever λ < 1/2, we must show it holds more generally. Recall
that ĉ3 =

∑N
k=3(1 − λ)k−2ck. Substituting this into the previous inequality yields the equivalent

condition of 2(1 − λ)c2 > (2λ − 1)
∑N

k=3(1 − λ)k−2ck ⇔ 2c2 > (2λ − 1)
∑N

k=3(1 − λ)k−3ck.
Since we’ve assumed c2 > c3 > · · · > cN , a sufficient condition for the previous inequality is

2c2 > (2λ− 1)c2

N∑
k=3

(1− λ)k−3 ⇔ 2 > (2λ− 1)
N−3∑
k=0

(1− λ)k. (C.92)

Recall that the partial sum of the geometric series is
∑N−3

k=0 (1−λ)k is strictly less than 1
1−(1−λ)

= 1
λ

.
Thus, a sufficient condition for Condition (C.92) is 2 > (2λ− 1) 1

λ
, which necessarily holds.

Finally, it is immediate from the FOC for p1 in (C.84) that p1 > pM . Similarly, if the FOC in
period 1 does not hold because the seller prefers setting p1 equal to the price ceiling, p̄, then the
logic of this proof remains unchanged. If p1 = p̄, then clearly we have p1 > pM ; moreover, the
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seller would never charge p2 = p̄ if p1 = p̄ since she strictly profits from a price decrease in period
2. Thus, it is immediate that we still have p2 < p1 = p̄ in this case, and hence prices will follow
the interior path described above from period 2 onward. �

Proof of Proposition 7. In period 1, the quantity demanded is

D1(p; ω̄(s)) = λ[1− F (p− ω̄(s))] + (1− λ)[1− F (p− ω0)]. (C.93)

Now consider what an agent who delays with taste t will infer from observing this quantity. They
think that if informed agents expect a quality of ω̂; then the demand in period 1 is

D̂1(p; ω̂|t) = λ

[
1− F

(
p− ω̂ − αt

1− α

)]
+ (1− λ)

[
1− F

(
p− ω0 − αt

1− α

)]
. (C.94)

Equating the two equations above allows us to solve for ω̂2(t), which denotes the perceived quality
of an agent with taste t who has not bought in period 1. Assuming T ∼ U(t, t), this solution is

ω̂2(t) =
α

λ

(
p− (1− λ)ω0 − t

)
+ (1− α)ω̄(s). (C.95)

The marginal type in period 2 under projection is the t̂2 that solves ω̂2(t̂2) + t̂2 = p, and hence

t̂2 = p−
[
λ(1− α)

λ− α

]
ω̄(s) +

[
α(1− λ)

λ− α

]
ω0. (C.96)

The marginal type in period 2 under rational inference is t∗2 = p− ω̄(s). Note that t̂2 < t∗2 ⇔

p−
[
λ(1− α)

λ− α

]
ω̄(s) +

[
α(1− λ)

λ− α

]
ω0 < p− ω̄(s) ⇔ ω(s) > ω̄0. (C.97)

Recall that the only types present in period 2 are those who did not buy in period 1; i.e., only those
with t ≤ tU1 ≡ p−ω̄0. Note that rational consumers in period 2 buy if and only if t∗2 < tU2 ⇔ ω̄(s) >
ω̄0. Condition (C.97) thus implies that the same is true under projection: t̂2 < tU2 ⇔ ω̄(s) > ω̄0;
hence, projectors in period 2 only buy when the quality is higher than expected.

Part 1. Suppose ω̄(s) > ω̄0. Under rational inference, the interval of types who buy in period
2 is [t∗2, t

U
1 ]. Under projection, this interval is [t̂2, t

U
1 ], where t̂2 < t∗2 by (C.97). Hence, the quan-

tity demanded in period 2 under projection exceeds the rational benchmark. Moreover, using the
expressions above for t̂2 and t∗2, the interval of types who wrongly adopt the good is

t∗2 − t̂2 =
α(1− λ)

λ− α
[
ω̄(s)− ω0

]
. (C.98)

The measure of this interval is clearly increasing in α and in ω̄(s)− ω̄0.
Now consider the range of types who buy in period 2 yet hold a quality expectation that exceeds

the rational expectation, TO ≡ {t ∈ [t̂, tU1 ] | ω̃2(t) > ω̄(s)}. This set represents the buyers who
overestimate quality and will, on average, be disappointed by adoption ex post; that is, t ∈ TO ⇒
E[ω − ω̂(t)|s] < 0. Let t̃ be the type in period 2 who infers correctly; i.e., ω̂2(t̃) = ω̄(s). From
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(C.95), we have
t̃ = p− λω̄(s)− (1− λ)ω0. (C.99)

Since ω̂2(t) is decreasing in t, all types t < t̃ in period 2 will overestimate quality and hence
TO = [t̂, t̃). Since ω̄(s) > ω0, we have t̃ ∈ (t∗2, t

U
1 ) given that λ ∈ (0, 1). In contrast to rational

learning, t̃ > t∗2 implies that some projecting buyers who correctly adopt the good (i.e., their
expected valuation exceeds the price) will systematically experience disappointment, on average.

Part 2. Suppose ω̄(s) < ω̄0. As discussed prior to Part 1, ω̄(s) < ω̄0 implies that no consumers
buy in period 2 under rational inference or under projection. Hence, outcomes in this case match
the rational benchmark. �

Proof of Proposition 8. We first derive some preliminary results on the nature of uninformed
agents’ biased inference rules and the equilibrium quantity demanded before proving each part
of the proposition.

Let t∗ ≡ p− ω̄(s) be the marginal informed type (i.e., an informed type strictly prefers to buy
a positive quantity iff t > t∗). The aggregate demand of informed agents is then

DI(p; ω̄(s)) =

∫
T
x∗(p; ω̄(s), t)dF (t) =

∫ t

t∗
(ω̄(s)− p+ t)dF (t)

= −[1− F (t∗)]t∗ +

∫ t

t∗
t̃f(t̃)dt̃. (C.100)

Let H(t) ≡ −[1 − F (t)]t +
∫
t̃≥t t̃f(d)dt̃. Now consider the demand function among agents with

a quality expectation of ω̂ from the perspective of an uninformed agent with taste t. This agent
believes the marginal type is t̂ = p− ω̂, and hence he perceives

D̂I(p; ω̂|t) = −[1− F̂ (t̂|t)]t̂+

∫ t(t)

t̂

t̃f̂(t̃|t)dt̃

= −
[
1− F

(
t̂− αt
1− α

)]
t̂+

∫ t(t)

t̂

t̃
1

1− α
f

(
t̃− αt
1− α

)
dt̃. (C.101)

Consider a change of variables with x = t̃−αt
1−α . Recalling that t(t) = αt+ (1− α)t, the expression

above can be written as

D̂I(p; ω̂|t) = −
[
1− F

(
t̂− αt
1− α

)]
t̂+

∫ t

t̂−αt
1−α

[αt+ (1− α)x]f (x) dx

= −
[
1− F

(
t̂− αt
1− α

)]
[t̂− αt] + (1− α)

∫ t

t̂−αt
1−α

xf (x) dx

= (1− α)

(
−
[
1− F

(
t̂− αt
1− α

)](
t̂− αt
1− α

)
+

∫ t

t̂−αt
1−α

xf (x) dx

)
= (1− α)H

(
t̂− αt
1− α

)
, (C.102)

where H is defined in (C.100).
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An uninformed projecting agent’s inference rule, ω̂(d|t), is obtained by solving for the per-
ceived marginal type t̂(d|t) that solves D̂I(p; ω̂|t) = (1 − α)H

(
t̂−αt
1−α

)
= d, and then setting

ω̂(d|t) = p− t̂. We now use the Implicit Function Theorem (IFT) to show that a projector’s biased
inference rule is linearly decreasing in t with slope α.

Let L(x; d) = (1 − α)H(x) − d. Note that an agent infers a marginal type t̂(d|t) equal to the
value of t̂ that solves L

(
t̂−αt
1−α ; d

)
= 0. Thus,

∂t̂(d|t)
∂t

= −
(
∂

∂t
L

(
t̂− αt
1− α

; d

))(
∂

∂t̂
L

(
t̂− αt
1− α

; d

))−1 ∣∣∣∣
t̂=t̂(d|t)

= −
(
− α

1− α

)(
1

1− α

)−1 ∣∣∣∣
t̂=t̂(d|t)

= α. (C.103)

Since ω̂(d|t) = p − t̂(d|t), ∂
∂t
ω̂(d|t) = −α. Thus, we can write any uninformed type’s inferred

value of ω̄(s) upon observing aggregate demand as

ω̂(d|t) = ω̃(d)− αt, (C.104)

where ω̃(d) is independent of t. While we will not explicitly solve for ω̃(d) (which will depend
on F and α), we now argue that, in equilibrium, the aggregate quantity demanded by uninformed
agents is equal to the aggregate quantity demanded by informed agents. To see this, we first derive
the aggregate quantity demanded by uninformed agents. Since ω̂(d|t) = ω̃(d)−αt, an uninformed
type t will demand ω̃(d) − p + (1 − α)t units. Thus, the truly marginal type among uninformed
agents is t̂ = (p− ω̃(d))/(1− α), and the aggregate demand among uninformed types is

DU(p; ω̃(d)) =

∫ t

t̂=
p−ω̃(d)
1−α

[ω̃(d)− p+ (1− α)t]dF (t)

= (1− α)

∫ t

t̂=
p−ω̃(d)
1−α

[
−p− ω̃(d)

1− α
+ t

]
dF (t)

= (1− α)H

(
p− ω̃(d)

1− α

)
. (C.105)

Note that ∂
∂d
DU(p; ω̃(d)) = −H

(
p−ω̃(d)

1−α

)
∂ω̃(d)
∂d

, and that ∂ω̃(d)
∂d

= ∂ω̂(d|t)
∂d

and t̂(d|t) = p − ω̂(d|t)
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then implies ∂ω̃(d)
∂d

= −∂t̂(d|t)
∂d

. Since t̂(d|t) solves L
(
t̂−αt
1−α ; d

)
= 0, we have

∂t̂(d|t)
∂d

= −
(
∂

∂d
L

(
t̂− αt
1− α

; d

))(
∂

∂t̂
L

(
t̂− αt
1− α

; d

))−1 ∣∣∣∣
t̂=t̂(d|t)

= − (−1)

(
(1− α)H

(
t̂− αt
1− α

)
1

1− α

)−1 ∣∣∣∣
t̂=t̂(d|t)

=

(
H

(
t̂− αt
1− α

))−1 ∣∣∣∣
t̂=t̂(d|t)

=

(
H

(
t̂(d|t)− αt

1− α

))−1

=

(
H

(
p− ω̂(d|t)− αt

1− α

))−1

=

(
H

(
p− ω̃(d)

1− α

))−1

, (C.106)

and thus
∂ω̃(d)

∂d
= −∂t̂(d|t)

∂d
⇒ ∂ω̃(d)

∂d
= −

(
H

(
p− ω̃(d)

1− α

))−1

, (C.107)

which implies

∂

∂d
DU(p; ω̃(d)) = −H

(
p− ω̃(d)

1− α

)
∂ω̃(d)

∂d

⇒ ∂

∂d
DU(p; ω̃(d)) = H

(
p− ω̃(d)

1− α

)(
H

(
p− ω̃(d)

1− α

))−1

= 1. (C.108)

Thus, DU as a function of the observed equilibrium quantity must vary identically with d; that
is, DU(p; ω̃(d)) = d + c for some constant c. But the only constant generically consistent with
the required equilibrium condition of d = λDI(p; ω̄(s)) + (1 − λ)DU(p; ω̃(d)) is c = 0. Thus,
in equilibrium, ω̃(d) must be such that DU(p; ω̃(d)) = DI(p; ω̄(s)). And thus, in equilibrium,
d = DI(p; ω̄(s)). For shorthand, let ω̂(t) = ω̂(d|t) evaluated at d = DI(p; ω̄(s)).

Part 1. As established above in (C.104), an uninformed agent with taste t forms an estimate of
ω equal to ω̂(t) = ω̃(d)− αt, where ω̃(d) is independent of t. Thus, ω̂(t) is clearly decreasing in t
whenever α > 0.

Part 2. As argued above, in equilibrium we must have DU(p; ω̃(d)) = DI(p; ω̄(s)). Recall
that t∗ = p − ω̄(s) and t̂ = (p − ω̃(d))/(1 − α) are the marginal informed and uninformed
types, respectively. From (C.100) and (C.105), we have DI(p; ω̄(s)) = H(t∗) and DU(p; ω̃(d)) =
(1 − α)H(t̂). Hence, in equilibrium, we must have H(t∗) = (1 − α)H(t̂). Since H is strictly
decreasing, t̂ < t∗ whenever α > 0.

Part 3. Next, we argue that the uninformed marginal type overestimates ω: t̂ < t∗ ⇔ (p −
ω̃(d))/(1− α) < p− ω̄(s)⇔

ω̃(d) > (1− α)ω̄(s) + αp. (C.109)

Notice that ω̂(t̂) = ω̃(d)−αt̂ = ω̃(d)−α(p− ω̃(d))/(1−α) and thus ω̂(t̂) > ω̄(s)⇔ ω̃(d)−αp >
(1 − α)ω̄(s), which holds given (C.109). Thus, ω̂(t̂) > ω̄(s). Furthermore, there must exist
t̃ ∈ (t̂, t) such that ω̂(t̃) = ω̄(s). If such a type did not exist, then the fact that ω̂(t) = ω̃(d) − αt
implies that all uninformed types who buy in equilibrium overestimate ω̄(s). But this, together
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with the fact that t̂ < t∗, would imply that DU(p; ω̃(d)) > DI(p; ω̄(s)) since, relative to informed
types, a wider interval of uninformed types buy and they all overestimate ω̄(s). Yet this contradicts
the requirement thatDU(p; ω̃(d)) = DI(p; ω̄(s)), and hence t̃ ∈ (t̂, t) exists such that ω̂(t̃) = ω̄(s);
moreover, ω̂(t) = ω̃(d)− αt implies that ω̂(t) > ω̄(s) for t < t̃ and ω̂(t) < ω̄(s) for t > t̃. Since
an uninformed type demands x∗(p; ω̂(t), t) = ω̂(t) + t − p, we additionally have x∗(p; ω̂(t), t) >
x∗(p; ω̄(s), t) for t < t̃ and x∗(p; ω̂(t), t) < x∗(p; ω̄(s), t) for t > t̃.

Part 4. Note that
∣∣x∗(p; ω̂(t), t) − x∗(p; ω̄(s), t)

∣∣ =
∣∣ω̂(t) − ω̄(s)

∣∣ =
∣∣ω̃(d) − ω̄(s) − αt

∣∣. By
definition of t̃, ω̂(t̃) = ω̃(d)−αt̃ = ω̄(s). Thus,

∣∣ω̃(d)− ω̄(s)−αt
∣∣ =

∣∣ω̃(d)− [ω̃(d)−αt̃]−αt
∣∣ =∣∣αt̃− αt∣∣, and hence

∣∣x∗(p; ω̂(t), t)− x∗(p; ω̄(s), t)
∣∣ = α|t− t̃|. �

78


	Introduction
	Model
	Environment
	Taste Projection

	Static Case
	Steady-State Equilibrium and Comparative Statics on Perceptions
	Optimal Monopoly Pricing

	Dynamic Case
	Preliminary Observations
	Optimal Monopoly Pricing
	Two-Period Model
	Arbitrary Horizon


	Extensions and Further Applications
	Endogenous Timing: Underappreciation of Selection Effects
	Static Case with Multi-Unit Demand
	Inference from Price and Portfolio Choice

	Conclusion
	Alternative Signal Structures
	Fully-Heterogeneous Private Signals
	Heterogeneous Signals Across Periods

	Inference from Price
	Inference from Price and Portfolio Choice
	Setup
	(Ir)rational Expectations Equilibrium

	Inference from a Monopolist's Price

	Proofs

