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Abstract

We study rank-order tournaments with risk-averse agents whose utility over money
and effort (or leisure) may be nonseparable. We characterize optimal prize schedules
when the principal allocates a fixed budget and show how they are determined by
the interplay between the properties of noise and the utility function. In particu-
lar, the distribution of noise alone determines whether the optimal prize schedule
has flat regions where some number of prizes are equal, while the total number of
positive prizes depends on both the noise distribution and utility. For unimodal
noise distributions, the optimal number of positive prizes is restricted regardless of
utility under mild assumptions. Also, while the common wisdom suggests—and it
holds in the separable case—that risk aversion pushes optimal prize allocations in
the direction of prize sharing, this is no longer true, in general, when the marginal
utility of money depends on effort.

Keywords: tournament, optimal allocation of prizes, risk aversion, nonseparable
utility, majorization.

JEL codes: C72, D82, J31.

*We thank Dmitrii Urentsov for excellent research assistance and participants of the Global Seminar
on Contests & Conflict for helpful comments. This paper supersedes “Optimal prizes in tournaments
with risk-averse agents”.

�New Economic School and CEPR, mdrugov@nes.ru.
�Department of Economics, Florida State University, Tallahassee, FL 32306-2180, USA, dryvkin@

fsu.edu.

1

mdrugov@nes.ru
dryvkin@fsu.edu
dryvkin@fsu.edu


1 Introduction

Many incentive systems are structured as rank-order tournaments. In organizations, man-

agers use promotions, salary raises and bonuses to reward the best employees.1 At schools

and universities, instructors often assign grades “on a curve,” effectively creating a rank-

based reward scheme. Firms using forced rankings are still pretty common, despite a

significant controversy surrounding their effectiveness. In many of these settings, em-

ployee effort is not directly observable; moreover, productivity measures that serve as

the basis for rankings have a significant luck component. The prototypical example is a

sales contest where a salesperson’s output depends on the individual’s effort as well as a

realization of random factors beyond one’s control, such as the arrival of agreeable clients.

One of the central questions in the design of incentive systems, including tourna-

ments, is how to optimally structure rewards. With rank-based rewards, the most ob-

vious approach to consider is the winner-take-all (WTA) scheme where the winner—the

best-performing employee—receives the entire prize. However, there may be reasons for

various degrees of prize sharing—a more equitable allocation of prizes—to work better.

One commonly cited such reason is risk aversion: A risk-averse employee would be willing

to work harder if she knew that even in the unlucky event of a bad shock she can still re-

ceive some reward for being ranked second, third, etc. The gain in the marginal benefit of

effort from such insurance can more than offset the loss due a reduction in the top prize,

leading to the optimality of prize sharing. This intuition also suggests that as agents

become more risk-averse, more prize sharing would be needed to maximize incentives.

In this paper, we study the optimal allocation of prizes in tournaments for risk-averse

agents. The existing literature (discussed in more detail below) has focused mostly on

the separable case, with agents’ utility for money-effort allocations (v, e) of the form

U(v, e) = u(v)− c(e), where c(·) is an effort cost function, and u(·) is a Bernoulli utility

function. The results of these models confirm the intuition about the effect of risk aversion

on optimal prize sharing. Our major innovation is in considering a substantially more

general class of nonseparable utility functions U(v, e).

Nonseparable preferences over consumption and leisure are standard in micro-founded

models of labor supply (e.g., Killingsworth, 1983; Pencavel, 1986), real business cycle,

growth, and policy analysis (e.g., Blanchard and Fischer, 1989; Romer, 2019).2 It is,

1Rewarding top employees is seen as key to the firm’s success by HRM practitioners. See e.g., https://
www.shrm.org/hr-today/news/hr-magazine/pages/0914-rewards-performance-based-pay.aspx.

2For example, nonseparability helps explain a number of empirical puzzles in international trade
(Lewis, 1996; Jermann, 2002; Matsumoto, 2009) and fiscal policy (Linnemann, 2006; Bilbiie, 2011).
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therefore, natural to extend the existing analysis of incentives, including rank-order tour-

naments, to nonseparable preferences over money and effort (which can be viewed as a

decreasing function of leisure).

We use a simple model of a tournament à la Lazear and Rosen (1981) and assume

that agents are identical in their ability and risk preferences. These simplifications allow

us to focus on the properties of noise and (homogeneous) features of utility to explore the

effects of nonseparability. It can also be argued that tournament incentive schemes are

more effective, and hence are more likely to be used in practice, in settings where agents

are not too different in their characteristics.

We first characterize the optimal—effort-maximizing—allocation of prizes under rel-

atively mild assumptions. The optimal prize schedule is determined by the properties of

noise, as well as the shape of utility. Generically, optimal prizes have a step-wise structure.

There is a sequence of critical ranks, determined only by the distribution of noise, such

that prizes decline at the critical ranks and remain constant in between, as long as they

are positive. To understand why a step-wise structure may emerge, consider a symmetric

equilibrium in the tournament. In a “well-behaved” model, the expected marginal utility

of effort is declining, and it is equal to zero in equilibrium. The maximum achievable

effort is, therefore, determined as the root of the marginal utility frontier, which is ob-

tained by maximizing expected marginal utility over all feasible prize allocations at each

symmetric level of effort. In the symmetric equilibrium, each of the n players is equally

likely to end up with any rank 1 through n; therefore, the expected marginal utility is

determined by a sequence of marginal probabilities of reaching ranks 1, . . . , n. When this

sequence is monotonically decreasing—as would be the case, for example, for log-concave

noise distributions—so is the sequence of optimal prizes, because it is optimal to pro-

vide stronger incentives for higher ranks. But if the sequence of marginal probabilities is

nonmonotone—as may be the case when the distribution of noise is multi-modal or has

a heavy tail—it would have been optimal to assign prizes to ranks nonmonotonically if

such prize schedules were feasible. A natural monotonicity requirement for prizes then

leads to a step-wise prize structure via an “ironing” procedure.

The optimal number of positive prizes—in particular, whether or not WTA is optimal—

is determined jointly by the properties of noise and utility. To see the effect of nonsepara-

bility, consider first the risk-neutral case analyzed by Drugov and Ryvkin (2020). There,

a generic optimal prize allocation is a two-prize schedule with several equal prizes at the

top and zero prizes for lower ranks. The number of top prizes is determined by the noise

distribution. For risk-averse agents, the smoothing of marginal returns to different prizes
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calls for a more gradually declining prize structure, and more prize sharing. As a result,

the step-wise structure mentioned above emerges, where the first step is located at the

same rank as the (only) step in the risk-neutral case.

When risk-averse agents’ preferences are separable, the optimal prize schedule max-

imizes the expected utility of prizes weighted by the marginal probabilities of reaching

the corresponding ranks. Since the last marginal probability is always negative—a higher

effort always decreases the probability of being ranked last—rank n is never assigned a

positive prize. Depending on the noise distribution, several ranks before the last one may

also have negative marginal probabilities of being reached, and hence never have positive

prizes assigned to them as well. For some noise distributions—such as uniform—only the

first marginal probability is positive, which leads to WTA being optimal for any separable

utility function.

However, when the utility function is nonseparable, a new effect comes into play:

Prizes now affect the marginal cost of effort. Hence, the optimal prize schedule strikes a

balance between maximizing the marginal utility of prizes and minimizing the marginal

cost of effort. The direction of the latter effect depends on the utility function. When

money and effort are complements—that is, the cross derivative Uve is positive—even

more prize sharing becomes optimal, to the extent that in some cases it is optimal to

give positive prizes to all ranks, including the last place. When money and effort are

substitutes, Uve ≤ 0, the “regular” behavior is restored. The last place is never assigned

a positive prize; moreover, as long as the distribution of noise is unimodal, there is a

restriction on the number of positive prizes (and hence, on the degree of prize sharing)

regardless of risk aversion.

Having characterized optimal prizes, we then study how an increase in risk aversion

affects the optimal prize schedule. To this end, we introduce a generalized definition of risk

aversion for nonseparable utility functions. This definition includes the standard Arrow-

Pratt definition—in terms of relative curvature Uvv/Uv—and adds another condition in

terms of relative complementarity of money and effort, Uve/Uv. In general, there are

limits to what can be said about the effects of risk aversion on optimal prize sharing in

this setting. This is because the implemented effort depends on prizes, and prizes are

directly affected by effort. When utility is transformed, the optimal implemented effort

changes, and hence the resulting changes in optimal prizes are essentially unrestricted.

However, similar to the concept of compensated demand in classic demand theory, it is

possible to introduce compensated utility changes. These are changes that preserve the

implemented optimal effort, similar to how compensated price changes in demand theory
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preserve the level of the consumer’s utility.

We provide sufficient conditions for when an increase in (generalized) risk aversion

leads to more prize sharing. These conditions are easiest to interpret for utility functions

of the form U(v, e) = u(v − c(e)) transformed by an increasing transformation φ(·).
For compensated utility changes, the result holds when both u(·) and φ(·) have non-

increasing absolute risk aversion (NIARA). For uncompensated utility changes, additional

restrictions are needed, one of them being that φ(·) has non-increasing absolute prudence

(NIAP). The spirit of these conditions is a restriction on the change of higher-order cross

derivatives of U to make sure that they do not counterbalance the main effect of a higher

risk aversion.

Results for separable preferences are obtained as a special case. Those results do not

require compensation, similar to how compensated and uncompensated demand are equal

when preferences are quasi-linear. We generalize all the existing results for the separable

case and show that the effect of risk-aversion on prize sharing is indeed universal for

this class of utility functions for any noise distribution. For CARA and CRRA utility

functions, the optimal allocation of prizes can be obtained in a closed form.

Relation to the existing literature. This paper contributes to the literature on

the optimal allocation of prizes in contests. Two types of models of (static) multi-prize

contests have been used historically in the literature, differing mostly in their assumptions

about the winner determination process. Noisy, or imperfectly discriminating, contest

models are the rank-order tournament model of Lazear and Rosen (1981) and the nested

contest model of Clark and Riis (1996), which is a multi-prize adaptation of the classic

rent-seeking model of Tullock (1980).3 The main feature of these models is the presence of

idiosyncratic noise, or luck, in the transformation of agents’ effort into output, and hence

a higher effort does not guarantee a higher rank (and a higher prize). In contrast, perfectly

discriminating contest models (e.g., Baye, Kovenock and De Vries, 1996; Moldovanu and

Sela, 2001; Siegel, 2009; Fang, Noe and Strack, 2020) are essentially all-pay auctions with a

one-to-one assortative mapping of effort rankings to prizes. The mechanisms underlying

incentives in the two types of models are different, and hence they produce diverging

results regarding optimal prizes.4

3Under risk-neutrality, the latter model can be written as a special case of the former (Fu and Lu,
2012).

4A separate strand of literature explores “large” contests where each player takes the distribution of
actions of others as given, and the equilibrium is defined as a self-consistent distribution maximizing
individual payoffs (Glazer and Hassin, 1988; Olszewski and Siegel, 2016).
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Our paper is the first to study allocation of prizes under nonseparable preferences in

rank-order tournaments. Previous studies devoted to the effect of risk aversion (Green

and Stokey, 1983; Nalebuff and Stiglitz, 1983; Krishna and Morgan, 1998; Kalra and Shi,

2001; Akerlof and Holden, 2012) all consider separable preferences. Among the closest

papers, Krishna and Morgan (1998) assume that the principal allocates a fixed budget

and show that WTA is always optimal in tournaments of size n ≤ 3 for risk-averse

agents if the distribution of noise is unimodal and symmetric (the result is referred to

as the “winner-take-all principle” for small tournaments). We show that unimodality

is not required and provide conditions for the optimality of WTA in tournaments with

n ≤ 3 for nonseparable utility. Kalra and Shi (2001) find optimal prize schedules under

logistic and uniform noise distributions. Both are log-concave and, as we show, for this

class of distributions the monotonicity constraint on prizes is not binding. We provide

a general characterization both in this case and in the more interesting case when the

noise distribution is not log-concave, the constraint binds, and an “ironing” procedure is

needed. Akerlof and Holden (2012) consider a tournament with risk-averse agents where

the prize budget is not fixed but the agents’ participation constraint is binding. They

show that various patterns of prize sharing are optimal depending on the agents’ risk-

aversion and prudence, but the results are too convoluted to discern the effects of the

properties of noise or general conditions for the optimality of WTA.

In the Tullock contest setting, the only form of nonseparability studied in the literature

is U(v, e) = u(v − e).5 Fu, Wang and Wu (2019) and Liu and Treich (2019) study the

optimal allocation of prizes in this setting and show that prudence—that is, the sign

and magnitude of u′′′(·)—plays an important role.6 In this paper, we consider more

general nonseparable preferences U(v, e) and show that the sign of the second and third

cross derivatives, Uve and Uvve, is often important. The latter reduces to prudence when

U(v, e) = u(v − e). The importance of non-increasing absolute prudence (NIAP) is new,

to the best of our knowledge.

Finally, our paper generalizes the analysis of the optimal prize schedules in rank-

order tournaments with risk neutral players. Drugov and Ryvkin (2020) show that WTA

5The paper by Dickson, MacKenzie and Sekeris (2018) is an exception in considering a general utility
function U(v, e). Taking the share contest interpretation of the Tullock setting, they show that efforts
may decrease when the total rent is higher.

6Other papers, such as Hillman and Katz (1984), Konrad and Schlesinger (1997), Cornes and Hartley
(2003), Treich (2010), Cornes and Hartley (2012) and Schroyen and Treich (2016), focus on equilibrium
existence conditions (which we also provide) and the effect of risk aversion on effort. Wang, Wu and Zhu
(2020) compare centralized and decentralized WTA contests.
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is optimal when the hazard rate of noise is increasing, whereas giving equal prizes to all

but the agent ranked last is optimal when it is decreasing; they also provide some results

for nonmonotone hazard rates.7 These results generalize the findings of Clark and Riis

(1996) and Schweinzer and Segev (2012) who showed the optimality of WTA for nested

Tullock contests whose equilibrium is isomorphic to that of a tournament with additive

noise with the Gumbel distribution (which has an increasing hazard rate).

The rest of the paper is organized as follows. Section 2 sets up the model and provides

some preliminary steps. Section 3 derives the optimal prize schedule. The effect of risk

aversion is considered in Section 4. Section 5 specializes the general results to the case of

the separable utility. The connections and implications for Tullock contests are discussed

in Section 6. Section 7 concludes. The conditions for the equilibrium existence are

provided in Appendix A. All proofs are contained in Appendix B.

2 Model setup

We consider a tournament of n ≥ 2 identical agents indexed by i ∈ I = {1, . . . , n}.
The agents simultaneously and independently choose effort levels ei ∈ R+. The output

of agent i is her effort perturbed by additive noise, Yi = ei + Xi.
8 Shocks Xi are zero-

mean, i.i.d. copies of random variable X that has an absolutely continuous cumulative

distribution function (cdf) F (·) and probability density function (pdf) f(·) defined on an

interval support X = [x, x] (where x and x can be finite or infinite). The pdf f(·) is

continuous, piece-wise differentiable, and square-integrable.

A risk-neutral principal observes the ranking of outputs and allocates rank-dependent

prizes v = (v1, . . . , vn) to the n agents. Specifically, an agent whose output is ranked r

(where r = 1 corresponds to the highest output, r = 2 to the second highest, etc.) receives

a prize vr.
9 Prizes are nonnegative, decreasing10 in rank, v1 ≥ v2 ≥ . . . ≥ vn ≥ 0, and

satisfy the budget constraint
∑n

r=1 vr = b > 0. We will refer to prize vectors v satisfying

these conditions as feasible, and use Vb to denote the set of all such vectors.

7Krishna and Morgan (1998) and Ales, Cho and Körpeoğlu (2017) provide some partial results in this
setting. Balafoutas et al. (2017) show that prize sharing can be optimal if agents are heterogeneous even
when they are risk-neutral.

8Via a change of variables, this model can also accommodate tournaments with multiplicative noise,
with Yi = eiXi (see Jia, 2008; Jia, Skaperdas and Vaidya, 2013; Ryvkin and Drugov, 2020).

9Ties in the ranking occur with zero probability for an atomless f(·); therefore, we do not need to
specify a tie-breaking rule.

10Throughout this paper, “increasing” means nondecreasing and “decreasing” means nonincreasing.
Whenever the distinction is important, we use the terms “strictly increasing” and “strictly decreasing.”
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Agents have the same utility function U : [0, b] × R+ → R over money and effort

pairs (v, e). We assume that U is a C3 function, except, possibly, at (0, e), where it is

continuous in v, and at (v, 0), where it is C1 in e. Furthermore, Uv > 0, Uvv ≤ 0, Ue < 0

for e > 0, and Uee < 0. Finally, Ue(v, 0) = 0 and, without loss, U(0, 0) = 0. We will

refer to utility functions satisfying these assumptions as regular. Two important special

cases are (i) U(v, e) = η(v − c(e)), where η : R → R is concave and c : R+ → R+ is a

strictly convex cost function satisfying c(0) = c′(0) = 0; and (ii) the fully separable case

(considered in detail in Section 5), U(v, e) = u(v)− c(e), where u : R+ → R is a concave

Bernoulli utility function of money.

Fix a prize vector v ∈ Vb. We look for a symmetric pure-strategy Nash equilibrium

where ei = ê for all i ∈ I. Assuming that all but one indicative agent choose effort ê, the

expected utility of the indicative agent from some deviation effort e is

W (e, ê) =
n∑
r=1

π(r)(e, ê)U(vr, e), (1)

where π(r)(e, ê) is the probability that the indicative agent’s output is ranked r. This

probability is given by11

π(r)(e, ê) =

(
n− 1

r − 1

)∫
F (e− ê+ x)n−r[1− F (e− ê+ x)]r−1dF (x). (2)

Indeed, in order to be ranked r, the indicative agent’s output must be higher than the

output of exactly n− r other agents, and there are
(
n−1
r−1

)
ways to choose those agents.

The symmetric first-order condition, We(ê, ê) = 0, produces the equation

A(v, ê) ≡
n∑
r=1

[
βrU(vr, ê) +

1

n
Ue(vr, ê)

]
= 0, (3)

where βr ≡ π
(r)
e (ê, ê), the marginal probabilities of reaching rank r, are given by

βr =

(
n− 1

r − 1

)∫
F (x)n−r−1[1− F (x)]r−2[n− r − (n− 1)F (x)]f(x)dF (x). (4)

Coefficients βr are determined entirely by the distribution of noise. The following

lemma summarizes some of their properties.

11Integration is over X unless noted otherwise.
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Lemma 1 (i)
∑n

r=1 βr = 0, β1 > 0, βn < 0; if f(·) is symmetric, then βr = −βn−r+1 for

all r.

(ii) If f(·) is (strictly) log-concave, then βr is (strictly) decreasing in r.

(iii) If f(·) is (strictly) log-convex and f(x) = 0, then βr is (strictly) increasing in r for

r ≤ n− 1.

(iv) If f(·) is first log-concave, then log-convex with f(x) = 0, then βr is unimodal in r.

(v) If f(·) is unimodal, then βr is single-crossing +−; that is, there exists an r̂ ≤ n − 1

such that βr > 0 for r ≤ r̂ and βr ≤ 0 for r > r̂.

If an ê solving (3) exists, it is a natural candidate for a symmetric equilibrium. In

Proposition A1 in Appendix A, we provide sufficient conditions for (3) to have a unique

solution, and for that solution to be the equilibrium. We also ensure that the participation

constraint, W (ê, ê) ≥ U(0, 0) = 0, is never binding. Intuitively, the existence conditions

require that there is “enough noise” in the tournament, and the cost of effort is sufficiently

convex. Importantly, there are no restrictions on the shape of the distribution of noise,

such as MLRP (or log-concavity), which are typical for the existence of optimal contracts

in the standard moral hazard problem. Thus, unlike in the standard moral hazard model,

heavy-tailed shocks are admissible here.

In what follows, we will assume that the assumptions of Proposition A1 are satisfied.

3 The structure of optimal prizes

We study the principal’s problem

max
v,e

e s.t. A(v, e) = 0, v ∈ Vb. (5)

Under our assumptions for the equilibrium existence (Proposition A1), the equation

A(v, e) = 0 has a unique solution ê(v) for each v ∈ Vb. Moreover, function A(v, e) is con-

tinuous in (v, e) and strictly decreasing in e; therefore, by the implicit function theorem

for strictly monotone functions (Jittorntrum, 1978), ê(v) is continuous. The compactness

of Vb then implies, by the Weierstrass theorem, that problem (5) has a solution (v∗, e∗),

with e∗ = ê(v∗). By construction, e∗ is unique.

Function A(v, e) represents an agent’s marginal utility of effort when all agents exert

effort e. In the symmetric equilibrium, this marginal utility is equal to zero and decreasing

in e; therefore, the largest effort e∗ such that A(v, e∗) = 0 is the unique root of the frontier
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maxv∈Vb A(v, e)—the maximum marginal utility that can be reached at symmetric effort

e. Formally, consider the problem

max
v

A(v, e) s.t. v ∈ Vb, (6)

and let v∗(e) denote its (possibly multi-valued) solution, which is well-defined for each

e ∈ [0, ē] because A(v, e) is continuous and Vb is compact.

Proposition 1 (i) Suppose (v∗, e∗) is a solution to problem (5). Then v∗ ∈ v∗(e∗).

(ii) There exists a unique e∗ ∈ [0, ē] such that (v∗, e∗) is a solution to problem (5) for

all v∗ ∈ v∗(e∗).

Proposition 1 shows that we can essentially separate the properties of optimal prize

structures from finding the optimal effort. It clearly works in the separable case where

the marginal benefit of effort depends only on v while the marginal cost only on e, which

implies the optimal prize schedule is independent of e∗ (see Section 5). In the nonseparable

case, in general, the optimal prize schedule ultimately depends on e∗; however, to explore

its properties we can analyze problem (6), with e = e∗, treating e∗ as a parameter.

Moreover, part (ii) of Proposition 1 shows that problem (6) completely characterizes

optimal prize schedules because, once it is solved for all e, the unique optimal e∗ can be

found as the root of A(v∗(e), e).12

3.1 Optimal prizes without the monotonicity constraint

We start by analyzing a relaxed version of problem (6), with e = e∗, where the mono-

tonicity constraint is dropped:

max
v

A(v, e∗), s.t.
n∑
r=1

vr = b, v1, . . . , vn ≥ 0. (7)

We will identify conditions under which solutions to problem (7) are, in fact, monotone,

and hence they also solve (6). We will then use the features of the solution to (7) to

construct a solution in the general case.

12Proposition 1(ii) also implies the existence of a solution to problem (5) directly from the existence of
a solution to problem (6). There is no need to invoke the implicit function theorem discussed in the first
paragraph of Section 3.
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Using the definition of function A(v, e), Eq. (3), the Lagrangian for problem (7) can

be written as

L(0)(v, λ; e∗) =
n∑
r=1

[
βrU(vr, e

∗) +
1

n
Ue(vr, e

∗)− λvr
]

+ λb, (8)

which gives the Kuhn-Tucker (KT) conditions,

βrUv(vr, e
∗) +

1

n
Uve(vr, e

∗) ≤ λ, with equality if vr > 0, r = 1, . . . , n. (9)

The constraint in problem (7) is linear; therefore, by the Kuhn-Tucker necessity theorem,

for any solution v∗ to (7) there exists a Lagrange multiplier λ∗ > 0 such that v∗ satisfies

(9) and the budget constraint.

The following correspondence plays a key role in the structure of optimal prizes:

q(β, λ; e∗) = arg max
v≥0

[
βU(v, e∗) +

1

n
Ue(v, e

∗)− λv
]
. (10)

For any λ > 0, the objective in (10) is continuous, bounded above, and goes to −∞
for v → ∞; therefore, q(β, λ; e∗) is well-defined. From the KT necessity theorem, any

vr ∈ q(βr, λ; e∗) satisfies (9). Moreover, any solution v∗ to (7) maximizes L(0)(v, λ∗; e∗). As

seen from (8), the Lagrangian is additive separable in prizes, and hence v∗r ∈ q(βr, λ∗; e∗).
The optimal Lagrange multiplier λ∗ satisfies the budget constraint Q(λ; e∗) = b, where

Q(λ; e∗) =
∑n

r=1 q(βr, λ; e∗).

Intuitively, coefficient βr represents the marginal effect of effort on the probability

of being ranked r in the symmetric equilibrium. When prizes are unrestricted, it is,

therefore, optimal to assign higher prizes to ranks with higher βr. Therefore, when βr is

decreasing in r, such an assignment automatically satisfies the monotonicity constraint.

This gives our first major result.

Proposition 2 If f(·) is log-concave, there exists a solution v∗ to the relaxed problem (7)

that also solves problem (6). If f(·) is strictly log-concave, any solution v∗ to (7) solves

(6), and prizes v∗r are strictly decreasing in r as long as they are positive. In either case,

v∗r ∈ q(βr, λ∗; e∗) for some λ∗ > 0.

Proposition 2 can be understood as follows. Lemma 1(ii) shows that βr is (strictly)

decreasing in r when f(·) is (strictly) log-concave. The objective in (10) satisfies strictly

increasing differences in (β, v), and hence the monotone comparative statics imply that
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Figure 1: Optimal prize allocation for Gumbel distribution with parameter 1 (its pdf is f(x) =
exp[−x − exp(−x)]) and n = 6. Left: U(v, e;α) = log(α(v − e2) + 1) and budget equal to 10,
α = 1 (and e∗ ≈ 0.398) (blue circles) and α = 5 (and e∗ ≈ 0.298) (red diamonds). Right:

U(v, e) = 1−exp(−α(v−e2))
1−exp(−α) − (18α− 44)e2 and budget equal to 10, α = 2.5 (and e∗ ≈ 0.091) (blue

circles) and α = 3 (and e∗ ≈ 0.015) (red diamonds).

correspondence q(β, λ; e∗) is increasing in β. Therefore, if coefficients βr are strictly

decreasing in r, then v∗r is decreasing in r for any solution v∗ to (7), even if the objective

in (10) is not concave and the set of solutions is multi-valued and non-convex. Thus, v∗

also solves problem (6).

Figure 1 shows examples of optimal prize schedules characterized by Proposition 2.

For illustration, we use the Gumbel distribution of noise whose pdf is log-concave. Inter-

estingly, it may be optimal to give positive prizes to all ranks, including the very last,

even though βn < 0 (see Lemma 1(i)), as is the case in Figure 1(left). It is easy to see

from (10) that vn = 0 is always optimal in the separable case when Uve = 0. With non-

separability, if Uve > 0 is large enough, incentivizing the lowest ranks helps smooth out

the marginal cost of effort.

3.2 Optimal prizes with the monotonicity constraint

As discussed in the previous section, when βr are decreasing, the monotonicity constraint

is not binding. This is no longer the case if βr is strictly increasing for some r. Unrestricted

optimal prizes then become nonmonotone; hence, they need to be appropriately “ironed”.
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Generically, optimal prizes thus have a step-wise decreasing structure, with a sequence

of critical points 1 ≤ r1 < . . . < rK ≤ n such that vr is strictly decreasing in r at

the critical points, as long as prizes are positive, and remains constant between them:

v1 = . . . = vr1 > vr1+1 = . . . = vr2 > vr2+1, etc.13

Let β̄r:r′ = 1
r′−r+1

∑r′

k=r βk denote the partial average of coefficients βr between ranks

r ≤ r′. Further, set r0 = 0 and define a sequence of critical points r1, . . . , rK , where the

number of points, K, is at least 1 and at most n, recursively as follows:

rk+1 = max{r : β̄rk+1:l ≤ β̄rk+1:r ∀l = rk + 1, . . . , r}. (11)

Thus, r1 is defined as the largest r such that the average β̄1:r is increasing, then r2 is

defined as the largest r such that the average β̄r1+1:r is increasing, etc. By construction,

β̄rk−1+1:rk is strictly decreasing in k. The following proposition characterizes the optimal

prize structure.

Proposition 3 There exists a solution (v∗, e∗) to problem (5) with the following structure:

(i) v∗rk−1+1 = . . . = vr∗k for each k = 1, . . . , K, where 0 = r0 < r1 ≤ . . . ≤ rK ≤ n is

the sequence of critical points defined above.

(ii) v∗rk are strictly decreasing in k for k = 1, . . . , s and v∗r = 0 for r ≥ rs + 1 for some

s ≤ K.

(iii) v∗rk ∈ q(β̄rk−1+1:rk , λ
∗; e∗) for some λ∗ > 0.

The location of critical points, and hence the location of (potential) positive prize

differentials, is determined entirely by the distribution of noise. If v∗rs > v∗rs+1
= 0 for

some s, then v∗r = 0 for all r ≥ rs + 1, and there are no more positive prize differentials.

The location of such s—the number of distinct positive prizes—is determined jointly by

the properties of noise and the utility function U .

Thus, we have shown that, in the general case, (potentially) distinct optimal prizes

v∗rk behave in essentially the same way as optimal prizes in Section 3.1, with partial

averages β̄rk−1+1:rk playing the role of monotonically decreasing coefficients βr. Indeed,

when βr are not monotonically decreasing, the optimal prizes—which tend to follow their

behavior, see intuition after Proposition 2—have to be “ironed” to satisfy the monotonicity

constraint and the same prize is given to several adjacent ranks. This prize has to be then

optimal for these ranks on average, that is, it solves the average problem (10) for them.

13For the purposes of this discussion, it is convenient to introduce a fictitious prize vn+1 = 0.
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Hence, coefficients βr are replaced by their partial averages β̄rk−1+1:rk and a non-monotonic

sequence of βr is “ironed” into a monotonically decreasing sequence of β̄rk−1+1:rk .

3.3 Optimal prize schedules for some classes of distributions

Proposition 2 characterizes the optimal prize schedule when the noise distribution is log-

concave. This section provides illustrations—corollaries—of the key Proposition 3 for

other classes of noise distributions. We start with the heavy-tailed distributions (Section

3.3.1) and then consider unimodal distributions under an additional restriction on the

utility function (Section 3.3.2).

3.3.1 Heavy-tailed distributions

The first critical point in the optimal allocation of prizes, r1, is defined as the largest r

that maximizes β̄1:r = 1
r

∑r
k=1 βk – the running average of coefficients βr. As shown by

Drugov and Ryvkin (2020), this running average can be written in the form

β̄1:r =
1

n
E(h(X(n−r:n))). (12)

Here, h(x) = f(x)
1−F (x)

is the failure (or hazard) rate of noise, and X(n−r:n) is its order

statistic. The role of the failure rate can be understood intuitively from the following

arguments. Eq. (12) can be rewritten as β̄1:r = 1
n

∫
X f(x|X ≥ x)f(n−r:n)(x)dx, where the

failure rate f(x)
1−F (x)

is written as the density at x of variable X conditional on X ≥ x.

Thus, β̄1:r is determined by the density at zero of the difference between X and X(n−r:n)

conditional on X ≥ X(n−r:n). Indeed, the probability of reaching a rank of at least r can

be expressed as the probability of surpassing the r-th highest noise realizations out of n

conditional on X being among the top r realizations, multiplied by the probability that

X is in the top r (equal r
n
).

Representation (12) together with Proposition 3 immediately imply r1 = n−1 if noise

has a decreasing failure rate (DFR). This leads to maximum prize sharing.

Corollary 1 If f(·) is DFR, then the following allocation of prizes is optimal:

v∗r =
1− vn
n− 1

> vn, r = 1, . . . , n− 1. (13)

Allocation (13) can be characterized as the “extreme punishment” tournament. It is the

polar opposite of WTA in that it punishes the worst-performing agent instead of rewarding

14



Figure 2: Optimal prize allocation for U(v, e) = log(7(v − 0.05e2) + 1), budget equal to 1 and
n = 6. Left: Pareto distribution with parameters (1, 1) (its pdf is f(x) = 1

x2
1x≥1). Right: Burr

distribution with parameters (2, 1) (its pdf is f(x) = 2x
(x2+1)2

1x≥0).

the top performer. This allocation is optimal for DFR distributions even when agents are

risk-neutral (Drugov and Ryvkin, 2020). Therefore, Corollary 1 is consistent with the

expectation that, generally, there needs to be more prize sharing as agents become risk-

averse. It is illustrated in Figure 2(left) for Pareto distribution.

A more general class of distributions that can be characterized as heavy-tailed are

those having a unimodal failure rate (first IFR, then DFR). While it ensures unimodality

of β̄1:r (see Lemma 1 in Drugov and Ryvkin, 2020), the sequence of critical points 1 ≤
r1 < . . . < rK in Proposition 3 is simplified under unimodality of βr which is a stronger

condition. It is guaranteed by f(·) being first log-concave and then log-convex with

f(x) = 0, see Lemma 1(iv). This leads to the following corollary of Proposition 3.

Corollary 2 If f(·) is first log-concave and then log-convex with f(x) = 0, then it is

optimal to assign r1 equal prizes at the top, v∗1 = . . . = v∗r1 ∈ q(β̄1:r1 , λ
∗; e∗), followed by

decreasing prizes v∗r ∈ q(βr, λ∗; e∗) for r = r1 + 1, . . . , n, possibly with some zero prizes at

the end.

Indeed, denoting by rm the largest r such that βr ≥ βr−1, it is clear that r1 ≥ rm—the

maximum of β̄1:r is to the right of the mode of βr—implying that βr is decreasing for

r > r1. Therefore, a prize schedule that is flat for r ≤ r1 and decreasing for r > r1 is

optimal. Examples of such distributions include the log-normal distribution, the Burr
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distribution, and F - and Beta-distributions for some parameters (see, e.g., Bagnoli and

Bergstrom, 2005). Figure 2(right) shows an example with the Burr distribution which

has pdf f(x) = 2x
(x2+1)2

1x≥0.

3.3.2 Unimodal distributions

As we mentioned after Proposition 2, it might be optimal to give a positive prize for a

rank r with a negative βr. This also means that the number of strictly positive prizes

can be up to n as in the examples in Figures 1(left) and 2(left). However, when the noise

distribution is unimodal, prizes for negative βr can be easily ruled out. This is the next

proposition.

Proposition 4 If f(·) is unimodal and Uve(v, e) ≤ 0 or Uvve(v, e) ≥ 0, then vr = 0 for

any r such that βr ≤ 0 is optimal.

When f(·) is unimodal, Lemma 1(v) shows that βr is single crossing, i.e., there exists

an r̂ ≤ n − 1 such that βr > 0 for r ≤ r̂ and βr ≤ 0 for r > r̂. Then, r̂ is a critical

point, as defined in (11), since all next βr are negative and hence, the partial average

necessarily decreases. All next partial averages are then negative. From (9) it is clear

that all prizes in such cases should be set to zero if Uve(v, e) ≤ 0. The sufficiency of

Uvve(v, e) ≥ 0 is more subtle and is proven by redistributing prizes from ranks with a

negative βr to rank r = 1. Conditions Uve(v, e) ≤ 0 and Uvve(v, e) ≥ 0 hold, for example,

when U(v, e) = k(e)u(v) − c(e) with k′ ≤ 0, u′ > 0 and u′′ ≤ 0. See Figures 3 and 4 for

examples.

Proposition 4 implies that positive prizes are given at most up to r̂. Moreover, the

maximum number of positive prizes r̂ does not depend on the utility function (provided

Uve(v, e) ≤ 0 or Uvve(v, e) ≥ 0) but only on the noise distribution. This allows to obtain

a general result on the optimality of the winner-take-all (WTA) tournament.

Corollary 3 If f(·) is increasing and Uve(v, e) ≤ 0 or Uvve(v, e) ≥ 0, then WTA is

optimal.

Corollary 3 obtains by showing that βr ≤ 0 for all r > 1 when f(·) is increasing.

In a separable utility case U(v, e) = u(v) − c(e), Krishna and Morgan (1998) derive

the “WTA principle for small tournaments”, that is, the optimality of WTA when n ≤ 3

and the noise distribution is unimodal and symmetric. Next corollary generalizes this

result.
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Corollary 4 If n ≤ 3, f(·) is symmetric and Uve(v, e) ≤ 0 or Uvve(v, e) ≥ 0, then WTA

is optimal.

Note that the unimodality of f(·) is not required. Indeed, Lemma 1(i) implies for

n = 3 that β2 = 0 and β3 < 0 meaning that the sequence βr has the single-crossing

structure as in the unimodal case, with r̂ = 1.14

4 Risk aversion and prize sharing

It is generally understood that risk aversion creates risk sharing considerations which call

for more balanced prize schemes (Krishna and Morgan, 1998; Kalra and Shi, 2001). Yet,

Figure 1(right) shows the opposite pattern: The prize schedule under higher risk aversion,

α = 3, is steeper than under lower risk aversion, α = 2.5. The reason is that parameter α

not only increases risk aversion but also the cost component which may go in the same or

in the opposite direction.15 In the separable case the second effect does not matter (see

Section 4) but in the nonseparable case it does. Thus, the effect of risk aversion under

nonseparability is ambiguous in general.

In this section we study how the optimal prize structure is affected by transformations

of utility function U into Ũ , where Ũ is, in some sense, more risk averse than U . We are

interested, in particular, in conditions under which higher risk aversion leads to more prize

sharing. We assume that Ũ(v, e) is regular. We use the concept of majorization (Marshall,

Olkin and Arnold, 2011) to rank prize schedules by the degree of prize sharing as is done

in Vojnović (2016), Drugov and Ryvkin (2020) and Fang, Noe and Strack (2020).

Definition 1 For two vectors v, ṽ ∈ Rn
+ whose components are arranged in descending

order and
∑n

k=1 vk =
∑n

k=1 ṽk, v majorizes ṽ if
∑r

k=1 vk ≥
∑r

k=1 ṽk for all r = 1, . . . , n.

Components of a prize schedule v such that the budget constraint holds can be interpreted

as a probability mass function (pmf) of a discrete random variable taking values 1, . . . , n.

Definition 1 then produces the inequality between the corresponding cumulative mass

functions (cmfs) stating that the second random variable is larger than the first one in

14Another consequence of a unimodal f(·) is that the requirement in Corollary 2 that f(·) is first log-
concave and then log-convex with f(x) = 0 can be relaxed because βr only needs to be unimodal for r ≤ r̂.
For example, some symmetric heavy-tailed distributions, such as the t-distribution, are log-concave in an
interval around zero and log-convex otherwise. It can then be shown based on Lemma 1 that the upper
half of βr are positive and their sequence is unimodal. In this case, prize structure as in Corollary 2 is
still optimal.

15This example is discussed in more detail at the end of this section.
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the FOSD sense, i.e., the mass in ṽ is shifted to the right relative to v. It is, therefore,

natural to interpret ṽ as involving more prize sharing than v if v majorizes ṽ. Graphically,

if v majorizes ṽ then v crosses ṽ from above, as in Figure 1.

4.1 Risk aversion for nonseparable utility functions

The following function plays a key role in our results:

γ(v, e) =
Uve(v, e)

Uv(v, e)
. (14)

We will refer to γ(v, e) as the coefficient of relative complementarity (or, for brevity,

complementarity) between money and effort. It measures the relative sensitivity of the

marginal utility of money to changes in effort. For a separable utility function, γ = 0.

When U(v, e) = η(v − c(e)), with η(·) concave, γ ≥ 0. For an example of γ ≤ 0, consider

U(v, e) = k(e)u(v)− c(e), with k(·) decreasing.

Extending the standard notion of more risk averse to nonseparable utility, we intro-

duce the following definition.

Definition 2 Ũ is more risk averse than U if, for all (v, e),

(a) − Ũvv(v,e)

Ũv(v,e)
≥ −Uvv(v,e)

Uv(v,e)
, and

(b) γ̃(v, e) ≥ γ(v, e).

Part (a) of the definition is based on the ranking of the standard coefficient of absolute

risk aversion, which may depend on effort. It is equivalent to Uv(v′,e)
Uv(v,e)

≥ Ũv(v′,e)

Ũv(v,e)
for any

v′ > v and e. Part (b) states that the marginal utility of money is more sensitive to effort

under Ũ than under U .16 For separable utilities, U(v, e) = u(v) − c(e) and Ũ(v, e) =

ũ(v) − c̃(e), the definition is equivalent to ũ being more concave than u; whereas in the

simplest nonseparable case, U(v, e) = η(v−c(e)) and Ũ(v, e) = η̃(v−c(e)), it is equivalent

to η̃ being more concave than η.

16This interpretation holds assuming γ, γ̃ ≥ 0.
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4.2 Compensated transformations of utility functions

For a given prize schedule v, the equilibrium effort ê is a solution to the first-order

condition (3) that can be written in the form

n∑
r=1

βrU(vr, e) = − 1

n

n∑
r=1

Ue(vr, e). (15)

The left-hand side of (15) represents the marginal benefit of effort, whereas the right-hand

side is the marginal cost. In the nonseparable case, both of these are affected by prizes;

therefore, a general transformation of utility will affect the optimal prize structure not

only directly, via a change in the curvature of U with respect to v, but also indirectly via

a change in ê. The latter effect can be arbitrary; therefore, in order to isolate the effect

of risk aversion, we formulate the main result of this section—Proposition 5—under the

assumption that the optimal effort does not change. That is, we consider compensated

transformations of utility U → Ũ such that the implemented equilibrium effort is the same

under the corresponding optimal prize structures.17 A result for uncompensated transfor-

mations of utility where the equilibrium effort can change is provided in Proposition 6,

under additional restrictions.

Compensated utility transformations can be understood similar to the concept of

compensated price changes giving rise to compensated demand in classic consumer theory.

There, a change in prices leads to a change in the optimal consumption bundle. Due to the

wealth effect, this change can be arbitrary, and universal comparative statics of demand

with respect to price transformations cannot be established. If, however, the wealth effect

is removed by adjusting the consumer’s budget in a way that preserves the consumer’s

utility level, the resulting compensated demand admits universal comparative statics. In

our case, the implemented optimal equilibrium effort e∗ plays the role of the principal’s

utility. For an arbitrary transformation U → Ũ , e∗ changes in an unrestricted way and,

due to the direct effect of e∗ on optimal prizes, comparative statics for the latter are also

unrestricted. In contrast, universal comparative statics generalizing known results for

separable utility can be established for compensated utility transformations.

Operationally, a compensated utility transformation can be implemented by adjusting

the prize budget. Suppose, without loss, that the original budget is b = 1, the assumption

17In the separable case, this restriction is immaterial because the optimal prize structure is independent
of effort.

19



we keep throughout this section.18 Prizes v are then interpreted as relative prizes. Lemma

B1 in the Appendix shows that, under a relatively mild condition, a budget adjustment

bc exists such that the optimal effort does not change when the utility function is trans-

formed. Hence, for a given utility transformation U → Ũ , compensated utility can be

defined as Ũ c(v, e) = Ũ(bcv, e) with unit budget.19

4.3 Compensated effects of risk aversion

We are now ready to state the main result of this section.

Proposition 5 Consider two utility functions, U and Ũ , let v∗ and ṽ denote the corre-

sponding optimal prize schedules, and suppose that the implemented equilibrium effort is

the same. If (a) Ũ is more risk averse than U , and (b) the corresponding coefficients of

relative complementarity satisfy γ̃v(v, e) ≤ γv(v, e) ≤ 0, then

(i) ṽ has more positive prizes than v∗;

(ii) v∗ majorizes ṽ.

Proposition 5 extends the result that a higher risk aversion leads to more prize sharing

(see, e.g., Kalra and Shi, 2001). Also, even though part (i)—about the number of prizes—

follows from part (ii) it is stated for explicitness since the number of prizes is often

discussed the literature, particularly, in WTA vs. non-WTA schemes as in ... When

utility is separable, condition (b) is trivially satisfied since γ(v, e) = 0. Moreover, the

equilibrium effort can change in this case (see Section 5 for details). Intuitively, concavity

in the utility of money pushes optimal prize schedules in the direction of prize sharing.

The nonseparability of money and effort in the utility function introduces additional

considerations, due to the dependence of the marginal cost of effort—the right-hand side

of (15)—on prizes. The relative strength of this effect, for an agent ranked r, is measured

by γ(vr, e) = Uve(vr,e)
Uv(vr,e)

, and the total marginal effect of prize vr on the marginal utility of

effort can be written as Avr(v, e) = [βr+ 1
n
γ(vr, e)]Uv(vr, e). The first part of condition (b)

in Proposition 5, γv(v, e) ≤ 0, therefore, ensures that Avr is decreasing in vr, or at least it

is not increasing too fast if βr < 0. The second part of condition (b), γ̃v(v, e) ≤ γv(v, e),

18For b 6= 1, we can redefine prizes and utility as v→ 1
bv and U(v, e)→ U(bv, e), and reduce problems

(5) and (6) to the corresponding problems with unit budget.
19Another way to produce a compensated utility transformation is to add a term to the utility function

that depends only on the effort, as is done in Figure 1(right). The results of this section are not affected
as long as partial derivatives of various orders of U(v, e) with respect to v as well as cross derivatives do
not change.
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Figure 3: Optimal prize allocation for Gumbel distribution with parameter 1 (its pdf is f(x) =
exp[−x − exp(−x)]) and n = 6 (in which case βr < 0 for r ≥ 5). Left : U(v, e;α) = (1 −
e2)1−exp(−αv)

1−exp(−α) −e
2 with α = 1 (and budget equal to 1) (blue circles) and α = 3 (and budget equal

to 0.6079) (red diamonds). In both cases e∗ ≈ 0.0637. Right : U(v, e;α) = (1− 0.1e2)v
1−α

1−α − e
2

with α = 0.4 (and budget equal to 1.25) (blue circles) and α = 0.55545 (and budget equal to
0.5) (red diamonds). In both cases e∗ ≈ 0.154.

together with the requirement that Ũ is more risk averse than U , implies that the marginal

utility of effort is more sensitive to prizes under Ũ than under U , especially for prizes at

the bottom where both γ(vr, e) and γ̃(vr, e) are the largest. This leads to larger prizes at

the bottom being optimal under Ũ , and the majorization result follows. Proposition 5 is

illustrated in Fig. 3.

For a nonseparable utility function of the form U(v, e) = η(v − c(e)), condition (b)

of Proposition 5 is satisfied by strictly increasing, concave transformations η → η̃ = φ(η)

such that φ(·) has the non-increasing absolute risk aversion (NIARA) property: −φ′′(x)
φ′(x)

is

decreasing in x. The following lemma generalizes this observation.

Lemma 2 Suppose Uve ≥ 0 and consider a transformation of utility U → Ũ = φ(U),

where φ(·) is strictly increasing, concave, and satisfies NIARA. Then the following prop-

erties hold:

(i) Ũ is more risk averse than U ;

(ii) γ̃v(v, e) ≤ γv(v, e).

Thus, if the original utility U has γ(v, e) ≥ 0 and γv(v, e) ≤ 0, and it is transformed by
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a function φ(·) with the properties as in Lemma 2, Proposition 5 applies. For U(v, e) =

η(v − c(e)), γ(v, e) ≥ 0 always holds, and the property γv(v, e) ≤ 0 is equivalent to −η′′

η′

decreasing, i.e., to η(·) having NIARA. Hence, starting with a NIARA utility function

and then using a NIARA transformation provides sufficient conditions for Proposition 5.

Finally, in one particular case—when the parameter only multiplies the prize—the

compensated effect of a change in this parameter on the optimal prize schedule is absent.

Lemma 3 Consider a parametrized family of utility functions U(v, e; ρ) = U(ρv, e) where

the prize is multiplied by parameter ρ > 0. Suppose the implemented equilibrium effort

is fixed at e∗, and prize schedule v1 is optimal for ρ = ρ1 under unit budget. Then prize

schedule v2 = ρ1
ρ2

v1 is optimal for ρ = ρ2 under budget b = ρ1
ρ2

.

For example, suppose that U(v, e) = k(e)u(v)−c(e), where u(v) = 1−exp(−αv) is the

non-normalized CARA utility function. Then, following a change in α and the budget to

keep the equilibrium effort constant, the optimal relative prize schedule does not change.

4.4 Non-compensated effects of risk aversion

While Proposition 5 holds under relatively mild assumptions, it requires that the imple-

mented equilibrium effort stays the same when U is transformed into Ũ . With additional

restrictions imposed on Ũ , the majorization result can also be obtained when the equilib-

rium effort is allowed to change, as described in the following proposition.

Proposition 6 Consider two utility functions, U and Ũ , and let (v∗, e∗) and (ṽ, ẽ) denote

the corresponding optimal prize schedules and implemented equilibrium efforts. If (a) Ũ

is more risk averse than U , (b) γ̃v(v, e) ≤ γv(v, e) ≤ 0, (c) Ũvee(v,e)

Ũve(v,e)
is decreasing in v, (d)

ṽrk = 0 whenever β̄rk−1+1:rk < 0, and (e) ẽ ≥ e∗, then

(i) ṽ has more positive prizes than v∗;

(ii) v∗ majorizes ṽ.

Allowing the equilibrium effort to increase when U is transformed into Ũ , Proposition

6 imposes two additional restrictions relative to Proposition 5—conditions (c) and (d).

To interpret condition (c), consider nonseparable utilities Ũ(v, e) = η̃(v− c̃(e)), for which

it takes the form of non-increasing absolute prudence (NIAP), ∂
∂v

(
− η̃′′′

η̃′′

)
≤ 0. Kimball

(1993) argues that NIAP is a natural property and shows that a combination of NIARA

and NIAP is equivalent to “standard risk aversion.” Proposition 5 is illustrated in Fig. 4.

22



Figure 4: Optimal prize allocation for Gumbel distribution with parameter 1 (its pdf is f(x) =

exp[−x−exp(−x)]), n = 6 (in which case βr < 0 for r ≥ 5). Left: U(v, e;α) = (1−e2)1−exp(−αv)
1−exp(−α) −

e2 and budget equal to 1, α = 1 (and e∗ ≈ 0.0637) (blue circles) and α = 3 (and e∗ ≈ 0.0796)

(red diamonds). Right: U(v, e;α) = (1− 0.1e2)v
1−α

1−α − e
2 and budget equal to 1.25, α = 0.4 (and

e∗ ≈ 0.154) (blue circles) and α = 0.55545 (and e∗ ≈ 0.553) (red diamonds).

Condition (d) requires that positive prizes are given only for ranks r ≤ r∗k such

that β̄r∗k−1+1:r∗k
≥ 0. Proposition 4 shows that this is the case, for instance, when f(·)

is unimodal and Uve(v, e) ≤ 0 or Uvve(v, e) ≥ 0. These conditions are satisfied by the

example in Fig. 4.

The example in Figure 1(right) with utility function U(v, e) = 1−exp(−α(v−e2))
1−exp(−α)

−(18α−
44)e2—in which higher risk aversion reduces prize sharing—does not satisfy conditions

(d) and (e) of Proposition 6. Indeed, equilibrium effort decreases with α and a positive

prize is given for r = 5 even though βr < 0 for r ≥ 5. Conditions (b) and (c) are satisfied

since both γ(v, e) = 2αe and Uvee(v,e)
Uve(v,e)

= 2αe+ 1
e

are constant in v. Intuitively, α increases

risk aversion via the first term in U(v, e) and makes the effort more costly via the second

term. The second effect makes optimal effort decrease with α and—since Uvee(v, e) > 0—

this decreases the complementarity between v and e, Uve(v, e). The complementarity is

positive, Uve(v, e) > 0 and hence, it is a force towards spreading the prizes to decrease

the marginal cost of effort—which also explains why a prize is given for a rank with a

negative βr, cf. Proposition 4. This reduced complementarity effect goes against the risk

aversion effect and—for the parameter values used in the example—dominates.
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5 Separable utility functions

The existing literature studying the impact or risk aversion on the optimal prize schedule

in rank-order tournaments considers the separable utility function U(v, e) = u(v)− c(e),
and some particular settings: Krishna and Morgan (1998) consider tournaments of up to

four players while Kalra and Shi (2001) consider only logistic and uniform noise distribu-

tions. In this section we obtain a generalization of these previous results as corollaries of

our general results of Sections 3 and 4.

The key simplification brought about by the separability of the utility function is a

dissociation of the equilibrium effort and optimal prizes. Indeed, the first-order condition

(3) becomes
n∑
r=1

βru(vr) = c′(ê) (16)

and the principal’s problem (5) then writes

max
v

n∑
r=1

βru(vr) s.t. v ∈ Vb. (17)

Finally, the correspondence q(β, λ; e∗) in (10) becomes

qsep(β, λ) =


0, if βu′(0) ≤ λ

1, if βu′(1) ≥ λ

{v : βu′(v) = λ}, otherwise,

(18)

The optimal prize schedule—the solution to problem (17)—is characterized in the

next corollary to Proposition 3.

Corollary 5 When U(v, e) = u(v)− c(e), the optimal prize schedule v∗ has the following

structure:

(i) v∗rk−1+1 = . . . = vr∗k for each k = 1, . . . , K, where 0 = r0 < r1 ≤ . . . ≤ rK ≤ n is

the sequence of critical points as in Proposition 3.

(ii) v∗rk are strictly decreasing in k for k = 1, . . . , s and v∗r = 0 for r ≥ rs + 1 for some

s ≤ K.

(iii) v∗rk = qsep(β̄rk−1+1:rk , λ
∗), where λ∗ is the unique solution to

K∑
k=1

(r∗k − r∗k−1)qsep(β̄r∗k−1+1:r∗k
, λ) = 1. (19)
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Hence, perhaps surprisingly, the structure of the optimal prizes is the same as in the

general case. Indeed, the critical points r1, . . . , rK are determined by the noise distribution

alone and do not depend on the utility function. This also implies that the “ironing”

necessary to satisfy the monotonicity constraint is the same. The only difference with the

general case comes in (iii) since now the optimal prizes are found independently of the

equilibrium effort.

The separable form of the utility function greatly simplifies the analysis of the effect

of the risk aversion which is the next proposition.

Proposition 7 Suppose U(v, e) = u(v) − c(e). Consider two utility functions u, ũ :

[0, 1] → [0, 1] and let v∗ and ṽ denote the corresponding optimal prize schedules. If ũ(·)
is more risk-averse than u(·), then

(i) ṽ has more positive prizes than v∗;

(ii) v∗ majorizes ṽ.

In other words, in the separable case higher risk aversion always leads to more prize

sharing. Formally, this result is not a direct corollary of Propositions 5 and 6 since they

both restrict the equilibrium effort but its proof is very similar (and simpler).

Proposition 7 can be used to analyze the consequences of a higher budget. While it

is obvious that the equilibrium effort goes up the effect on the optimal prize schedule is

less clear. Fu, Wang and Wu (2019) find that a higher budget makes WTA less likely to

be optimal, under certain conditions. The next corollary provides a general answer.

Corollary 6 Suppose U(v, e) = u(v) − c(e) and the budget of the contest designer is b.

If u(·) has increasing relative risk aversion then a higher budget increases prize sharing,

that is, v′′/b′′ is majorized by v′/b′ for b′′ > b′. If u(·) is CRRA, then v′/b′ = v′′/b′′.

If u(·) has decreasing relative risk aversion then v′′/b′′ majorizes v′/b′ for b′′ > b′, that

is, a higher budget leads to less prize sharing.

In case of CARA and CRRA utility functions and a log-concave noise distribution the

optimal prize schedule can be obtained in a closed form.

CARA utility Suppose f(·) is log-concave in which case βr is decreasing, see Lemma

1(ii). Consider a CARA utility function u(v) = 1−exp(−αv)
1−exp(−α)

, where α > 0 is the constant

absolute risk aversion parameter. This gives u′(v) = α exp(−αv)
1−exp(−α)

and the correspondence
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qsep(β, λ) in (18) becomes

qsep(β, λ) =


0, if βα

1−exp(−α)
≤ λ

1, if βα exp(−α)
1−exp(−α)

≥ λ
1
α

ln βα
λ(1−exp(−α))

, otherwise

The optimal allocation of prizes is given in Corollary 5. Since βr are monotonically

decreasing the equation (19) for λ∗ is

r̂∑
r=1

qsep(βr, λ) =
1

α

s∑
r=1

ln
βrα

λ(1− exp(−α))
= 1,

where s ≤ r̂ is the optimal number of positive prizes (to be determined below). Then,

λ∗ =
α

1− exp(−α)

[∏s
r=1 βr

exp(α)

] 1
s

.

and finally

v∗r =
1

s
+

1

α
ln

βr

(
∏s

k=1 βk)
1
s

, r = 1, . . . , s; v∗r = 0, r = s+ 1, . . . , n.

The expression in parentheses is the geometric mean of coefficients βk. Thus, vr is above

(below) 1
s

if βr is above (below) this geometric mean. The number of positive prizes, s, is

defined as s = max

{
s′ ≤ r̂ : 1

s′
+ 1

α
ln

βs′

(
∏s′
k=1 βk)

1
s′
> 0

}
.

By definition, a higher α means higher risk aversion, and Proposition 7 applies. Since

CARA utility has increasing relative risk aversion, Corollary 6 implies that a higher budget

will lead a higher prize sharing.

CRRA utility Consider now utility function u(v) = v1−ρ−1
1−ρ , where ρ ∈ (0, 1) is the

agents’ constant relative risk aversion parameter. Correspondence qsep(β, λ) in (18) be-

comes

qsep(β, λ) =

{
1, if β ≥ λ(
β
λ

) 1
ρ , otherwise

26



Since βr are monotonically decreasing the equation (19) for λ∗,

r̂∑
r=1

qsep(βr, λ) = λ−
1
ρ

r̂∑
r=1

β
1
ρ
r = 1,

produces

λ∗ =

(
r̂∑
r=1

β
1
ρ
r

)ρ

.

The optimal allocation of prizes is, therefore,

v∗r = qsep(βr, λ
∗) =

β
1
ρ
r∑r̂

k=1 β
1
ρ

k

, r = 1, . . . , r̂; v∗r = 0, r = r̂ + 1, . . . , n.

The maximum number of positive prizes, s = r̂, is optimal in this case because u′(0) =

+∞. The resulting prizes can also be rewritten as

v∗r =
1

r̂

 βr(
1
r̂

∑r̂
k=1 β

1
ρ

k

)ρ


1
ρ

,

where the expression in parentheses is the generalized mean with exponent 1
ρ
. Thus, prizes

are above (below) 1
r̂

if βr is above (below) the generalized mean of coefficients βk.

The coefficient of absolute risk aversion is equal to ρ
v
. Hence, a higher ρ means a

higher absolute risk aversion, and Proposition 7 applies. For CRRA utility, Corollary 6

says that the relative prizes do not change, that is, all prizes are simply scaled by the

budget.

6 Connection to Tullock contests

Under risk neutrality, it is well-known that the contest model of Tullock (1980) can be

obtained as a special case of the Lazear and Rosen (1981) tournament model with the

Gumbel distribution of noise (Jia, 2008; Ryvkin and Drugov, 2020; Fu and Lu, 2012). The

following lemma extends those results to a class of nonseparable utility functions with risk

aversion.
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Lemma 4 Consider a multi-prize Tullock contest with discriminatory power ξ and util-

ity U(v, e) = k(e)u(v) − c(e), and suppose a symmetric equilibrium exists. Then the

equilibrium effort ê satisfies the first order-condition (3) for utility function Ũ(v, e) =

k̃(e)u(v)− c̃(e), where

k̃(e) = exp

[∫ e

0

tk′(t)

k(t)
dt

]
, c̃(e) =

∫ e

0

tc′(t)k̃(t)

k(t)
dt. (20)

The coefficients βr are given by βr = ξ
n

[
1 + r

n(n−r) +
∑r−1

k=0
1

n−r+k

]
.

For a separable utility, U(v, e) = u(v) − c(e), Eqs. (20) are further reduced to the

transformation of the cost function c̃(e) =
∫ e

0
tc′(t)dt, similar to the risk-neutral case

(Ryvkin and Drugov, 2020). However, such transformations do not exist for all forms

of nonseparable utility. For example, for U(v, e) = η(v − c(e)), a transformation would

have to simultaneously preserve c(e) inside the argument of η and transform it so that

c̃(e) =
∫ e

0
c′(t)tdt, which is impossible. Thus, the theory developed in this paper is not

directly applicable to utility functions of this form with multiplicative noise, such as

multi-prize Tullock contests considered by Fu, Wang and Wu (2019).

7 Conclusions

In this paper, we characterize, and explore the properties of, optimal prize allocations

in rank-order tournaments where agents have nonseparable preferences. Surprisingly, the

structure of optimal prize allocations is robust to nonseparability. How fast optimal prizes

decay, whether there are subgroups of ranks receiving the same prize, or whether WTA

is optimal, depends on a combination of properties of noise and the utility function.

In contrast, the effect of risk aversion on optimal prize sharing is no longer universal.

Relatively strong results can only be obtained for compensated utility changes that pre-

serve the implemented optimal effort. There, a generalized notion of risk aversion can be

connected to prize sharing, in the form of the majorization order, similar to the separable

case. For uncompensated utility changes, additional assumptions on higher-order mixed

derivatives of utility are needed for the result to carry through. One important condition

that emerges is a version of non-increasing absolute prudence (NIAP).
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Appendix A: Equilibrium existence

Let fm = sup{f(x) : x ∈ X}, f ′max = sup{f ′(x) : x ∈ X} and f ′min = inf{f ′(x) : x ∈ X}
denote the tight, possibly infinite, bounds of pdf f(·) and its derivative f ′(·) on X . We

impose the following restrictions on the pdf of noise.

Assumption A1 (a) f(·) is uniformly bounded; that is, fm <∞.

(b) f ′(·) is uniformly bounded above or below or both; that is, either f ′max <∞ or f ′min >

−∞ or both.

The boundedness conditions in Assumption A1 are satisfied for many widely used

distributions such as Normal, Gumbel, Laplace, Cauchy, Pareto, exponential and uniform
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distributions. They also allow for unbounded f ′(·) from above or below, which is the case

for beta and lognormal distributions for some parameter values.

Let ē > 0 denote the unique level of effort such that U(b, ē) = 0. It is clear that any

effort above ē is strictly dominated by e = 0; therefore, we only need to consider effort in

the interval [0, ē].

Next, let g(e) = 1
n
U(b, e) + n−1

n
U(0, e). Since U(v, e) is concave in v, g(e) is the

minimum of 1
n

∑n
r=1 U(vr, e) over all feasible prize schedules. It is easy to see that g(0) > 0,

g(ē) < 0, and g′(e) < 0 for all e ∈ (0, ē); therefore, let e ∈ (0, ē) denote the unique level

of effort such that g(e) = 0. It follows that 1
n

∑n
r=1 U(vr, e) ≥ 0 for any feasible prize

schedule if e ≤ e.

Finally, note that Ue(v, e) is continuous in v, and hence µ̄(e) = maxv∈[0,b] Ue(v, e) and

µ(e) = minv∈[0,b] Ue(v, e) are well-defined, negative numbers for each e ∈ [0, ē], and strictly

negative for e ∈ (0, ē].

Introduce the bounds

D− = (n− 1)[(U(b, 0)− U(0, ē))((n− 1)f 2
m + max{−f ′min, 0})− 2µ(ē)fm],

D+ = (n− 1)[(U(b, 0)− U(0, ē))((2n− 3)f 2
m + max{f ′max, 0})− 2µ(ē)fm],

(21)

Under Assumption A1, at least one of these bounds is finite. The following proposition

provides the equilibrium existence result.

Proposition A1 Suppose Assumption A1 is satisfied, U is regular, and the following

conditions hold:

(a) −Uee(v, e) is bounded away from zero, with −Uee(v, e) ≥ c0 > 0 for all (v, e) ∈
[0, b]× [0, ē].

(b) c0 > D ≡ min{D−, D+}, where D− and D+ are given by (21).

(c) (n− 1)fm < min
{

c0
−µ(ē)

, µ̄(ē)
U(0,ē)

, −µ̄(e)
U(b,0)−U(0,ē)

}
.

Then for any v ∈ Vb,
(i) A(v, e) is strictly decreasing in e for e ∈ [0, ē];

(ii) there exists a unique ê ∈ [0, ē] solving (3), with ê = 0 if and only if v = ( b
n
, . . . , b

n
);

(iii) ê is the symmetric pure-strategy equilibrium in the tournament.

The conditions in Proposition A1 generalize the respective conditions in Drugov and

Ryvkin (2020) obtained for the risk-neutral separable case, U(v, e) = v− c(e). Condition

(a) restricts the generalized cost curvature, Uee(v, e), to be bounded away from zero.

Condition (b) comes from the fact that D − c0 is an upper bound on the curvature of
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expected utility W (e, ê) in (1). Hence, conditions (a) and (b) ensure that the player’s

problem is concave in e. Bound D used in condition (b) is defined as the minimum of D−

and D+ because both of them can serve as upper bounds, and hence, one only of them

has to be finite. Indeed, the second derivative of π(r)(e, ê) in (2) can be represented in

two ways, see Eqs. (26) and (27) in the proof.

Finally, condition (c) consists of three restrictions corresponding to the three terms

subjected to the min operator. The first restriction is sufficient for part (i). The second

one ensures that A(v, ē) < 0, which, together with part (i) and A(v, 0) being always

positive leads to part (ii). The third one comes from the players’ participation constraint

in the equilibrium. Note that both conditions (b) and (c) become tighter as the number

of players increases or noise dispersion decreases.

Comparing Proposition A1 to Propositon 10 in Drugov and Ryvkin (2020) one notices

that parts (i) and (ii)—and hence, terms c0
−µ(ē)

and µ̄(ē)
U(0,ē)

in condition (c)—are new.

Indeed, in the risk neutral separable case, from (16), A(v, e) =
∑n

r=1 βrvr − c′(e) strictly

decreases in e and crosses zero without any further conditions. It is also clear that in

terms of equilibrium existence the risk averse separable case is similar to the risk neutral

case, and it is the nonseparability that makes the analysis more involved.

Throughout this paper, we only consider monotone prize schedules. Apart from ob-

vious managerial reasons for this restriction, there are technical reasons for the exclusion

of nonmonotone prize schedule due to the equilibrium existence considerations. While in

principle a symmetric equilibrium may exist in some cases when v is nonmonotone, it

cannot exist for all nonmonotone prize schedules. This can be seen already in the risk

neutral separable case by writing A(v, e) in the form A(v, e) =
∑n−1

r=1 Br(vr−vr+1)−c′(e),
where Br > 0 for all r = 1, . . . , n− 1 (see the proof below for the definition of Br). It is

then easy to construct prize schedules for which A(v, e) < 0 for all e.

Proof of Proposition A1

Step (i): Sufficient conditions for A(v, e) = 0 to have a unique solution ê ∈ [0, ē].

For a unique solution to exists, it is sufficient to ensure that A(v, 0) > 0, A(v, ē) < 0

and Ae(v, e) < 0 for all e ∈ (0, ē). Let Br =
∑r

k=1 βk denote the cumulative version of

coefficients βr. It can be directly checked that

Br = r

(
n− 1

r

)∫
F (x)n−r−1[1− F (x)]r−1f(x)dF (x). (22)

which implies Br > 0 for r = 1, . . . , n− 1 and Bn = 0. Using summation by parts, we can
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write

A(v, e) =
n−1∑
r=1

Br[U(vr, e)− U(vr+1, e)] +
1

n

n∑
r=1

Ue(vr, e),

which immediately gives A(v, 0) ≥ 0, with equality if and only if vr is independent of r

(i.e., v is the constant prize schedule with vr = b
n
). Furthermore,

A(v, ē) =
n−1∑
r=1

Br[U(vr, ē)− U(vr+1, ē)] +
1

n

n∑
r=1

Ue(vr, ē)

≤
n−1∑
r=1

Br[U(b, ē)− U(0, ē)] + max
v∈[0,b]

Ue(v, ē) = −U(0, ē)
n−1∑
r=1

Br + max
v∈[0,b]

Ue(v, ē).

Note that

n−1∑
r=1

Br =

∫ n−1∑
r=1

(n− 1)!

(n− 1− r)!(r − 1)!
F (x)n−1−r[1− F (x)]r−1f(x)dF (x)

=

∫ n−2∑
r=0

(n− 1)!

(n− 2− r)!r!
F (x)n−2−r[1− F (x)]rf(x)dF (x)

= (n− 1)

∫
f(x)dF (x) ≤ (n− 1)fm.

Thus, for A(v, ē) < 0 it is sufficient to require that (n− 1)fm <
maxv∈[0,b] Ue(v,ē)

U(0,ē)
= µ̄(e)

U(0,ē)
.

Next, we analyze Ae(v, e):

Ae(v, e) =
n−1∑
r=1

Br[Ue(vr, e)− Ue(vr+1, e)] +
1

n

n∑
r=1

Uee(vr, e)

≤
n−1∑
r=1

Br[Ue(vr, 0)− Ue(vr+1, ē)]− c0 ≤ − min
v∈[0,b]

Ue(v, ē)(n− 1)fm − c0.

Thus, for Ae(v, e) < 0 it is sufficient to require that (n− 1)fm < c0
−minv∈[0,b] Ue(v,ē)

= c0
−µ(ē)

.

Step (ii): Sufficient conditions for ê to be an equilibrium

We will identify conditions for W (e, ê) to be strictly concave in e for all e ∈ [0, ē].

From (1),

Wee =
n∑
r=1

[
π(r)
ee (e, ê)U(vr, e) + 2π(r)

e (e, ê)Ue(vr, e) + π(r)(e, ê)Uee(vr, e)
]
. (23)
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Let Π(r)(e, ê) =
∑r

k=1 π
(k)(e, ê) denote the cumulative version of probabilities π(r)(e, ê).

By construction, Π(n)(e, ê) = 1, and hence Π
(n)
e (e, ê) = Π

(n)
ee (e, ê) = 0 for all e. Using

summation by parts and the uniform bound Uee ≤ −c0, (23) can be rewritten as

Wee ≤
n−1∑
r=1

[
Π(r)
ee (e, ê)(U(vr, e)− U(vr+1, e)) + 2Π(r)

e (e, ê)(Ue(vr, e)− Ue(vr+1, e))
]
− c0.

(24)

Let ∆e = e− ê. From (2),

π(r)
e (e, ê) =

(
n− 1

r − 1

)∫
F (∆e+ x)n−r−1[1− F (∆e+ x)]r−2 (25)

×[(n− r)(1− F (∆e+ x))− (r − 1)F (∆e+ x)]f(∆e+ x)dF (x),

and it can be directly verified that, similar to (22),

Π(r)
e (e, ê) = r

(
n− 1

r

)∫
F (∆e+ x)n−r−1[1− F (∆e+ x)]r−1f(∆e+ x)dF (x). (26)

Changing the variable of integration as ∆e+ x→ x, (26) can be written as

Π(r)
e (e, ê) = r

(
n− 1

r

)∫
F (x)n−r−1[1− F (x)]r−1f(x−∆e)dF (x) (27)

≤ fmr

(
n− 1

r

)∫
F (x)n−1−r[1− F (x)]r−1dF (x).

The inequality follows because f(x−∆e) does not exceed fm. Next, we differentiate (27)

once again to calculate Π
(r)
ee (e, ê). Note that f(x−∆e) is not necessarily continuous in e

for all x ∈ X . Indeed, if x is finite and f(x) > 0 then f(x−∆e) has a jump discontinuity

at ∆e = x − x, and similarly for x. Therefore, to preserve the continuity (and hence,

differentiability) of the integrand in (27), the interval of integration must be changed to

[x + ∆e, x] for ∆e > 0, to [x, x + ∆e] for ∆e < 0, and the case of ∆e = 0 needs to be
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considered separately. This gives

Π(r)
ee (e, ê) = r

(
n− 1

r

)[
−
∫
F (x)n−r−1[1− F (x)]r−1f ′(x−∆e)dF (x)

− F (x+ ∆e)n−r−1[1− F (x+ ∆e)]r−1f(x)f(x+ ∆e)1∆e>0

+ F (x+ ∆e)n−r−1[1− F (x+ ∆e)]r−1f(x)f(x+ ∆e)1∆e<0

− f(x)21r=n−11∆e=0 + f(x)21r=11∆e=0

]
≤ r

(
n− 1

r

)[
max{−f ′min, 0}

∫
F (x)n−r−1[1− F (x)]r−1dF (x)

+ f 2
mF (x+ ∆e)n−r−1[1− F (x+ ∆e)]r−11∆e<0

]
+ (n− 1)f 2

m1∆e=0. (28)

Here, 1S is the indicator equal to one if S is true and zero otherwise. The inequality in

(28) follows from the following considerations: (i) −f ′(x−∆e) does not exceed −f ′min; (ii)

all negative terms can be ignored; (iii) in the remaining two positive terms the product

of two pdfs does not exceed f 2
m.

In order to transform (24), we need to sum up the right-hand side of (27) over r =

1, . . . , n− 1. Note that for any z ∈ [0, 1] we have

n−1∑
r=1

r

(
n− 1

r

)
zn−r−1(1− z)r−1 =

n−1∑
r=1

(n− 1)!

(n− 1− r)!(r − 1)!
zn−r−1(1− z)r−1

=
n−2∑
r=0

(n− 1)!

(n− 2− r)!r!
zn−2−r(1− z)r = n− 1.

The inequality (24) then gives

Wee ≤ [U(b, 0)− U(0, ē)][max{−f ′min, 0}(n− 1) + f 2
m(n− 1)1∆e<0 + f 2

m(n− 1)21∆e=0]

− 2 min
v∈[0,b]

Ue(v, ē)fm(n− 1)− c0

≤ (n− 1)[(U(b, 0)− U(0, ē))((n− 1)f 2
m + max{−f ′min, 0})− 2 min

v∈[0,b]
Ue(v, ē)fm]− c0,

where the second inequality follows because ∆e < 0 and ∆e = 0 cannot hold at the same

time. Thus, in order for Wee < 0 to hold it is sufficient that c0 > D−, with D− given by

(21).

An alternative upper bound on Π
(r)
ee (e, ê) can be obtained by differentiating (26) di-

rectly. Taking into account the variable limits of integration, to preserve the differentia-
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bility of the integrand similar to (28), this gives

Π(r)
ee (e, ê) = r

(
n− 1

r

)[∫
F (∆e+ x)n−r−2[1− F (∆e+ x)]r−2

× [(n− r − 1)(1− F (∆e+ x))− (r − 1)F (∆e+ x)]f(∆e+ x)2dF (x)

+

∫
F (∆e+ x)n−r−1[1− F (∆e+ x)]r−1f ′(∆e+ x)dF (x)

− F (∆e+ x)n−r−1[1− F (∆e+ x)]r−1f(∆e+ x)f(x)1∆e>0

+ F (∆e+ x)n−r−1[1− F (∆e+ x)]r−1f(∆e+ x)f(x)1∆e<0

− f(x)21r=n−11∆e=0 + f(x)21r=11∆e=0

]
≤ r

(
n− 1

r

)[
(n− r − 1)f 2

m

∫
F (∆e+ x)n−r−2[1− F (∆e+ x)]r−1dF (x)

+ max{f ′max, 0}
∫
F (∆e+ x)n−r−1[1− F (∆e+ x)]r−1dF (x)

+ f 2
mF (∆e+ x)n−r−1[1− F (∆e+ x)]r−11∆e<0

]
+ (n− 1)f 2

m1∆e=0 (29)

As above, we omitted negative terms and replaced f and f ′ with the corresponding upper

bounds. In order to sum up the right-hand side of (29), note that for any z ∈ [0, 1], we

have

n−1∑
r=1

r(n− r − 1)

(
n− 1

r

)
zn−2−r(1− z)r−1 =

n−2∑
r=1

(n− 1)!

(n− r − 2)!(r − 1)!
zn−2−r(1− z)r−1

=
n−3∑
r=0

(n− 1)!

(n− 3− r)!r!
zn−3−r(1− z)r = (n− 1)(n− 2).

Therefore, from (24),

Wee ≤ [U(b, 0)− U(0, ē)][(n− 1)(n− 2)f 2
m + (n− 1) max{f ′max, 0}+ (n− 1)f 2

m1∆e<0

+ (n− 1)2f 2
m1∆e=0]− 2 min

v∈[0,b]
Ue(v, ē)(n− 1)fm − c0

≤ (n− 1)[(U(b, 0)− U(0, ē))((2n− 3)f 2
m + max{f ′max, 0})− 2 min

v∈[0,b]
Ue(v, ē)fm]− c0.

Thus, it is sufficient to require that c0 < D+, with D+ given by (21). Both bounds

are sufficient, and hence condition c0 > min{D−, D+} guarantees that W (e, ê) is strictly

concave in e for e ∈ [0, ē].
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Step (iii): Sufficient conditions for the participation constraint W (ê, ê) ≥ 0

From symmetry, W (ê, ê) = 1
n

∑n
r=1 U(vr, ê). Recall that ê satisfies the equation

A(v, e) = 0, i.e.,
∑n−1

r=1 Br[U(vr, ê)−U(vr+1, ê)] = ψ(v, ê), where ψ(v, e) = − 1
n

∑n
r=1 Ue(vr, e).

Function ψ is strictly increasing in e and continuous in v. Let ψ−1(v, t) denote the in-

verse of ψ with respect to e, which is continuous in v and strictly increasing in t. We

have
∑n−1

r=1 Br ≤ (n− 1)fm; therefore,

n−1∑
r=1

Br[U(vr, ê)− U(vr+1, ê)] ≤ [U(b, 0)− U(0, ē)](n− 1)fm.

This gives

ê = ψ−1(v,
n−1∑
r=1

Br[U(vr, ê)− U(vr+1, ê)]) ≤ ψ−1(v, [U(b, 0)− U(0, ē)](n− 1)fm) ≡ e0.

Effort e0 is an upper bound on the equilibrium effort. It is, therefore, sufficient to impose

a condition such that
∑n

r=1 U(vr, e0) ≥ 0.

From the definition of e we know that for any feasible prize schedule 1
n

∑n
r=1 U(vr, e) ≥

0 for any e ≤ e. Therefore, it is sufficient to require that e0 ≤ e or, equivalently, [U(b, 0)−
U(0, ē)](n− 1)fm ≤ ψ(v, e), and hence [U(b, 0)−U(0, ē)](n− 1)fm ≤ −maxv∈[0,b] Ue(v, e)

is sufficient. A combination of this condition with the conditions for A(v, ē) < 0 and

Ae(v, e) < 0 from step (i) produces condition (c) of the proposition.

Appendix B: Proofs

Proof of Lemma 1

Part (i) follows directly from Eq. (4).

For the rest of the proof, let F−1(z) = inf{x ∈ X : F (x) ≥ z} denote the quantile

function of noise, and let m(z) = f(F−1(z)) : [0, 1] → R+ denote the inverse quantile

density (Parzen, 1979), which is continuous, piece-wise differentiable and integrable due

to the properties of f(·). After the probability integral change of variable, z = F (x), Eq.

(4) becomes

βr =

(
n− 1

r − 1

)∫ 1

0

zn−r−1(1− z)r−2[n− r − (n− 1)z]m(z)dz. (30)
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Integrating Eq. (30) by parts, obtain

βr =

(
n− 1

r − 1

)∫ 1

0

m(z)zn−r−1(1− z)r−2[n− r − (n− 1)z]dz

=

(
n− 1

r − 1

)∫ 1

0

m(z)d[zn−r(1− z)r−1]

=

(
n− 1

r − 1

)[
m(z)zn−r(1− z)r−1

∣∣1
0
−
∫ 1

0

zn−r(1− z)r−1m′(z)dz

]
=

(
n− 1

r − 1

)
[m(1)1r=1 −m(0)1r=n]− 1

n

n!

(n− r)!(r − 1)!

∫ 1

0

zn−r(1− z)r−1m′(z)dz

= m(1)1r=1 −m(0)1r=n −
1

n
E(m′(Zn+1−r:n)). (31)

Here, Zn+1−r:n are order statistics of the uniform distribution on [0, 1]. These order

statistics are FOSD-decreasing in r.

Part (ii): note that if f(·) is (strictly) log-concave then m(·) is (strictly) concave, and

hence m′(z) is (strictly) decreasing and the expectation in (31) is (strictly) increasing in

r. The first two terms in (31) give m(1) for r = 1, −m(0) for r = n and 0 otherwise;

hence, combined we have a sequence that is (strictly) decreasing in r.

Part (iii): Note that if f(·) is (strictly) log-convex then m(·) is (strictly) convex, and

f(x) = 0 implies m(1) = 0. Eq. (31) then gives a sequence that is (strictly) increasing in

r for r ≤ n− 1.

We first prove part (v), and then go back to part (iv).

Part (v): Note that if f(·) is unimodal, then m(·) is also unimodal and hence m′(·) is

single-crossing +−; that is, there exists a ẑ ∈ [0, 1] such that m′(z) ≥ 0 for z ≤ ẑ and

m′(z) ≤ 0 for z ≥ ẑ. The cases of monotone m′(·) are covered in parts (ii) and (iii).

Suppose m′(·) is nonmonotone.

We know from part (i) that β1 > 0 and βn < 0; therefore, for n ≤ 3 the result is

trivial (and does not require unimodality). Suppose n ≥ 4, and consider some r such that
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3 ≤ r ≤ n− 1 and βr > 0. It is sufficient to show that βr−1 > 0. From (31),

βr−1 = −
(
n− 1

r − 2

)∫ 1

0

zn+1−r(1− z)r−2m′(z)dz

= − r − 1

n+ 1− r

(
n− 1

r − 1

)∫ 1

0

z

1− z
zn−r(1− z)r−1m′(z)dz

= − r − 1

n+ 1− r

(
n− 1

r − 1

)[∫ ẑ

0

z

1− z
zn−r(1− z)r−1m′(z)dz +

∫ 1

ẑ

z

1− z
zn−r(1− z)r−1m′(z)dz

]
≥ − r − 1

n+ 1− r

(
n− 1

r − 1

)[
ẑ

1− ẑ

∫ ẑ

0

zn−r(1− z)r−1m′(z)dz +
ẑ

1− ẑ

∫ 1

ẑ

zn−r(1− z)r−1m′(z)dz

]
= − r − 1

n+ 1− r

(
n− 1

r − 1

)
ẑ

1− ẑ

∫ 1

0

zn−r(1− z)r−1m′(z)dz =
r − 1

n+ 1− r
ẑ

1− ẑ
βr > 0.

The inequality on the fourth line follows because z
1−z is positive and increasing and m′(z)

is positive (negative) in the first (second) integral.

Part (iv): It follows that m(·) is first concave, then convex, which implies m′(·) is U-

shaped and hence m′′(·) is single-crossing −+. In order to show that βr is unimodal, we

will show that βr − βr−1 is single-crossing +−. Assume n − 1 ≥ r ≥ 2 and recall that

m(1) = 0; using (31),

βr − βr−1 = − (n− 1)!

(n− r)!(r − 1)!

∫ 1

0

zn−r(1− z)r−1m′(z)dz

+
(n− 1)!

(n− r + 1)!(r − 2)!

∫ 1

0

zn−r+1(1− z)r−2m′(z)dz

= − (n− 1)!

(n− r + 1)!(r − 1)!

∫ 1

0

zn−r(1− z)r−2[(n− r + 1)(1− z)− (r − 1)z]m′(z)dz

= − (n− 1)!

(n− r + 1)!(r − 1)!

∫ 1

0

m′(z)d[zn−r+1(1− z)r−1]

=
(n− 1)!

(n− r + 1)!(r − 1)!

∫ 1

0

zn−r+1(1− z)r−1m′′(z)dz, r ≤ n− 1.

where the last line follows from integration by parts. For r = n, we have

βn − βn−1 = −m(0) +

∫ 1

0

z(1− z)n−1m′′(z)dz.

The result then follows from the steps similar to the ones in the proof of part (v).

Proof of Proposition 1
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Part (i): suppose not, i.e., there exists a ṽ ∈ V such that A(ṽ, e∗) > A(v∗, e∗) = 0.

But Ae(v, e) < 0 under our assumptions, which implies there exists an ẽ > e∗ such that

A(ṽ, ẽ) = 0. This contradicts to e∗ being optimal in problem (5).

Part (i): Let us first prove that there exists an e∗ such that A(v∗, e∗) = 0 for all v∗ ∈
v∗(e∗). Consider an arbitrary e1 ∈ [0, ē], pick a v1 ∈ v∗(e1), and suppose A(v1, e1) > 0

(the opposite case will be considered below). It follows from Ae < 0 that there exists an

e2 > e1 such that A(v1, e2) = 0. Picking a v2 ∈ v∗(e2), we have A(v2, e2) ≥ A(v1, e2) = 0

because v2 maximizes A(v, e2) over v ∈ V . If A(v2, e2) > 0, then there exists an e3 > e2

such that A(v2, e3) = 0. Continuing similarly, we obtain a sequence {ek} that is strictly

increasing and bounded (by ē), and hence it converges to a limit e∗ such that A(v∗, e∗) ≥ 0

for all v∗ ∈ v∗(e∗). Moreover, A(v∗, e∗) = 0 because, otherwise, the process can be

repeated starting with e1 = e∗.

Suppose now that A(v1, e1) < 0. Then, due to Ae < 0, there exists an e2 < e1 such

that A(v1, e2) = 0. Picking a v2 ∈ v∗(e2), we have A(v2, e2) ≥ 0, and a converging

sequence can be constructed as above.

We now show that, for v∗ ∈ v∗(e∗), (v∗, e∗) solves (5). Suppose not, i.e., there exists

a ṽ ∈ V and ẽ such that A(ṽ, ẽ) = 0 and ẽ > e∗. Then, from Ae < 0 it follows that

A(ṽ, e∗) > 0 = A(v∗, e∗), which contradicts to v∗ maximizing A(v, e∗).

Finally, we show that e∗ satisfying A(v∗, e∗) = 0 for all v∗ ∈ v∗(e∗) is unique. Suppose

not, i.e., there are e∗ and ẽ such that e∗ > ẽ and A(v∗, e∗) = A(ṽ, ẽ) = 0 for all v∗ ∈ v∗(e∗)

and all ṽ ∈ v∗(ẽ). By construction, 0 = A(ṽ, ẽ) ≥ A(v∗, ẽ); however, from Ae < 0 it

follows that 0 = A(v∗, e∗) < A(v∗, ẽ)—a contradiction.

Proof of Proposition 2

If v∗ solves (7), it also maximizes Lagrangian L(0)(v, λ∗; e∗). Thus, vr ∈ q(βr, λ∗; e∗).
The objective in (10) satisfies strictly increasing differences in (β, v). It then follows from

the monotone comparative statics that βr > βr′ implies then v∗r ≥ v∗r′ ; moreover, v∗r > v∗r′

if v∗r > 0.

When βr is weakly decreasing, there may be solutions v∗ that are not decreasing, but

there has to be a weakly decreasing selection. Indeed, if βr = βr+1 for some r, we have

q(βr, λ
∗, e∗) = q(βr+1, λ

∗, e∗); therefore, if there is a solution v∗ such that v∗r < v∗r+1, there

is also a solution with v∗r > v∗r+1 where the two prizes are swapped.

Proof of Proposition 3

It is convenient to define, superficially, vn+1 = 0, and introduce nonnegative prize

differentials, dr = vr−vr+1. We have vr =
∑n

k=r dk for r = 1, . . . , n, and, using summation
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by parts, the budget constraint takes the form
∑n

r=1 rdr = b. In the new variables, the

optimization problem (6), with e = e∗, becomes

maxA(v, e∗), s.t.
n∑
r=1

rdr = b, d1, . . . , dn ≥ 0. (32)

The Lagrangian is

L(v, λ; e∗) = A(v, e∗) + λ

(
b−

n∑
r=1

rdr

)
,

producing the KT conditions

r∑
k=1

[
βkUv(vk, e

∗) +
1

n
Uev(vk, e

∗)

]
≤ rλ, with equality if vr > vr+1, r = 1, . . . , n.

As before, due to the linearity of the constraints, the KT necessity theorem implies that

if v solves (32) then there exists a λ∗ > 0 such that v satisfies the KT conditions.

Optimal prizes have a step-wise decreasing structure, with critical points 1 ≤ r1 <

. . . < rK ≤ n such that vr is strictly decreasing in r at the critical points (as long as

prizes are positive) and remains constant between them. Therefore, the KT conditions

hold with equality at the critical points, and (generically) as inequalities in between, as

long as prizes remain positive. Since v1 > 0 always holds, the first r1 KT conditions have

the form

Uv(v1, e
∗)

k∑
l=1

βl +
k

n
Uev(v1, e

∗) ≤ kλ, k = 1, . . . , r1 − 1,

Uv(v1, e
∗)

r1∑
l=1

βl +
r1

n
Uev(v1, e

∗) = r1λ.

Using coefficients β̄r:r′ = 1
r′−r+1

∑r′

l=r βl, these can be written as

β̄1:kUv(v1, e
∗) +

1

n
Uev(v1, e

∗) ≤ λ, k = 1, . . . , r1 − 1,

β̄1:r1Uv(v1, e
∗) +

1

n
Uev(v1, e

∗) = λ. (33)

This implies β̄1:k ≤ β̄1:r1 for all k = 1, . . . , r1, and hence we define r1 = max{r : β̄1:k ≤
β̄1:r ∀k = 1, . . . , r}.
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Consider now the next group of KT conditions for r = r+1, . . . , r2, assuming vr2 > 0:

Uv(v1, e
∗)

r1∑
l=1

βl + Uv(vr2 , e
∗)

k∑
l=r1+1

βl +
r1

n
Uev(v1, e

∗) +
k − r1

n
Uev(vr2 , e

∗) ≤ kλ,

k = r1 + 1, . . . , r2 − 1,

Uv(v1, e
∗)

r1∑
l=1

βl + Uv(vr2 , e
∗)

r2∑
l=r1+1

βl +
r1

n
Uev(v1, e

∗) +
r2 − r1

n
Uev(vr2 , e

∗) = r2λ.

Combining these with (33), obtain

β̄r1+1:kUv(vr2 , e
∗) +

1

n
Uev(vr2 , e

∗) ≤ λ, k = r1 + 1, . . . , r2 − 1,

β̄r1+1:r2Uv(vr2 , e
∗) +

1

n
Uev(vr2 , e

∗) = λ. (34)

We, therefore, define r2 = max{r : β̄r1+1:k ≤ β̄r1+1:r ∀k = r1 + 1, . . . , r}. Continuing

similarly, we obtain the sequence of critical points defined in (11).

Optimal prizes at the critical points, vrk , as long as they are positive, solve the equa-

tions

β̄rk−1+1:rkUv(vrk , e
∗) +

1

n
Uev(vrk , e

∗) = λ, k = 1, . . . , s.

Here, s is the number of distinct positive prizes. By construction, coefficients β̄rk−1+1:rk

and prizes vrk are strictly decreasing in k for k ≤ s. Moreover, setting λ = λ∗, the

Lagrangian can be written in an additive separable form as

L(v, λ∗; e∗) =
K∑
k=1

(rk − rk−1)

[
β̄rk−1+1:rkU(vrk , e

∗) +
1

n
Ue(vrk , e

∗)− λ∗vrk
]

+ λ∗b;

therefore, similar to Section 3.1, vrk ∈ q(β̄rk−1+1:rk , λ
∗; e∗).

Proof of Proposition 4

Suppose vn > 0 and consider a modification of prizes v → v′ such that v′1 = v1 + vn and

v′n = 0 (i.e., the entire prize vn is transferred to v1; the resulting prize schedule is feasible).

This gives

A(v′, e) = A(v, e) + β1(U(v′1, e)− U(v1, e)) + βn(U(0, e)− U(vn, e))

+
1

n
[Ue(v

′
1, e)− Ue(v1, e) + Ue(0, e)− Ue(vn, e)] > A(v, e).
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The terms with β1 and βn are strictly positive. The term multiplying 1
n

is positive provided

Ue(vn + v1, e)− Ue(v1, e) ≥ Ue(vn, e)− Ue(0, e),

which holds if Ue is convex in v or Uvve ≥ 0.

Thus, A(v, e) can be strictly increased by shifting vn to v1; by the same argument,

A(v, e) can be further increased by shifting vn−1 to v1 if vn−1 > 0, and so on, finally

reaching vr̂+1. The resulting A(v, e) is strictly greater than the initial one, and because

it is strictly decreasing in e, the e∗ solving A(v, e) = 0 is larger.

Proof of Corollary 3

We need to show that βr ≤ 0 for r ≥ 2. From (4), coefficients βr can be written as

βr =
(n− 1)!

(n− 1− r)!(r − 1)!

∫
X
F (x)n−r−1[1− F (x)]r−1f(x)dF (x)

− (n− 1)!

(n− r)!(r − 2)!

∫
X
F (x)n−r[1− F (x)]r−2f(x)dF (x)

= E(f(Xn−r:n−1))− E(f(Xn−r+1:n−1)),

Order statistics Xn−r:n−1 are FOSD-decreasing in r, and the result follows immediately

because f(·) is an increasing function.

Lemma B1 Define ē by the condition U(1, ē) = 0. Suppose e∗ ∈ [0, ē] is optimal under

U with b = 1, Ũ is regular, and there exists a b large enough such that

β1[Ũ(b, ē)− Ũ(0, ē)] ≥ −Ũe(0, ē)−
1

n
[Ũe(b, ē)− Ũe(0, ē)]. (35)

Then there exists a budget bc > 0 such that e∗ is optimal under Ũ with budget b = bc.20

Proof Consider problem (6) with utility Ũ and e = e∗, and let Ã∗(b, e∗) denote its optimal

value function. Because Vb ⊂ Vb′ for b < b′, we have Ã∗(b, e∗) increasing in b. It is sufficient

to show that there exists a bc such that Ã∗(bc, e∗) = 0. From Berge’s theorem, Ã∗(b, e∗)

20A weaker, albeit more complex, version of condition (35) is that effort ē is implementable as optimal
effort under Ũ with a large enough budget. Indeed, in this case 0 = Ã∗(b, ē) ≤ Ã∗(b, e∗) for some b, and
Lemma B1 also holds.
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is continuous in b. Moreover,

Ã∗(0, e∗) =
n∑
r=1

βrŨ(0, e∗) +
1

n

n∑
r=1

Ũe(0, e
∗) = Ũe(0, e

∗) < 0,

where we used the property
∑n

r=1 βr = 0. Thus, it is sufficient to show that Ã∗(b, e∗) ≥ 0

for a large enough b.

Consider the WTA prize schedule v1
b = (b, 0, . . . , 0). By construction, Ã∗(b, e∗) ≥

Ã(v1
b , e
∗) ≥ Ã(v1

b , ē), and hence it is sufficient to require that Ã(v1
b , ē) ≥ 0. We have

Ã(v1
b , ē) = β1Ũ(b, ē) +

n∑
r=2

βrŨ(0, ē) +
1

n
Ue(b, ē) +

n− 1

n
Ue(0, ē)

= β1[Ũ(b, ē)− Ũ(0, ē)] +
1

n
[Ũe(b, ē)− Ũe(0, ē)] + Ũe(0, ē) ≥ 0,

from condition (35).

Proof of Proposition 5

Let e∗ denote the (common) equilibrium effort. We start with the following lemma.

Lemma B2 Suppose β′ > β, v′ ∈ q(β′, λ, e∗), v ∈ q(β, λ, e∗), λ > 0, and v > 0. Then

nβ′ + γ(v′, e∗)

nβ + γ(v, e∗)

Uv(v
′, e∗)

Uv(v, e∗)
≥ nβ′ + γ̃(v′, e∗)

nβ + γ̃(v, e∗)

Ũv(v
′, e∗)

Ũv(v, e∗)
. (36)

Proof We know that v′ ≥ v. From the first-order condition (3) for v and v′ we obtain,

nβ′Uv(v
′, e∗) + Uve(v

′, e∗)

nβUv(v, e∗) + Uve(v, e∗)
= 1,

which can be rewritten as

nβ′ + γ(v′, e∗)

nβ + γ(v, e∗)

Uv(v
′, e∗)

Uv(v, e∗)
= 1. (37)

Since Ũ is more risk averse than U , we have Uv(v′,e∗)
Uv(v,e∗)

≥ Ũv(v′,e∗)

Ũv(v,e∗)
.

Denote for brevity γ ≡ γ(v, e∗) and γ′ ≡ γ(v′, e∗). We know that nβ + γ = nλ > 0,

which implies, from the definition of Ũ being more risk averse, that nβ + γ̃ > 0 as well.
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Therefore, nβ′+γ′

nβ+γ
− nβ′+γ̃′

nβ+γ̃
has the same sign as

(nβ′ + γ′)(nβ + γ̃)− (nβ′ + γ̃′)(nβ + γ) = (γ̃ − γ)(nβ′ + γ′)− (γ̃′ − γ′)(nβ + γ) ≥ 0.

The inequality follows since nβ′+ γ′ ≥ nβ+ γ from (37), γ̃ ≥ γ and γ̃′ ≥ γ′ from Ũ being

more risk averse, and γ̃ − γ ≥ γ̃′ − γ′ from condition (b) of the proposition.

The sequence of critical points 0 = r∗0, r
∗
1, . . . , r

∗
K is determined only by the distribution

of noise; therefore, it is the same for both utility functions. Let λ∗, λ̃∗ > 0 denote the

corresponding optimal Lagrange multipliers for prize schedules v∗ and ṽ.

Part (i): If K distinct positive prizes are optimal under Ũ , we are done since at most

K prizes can be optimal under U . Suppose s < K distinct positive prizes are optimal

under Ũ , i.e., ṽr∗s > ṽr∗s+1 = 0. It is sufficient to show that v∗r∗s+1 = 0, i.e., it is impossible

to have s + 1 or more distinct positive prizes under U . Suppose this is not true and

v∗r∗s+1 = v∗r∗s+1
> 0. Then v∗r∗s > 0 as well, and the corresponding KT conditions imply

β̄r∗s−1+1:r∗sUv(v
∗
r∗s
, e∗) +

1

n
Uve(v

∗
r∗s
, e∗) = β̄r∗s+1:r∗s+1

Uv(v
∗
r∗s+1

, e∗) +
1

n
Uve(v

∗
r∗s+1

, e∗) = λ∗,

β̄r∗s−1+1:r∗s Ũv(ṽr∗s , e
∗) +

1

n
Ũve(ṽr∗s , e

∗) = λ̃∗ ≥ β̄r∗s+1:r∗s+1
Ũv(0, e

∗) +
1

n
Ũve(0, e

∗).

The first equation implies that nβ̄r∗s+1:r∗s+1
+ γ(v∗r∗s+1

, e∗) > 0. The assumptions that γ̃ ≥ γ

and γ̃v ≤ 0 then imply that nβ̄r∗s+1:r∗s+1
+ γ̃(0, e∗) > 0 as well. This gives

nβ̄r∗s−1+1:r∗s + γ(v∗r∗s , e
∗)

nβ̄r∗s+1:r∗s+1
+ γ(v∗r∗s+1

, e∗)

Uv(v
∗
r∗s
, e∗)

Uv(v∗r∗s+1
, e∗)

≤
nβ̄r∗s−1+1:r∗s + γ̃(ṽr∗s , e

∗)

nβ̄r∗s+1:r∗s+1
+ γ̃(0, e∗)

Ũv(ṽr∗s , e
∗)

Ũv(0, e∗)
. (38)

Using Lemma B2, obtain

nβ̄r∗s−1+1:r∗s + γ̃(v∗r∗s , e
∗)

nβ̄r∗s−1+1:r∗s + γ̃(v∗r∗s+1
, e∗)

Ũv(v
∗
r∗s
, e∗)

Ũv(v∗r∗s+1
, e∗)

≤
nβ̄r∗s−1+1:r∗s + γ̃(ṽr∗s , e

∗)

nβ̄r∗s+1:r∗s+1
+ γ̃(0, e∗)

Ũv(ṽr∗s , e
∗)

Ũv(0, e∗)
.

Since v∗r∗s+1
> 0 while Ũv and γ̃ are decreasing in v, it must be that ṽr∗s ≤ v∗r∗s .

Applying the same arguments to prizes for ranks r∗s and r∗s−1, obtain ṽr∗s−1
≤ v∗r∗s−1

.

Proceeding similarly, we obtain that ṽr∗k ≤ v∗r∗k for all k = 1, . . . , s. This implies

(r∗1 − r∗0)ṽr∗1 + . . .+ (r∗s − r∗s−1)ṽr∗s ≤ (r∗1 − r∗0)v∗r∗1 + . . .+ (r∗s − r∗s−1)v∗r∗s

< (r∗1 − r∗0)vr∗1 + . . .+ (r∗s − r∗s−1)vr∗s + (r∗s+1 − r∗s)vr∗s+1
≤ 1,
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giving
∑r̂

r=1 ṽr < 1, which is impossible.

Part (ii): Let s and s̃ denote the number of distinct positive prizes in v∗ and ṽ,

respectively (we showed in part (i) that s̃ ≥ s). We need to show that
∑r

k=1 v
∗
r ≥

∑r
k=1 ṽr

for all r ≤ r∗s̃ . Suppose this inequality is not satisfied for some r, and let κ denote the

lowest r such that it does not hold. Then it must be that v∗κ < ṽκ, or, equivalently,

v∗r∗k < ṽr∗k for some k ≤ s̃. There are two possible cases: (a) k < s and (b) k ≥ s.

(a) Suppose k < s and consider prizes at ranks r∗k and r∗k+1, which are both positive

in v∗ and in ṽ. From the KT conditions,

β̄r∗k−1+1:r∗k
Uv(v

∗
r∗k
, e∗) +

1

n
Uve(v

∗
r∗k
, e∗) = β̄r∗k+1:r∗k+1

Uv(v
∗
r∗k+1

, e∗) +
1

n
Uve(v

∗
r∗k+1

, e∗) = λ∗,

β̄r∗k−1+1:r∗k
Ũv(ṽr∗k , e

∗) +
1

n
Ũve(ṽr∗k , e

∗) = β̄r∗k+1:r∗k+1
Ũv(ṽr∗k+1

, e∗) +
1

n
Ũve(ṽr∗k+1

, e∗) = λ̃∗.

This gives

nβ̄r∗k−1+1:r∗k
+ γ(v∗r∗k , e

∗)

nβ̄r∗k+1:r∗k+1
+ γ(v∗r∗k+1

, e∗)

Uv(v
∗
r∗k
, e∗)

Uv(v∗r∗k+1
, e∗)

=
nβ̄r∗k−1+1:r∗k

+ γ̃(ṽr∗k , e
∗)

nβ̄r∗k+1:r∗k+1
+ γ̃(ṽr∗k+1

, e∗)

Ũv(ṽr∗k , e
∗)

Ũv(ṽr∗k+1
, e∗)

.

Using Lemma B2, obtain

nβ̄r∗k−1+1:r∗k
+ γ̃(ṽr∗k , e

∗)

nβ̄r∗k+1:r∗k+1
+ γ̃(ṽr∗k+1

, e∗)

Ũv(ṽr∗k , e
∗)

Ũv(ṽr∗k+1
, e∗)

≥
nβ̄r∗k−1+1:r∗k

+ γ̃(v∗r∗k , e
∗)

nβ̄r∗k+1:r∗k+1
+ γ̃(v∗r∗k+1

, e∗)

Ũv(v
∗
r∗k
, e∗)

Ũv(v∗r∗k+1
, e∗)

.

Since v∗r∗k < ṽr∗k , and Ũv and γ̃ are decreasing in v, it must be that v∗r∗k+1
≤ ṽr∗k+1

.

(b) Suppose k ≥ s. If s̃ = s, this is impossible (if the majorization inequality is

violated for the last positive prize, then the budget constraint cannot hold); therefore,

s̃ > s. Then v∗r∗k+1
= 0 and v∗r∗k+1

≤ ṽr∗k+1
holds automatically.

Thus, we obtained that a violation of the majorization inequality for some r implies

that v∗r∗k < ṽr∗k for some k, which in turn implies v∗r∗k+1
≤ ṽr∗k+1

. Continuing the same

argument, it follows that v∗r∗l ≤ ṽr∗l for all l ∈ {k + 1, . . . , s̃}, and hence the majorization

inequality is violated for the last positive prize, which is impossible.

Proof of Lemma 2

Part (i): Start with part(a) of Definition 2. Omitting the arguments for brevity, we have
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Ũv = φ′Uv and Ũvv = φ′′U2
v + φ′Uvv. This gives

− Ũvv
Ũv

= −φ
′′U2

v + φ′Uvv
φ′Uv

= −φ
′′

φ′
Uv −

Uvv
Uv
≥ −Uvv

Uv
,

where we used that φ′ > 0, φ′′ ≤ 0, and Uv > 0.

For part (b) of Definition 2, Ũve = φ′′UvUe + φ′Uve, which gives

Ũve

Ũv
=
φ′′UvUe + φ′Uve

φ′Uv
=
φ′′

φ′
Ue +

Uve
Uv
≥ Uve

Uv
,

where we used that φ′ > 0, φ′′ ≤ 0, and Ue < 0.

Part (ii): From the derivatives Ũvv = φ′′U2
v + φ′Uvv and Ũvve = φ′′′U2

vUe + φ′′UvvUe +

2φ′′UvUve + φ′Uvve, we obtain

∂

∂v

Ũve

Ũv
=

1

Ũ2
v

(ŨvveŨv − ŨveŨvv) =
1

φ′2U2
v

[
(φ′′′U2

vUe + φ′′UvvUe + 2φ′′UvUve + φ′Uvve)φ
′Uv

− (φ′′UvUe + φ′Uve)(φ
′′U2

v + φ′Uvv)
]

=
1

Uv

[
φ′′′

φ′
U2
vUe +

φ′′

φ′
UvUve + Uvve −

φ′′2

φ′2
U2
vUe

− UveUvv
Uv

]
=

1

Uv

[
Uvve −

UveUvv
Uv

+
φ′′

φ′
UvUve − U2

vUe

(
− φ′′′

φ′
+
φ′′2

φ′2

)]
≤ 1

Uv

(
Uvve −

UveUvv
Uv

)
=

∂

∂v

Uve
Uv

,

where the inequality follows because Uve ≥ 0 and φ(·) being NIARA is equivalent to

−φ′′′

φ′
+ φ′′2

φ′2
≤ 0.

Proof of Lemma 3

Let A(v, e∗; ρ) denote the corresponding function A defined in (3). We know that v1

solves maxv∈V1 A(v, e∗; ρ1) and satisfies A(v1, e∗; ρ1) = 0. By construction, A(v, e∗; ρ2) =

A(ρ2
ρ1

v, e∗; ρ1), implying that A(v2, e∗; ρ2) = 0. Moreover, maxv∈Vb A(v, e∗; ρ2) is solved

by a v∗ such that ρ2
ρ1

v∗ = v1 when ρ2
ρ1
b = 1. This produces the desired result.

Proof of Proposition 6

Similarly to the proof of Proposition 5, we first prove the following Lemma.

Lemma B3 Suppose ẽ ≥ e∗, β′ > β > 0, v′ ∈ q(β′, λ, e∗), v ∈ q(β, λ, e∗), λ > 0, and
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v′ > v > 0. Then,

nβ′ + γ(v′, e∗)

nβ + γ(v, e∗)

Uv(v
′, e∗)

Uv(v, e∗)
≥ nβ′ + γ̃(v′, e∗)

nβ + γ̃(v, e∗)

Ũv(v
′, e∗)

Ũv(v, e∗)
≥ nβ′ + γ̃(v′, ẽ)

nβ + γ̃(v, ẽ)

Ũv(v
′, ẽ)

Ũv(v, ẽ)
. (39)

Proof The first inequality in (39) is the same as in Lemma B2 and is proven there. For

the second inequality, note that

∂

∂e

nβ′Ũv(v
′, e) + Ũve(v

′, e)

nβŨv(v, e) + Ũve(v, e)
∝ nβ′Ũve(v

′, e) + Ũvee(v
′, e)

nβ′Ũv(v′, e) + Ũve(v′, e)
− nβŨve(v, e) + Ũvee(v, e)

nβŨv(v, e) + Ũve(v, e)

=
nβ′ + Ũvee(v′,e)

Ũve(v′,e)

nβ′

γ̃(v′,e)
+ 1

−
nβ + Ũvee(v,e)

Ũve(v,e)

nβ
γ̃(v,e)

+ 1
≤ 0,

since β′ > β > 0, v′ > v, γ̃v(v, e) ≤ 0 and ∂
∂v

Ũvee(v,e)

Ũve(v,e)
≤ 0.

The rest of the proof follows exactly the same steps as the proof of Proposition 5,

except that Lemma B3 is used instead of Lemma B2.

Proof of Corollary 6

Apply Proposition 7 for ũ(v) = u(bv), that is, check the effect of b on risk aversion:

∂

∂b

(
−uvv(bv)

uv(bv)

)
=

∂

∂b

(
−bu

′′(bv)

u′(bv)

)
=

∂

∂c

(
−cu

′′(c)

u′(c)

)
,

where c = bv.

Proof of Lemma 4 It is well-known that the Tullock contest model can be derived

using a tournament with multiplicative noise. Suppose output is Yi = eiXi, where the

support of Xi is an interval in R++. The additive noise model can be obtained by taking

logs, log(Yi) = log(ei) + log(Xi). Additive noise log(Xi) is distributed with cdf Fm(x) =

F (exp(x)), and the utility function is transformed as Um(v, em) = U(v, exp(em)), where

em = log(e) is the transformed effort. Letting βmr denote the coefficients βr based on the

transformed distribution Fm(x), we obtain the following first-order condition from (3):

n∑
r=1

[
βmr U(vr, e) +

1

n
Ue(vr, e)e

]
= 0. (40)

Here, we used the transformation Um
em(vr, em) = Ue(v, exp(em)) exp(em) = Ue(v, e)e.
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For U(v, e) = k(e)u(v)− c(e), the first-order condition (40) can be written as

n∑
r=1

[
βmr +

k′(e)e

nk(e)

]
u(vr) =

c′(e)e

k(e)
.

Comparing it to the first-order condition in the additive noise model with some utility

function Ũ(v, e) = k̃(e)u(v)− c̃(e),

n∑
r=1

[
βmr +

k̃′(e)

nk̃(e)

]
u(vr) =

c̃′(e)

k̃(e)
,

we can see that the two coincide if k′(e)e
k(e)

= k̃′(e)

k̃(e)
and c′(e)e

k(e)
= c̃′(e)

k̃(e)
. It is straightforward to

check that Eqs. (20) satisfy both conditions.

Tullock contests can be obtained using the multiplicative noise model with Xi follow-

ing the Inverse Exponential distribution with parameter ξ. The corresponding additive

noise, log(Xi), then follows the Gumbel distribution, which produces βmr as in the Lemma

(Fu and Lu, 2012).
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