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1.0 Introduction
Hensher et al. (2005) suggested that when dealing with unlabelled discrete choice experiment (DCEs), 
constant terms offer no substantive behavioural meaning and hence should not be estimated as part of the 
model. In a later edition, Hensher et al. (2015) contradict this original advice and suggest that alternative 
specific constants (ASCs) should be incorporated in discrete choice models dealing with unlabelled 
DCEs. Despite this retraction, it is evident that many researchers fail to estimate constant terms for all 
but one alternative. Indeed, it appears to be common practice, particularly when dealing with unlabelled 
binary choice experiments used to capture dimensions of quality of life such as the EQ-5D (e.g., ), not to 
include any constant terms, or for trinary unlabelled DCEs involving a status quo or no choice alternative 
(the two terms appear to be used interchangeably), to estimate a single constant term linked to the no 
choice option.

We argue that unlabelled choice experiments should always involve the estimation of ASCs, irrespective 
of the number of alternatives and/or presence of a no choice alternative. We present five possible causes 
that may result in an imbalance of preferences across alternatives within unlabelled DCEs, that can be 
at least partially dealt with only with the inclusion of ASC terms. The presence of one or more these 
issues, which are unlikely to be unknown to the analyst, may result in biased estimates if not dealt with 
appropriately. Whilst more advanced econometric models may be able to deal with one or more of these 
issues directly, such models are not in wide-spread use, and even when used, unless they account for 
all of five issues, may not fully overcome the problem with preference imbalance across alternatives. 
Further, at issue is the fact that many papers present results without estimating ASCs for all but one 
utility function, making it impossible to determine if they are reporting models based on data sets with 
preference imbalance across the alternatives, and hence models with potentially biased estimates. We 
argue that aside from additional degrees of freedom, the inclusion of alternative specific constants does 
not cost the analyst anything, yet can prevent specific effects from biasing the estimates of discrete choice 
models.

To demonstrate the impact of not including alternative specific constants for all but one alternative, we 
present both a theoretical argument as well as demonstrate the outcomes from models estimated on a real-
world empirical data set.  In addition to understanding the role that constants play in model estimation, 
we further discuss the role of constants in model prediction and forecasting.

The remainder of the paper is organised as follows. In the next section, we discuss the theoretical 
role that constants play in the estimation of discrete choice models, and how the standard practice of 
estimating a single constant for a status quo alternative when more than three alternatives are present 
can result in biased outputs. Section 3 of the paper presents an empirical data set, after which results are 
presented in Section 4 demonstrating the issues raised earlier in Section 2.  Section 3 further discusses 
issues around the use of constants in forecasting. Section 4 also presents further analysis showing that 
more advanced choice models also fail to deal with the issue of incorrect specification of the constant 
terms within discrete choice models. Finally, Section 5 presents a brief discussion and outlines a series 
of recommendations related to the use of constants in studies modelling discrete choice outcomes. 
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2.0 The role of the constants in discrete choice models
Independent of the data type, constants terms play multiple roles in discrete choice models. The 
most common role attributed to constants is that they represent the mean of the unobserved 
effects of the alternative(s) to which they are assigned, after accounting for the contribution of 
non-constant variables contained within the modelled system of utility functions. The second role 
assumed, related to the first, is that the modelled constants reflect preferences for the related 
alternatives, once more after accounting for the impact of the other variables contained within 
the model. This second role is usually confined to interpreting the outputs of models estimated 
on data containing labelled alternatives or where one alternative is a no-choice or status quo 
alternative. A third much less stated role relates to the fact that the estimation procedures used to 
obtain the parameter estimates of discrete choice models are designed to ensure that the predicted 
aggregate choice probabilities obtained from the model match as closely as possible the market 
shares contained within the data. That is to say that 

1 1 1
ˆN S J

j nsjn s j
P P NS

= = =
≈∑ ∑ ∑ where jP  is the 

sample market share for alternative j, n̂sjP  is the choice probability obtained from the model for 
respondent n in choice situation s associated with j alternative, and NS reflects the total number of 
choices made within the sample data. 

Whilst the first two roles primarily relate to the interpretation of the constant terms of the model, 
the latter relates to their function in model estimation, and more importantly, determines the 
values that they will take. To demonstrate, let nsjU  denote the utility of alternative j perceived by 
respondent n in choice situation s, which consists of an observed component nsjV  and an unobserved 
component ,nsjε

.nsj nsj nsjU V ε= + (1)

As is common practice, the observed component is assumed to be described by a linear relationship 
of k observed attribute levels of each alternative, x, and their corresponding weights (parameters), 

,β such that utility can be expressed as

1
.
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In case a certain parameter kβ  appears in the utility function of multiple alternatives j, it is said to 
be generic over these alternatives. Otherwise, the parameter is called alternative-specific. In our 
notation, if a certain attribute k does not appear in the utility function of a certain alternative j, then 
we assume that 0.nsjkx =  To aid in interpretation, we will denote constants as jα to differentiate 
them from non-constant terms.

Now assume the existence of a discrete choice experiment involving three alternatives representing 
options defined by attributes and attribute levels. Following standard practice, the system of utility 
equations for this experiment would be written as 
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where we include alternative specific constants for J-1 of the alternatives.

Assuming that the error terms are IID Extreme Value (EV) type 1 distributed, the mean of the error 
term will be ( ) 0.57721nsj nE ε σ= and variance ( ) ,

6
var 2

2

n
nsj σ

πε = where a positive scale factor that is 
typically normalised to one in most applications. Ignoring the systematic component of utility, 
adding a constant term to a distribution shifts all elements of the distribution by the same amount, 
shifting the mean of the distribution, but not affecting the variance, such that the mean of the error 
term for a given alternative will be equal to jα + 0.57721. Note that, if two or more constants are 
not estimated, then the means of the error terms for these alternatives are assumed to be equal. As 
we discuss later, it is common in many discrete choice experiments to estimate models with less 
than J-1 alternatives. This is particularly the case, but not limited to, studies involving a no-choice 
or status quo alternative, where a constant is estimated only for the no or status quo option, as 
shown in the system of utility equations given in Equation (4). 
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As per the discussion above, Equation (4) assumes that the means of error terms associated with 
alternatives 1 and 2 are simultaneously equal to 0.57721, assuming scale is normalised to 1.0. 

In addition to representing the means of the error terms, it is important to understand that constant 
terms are parameters that enter into utility, and hence also impact on the choice probabilities of 
estimated models. To understand this, assume a standard multinomial logit (MNL) model is to be 
estimated. Other more advanced models can be similarly assumed, by appropriate adaption of the 
functional form of choice probabilities shown. As such, the discussion that follows is not specific to 
the MNL model and can be generalised to any discrete choice model. Assuming the system of utility 
functions given by equation (4), the choice probabilities for the model would be 
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This is important for the following reason. Firstly, the parameter estimates of discrete choice 
models are obtained using maximum likelihood techniques. For the MNL model, the log-likelihood 
function can be represented as

( )
1 1 1

ln ,
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nsj nsj
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= = =
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(6)

where ynsj represents the observed choice for respondent n in choice situation s, equal to 1 if 
alternative j is chosen, or 0 otherwise, and Pnsj represents the choice probabilities given in Equation 
(5). 

Within Equations (5) and (6), xnsjk and ynsj are data, and hence given. Thus, in maximising equation 
(6), only SQα  and kβ are free to be estimated. Now assume that data is collected using an unlabelled 
choice experiment, such that the non-constant parameter terms should be estimated as generic 
estimates. Issues will then arise if for whatever reason the means of the error terms for alternatives 
1 and 2 are not equal, all else being equal. In the aggregate, this will mean that the actual observed 
market shares within the data are such that 1 2 ,P P≠  with the only mechanism available to the 
model to ensure that 1 1 2 2

ˆ ˆP P P P≈ ≠ ≈  is via the preference parameters, ,kβ as the utility functions 
for these alternatives do not contain a constant term. As such, the preference parameters in such 
an instance reflect not just the influence of the attributes on choice, but also are forced to take on 
the role of alternative specific constants in order for the model to better reflect the known choice 
shares within the data. Only if 1 2P P≈ , will it be possible to estimate 3α so that over the sample, 

1 2 1 2
ˆ ˆ ,P P P P≈ ≈ ≈ and 3 3

ˆ ,P P≈  after accounting for the influence of the attributes, ,nsjkx on choice. 

3.0 Possible causes of preference imbalance across 
alternatives 
There two broad types of survey error that trouble researchers, sampling error and non-sampling 
error. In the simplest terms, sampling error occurs as the analysis is often unable to collect data 
from the whole population and must settle for a subset drawn from the population. Non- sampling 
error describes all other sources of error including response, and non-response errors. The most 
significant cause of response error, referred to as order effects, relates to the ordering of questions 
or responses categories to questions (Sanjeev and Balyan, 2014). Non-response errors, as the term 
suggests, result from participants not responding to questions or declining to provide information. 
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Both sources of error, and the resulting biases, are relevant to DCEs.

In this section, we discuss five possible issues that may result in an alternative being selected more or 
less than other alternatives within a DCE. Note that these issues can arise in any DCE, irrespective of the 
number of alternatives, the presence or absence of a no choice or status quo alternative, or the type of 
design generation process employed. We further note that the issues discussed are not mutually exclusive 
meaning that a data set may have more than one issue leading to preference imbalance across alternatives. 

3.1 Response Bias

Researches have long been aware of the potential influence of survey design and structure to affect 
responses of participants and result in the type of response errors noted above (for example see Sayer, 
1939; Cantril, 1944; Bradburn and Mason, 1974). The most common of these influences, referred to as 
order effects, result from how questions or responses categories to questions are sequenced within the 
survey instrument. That is, the response to Question A may differ if it is presented after Question B than 
if it were presented after Question C, or alternatively, if the order of the questions is reversed. As this 
type of error is result of question sequence, Strack suggested ‘question-order effects’ or simply ‘question 
effects’ was a more suitable term (Strack, 1992). Chrzan (1994) presents three additional order effects for 
the choice analyst to consider; (1) choice set order, within the set of choice sets; (2) profile order within 
choice sets; and (3) attribute order within profiles. 

In addition to ‘question-order effects’ and those noted by Chrzan (1994), the potential for ‘left-right’ 
order effects should also be considered by the choice analysts. The assumption is that in most Western 
countries, respondents read left to right, and all else being equal, will tend to select options that they see 
first, these being those on the left-hand side in a DCE. This ‘left-right’ bias may be more likely to occur 
if the respondent finds the choice task difficult and employs ‘left-right’ decision heuristic. Alternatively, 
Krosnick (1999) suggests that the first item perceived and examined by the respondent will be subject to 
deeper cognitive effort and may for the basis of comparison. For similar reasons, top-bottom response 
biases may also exist. The most cited reason for estimating alternative specific constants is to test and 
account for possible order effect biases, and particularly left-to-right biases, that may exist in choice 
experiments. 

3.2 Block imbalance in data collection

It is common for researchers to rely on designs where that the total number of tasks within the design 
is greater than the number of tasks any individual respondent can practically answer when completing 
a survey. As a result, it is necessary to determine how the various tasks can be assigned to respondents. 
In some instances, analysts randomly assign questions to respondents to overcome the type of biases 
noted by Chrzan (1994) and discussed above. However, a far more common approach is to generate an 
additional column when constructing the design, called a blocking column. The levels of the blocking 
column are then used to assign tasks to respondents. Again, these blocking variables may be assigned 
to respondents randomly. An example is shown in Table 1 for a simple design problem involving two 
alternatives, each described by two attributes with two levels. Overall, the design has 8 choice tasks. An 
additional blocking column has been generated with four levels.
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Set A1 B1 A2 B2 Block
1 0 0 0 0 0
2 1 1 1 1 0
3 0 1 1 0 1
4 1 0 0 1 1
5 0 1 0 1 3
6 1 0 1 0 3
7 0 0 1 1 4
8 1 1 0 0 4

Assuming more respondents are to be sampled than levels used in constructing the blocking column, 
multiple respondents will need to be assigned to complete questions associated with each block. Unless 
specific controls are put in place, it is not uncommon for different numbers of respondents to complete 
each block, meaning that in the data, each question in the design will not have equal representation. 
For studies using orthogonal designs, this means that the data will not be orthogonal. For studies using 
efficient designs, unless a heterogeneous design strategy was used (see Sandor and Wedel 2005), the 
efficiency of the design will not carry through to the data (it is not necessary that the data will be less 
efficient than assumed however, as the efficiency may be improved under certain circumstances).  

Depending on how the design is generated and blocking column constructed, it is possible that the 
attribute levels will also be unbalanced within the data. If an orthogonal design is used with an orthogonal 
blocking column, this is less likely to be the case. To demonstrate, consider the design shown in Table 1, 
which is an orthogonal design with an orthogonal blocking column. If three respondents were to complete 
a survey constructed using the design shown answering questions from blocks 1, 2 and 4 respectively, 
despite the data no longer being orthogonal, each level in the data would still appear three times for each 
attribute. This is because the attributes and levels in the design are orthogonal to the blocking column. 
For efficient designs which are not orthogonal, it is likely to be impossible to generate an orthogonal 
blocking column for the design, and hence an imbalance in the number of blocks within a data set will 
likely result in an imbalance in the number of times each level appears for each attribute within the data. 
If this occurs at different rates across alternatives, then where certain levels are more or less desirable 
within a design, certain alternatives may be observed to be more or less likely to be chosen than others.

3.3 Missing responses, or missing data

Depending on the data collection process employed, some studies allow respondents not to respond to 
different choice tasks (e.g., paper and pencil surveys). This means that each question within the design 
will not be equally replicated in the data, even if the blocks are equally replicated within the data. This 
will not only impact orthogonality or efficiency of the data, but will likely result in an imbalance in 
the attribute levels across alternatives also, which may, within the data, make one or more alternatives 
slightly more, or less, attractive than others. 

Other issues, rarely considered, relate to missing data of supplementary questions (those not directly 
related to the DCE) and the impact of ‘data cleaning’. 

Table 1: Example design with blocking column
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In the case of missing data from supplementary questions, the analyst may be interested in the effect of 
attitudes, income or some other socio-demographic characteristic on choice behaviour. 

Where a respondent declines to provide a response or is provided the option of ‘I would rather not say’, 
that response will be treated as ‘missing’ for that respondent. Depending on how the researcher’s chosen 
software handles such data, it is possible the entire data for that respondent will be (list-wise or case-
wise) removed from the analysis. 

Thus, even if all blocks are equally represented within a data set, this does not mean that they will be 
equally represented within the analysis. During the data cleaning process, the researcher may remove 
respondents considered of ‘poor’ quality. There are several legitimate reasons for a researcher to remove 
respondent data such as the respondent ‘speeding’ though the survey or those that ‘flat-line’ supplementary 
questions. If an online survey is used, the researcher may also elect to remove responses identified as 
‘bots’, as ‘duplicate respondents’ or surveys completed by IP addresses outside of the study area. With 
the growth of online surveys, the need for the researcher to remove these types of responses is also 
growing. As these issues may only be detected by the researcher after data collection, removing these 
respondents will result in an unequal representation of choice tasks and the potential loss of orthogonality 
in the data. In the author’s own experience, it is not unusual for 5% of the data collected to exhibit quality 
issues of the type described above.

3.4 Dominance in designs

A fourth possible issue relates to the possible presence of dominated alternatives in the experimental 
designs that are used to assign the attribute levels to the tasks underly discrete choice experiments. 
Dominated alternatives occur when the levels of all attributes of an alternative are worse than those of 
one or more of the other alternatives within the design. In such cases, the dominant alternative will likely 
be chosen more often than the dominated alternative (we say more likely than opposed to will be given 
that we assume choices are consistent with random utility theory, meaning that there is an error attached 
to each choice. That is choices are not deterministic). To determine if an alternative is dominated, it 
is necessary to assume a priori knowledge about the preference order of all attribute levels within the 
design.  Consider for example that for both attributes A and B in Table 1, that 0 is preferred to 1. In such 
a case, then alternative 1 will dominate alternative 2 in choice task 7, whereas the opposite is true in 
choice task 8.  In this example, each alternative has an equal number of dominated alternatives within 
the design, however this need not hold in all cases. If within a design, one alternative is dominated more 
or less than all other alternatives, then even in data sets where blocks are equally replicated and there are 
no missing responses or data, it is likely that that alternative will be chosen more or less than others, all 
else being equal.

Note that the presence of dominant alternatives is not limited to orthogonal designs, although orthogonal 
designs will more likely result in such alternatives occurring within the design. Whilst efficient designs that 
assume non-zero priors explicitly account for the preference ordering of the levels when generating the 
design and attempt to avoid tasks that have dominated alternatives, the absence of dominated alternatives 
cannot be guaranteed, particularly when constraints such as attribute level balance are imposed during 
the design generation process. This is because the feasible set of tasks that do not display non-dominance 
yet retain attribute level balance may be less than the total number of tasks required by the analyst when 
generating the design. Further, efficient designs that assume zero priors do not account for preference 
ordering of the attribute levels during design construction, and hence do not directly or indirectly account 
for this issue when generating the design.
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3.5 Attribute non-attendance 

It is finally worth noting that an assumption in generating designs is that all of the attributes used in 
the design will be considered when respondents answer the survey. Unfortunately,  there exists a vast 
literature on attribute non-attendance that shows that this is not the case (see e.g., Ryan et al. 2009 or 
Hole 2011). In such cases, it is possible that far more choice tasks than assumed will display alternative 
dominance than is assumed, and that such dominance will only occur for a subset of respondents. For 
example, assume that 10 percent of respondents answering questions based on the design shown in Table 
1 do not use attribute B. In that case, assuming 0 is still preferred to 1 for attribute A, then for these 
respondents, alternative 1 will be dominated in choice task 4 and 8, whilst alternative 2 in choice tasks 3 
and 7 will be dominated. If different respondents ignore or process different attributes in the sample, then 
dominance may vary significantly within a data set across different alternatives.

4.0 Is this really an issue? 
In order to understand how researchers are treating constants for DCEs within the Health Economics 
literature, Table 2 presents the results of a literature review for the years 2015 to 2020 drawing from 
the journals Health Economics, PharmacoEconomics and Value in Health. Whilst other journals report 
DCE studies, these journals were selected as being representative of the literature. The search criteria 
was limited to papers that use the term discrete choice experiment, and only papers that report studies 
involving a three or more alternatives are included. It is important to note that the issues discussed are 
not limited to studies involving three or more alternatives, and can equally impact the results of binary 
choice experiments (we found over 60 papers in these journals which used a binary choice experiment). 
Studies involving labelled alternatives were also excluded.

In total, twenty-five papers were identified based on the above outlined strategy. No papers were found 
with more than three alternatives. Five papers report studies that utilised a force choice experiment (that 
is, did not include a status quo or no choice alternative). Of the 26 papers identified, five report results 
from models that did not include any constants (19.23 percent), whereas 16 (61.54 percent) report models 
with a single constant associated with a status quo or no choice alternative. One paper did not provide any 
information about the modelling undertaken making it impossible to determine whether constants were 
estimated or not. As such, only four of the 26 papers (15.83 percent) examined estimated constants for all 
but one of the alternatives present within the study. 

Also shown in the table are the sample sizes, number of observations, the size of the design used, the 
number of tasks each respondent was asked to complete, and how many blocks were used for the design. 
Whilst all papers report the final sample size used in the analysis, a large number of papers do not 
report information either about the number of observations used in the study (making it impossible to 
determine if missing responses are present) or about the design itself (making it impossible to determine 
if blocks or choice tasks are equally replication within the data). Were information is provided, dividing 
the total number of observations reported by the design size indicates that it is impossible for seven of 
the 26 papers (26.92 percent) to have used data where every choice task is replicated equally, whilst two 
others report having used random blocking which will also likely result in a similar outcome. Lancsar et 
al. (2017) actually report  that “The first and second blocks of 16 choice-sets were answered by 37 and 
39 participants, respectively”. Seventeen papers do not provide sufficient evidence to determine if data 
issues may be present, whereas we can conclude for one paper only, van de Wetering et al. (2015), that 
no such issues exist given that these authors gave the exact same nine choice tasks to all respondents. 
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Sicsic et al (2018) represents the only other paper where it is possible where all choice sets and blocks 
are equally replicated, although the authors do not explicitly state that the two blocks of their design were 
equally replicated within their data set. Based on the above findings, we can conclude that the majority 
of papers examined either exhibit one or more of the issues identified in Section 3, or do not provide 
sufficient information to determine whether such issues exist. Papers that fall into this latter category are 
particularly problematic given, as there is no way to verify whether a problem exists or not.

   Table 2: Papers with three or more alternatives and the use of constants

Authors Year Number of 
alts

Sample 
size Observations Design size Tasks Blocks

No constant

van Dijk et al. 2016 3 SP 429 NR NR 8 200 random

Doiren and Yoo 2017 3 SP 241 NR NR 8 NR

Mohammadi et al. 2017 2 SP + None 194 NR NR 10+2* 12

Mulhern et al. 2017 2 SP + None 366 3646 120 10 12

Ostermann et al. 2020 3 SP 403 6432 96 16 6

Opt-out constant only

Chen et al. 2015 2 SP + None 838 NR 15 5 + 2* Random

van de Wetering et al. 2015 2 SP + None 1,205 NR 72 8+2* 9

Dong et al. 2016 2 SP + None 189 NR 32 8 4

Mühlbacher et al. 2016 2 SP + None 1,301 NR 36 6 6

Veldwijk et al. 2016 2 SP + None 1,045 9,405 9 9 1

Lancsar et al. 2017 2 SP + None 76 2,432 32 16 2

Wright et al. 2017 2 SP + None 702 NR 40 10 4

Heidenreich et al. 2018 2 SP + None 443 4,625 32 11 or 10 3

Quaife et al. 2018 2 SP + SQ 244 2,440 NR 10 NR

Ryan et al. 2018 2 SP + SQ 58 2,807 NR 12 NR

Vass et al. 2018 2 SP + None 1,018 11,198 44 11 4

Wong et al. 2018 2 SP + None 482 NR 8 8+1* 1

de Bekker et al. 2019 2 SP + None 418 6,688 160 16 10

Allanson et al. 2020 2 SP + None 48 575 48 12+2* 4

Norman et al. 2020 2 SP + None 503 NR NR NR NR

Krucien et al. 2019a 2 SP + SQ 200 4,200 NR 10 or 12* NR

Alternative specific constants

Flynn et al. 2016 3 SP 525 NR 32 4 8

Holte et al. 2016 2 SP + SQ 934 4,670 20 5 4

Sicsic et al. 2018 2 SP + SQ 812 6,496 16 8 2

Krucien et al. 2019b 3 SP 311 3,732 NR 14 NR

Indeterminant constants

Marshall et al. 2017 2 SP + None 193 NR NR 6 NR
NR = not reported, SQ = Status quo. * Additional choice tasks were employed to test for consistency in choices
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If is finally worth noting that of the four papers that report estimating constants for two of the three 
alternatives within their data (all four estimated a SQ plus one other constant term), two (Flynn et al. 
2016 and Holte et al. 2016) report statistically significant constants in at least one model for the constant 
associated with the non-status quo alternative. 

This suggests that the mean of the error terms may be different for the non-status quo alternatives in these 
models, indicating that the above identified problems may exist, but have been corrected for via the use 
of alternative specific constants.

5.0 Empirical data set example
For the current study, we utilise data obtained from an online survey designed to capture the preferences of 
Australian citizens for a vaccine specifically targeted at immunising against SARS-CoV-2. Respondents 
completing the survey undertook a DCE consisting of four alternatives, of which three hypothetical 
vaccines defined by seven attributes, and a no-choice alternative. Table 3 lists the attributes and their 
respective levels used to describe the various vaccines over the course of the experiment.
  

Attribute Attribute description Levels

Mild side effects Number of incidences per 
10,000 citizens 10, 20, 100, 200

Major side effects Number of incidences per 
10,000 citizens 1, 2, 10, 20

Vaccination effectiveness
The percentage of individuals 
given the vaccine who be-
come immune to the virus

84%, 89%, 94%, 99%

Mode of administration How the vaccine is adminis-
tered Oral, Injection

Location Where the vaccine is admin-
istered

Doctor’s office, Hospital, 
Pharmacy

When available How long (in months) until 
the vaccine becomes available 0, 2,4,6,8,10,12, 14

Cost The out of pocket expense to 
the respondent

$0, $20, $40, $60, $80, $100, 
$120, $140

 

Table 3: attributes and attributes level
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A Bayesian D-efficient design constructed using Ngene [2] was used to assign the attribute levels of the 
choice experiment to each of the 40 choice tasks generated. Priors for the design were obtained from a small 
pilot study consisting of 10 respondents, with uninformative priors in the form of uniform distributions 
used to generate the final design. The design was programmed to avoid dominated alternatives, and was 
generated so that all respondents saw a common set of four choice tasks, plus four additional choice tasks 
drawn from one of nine blocks. Two thousand Sobol draws were employed in constructing the design. An 
example choice task is shown to respondents is reproduced in Figure 1.

    Figure 1: example of choice task
 
 
The survey was administered to 2,151 Australian citizens drawn from all states and territories between the 
27th and 31st March 2020 with survey eligibility restricted to persons aged 18 years or older. Respondents 
were recruited using the online survey panel Online Research Unit (http://www.theoru.com/index.htm). 
Data from 15 respondents were removed due to inconsistent responses to questions or a completion time 
less than two minutes resulting in a data set consisting of 17,088 choice observations obtained from 2,136 
respondents. 

The top segment of Table 4 shows the number of times each alternative was chosen both in absolute and terms 
and as choice shares. The lower segment of the table shows the average attribute levels for the same data. As 
shown in the table, the first and second alternative were chosen 38 and 39 percent of the time respectively, 
whilst the third alternative was selected only 16 percent of the time. The no choice alternative was chosen 
as the most preferred alternative in only six percent of choice tasks. Comparing the average attribute levels 
within the data, significant differences become readily apparent, despite the experimental design being 
balanced in the attributes. This is likely the result of an imbalance in the blocks collected over the sample.  
 
On average, the second alternative is much lower in price than the other two non-no choice alternatives, 
has less mild reaction indications, and has choice tasks with a lower average number of months until 
the vaccine becomes available. The third alternative appears to have more vaccines administered using 
more needles and a higher number of severe reactions, to be more likely to be administered at a doctor’s 
surgery or pharmacy, and to take longer to become available relative to the other vaccine alternatives. 
Of note is that out of all attributes presented, the efficacy attribute is most similar on average across the 
three vaccine alternatives. This observation will become important later. Independent of the differences 
between alternatives however, it is the combination of attribute levels within choice tasks and not the 
averages over the data that impact on choices.
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Alt A Alt B Alt C No choice

Chosen 6,524 6,718 2,748 1,098

Share 38.00% 39.00% 16.00% 6.00%

Average attribute level by alternative

Price 79.71 63.93 70.82 0.00

Mild reactions (n in 10,000) 95.32 77.50 95.69 0.00

Severe reactions (n in 10,000) 6.13 8.25 9.25 0.00

Efficacy 91.99 90.73 90.11 0.00

Mode of Administration (Needle)* -0.50 -0.39 0.22 0.00

Performed at doctor’s surgery** 0.11 0.06 0.39 0.00

Performed at pharmacy** -0.03 -0.01 0.15 0.00

Months till Available 7.47 5.92 7.83 0.00

 
* Effects coded (base is pill)
** Effects coded (base is performed at hospital)

 
 
 

 
 

Table 4: Summary statistics of data
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6.0 Empirical Example
6.1 MNL model outcomes

In this section, we present the results for four sets of models, two multinomial logit (MNL), two mixed 
multinomial logit (MMNL), and two error components (EC) models. We estimate the MNL and MMNL 
models as these models represent the two dominant models estimated within the Health Economics 
literature. Soekhai et al. (2019) report an expanded use of MMNL models to estimate discrete choice 
experiments (DCE) within the health sphere. Specifically, it was reported that only one out of 34 (2.94 
percent) published papers reported using a MMNL model between 1990 and 2000, six out of 114 (5.26 
percent) papers between 2001 and 2008, 45 out of 179 (25.14 percent) papers between 2009 and 2012, 
and finally to 1301 out of 301 (43.19  percent) papers between 2013 and 2017. The MMNL was the 
most widely used model in the health economics literature during the 2013 to 2017 period. In this same 
period, the next most widely used model was the multinomial logit model, being used in 116 of the 
301 (representing 38.54 percent). Although not a commonly reported model in the Health Economics 
literature, the EC model is heavily applied within the Environmental Economics literature to account 
for likely substitution patterns between non-status quo alternatives in DCEs (see Scarpa et al. 2005). 
We prefer the EC model to the Nested Logit model used by Campbell and Erdem (2019) insofar as both 
models capture the same effects, however the EC model allows for the pseudo panel nature of DCEs, 
whereas the NL model does not. We report the EC model to demonstrate that the effects of preference 
imbalance may not necessarily be dealt with by models that are primarily developed to deal with the 
presence of a status quo or no choice alternative.

Table 5 presents the results from two MNL models, one with a constant associated only with the no-
choice alternative, and the second where alternative-specific constants are estimated for the three vaccine 
alternatives. With respect to the first model, the expectation is that constant be negatively signed given 
that this alternative has the lowest share of choices (i.e., six percent) out of the four alternatives shown 
in the experiment, and the fact that respondents should prefer to have a vaccine available, all else being 
equal. As shown in Table 3 however, the sign of the constant term is positive. Given the result obtained, 
we interpret the constant as meaning that all else being equal, respondents would prefer to not have a 
vaccine than to have one.  To explain this somewhat counter-intuitive result, we note that the average 
estimated utilities for the first three alternatives over all observations within the data are 5.859, 5.917 
and 5.368 respectively, which are computed purely based on the attributes of the design with no constant 
terms. Given that utility is relative, and the fact that estimation of the parameters within the model will 
be such that the predicted choice shares will replicate as best as possible the known market shares of the 
data, the single constant term associated with the final alternative in this case is forced to be positive, 
against our a priori expectations. This later requirement that the predicted shares from the model equal 
the actual shares in the data is also the reason that the constants in the second model are negative. For this 
second model, the vaccine alternatives return positive utilities on average, producing average utilities of 
1.139, 1.326 and 0.589. Independent of the reason why, the strict interpretation of the constants for this 
second model is that after accounting for the design attributes, the sample population would once again 
prefer not to have a vaccine.

1	  Soekhai et al. (2019) separate this into 118 papers reporting using MMNL and 12 GMNL 
models. Following Hess and Rose (2012) and Hess and Train (2017), we do not view the two as 
being different models and consider the GMNL model to be a specific functional form of the MMNL 
model.
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Comparing the parameter estimates of the two models, whilst the signs of the coefficients from two models 
are the same, the magnitudes are very different. To demonstrate how big these differences are in practical 
terms, we present the marginal willingness to pay (WTP) estimates for the two models at the base of the 
table. As shown in the table, the WTP estimates for the second model are almost half those obtained from 
the first model, being anywhere between $10 and $20 different for all but the mild reactions attribute. 
We note however that these WTP estimates are statistically significantly different only for the efficacy 
attribute. As noted previously, the efficacy attribute is the attribute that is most similar on average across 
the three vaccine alternatives within the data (see Table 2). In any case, to highlight concerns related to 
attempts to meaningfully interpret the constants from DCEs, the first model suggests that the sample is 
willing to pay $1,297.75 to avoid having a vaccine, all else being equal. Results from the second model 
suggest that people are willing to pay in the vicinity of $650 to avoid having a vaccine, all else being equal. 
 



 
18 |  The role of constants in discrete choice models: It’s not a constant sum game

 
Par. (rob. t-rat.) Par. (rob. t-rat.)

Model constants

ASC no choice 4.592 (15.64) - -
ASC Alt A - - -3.298 (-10.50)
ASC Alt B - - -3.459 (-11.36)
ASC Alt C - - -3.672 (-11.95)

Attributes

Price -0.004 (-7.21) -0.005 (-10.66)

Mild reactions (n in 10,000) -0.002 (-7.86) -0.001 (-6.26)
Severe reactions (n in 10,000) -0.063 (-24.35) -0.058 (-22.01)
Efficacy 0.084 (27.70) 0.071 (22.59)
Mode of Administration (Needle)* -0.164 (-11.77) -0.150 (-10.48)
Performed at doctor’s surgery** -0.101 (-6.25) -0.081 (-5.02)

Performed at pharmacy** 0.168 (9.19) 0.152 (8.26)

Months till Available -0.144 (-24.11) -0.136 (-21.76)

Model fit

LL(0) -23688.998 -23688.998
LL(β) -13358.696 -13284.862
ρ2 0.436 0.439
Adj ρ2 0.564 0.561
AIC 26735.392 26591.724
BIC 26805.107 26676.931
N 2136 2136
K 9 11

Willingness to Pay estimates

WTP 95% con. int. WTP 95% con. int.

ASC no choice -$1,297.75 (-$1717.01 - -$878.49) - -
ASC Alt A - - $617.19 ($439.16 - $796.13)
ASC Alt B - - $647.33 ($467.25 - $827.93)
ASC Alt B - - $687.28 ($501.4 - $872.39)
Mild reactions (n in 10,000) $0.44 ($0.27 - $0.61) $0.24 ($0.15 - $0.33)
Severe reactions (n in 10,000) $17.93 (-$12.92- $22.93) $10.84 ($8.62 - $13.06)
Efficacy -$23.62 (-$30.5 - -$16.74) -$13.32 (-$16.13 - -$10.5)
Mode of Administration (Needle)* $46.30 ($30.39 - $62.21) $28.05 ($20.14 - $35.96)
Performed at doctor’s surgery** $28.61 ($15.97 - $41.24) $15.09 ($8.20 - $21.98)
Performed at pharmacy** -$47.39 (-$63.45 - -$31.32) -$28.53 (-$36.46 - -$20.59)
Months till Available $40.65 ($27.60 - $53.70) $25.43 ($19.21 - $31.65)

 
* Effects coded (base is pill) 
** Effects coded (base is performed at hospital)

 Table 5: MNL model results
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6.2 MMNL and EC model outcomes

Table 6 presents the results of four models, two Mixed Multinomial Logit (MMNL) models and two 
Error Components (EC) estimated on the same data as previously reported. Both MMNL models assume 
normal distributions for the non-cost attributes and constants, and log-normals for the cost attributes. 
All four models were estimated in Pythonbiogeme [1] using 2000 MLHS draws. The first MMNL and 
EC models assume only a single constant for the no-choice alternative whilst the second model allows 
for three alternative specific constants. With respect to the MMNL models, examining the means of the 
constant terms only, it is noticeable that the signs of the constants are now the reverse of those reported 
earlier. Indeed, the signs of constants from both models now conform to our a priori expectations. We 
note however that for the first model, the standard deviation parameter for the constant is excessively 
large, being twice the magnitude of the mean estimate. As such, we conclude that the model under 
this specification with non-uniform choice shares may trade-off the mean estimate of the constant for 
increased heterogeneity. Whilst the WTP estimates (confidence intervals are computed for the mean 
estimates only using the delta method) obtained between the two MMNL model specifications are much 
more similar, this has come at the cost of increased heterogeneity for the constant. In this way, the model 
is able to reproduce the choice shares however the analyst may conclude that there exists significant 
preference heterogeneity where very little really exists, as per the second model results.
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MMNL 1 MMNL 2 EC 1 EC 2

Moment Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Model constants

ASC no choice Mean 
Std Dev.

-285 
4.34

(-3.03) 
(8.04)

- 
-

- 
-

-0.033 
-

(0.07) 
-

- 
-

- 
-

ASC Alt A Mean 
Std Dev.

- 
-

- 
-

2.61 
0.559

(3.41) 
(6.65)

- 
-

- 
-

1.250 
-

(2.66) 
- 

ASC Alt B Mean 
Std Dev.

- 
-

- 
-

2.44 
0.284

(3.22) 
(1.29)

- 
-

- 
-

1.080 
-

(2.33) 
-

ASC Alt C Mean 
Std Dev.

- 
-

- 
-

2.34 
0.686

(3.07) 
(8.18)

- 
-

- 
-

0.921 
-

(1.98) 
-

Attributes

Price Mean 
Std Dev.

-5.700 
1.840

(-30.39)
(29.05)

-5.650 
1.850

(-29.17 
(23.54

-0.005 
-

(-8.93) 
-

-0.006 
-

(-11.50) 
-

Mild reactions (n in 10,000) Mean 
Std Dev.

-0.003 
0.005

(-10.31)
(10.31)

-0.003 
0.006

(-9.40)
(10.44)

-0.002 
-

(-10.54) 
-

-0.002 
-

(-9.28) 
-

Severe reactions (n in 10,000) Mean 
Std Dev.

-0.105 
0.095

(-21.71)
(17.98)

-0.107 
0.102

(-20.29)
(18.12)

-0.067 
-

(-23.73) 
-

-0.062 
-

(-21.20) 
-

Efficacy Mean 
Std Dev.

0.126 
0.088

(23.93)
(12.78)

0.121 
0.089

(20.09 
(15.70)

0.086 
-

(26.55) 
-

0.074 
-

(21.76) 
-

Mode of Administration 
(needle)

Mean 
Std Dev.

-0.165 
0.198

(-7.19)
(2.18)

-0.181 
0.236

(-7.70)
(3.82)

-0.119 
-

(-7.71) 
-

-0.109 
-

(-7.00) 
-

Performed at doctor’s 
surgery**

Mean 
Std Dev.

-0.068 
0.419

(-2.74)
(9.25)

-0.066 
0.391

(-2.57)
(7.35

-0.107 
-

(-6.14) 
-

-0.085 
-

(-4.94) 
-

Performed at pharmacy** Mean 
Std Dev.

0.208 
0.319

(7.84)
(4.89)

0.219 
0.347

(7.61)
(5.15)

0.142 
-

(7.46) 
-

0.126 
-

(6.47) 
-

Months till available Mean 
Std Dev.

-0.255 
0.236

(-21.13)
(23.15

-0.278 
0.249

(-21.15)
(21.72)

-0.144 
-

(-22.66) 
-

-0.137 
-

(-20.54) 
-

Error component

Alt A, B and C - - - - 4.470 (16.16) 4.700 (16.4)

Model fit

LL (0) -23688.998 -23688.998 -23688.998 -23688.998

LL (β) -10,512.352 -10,449.106 -11,562.246 -11,506.667

ρ2 0.556 0.559 0.512 0.514

Adj ρ2 0.439 0.435 0.486 0.483

AIC 21060.704 20942.212 23144.492 23037.334

BIC 21162.704 21066.879 23201.159 23105.334

N 2136 2136 2136 2136

K 18 22 10 12

 Table 6: MMNL model results
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The last two models nest an error component associated with the non-nested logit model. These error 
components systematically vary jointly the utility functions of these alternatives, producing correlated 
utilities that imply that respondents are more likely to trade between these alternatives than between these 
alternatives and the status quo option. This type of model appears not to be widely used within the health 
economics literature, rather being used in environmental economics to account for status quo effects in 
unlabelled DCEs (see Scarpa et al. 2005). Examining the results obtained from the two EC models show 
that attempting to account for status quo effects need not solve issues related to preference imbalance 
between alternatives when such preference imbalance exists between the non-status quo alternatives. 
In both EC models, the error components are statistically significant suggesting that there does indeed 
exist substation effects between the non-status quo alternatives present within the data. In the first model, 
with a single status quo constant, the constant is no longer statistically significant, whilst the ASCs of the 
second model are statistically significant and positive. Of particular interest are the WTP estimates which 
are markedly different to those obtained from the MNL and MMNL models, suggesting that the error 
components are accounting for effects not dealt with by either of these models. However, the comparing 
the WTP estimates obtained by the two EC models suggest differences, which underscores our argument 
that preference imbalance can exist in unlabelled DCEs between non-status quo alternatives which only 
the inclusion of ASCs can account for.

MMNL 1 MMNL 2 EC 1 EC 2

Moment Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Model constants

ASC no choice Mean 
Std Dev.

-285 
4.34

(-3.03) 
(8.04)

- 
-

- 
-

-0.033 
-

(0.07) 
-

- 
-

- 
-

ASC Alt A Mean 
Std Dev.

- 
-

- 
-

2.61 
0.559

(3.41) 
(6.65)

- 
-

- 
-

1.250 
-

(2.66) 
- 

ASC Alt B Mean 
Std Dev.

- 
-

- 
-

2.44 
0.284

(3.22) 
(1.29)

- 
-

- 
-

1.080 
-

(2.33) 
-

ASC Alt C Mean 
Std Dev.

- 
-

- 
-

2.34 
0.686

(3.07) 
(8.18)

- 
-

- 
-

0.921 
-

(1.98) 
-

Attributes

Price Mean 
Std Dev.

-5.700 
1.840

(-30.39)
(29.05)

-5.650 
1.850

(-29.17 
(23.54

-0.005 
-

(-8.93) 
-

-0.006 
-

(-11.50) 
-

Mild reactions (n in 10,000) Mean 
Std Dev.

-0.003 
0.005

(-10.31)
(10.31)

-0.003 
0.006

(-9.40)
(10.44)

-0.002 
-

(-10.54) 
-

-0.002 
-

(-9.28) 
-

Severe reactions (n in 10,000) Mean 
Std Dev.

-0.105 
0.095

(-21.71)
(17.98)

-0.107 
0.102

(-20.29)
(18.12)

-0.067 
-

(-23.73) 
-

-0.062 
-

(-21.20) 
-

Efficacy Mean 
Std Dev.

0.126 
0.088

(23.93)
(12.78)

0.121 
0.089

(20.09 
(15.70)

0.086 
-

(26.55) 
-

0.074 
-

(21.76) 
-

Mode of Administration 
(needle)

Mean 
Std Dev.

-0.165 
0.198

(-7.19)
(2.18)

-0.181 
0.236

(-7.70)
(3.82)

-0.119 
-

(-7.71) 
-

-0.109 
-

(-7.00) 
-

Performed at doctor’s 
surgery**

Mean 
Std Dev.

-0.068 
0.419

(-2.74)
(9.25)

-0.066 
0.391

(-2.57)
(7.35

-0.107 
-

(-6.14) 
-

-0.085 
-

(-4.94) 
-

Performed at pharmacy** Mean 
Std Dev.

0.208 
0.319

(7.84)
(4.89)

0.219 
0.347

(7.61)
(5.15)

0.142 
-

(7.46) 
-

0.126 
-

(6.47) 
-

Months till available Mean 
Std Dev.

-0.255 
0.236

(-21.13)
(23.15

-0.278 
0.249

(-21.15)
(21.72)

-0.144 
-

(-22.66) 
-

-0.137 
-

(-20.54) 
-

Error component

Alt A, B and C - - - - 4.470 (16.16) 4.700 (16.4)

Model fit

LL (0) -23688.998 -23688.998 -23688.998 -23688.998

LL (β) -10,512.352 -10,449.106 -11,562.246 -11,506.667

ρ2 0.556 0.559 0.512 0.514

Adj ρ2 0.439 0.435 0.486 0.483

AIC 21060.704 20942.212 23144.492 23037.334

BIC 21162.704 21066.879 23201.159 23105.334

N 2136 2136 2136 2136

K 18 22 10 12

MMNL 1 MMNL 2 EC 1 EC 2

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Willingness to Pay

ASC no choice $156.73  
($31.25 - $517.25)

- 
-

$6.81 
(-$174.25 - $187.88)

- 
-

ASC Alt A - 
-

-134.03 
(-$490.25 - -$23.99)

- 
-

-$195.38 
(-$339.17 - -$51.60)

ASC Alt B - 
-

-125.3 
(-$463.65 - -$20.46)

- 
-

-$168.12 
(-$309.19 - -$27.05)

ASC Alt C - 
-

-120.17 
(-$447.66 - $17.84)

- 
-

-$143.86 
(-$285.65 - -$2.07)

Mild reactions (n in 10,000) $0.18  
(-$2.45 - $3.20)

$0.17  
(-$2.45 - $3.22)

$0.17  
(-$2.45 - $3.22)

$0.33 
($0.24 - $0.42)

Severe reactions (n in 10,000) $5.77  
(-$1.68 - $23.98)

$5.49  
(-$1.78 - $24.43)

$13.67 
($10.64 - $16.71)

$9.68 
($8.11 - $11.25)

Efficacy ($6.93) 
(-$27.28 - $0.80)

($6.21) 
(-$26.66 - $1.48)

-$17.64 
(-$21.95 - -$13.34)

-$11.61 
(-$14.03 - -$9.19)

Mode of administration 
(needle)

$9.07  
(-$8.15 - $43.77)

$9.30  
(-$6.71 - $45.44)

$24.22 
(15.016 - $33.42)

$17.07 
($13.87 - $20.30)

Performed at doctor’s 
surgery**

$3.72  
(-$17.73 - $32.37)

$3.37  
(-$17.71 - $31.82)

$21.80 
($12.97 - $30.64)

$13.28 
($7.26 - $19.30)

Performed at pharmacy** ($11.44) 
(-$50.68 - $6.16)

($11.25) 
(-$52.24 - $5.92)

-$29.10 
(-$39.07 - -$19.13)

-$19.70 
(-$22.88 - -$16.51)

Months till available $14.02  
($1.41 - $51.65)

$14.28  
(-$1.66 - $54.92)

$29.35 
($21.38 - $37.32)

$21.46 
($16.44 - $26.49)
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7.0 Consequences
In a recent paper, [3] demonstrated the ability of DCEs to predict real world outcomes. Whilst we do not 
argue against the overall findings of this paper, we do suggest that caution should be given to how this 
result should be interpreted. As indicated above, econometrically, the constants of discrete choice models 
ensure that the predicted choice shares match as closely as possible the actual market shares within the 
data, after accounting for the role of the design attributes. Given that DCEs involve the creation of multiple 
hypothetical and non-existent markets, it is questionable why the market shares from data collected from 
such experiments would be similar to those of real markets. To demonstrate, consider three choice tasks 
contained within the data. Table 7 presents the actual data for the first respondent for choice tasks 1 and 5, 
and for the second respondent for choice task 5 only. The base of the table, in the absence of a real-world 
vaccine, we create a single hypothetical vaccine to represent a revealed preference alternative. The final 
two columns of the table present the choice probabilities derived for each choice task based on the two 
MNL models presented in Table 7. 

It is evident that the individual choice tasks represent markets defined by different product offerings, 
none of which matches the real-world market and that the estimated choice probabilities do not relate 
to those obtained from the revealed preference data. Further, even if one choice task in the experiment 
is designed to match real world market offerings, as per [3], discrete choice models are estimated on all 
observations within the data, the majority of which will not match real-world market conditions. 

Table 7: Empirical choice data

Resp Set Alt ASC1 ASC2 ASC3 No Mld Sev. Eff. Ndle Doc. Pharm. Avail. Pr Pr 
(MNL1)

Pr 
(MNL2)

1 1 1 1 0 0 0 10 2 84 -1 -1 -1 14 100 0.05 0.06

1 1 2 0 1 0 0 20 10 99 -1 1 0 2 0 0.83 0.83

1 1 3 0 0 1 0 200 2 84 1 0 1 10 80 0.07 0.06

1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05

1 5 1 1 0 0 0 20 2 94 -1 1 0 4 40 0.38 0.43

1 5 2 0 1 0 0 10 1 94 -1 0 1 4 40 0.54 0.50

1 5 3 0 0 1 0 100 2 89 1 0 1 12 140 0.05 0.03

1 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.03

2 5 1 1 0 0 0 10 2 99 -1 1 0 2 40 0.84 0.86

2 5 2 0 1 0 0 200 10 89 1 0 1 14 120 0.02 0.02

2 5 3 0 0 1 0 20 1 89 1 1 0 8 60 0.11 0.09

2 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.03

Popn RP Vac-
cine 0 0 0 0 8 5 97 1 0 1 5 36.3 0.91 0.99

Popn RP No 0 0 0 1 0 0 0 0 0 0 0 0 0.09 0.01

 
In addition, we argue that if the objective of a study is prediction, it will generally be possible to 
calibrate a model to reproduce existing market shares, using procedures such as those as outlined 
by [8]. Putting aside any requirement to also calibrate the non-constant parameters to match those 
obtained from revealed preference data sources, assume that the real share of vaccine uptake is 
0.78. Applying the parameters from the first model to the RP data reported in Table 4 but changing 
the constant to 5.6901 reproduces this ‘real’ market share. Similarly, applying the estimates from 
the second model but changing the constant to 4.4637 will result in a predicted uptake for the 
vaccine of 0.78. 
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As noted, it is generally possible to predict known market shares simply by calibrating the model 
(possibly including calibrating the non-constant terms of the model at the same time). It is for this 
reason that we suggest care be taken in interpreting the results reported by [3]. Indeed, we argue 
that the true test of how well the outputs of DCEs perform is how well the model predicts outcomes 
given changes to the market attributes. 

To demonstrate, consider the two calibrated models applied to our hypothetical real market choice task. 
Both models predict a 78 percent uptake of the vaccine given the attribute levels assumed. Changing 
the efficacy attribute from 97 percent to 90 percent however leads to a predicted 66.39 precent vaccine 
uptake based on the first model, and a 68.30 percent uptake based on the second model. Which model 
predicts better given the changing market conditions is the more relevant test, given that both models 
predict the same outcomes given the base scenario. To highlight this point further, Figure 2 presents 
three sigmoidal curves obtained from the two MNL models reported in Table 5, using the original 
constant obtained from MNL 1, the first MNL with the new calibrated constant, and MNL 2 with the 
new calibrated model. Figure 2(a) represents the sigmoidal probability curve computed by changing the 
Efficacy attribute level, holding all other attributes constant at the RP levels assumed in Table 7. Figure 
2(b) represents the sigmoidal probability curve for price derived in the same manner. As can be seen, 
the sigmoidal curves for the uncalibrated constants are extremely different than for those for the models 
with calibrated constants suggesting that failure to calibrate the constant terms may result in different 
predictions to those based on calibrated models. Further, as can be seen in Figure 2(a), despite predicting 
the same percent of vaccine uptake at the calibrated forecast level, significant differences in predictions 
can occur as one changes attribute levels away from this initial forecast amount. Again, this highlights 
the importance of constants in forecasting, and demonstrates that if properly calibrated, the importance 
of forecasting is not in predicting the initial forecast market share, but rather, in how the model performs 
given changes from the initially assumed attribute levels. 

(a)	 Sigmodal curve for efficacy



24 |  The role of constants in discrete choice models: It’s not a constant sum game

(b)	 Sigmodal curve for price

8.0 Discussion and conclusions
In this paper, we argue that many papers within the health economics literature dealing with unlabelled 
alternatives, particularly those that include a no-choice alternative, assume utility functions with either 
no constants or only a single constant. We demonstrate that in cases where the choice shares of the 
non-status quo alternative are non-uniformly spread, such a specification can result in biased parameter 
estimates, including for the non-constant attributes of the model.

We therefore recommend that all discrete choice models include constants for all but one alternative, 
even if said constants are not statistically significantly different from one another. This recommendation 
is not limited to DCEs that include a status quo or no choice alternative, but all models estimated using 
unlabelled DCEs. Indeed, this recommendation extends to models estimated on both stated preference 
and revealed preference data, as the issues discussed herein extend to both data types. In making this 
recommendation, we note that given utility is relative, it should not matter which alternatives these 
alternative specific constant be associated with. We further recommend that, space permitting, research 
papers report on the descriptive statistics of the data, and not just discuss the experimental design used to 
generate the data. In many cases, such as those reported herein, the design properties will not translate to 
the data set. Given that models are estimated on the final data, and not on the design, it stands to reason 
that more time should be devoted to reporting on the data, similar to Table 4 presented within this paper. 
In doing so, we hope that researchers will provide more detailed commentary of the outputs of discrete 
choice experiments, particularly with respect to the estimated constants. 
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As evidenced through an empirical data set, the constants obtained from discrete choice models reflect 
the market shares of the hypothetical choice sets defined from the experiment, which in many cases may 
be meaningless in terms of any attempt to provide real world behavioural meaning to them, without 
reference to the descriptive statistics of the data.

We also note that there is an increasing interest in testing whether the results obtained from DCEs are 
externally valid or not. We argue that how such questions are examined be carefully considered within 
the future. As noted, the outputs of any discrete choice model can be calibrated to forecast existing 
market shares, whereas the real test of model performance with respect to prediction, is how well the 
model predicts, at least in the aggregate, after changes to the market occur. In this regard, understanding 
how well models forecast is likely to much more difficult, given that it will be necessary to observe real 
changes to the levels of the attributes of the alternatives existing with real markets over time, and not just 
observing the attribute levels at one point of time.
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