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1.0 Introduction
Hensher et al. (2005) suggested that when dealing with unlabelled discrete choice experiment (DCEs), 
constant	terms	offer	no	substantive	behavioural	meaning	and	hence	should	not	be	estimated	as	part	of	the	
model. In a later edition, Hensher et al. (2015) contradict this original advice and suggest that alternative 
specific	 constants	 (ASCs)	 should	 be	 incorporated	 in	 discrete	 choice	models	 dealing	with	 unlabelled	
DCEs. Despite this retraction, it is evident that many researchers fail to estimate constant terms for all 
but one alternative. Indeed, it appears to be common practice, particularly when dealing with unlabelled 
binary choice experiments used to capture dimensions of quality of life such as the EQ-5D (e.g., ), not to 
include any constant terms, or for trinary unlabelled DCEs involving a status quo or no choice alternative 
(the two terms appear to be used interchangeably), to estimate a single constant term linked to the no 
choice option.

We argue that unlabelled choice experiments should always involve the estimation of ASCs, irrespective 
of	the	number	of	alternatives	and/or	presence	of	a	no	choice	alternative.	We	present	five	possible	causes	
that may result in an imbalance of preferences across alternatives within unlabelled DCEs, that can be 
at least partially dealt with only with the inclusion of ASC terms. The presence of one or more these 
issues, which are unlikely to be unknown to the analyst, may result in biased estimates if not dealt with 
appropriately. Whilst more advanced econometric models may be able to deal with one or more of these 
issues directly, such models are not in wide-spread use, and even when used, unless they account for 
all	of	five	issues,	may	not	fully	overcome	the	problem	with	preference	imbalance	across	alternatives.	
Further, at issue is the fact that many papers present results without estimating ASCs for all but one 
utility function, making it impossible to determine if they are reporting models based on data sets with 
preference imbalance across the alternatives, and hence models with potentially biased estimates. We 
argue	that	aside	from	additional	degrees	of	freedom,	the	inclusion	of	alternative	specific	constants	does	
not	cost	the	analyst	anything,	yet	can	prevent	specific	effects	from	biasing	the	estimates	of	discrete	choice	
models.

To	demonstrate	the	impact	of	not	including	alternative	specific	constants	for	all	but	one	alternative,	we	
present both a theoretical argument as well as demonstrate the outcomes from models estimated on a real-
world empirical data set.  In addition to understanding the role that constants play in model estimation, 
we further discuss the role of constants in model prediction and forecasting.

The remainder of the paper is organised as follows. In the next section, we discuss the theoretical 
role that constants play in the estimation of discrete choice models, and how the standard practice of 
estimating a single constant for a status quo alternative when more than three alternatives are present 
can result in biased outputs. Section 3 of the paper presents an empirical data set, after which results are 
presented in Section 4 demonstrating the issues raised earlier in Section 2.  Section 3 further discusses 
issues around the use of constants in forecasting. Section 4 also presents further analysis showing that 
more	advanced	choice	models	also	fail	to	deal	with	the	issue	of	incorrect	specification	of	the	constant	
terms within discrete choice models. Finally, Section 5 presents a brief discussion and outlines a series 
of recommendations related to the use of constants in studies modelling discrete choice outcomes. 
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2.0 The role of the constants in discrete choice models
Independent of the data type, constants terms play multiple roles in discrete choice models. The 
most common role attributed to constants is that they represent the mean of the unobserved 
effects of the alternative(s) to which they are assigned, after accounting for the contribution of 
non-constant variables contained within the modelled system of utility functions. The second role 
assumed, related to the first, is that the modelled constants reflect preferences for the related 
alternatives, once more after accounting for the impact of the other variables contained within 
the model. This second role is usually confined to interpreting the outputs of models estimated 
on data containing labelled alternatives or where one alternative is a no-choice or status quo 
alternative. A third much less stated role relates to the fact that the estimation procedures used to 
obtain the parameter estimates of discrete choice models are designed to ensure that the predicted 
aggregate choice probabilities obtained from the model match as closely as possible the market 
shares contained within the data. That is to say that 

1 1 1
ˆN S J

j nsjn s j
P P NS

= = =
≈∑ ∑ ∑ where jP  is the 

sample market share for alternative j, n̂sjP  is the choice probability obtained from the model for 
respondent n in choice situation s associated with j alternative, and NS reflects the total number of 
choices made within the sample data. 

Whilst the first two roles primarily relate to the interpretation of the constant terms of the model, 
the latter relates to their function in model estimation, and more importantly, determines the 
values that they will take. To demonstrate, let nsjU  denote the utility of alternative j perceived by 
respondent n in choice situation s, which consists of an observed component nsjV  and an unobserved 
component ,nsjε

.nsj nsj nsjU V ε= + (1)

As is common practice, the observed component is assumed to be described by a linear relationship 
of k observed attribute levels of each alternative, x, and their corresponding weights (parameters), 

,β such that utility can be expressed as

1
.

K

nsj k nsjk nsj
k

U xβ ε
=

= +∑
(2)

 
In case a certain parameter kβ  appears in the utility function of multiple alternatives j, it is said to 
be generic over these alternatives. Otherwise, the parameter is called alternative-specific. In our 
notation, if a certain attribute k does not appear in the utility function of a certain alternative j, then 
we assume that 0.nsjkx =  To aid in interpretation, we will denote constants as jα to differentiate 
them from non-constant terms.

Now assume the existence of a discrete choice experiment involving three alternatives representing 
options	 defined	 by	 attributes	 and	 attribute	 levels.	 Following	 standard	 practice,	 the	 system	 of	 utility	
equations for this experiment would be written as 
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where we include alternative specific constants for J-1 of the alternatives.

Assuming that the error terms are IID Extreme Value (EV) type 1 distributed, the mean of the error 
term will be ( ) 0.57721nsj nE ε σ= and variance ( ) ,

6
var 2

2

n
nsj σ

πε = where a positive scale factor that is 
typically normalised to one in most applications. Ignoring the systematic component of utility, 
adding a constant term to a distribution shifts all elements of the distribution by the same amount, 
shifting the mean of the distribution, but not affecting the variance, such that the mean of the error 
term for a given alternative will be equal to jα + 0.57721. Note that, if two or more constants are 
not estimated, then the means of the error terms for these alternatives are assumed to be equal. As 
we discuss later, it is common in many discrete choice experiments to estimate models with less 
than J-1 alternatives. This is particularly the case, but not limited to, studies involving a no-choice 
or status quo alternative, where a constant is estimated only for the no or status quo option, as 
shown in the system of utility equations given in Equation (4). 
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As per the discussion above, Equation (4) assumes that the means of error terms associated with 
alternatives 1 and 2 are simultaneously equal to 0.57721, assuming scale is normalised to 1.0. 

In addition to representing the means of the error terms, it is important to understand that constant 
terms are parameters that enter into utility, and hence also impact on the choice probabilities of 
estimated models. To understand this, assume a standard multinomial logit (MNL) model is to be 
estimated. Other more advanced models can be similarly assumed, by appropriate adaption of the 
functional form of choice probabilities shown. As such, the discussion that follows is not specific to 
the MNL model and can be generalised to any discrete choice model. Assuming the system of utility 
functions given by equation (4), the choice probabilities for the model would be 
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This is important for the following reason. Firstly, the parameter estimates of discrete choice 
models are obtained using maximum likelihood techniques. For the MNL model, the log-likelihood 
function can be represented as

( )
1 1 1

ln ,
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nsj nsj
n s j
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= = =
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(6)

where ynsj represents the observed choice for respondent n in choice situation s, equal to 1 if 
alternative j is chosen, or 0 otherwise, and Pnsj represents the choice probabilities given in Equation 
(5). 

Within Equations (5) and (6), xnsjk and ynsj are data, and hence given. Thus, in maximising equation 
(6), only SQα  and kβ are free to be estimated. Now assume that data is collected using an unlabelled 
choice experiment, such that the non-constant parameter terms should be estimated as generic 
estimates. Issues will then arise if for whatever reason the means of the error terms for alternatives 
1 and 2 are not equal, all else being equal. In the aggregate, this will mean that the actual observed 
market shares within the data are such that 1 2 ,P P≠  with the only mechanism available to the 
model to ensure that 1 1 2 2

ˆ ˆP P P P≈ ≠ ≈  is via the preference parameters, ,kβ as the utility functions 
for these alternatives do not contain a constant term. As such, the preference parameters in such 
an instance reflect not just the influence of the attributes on choice, but also are forced to take on 
the role of alternative specific constants in order for the model to better reflect the known choice 
shares within the data. Only if 1 2P P≈ , will it be possible to estimate 3α so that over the sample, 

1 2 1 2
ˆ ˆ ,P P P P≈ ≈ ≈ and 3 3

ˆ ,P P≈  after accounting for the influence of the attributes, ,nsjkx on choice. 

3.0 Possible causes of preference imbalance across 
alternatives 
There two broad types of survey error that trouble researchers, sampling error and non-sampling 
error. In the simplest terms, sampling error occurs as the analysis is often unable to collect data 
from the whole population and must settle for a subset drawn from the population. Non- sampling 
error describes all other sources of error including response, and non-response errors. The most 
significant cause of response error, referred to as order effects, relates to the ordering of questions 
or responses categories to questions (Sanjeev and Balyan, 2014). Non-response errors, as the term 
suggests, result from participants not responding to questions or declining to provide information. 
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Both sources of error, and the resulting biases, are relevant to DCEs.

In	this	section,	we	discuss	five	possible	issues	that	may	result	in	an	alternative	being	selected	more	or	
less than other alternatives within a DCE. Note that these issues can arise in any DCE, irrespective of the 
number of alternatives, the presence or absence of a no choice or status quo alternative, or the type of 
design generation process employed. We further note that the issues discussed are not mutually exclusive 
meaning that a data set may have more than one issue leading to preference imbalance across alternatives. 

3.1 Response Bias

Researches	 have	 long	 been	 aware	 of	 the	 potential	 influence	 of	 survey	 design	 and	 structure	 to	 affect	
responses of participants and result in the type of response errors noted above (for example see Sayer, 
1939;	Cantril,	1944;	Bradburn	and	Mason,	1974).	The	most	common	of	these	influences,	referred	to	as	
order	effects,	result	from	how	questions	or	responses	categories	to	questions	are	sequenced	within	the	
survey	instrument.	That	is,	the	response	to	Question	A	may	differ	if	it	is	presented	after	Question	B	than	
if it were presented after Question C, or alternatively, if the order of the questions is reversed. As this 
type	of	error	is	result	of	question	sequence,	Strack	suggested	‘question-order	effects’	or	simply	‘question	
effects’	was	a	more	suitable	term	(Strack,	1992).	Chrzan	(1994)	presents	three	additional	order	effects	for	
the	choice	analyst	to	consider;	(1)	choice	set	order,	within	the	set	of	choice	sets;	(2)	profile	order	within	
choice	sets;	and	(3)	attribute	order	within	profiles.	

In	addition	 to	 ‘question-order	effects’	and	 those	noted	by	Chrzan	 (1994),	 the	potential	 for	 ‘left-right’	
order	effects	should	also	be	considered	by	the	choice	analysts.	The	assumption	is	that	in	most	Western	
countries, respondents read left to right, and all else being equal, will tend to select options that they see 
first,	these	being	those	on	the	left-hand	side	in	a	DCE.	This	‘left-right’	bias	may	be	more	likely	to	occur	
if	the	respondent	finds	the	choice	task	difficult	and	employs	‘left-right’	decision	heuristic.	Alternatively,	
Krosnick	(1999)	suggests	that	the	first	item	perceived	and	examined	by	the	respondent	will	be	subject	to	
deeper	cognitive	effort	and	may	for	the	basis	of	comparison.	For	similar	reasons,	top-bottom	response	
biases	may	also	exist.	The	most	cited	reason	for	estimating	alternative	specific	constants	is	to	test	and	
account	 for	possible	order	effect	biases,	 and	particularly	 left-to-right	biases,	 that	may	exist	 in	choice	
experiments. 

3.2 Block imbalance in data collection

It is common for researchers to rely on designs where that the total number of tasks within the design 
is greater than the number of tasks any individual respondent can practically answer when completing 
a survey. As a result, it is necessary to determine how the various tasks can be assigned to respondents. 
In some instances, analysts randomly assign questions to respondents to overcome the type of biases 
noted by Chrzan (1994) and discussed above. However, a far more common approach is to generate an 
additional column when constructing the design, called a blocking column. The levels of the blocking 
column are then used to assign tasks to respondents. Again, these blocking variables may be assigned 
to respondents randomly. An example is shown in Table 1 for a simple design problem involving two 
alternatives, each described by two attributes with two levels. Overall, the design has 8 choice tasks. An 
additional blocking column has been generated with four levels.
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Set A1 B1 A2 B2 Block
1 0 0 0 0 0
2 1 1 1 1 0
3 0 1 1 0 1
4 1 0 0 1 1
5 0 1 0 1 3
6 1 0 1 0 3
7 0 0 1 1 4
8 1 1 0 0 4

Assuming more respondents are to be sampled than levels used in constructing the blocking column, 
multiple respondents will need to be assigned to complete questions associated with each block. Unless 
specific	controls	are	put	in	place,	it	is	not	uncommon	for	different	numbers	of	respondents	to	complete	
each block, meaning that in the data, each question in the design will not have equal representation. 
For studies using orthogonal designs, this means that the data will not be orthogonal. For studies using 
efficient	designs,	unless	a	heterogeneous	design	strategy	was	used	 (see	Sandor	and	Wedel	2005),	 the	
efficiency	of	the	design	will	not	carry	through	to	the	data	(it	is	not	necessary	that	the	data	will	be	less	
efficient	than	assumed	however,	as	the	efficiency	may	be	improved	under	certain	circumstances).		

Depending on how the design is generated and blocking column constructed, it is possible that the 
attribute levels will also be unbalanced within the data. If an orthogonal design is used with an orthogonal 
blocking column, this is less likely to be the case. To demonstrate, consider the design shown in Table 1, 
which is an orthogonal design with an orthogonal blocking column. If three respondents were to complete 
a survey constructed using the design shown answering questions from blocks 1, 2 and 4 respectively, 
despite the data no longer being orthogonal, each level in the data would still appear three times for each 
attribute. This is because the attributes and levels in the design are orthogonal to the blocking column. 
For	efficient	designs	which	are	not	orthogonal,	 it	 is	 likely	to	be	impossible	to	generate	an	orthogonal	
blocking column for the design, and hence an imbalance in the number of blocks within a data set will 
likely result in an imbalance in the number of times each level appears for each attribute within the data. 
If	this	occurs	at	different	rates	across	alternatives,	then	where	certain	levels	are	more	or	less	desirable	
within a design, certain alternatives may be observed to be more or less likely to be chosen than others.

3.3 Missing responses, or missing data

Depending on the data collection process employed, some studies allow respondents not to respond to 
different	choice	tasks	(e.g.,	paper	and	pencil	surveys).	This	means	that	each	question	within	the	design	
will not be equally replicated in the data, even if the blocks are equally replicated within the data. This 
will	not	only	 impact	orthogonality	or	 efficiency	of	 the	data,	but	will	 likely	 result	 in	an	 imbalance	 in	
the attribute levels across alternatives also, which may, within the data, make one or more alternatives 
slightly more, or less, attractive than others. 

Other issues, rarely considered, relate to missing data of supplementary questions (those not directly 
related to the DCE) and the impact of ‘data cleaning’. 

Table 1: Example design with blocking column
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In	the	case	of	missing	data	from	supplementary	questions,	the	analyst	may	be	interested	in	the	effect	of	
attitudes, income or some other socio-demographic characteristic on choice behaviour. 

Where a respondent declines to provide a response or is provided the option of ‘I would rather not say’, 
that response will be treated as ‘missing’ for that respondent. Depending on how the researcher’s chosen 
software handles such data, it is possible the entire data for that respondent will be (list-wise or case-
wise) removed from the analysis. 

Thus, even if all blocks are equally represented within a data set, this does not mean that they will be 
equally represented within the analysis. During the data cleaning process, the researcher may remove 
respondents considered of ‘poor’ quality. There are several legitimate reasons for a researcher to remove 
respondent	data	such	as	the	respondent	‘speeding’	though	the	survey	or	those	that	‘flat-line’	supplementary	
questions.	If	an	online	survey	is	used,	the	researcher	may	also	elect	to	remove	responses	identified	as	
‘bots’, as ‘duplicate respondents’ or surveys completed by IP addresses outside of the study area. With 
the growth of online surveys, the need for the researcher to remove these types of responses is also 
growing. As these issues may only be detected by the researcher after data collection, removing these 
respondents will result in an unequal representation of choice tasks and the potential loss of orthogonality 
in the data. In the author’s own experience, it is not unusual for 5% of the data collected to exhibit quality 
issues of the type described above.

3.4 Dominance in designs

A fourth possible issue relates to the possible presence of dominated alternatives in the experimental 
designs that are used to assign the attribute levels to the tasks underly discrete choice experiments. 
Dominated alternatives occur when the levels of all attributes of an alternative are worse than those of 
one or more of the other alternatives within the design. In such cases, the dominant alternative will likely 
be chosen more often than the dominated alternative (we say more likely than opposed to will be given 
that we assume choices are consistent with random utility theory, meaning that there is an error attached 
to each choice. That is choices are not deterministic). To determine if an alternative is dominated, it 
is necessary to assume a priori knowledge about the preference order of all attribute levels within the 
design.  Consider for example that for both attributes A and B in Table 1, that 0 is preferred to 1. In such 
a case, then alternative 1 will dominate alternative 2 in choice task 7, whereas the opposite is true in 
choice task 8.  In this example, each alternative has an equal number of dominated alternatives within 
the design, however this need not hold in all cases. If within a design, one alternative is dominated more 
or less than all other alternatives, then even in data sets where blocks are equally replicated and there are 
no missing responses or data, it is likely that that alternative will be chosen more or less than others, all 
else being equal.

Note that the presence of dominant alternatives is not limited to orthogonal designs, although orthogonal 
designs	will	more	likely	result	in	such	alternatives	occurring	within	the	design.	Whilst	efficient	designs	that	
assume non-zero priors explicitly account for the preference ordering of the levels when generating the 
design and attempt to avoid tasks that have dominated alternatives, the absence of dominated alternatives 
cannot be guaranteed, particularly when constraints such as attribute level balance are imposed during 
the design generation process. This is because the feasible set of tasks that do not display non-dominance 
yet retain attribute level balance may be less than the total number of tasks required by the analyst when 
generating	the	design.	Further,	efficient	designs	that	assume	zero	priors	do	not	account	for	preference	
ordering of the attribute levels during design construction, and hence do not directly or indirectly account 
for this issue when generating the design.
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3.5 Attribute non-attendance 

It	 is	finally	worth	noting	 that	an	assumption	 in	generating	designs	 is	 that	all	of	 the	attributes	used	 in	
the design will be considered when respondents answer the survey. Unfortunately,  there exists a vast 
literature on attribute non-attendance that shows that this is not the case (see e.g., Ryan et al. 2009 or 
Hole 2011). In such cases, it is possible that far more choice tasks than assumed will display alternative 
dominance than is assumed, and that such dominance will only occur for a subset of respondents. For 
example, assume that 10 percent of respondents answering questions based on the design shown in Table 
1 do not use attribute B. In that case, assuming 0 is still preferred to 1 for attribute A, then for these 
respondents, alternative 1 will be dominated in choice task 4 and 8, whilst alternative 2 in choice tasks 3 
and	7	will	be	dominated.	If	different	respondents	ignore	or	process	different	attributes	in	the	sample,	then	
dominance	may	vary	significantly	within	a	data	set	across	different	alternatives.

4.0 Is this really an issue? 
In order to understand how researchers are treating constants for DCEs within the Health Economics 
literature, Table 2 presents the results of a literature review for the years 2015 to 2020 drawing from 
the	journals	Health	Economics,	PharmacoEconomics	and	Value	in	Health.	Whilst	other	journals	report	
DCE	studies,	these	journals	were	selected	as	being	representative	of	the	literature.	The	search	criteria	
was limited to papers that use the term discrete choice experiment, and only papers that report studies 
involving a three or more alternatives are included. It is important to note that the issues discussed are 
not limited to studies involving three or more alternatives, and can equally impact the results of binary 
choice	experiments	(we	found	over	60	papers	in	these	journals	which	used	a	binary	choice	experiment).	
Studies involving labelled alternatives were also excluded.

In	total,	twenty-five	papers	were	identified	based	on	the	above	outlined	strategy.	No	papers	were	found	
with more than three alternatives. Five papers report studies that utilised a force choice experiment (that 
is,	did	not	include	a	status	quo	or	no	choice	alternative).	Of	the	26	papers	identified,	five	report	results	
from models that did not include any constants (19.23 percent), whereas 16 (61.54 percent) report models 
with a single constant associated with a status quo or no choice alternative. One paper did not provide any 
information about the modelling undertaken making it impossible to determine whether constants were 
estimated or not. As such, only four of the 26 papers (15.83 percent) examined estimated constants for all 
but one of the alternatives present within the study. 

Also shown in the table are the sample sizes, number of observations, the size of the design used, the 
number of tasks each respondent was asked to complete, and how many blocks were used for the design. 
Whilst	 all	 papers	 report	 the	 final	 sample	 size	 used	 in	 the	 analysis,	 a	 large	 number	 of	 papers	 do	 not	
report information either about the number of observations used in the study (making it impossible to 
determine if missing responses are present) or about the design itself (making it impossible to determine 
if blocks or choice tasks are equally replication within the data). Were information is provided, dividing 
the total number of observations reported by the design size indicates that it is impossible for seven of 
the 26 papers (26.92 percent) to have used data where every choice task is replicated equally, whilst two 
others report having used random blocking which will also likely result in a similar outcome. Lancsar et 
al.	(2017)	actually	report		that	“The	first	and	second	blocks	of	16	choice-sets	were	answered	by	37	and	
39	participants,	respectively”.	Seventeen	papers	do	not	provide	sufficient	evidence	to	determine	if	data	
issues may be present, whereas we can conclude for one paper only, van de Wetering et al. (2015), that 
no such issues exist given that these authors gave the exact same nine choice tasks to all respondents. 
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Sicsic et al (2018) represents the only other paper where it is possible where all choice sets and blocks 
are equally replicated, although the authors do not explicitly state that the two blocks of their design were 
equally	replicated	within	their	data	set.	Based	on	the	above	findings,	we	can	conclude	that	the	majority	
of	papers	examined	either	exhibit	one	or	more	of	 the	 issues	 identified	 in	Section	3,	or	do	not	provide	
sufficient	information	to	determine	whether	such	issues	exist.	Papers	that	fall	into	this	latter	category	are	
particularly problematic given, as there is no way to verify whether a problem exists or not.

   Table 2: Papers with three or more alternatives and the use of constants

Authors Year Number of 
alts

Sample 
size Observations Design size Tasks Blocks

No constant

van Dijk et al. 2016 3 SP 429 NR NR 8 200 random

Doiren and Yoo 2017 3 SP 241 NR NR 8 NR

Mohammadi et al. 2017 2 SP + None 194 NR NR 10+2* 12

Mulhern et al. 2017 2 SP + None 366 3646 120 10 12

Ostermann et al. 2020 3 SP 403 6432 96 16 6

Opt-out constant only

Chen et al. 2015 2 SP + None 838 NR 15 5 + 2* Random

van de Wetering et al. 2015 2 SP + None 1,205 NR 72 8+2* 9

Dong et al. 2016 2 SP + None 189 NR 32 8 4

Mühlbacher et al. 2016 2 SP + None 1,301 NR 36 6 6

Veldwijk et al. 2016 2 SP + None 1,045 9,405 9 9 1

Lancsar et al. 2017 2 SP + None 76 2,432 32 16 2

Wright et al. 2017 2 SP + None 702 NR 40 10 4

Heidenreich et al. 2018 2 SP + None 443 4,625 32 11 or 10 3

Quaife et al. 2018 2 SP + SQ 244 2,440 NR 10 NR

Ryan et al. 2018 2 SP + SQ 58 2,807 NR 12 NR

Vass et al. 2018 2 SP + None 1,018 11,198 44 11 4

Wong et al. 2018 2 SP + None 482 NR 8 8+1* 1

de Bekker et al. 2019 2 SP + None 418 6,688 160 16 10

Allanson et al. 2020 2 SP + None 48 575 48 12+2* 4

Norman et al. 2020 2 SP + None 503 NR NR NR NR

Krucien et al. 2019a 2 SP + SQ 200 4,200 NR 10 or 12* NR

Alternative specific constants

Flynn et al. 2016 3 SP 525 NR 32 4 8

Holte et al. 2016 2 SP + SQ 934 4,670 20 5 4

Sicsic et al. 2018 2 SP + SQ 812 6,496 16 8 2

Krucien et al. 2019b 3 SP 311 3,732 NR 14 NR

Indeterminant constants

Marshall et al. 2017 2 SP + None 193 NR NR 6 NR
NR = not reported, SQ = Status quo. * Additional choice tasks were employed to test for consistency in choices
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If	 is	finally	worth	noting	 that	of	 the	 four	papers	 that	 report	estimating	constants	 for	 two	of	 the	 three	
alternatives within their data (all four estimated a SQ plus one other constant term), two (Flynn et al. 
2016	and	Holte	et	al.	2016)	report	statistically	significant	constants	in	at	least	one	model	for	the	constant	
associated with the non-status quo alternative. 

This	suggests	that	the	mean	of	the	error	terms	may	be	different	for	the	non-status	quo	alternatives	in	these	
models,	indicating	that	the	above	identified	problems	may	exist,	but	have	been	corrected	for	via	the	use	
of	alternative	specific	constants.

5.0 Empirical data set example
For the current study, we utilise data obtained from an online survey designed to capture the preferences of 
Australian	citizens	for	a	vaccine	specifically	targeted	at	immunising	against	SARS-CoV-2.	Respondents	
completing the survey undertook a DCE consisting of four alternatives, of which three hypothetical 
vaccines	defined	by	seven	attributes,	and	a	no-choice	alternative.	Table	3	lists	 the	attributes	and	their	
respective levels used to describe the various vaccines over the course of the experiment.
  

Attribute Attribute description Levels

Mild side effects Number of incidences per 
10,000 citizens 10, 20, 100, 200

Major side effects Number of incidences per 
10,000 citizens 1, 2, 10, 20

Vaccination effectiveness
The percentage of individuals 
given the vaccine who be-
come immune to the virus

84%, 89%, 94%, 99%

Mode of administration How the vaccine is adminis-
tered Oral, Injection

Location Where the vaccine is admin-
istered

Doctor’s office, Hospital, 
Pharmacy

When available How long (in months) until 
the vaccine becomes available 0, 2,4,6,8,10,12, 14

Cost The out of pocket expense to 
the respondent

$0, $20, $40, $60, $80, $100, 
$120, $140

 

Table 3: attributes and attributes level
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A	Bayesian	D-efficient	design	constructed	using	Ngene	[2]	was	used	to	assign	the	attribute	levels	of	the	
choice experiment to each of the 40 choice tasks generated. Priors for the design were obtained from a small 
pilot study consisting of 10 respondents, with uninformative priors in the form of uniform distributions 
used	to	generate	the	final	design.	The	design	was	programmed	to	avoid	dominated	alternatives,	and	was	
generated so that all respondents saw a common set of four choice tasks, plus four additional choice tasks 
drawn from one of nine blocks. Two thousand Sobol draws were employed in constructing the design. An 
example choice task is shown to respondents is reproduced in Figure 1.

    Figure 1: example of choice task
 
 
The survey was administered to 2,151 Australian citizens drawn from all states and territories between the 
27th and 31st March 2020 with survey eligibility restricted to persons aged 18 years or older. Respondents 
were recruited using the online survey panel Online Research Unit (http://www.theoru.com/index.htm). 
Data from 15 respondents were removed due to inconsistent responses to questions or a completion time 
less than two minutes resulting in a data set consisting of 17,088 choice observations obtained from 2,136 
respondents. 

The top segment of Table 4 shows the number of times each alternative was chosen both in absolute and terms 
and as choice shares. The lower segment of the table shows the average attribute levels for the same data. As 
shown	in	the	table,	the	first	and	second	alternative	were	chosen	38	and	39	percent	of	the	time	respectively,	
whilst the third alternative was selected only 16 percent of the time. The no choice alternative was chosen 
as the most preferred alternative in only six percent of choice tasks. Comparing the average attribute levels 
within	the	data,	significant	differences	become	readily	apparent,	despite	the	experimental	design	being	
balanced in the attributes. This is likely the result of an imbalance in the blocks collected over the sample.  
 
On average, the second alternative is much lower in price than the other two non-no choice alternatives, 
has less mild reaction indications, and has choice tasks with a lower average number of months until 
the vaccine becomes available. The third alternative appears to have more vaccines administered using 
more needles and a higher number of severe reactions, to be more likely to be administered at a doctor’s 
surgery or pharmacy, and to take longer to become available relative to the other vaccine alternatives. 
Of	note	is	that	out	of	all	attributes	presented,	the	efficacy	attribute	is	most	similar	on	average	across	the	
three	vaccine	alternatives.	This	observation	will	become	important	later.	Independent	of	the	differences	
between alternatives however, it is the combination of attribute levels within choice tasks and not the 
averages over the data that impact on choices.
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Alt A Alt B Alt C No choice

Chosen 6,524 6,718 2,748 1,098

Share 38.00% 39.00% 16.00% 6.00%

Average attribute level by alternative

Price 79.71 63.93 70.82 0.00

Mild reactions (n in 10,000) 95.32 77.50 95.69 0.00

Severe reactions (n in 10,000) 6.13 8.25 9.25 0.00

Efficacy 91.99 90.73 90.11 0.00

Mode of Administration (Needle)* -0.50 -0.39 0.22 0.00

Performed at doctor’s surgery** 0.11 0.06 0.39 0.00

Performed at pharmacy** -0.03 -0.01 0.15 0.00

Months till Available 7.47 5.92 7.83 0.00

 
*	Effects	coded	(base	is	pill)
**	Effects	coded	(base	is	performed	at	hospital)

 
 
 

 
 

Table 4: Summary statistics of data
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6.0 Empirical Example
6.1 MNL model outcomes

In this section, we present the results for four sets of models, two multinomial logit (MNL), two mixed 
multinomial logit (MMNL), and two error components (EC) models. We estimate the MNL and MMNL 
models as these models represent the two dominant models estimated within the Health Economics 
literature. Soekhai et al. (2019) report an expanded use of MMNL models to estimate discrete choice 
experiments	(DCE)	within	the	health	sphere.	Specifically,	it	was	reported	that	only	one	out	of	34	(2.94	
percent) published papers reported using a MMNL model between 1990 and 2000, six out of 114 (5.26 
percent) papers between 2001 and 2008, 45 out of 179 (25.14 percent) papers between 2009 and 2012, 
and	finally	 to	1301 out of 301 (43.19  percent) papers between 2013 and 2017. The MMNL was the 
most widely used model in the health economics literature during the 2013 to 2017 period. In this same 
period, the next most widely used model was the multinomial logit model, being used in 116 of the 
301 (representing 38.54 percent). Although not a commonly reported model in the Health Economics 
literature, the EC model is heavily applied within the Environmental Economics literature to account 
for likely substitution patterns between non-status quo alternatives in DCEs (see Scarpa et al. 2005). 
We prefer the EC model to the Nested Logit model used by Campbell and Erdem (2019) insofar as both 
models	capture	the	same	effects,	however	the	EC	model	allows	for	the	pseudo	panel	nature	of	DCEs,	
whereas	the	NL	model	does	not.	We	report	the	EC	model	to	demonstrate	that	the	effects	of	preference	
imbalance may not necessarily be dealt with by models that are primarily developed to deal with the 
presence of a status quo or no choice alternative.

Table 5 presents the results from two MNL models, one with a constant associated only with the no-
choice	alternative,	and	the	second	where	alternative-specific	constants	are	estimated	for	the	three	vaccine	
alternatives.	With	respect	to	the	first	model,	the	expectation	is	that	constant	be	negatively	signed	given	
that this alternative has the lowest share of choices (i.e., six percent) out of the four alternatives shown 
in the experiment, and the fact that respondents should prefer to have a vaccine available, all else being 
equal. As shown in Table 3 however, the sign of the constant term is positive. Given the result obtained, 
we interpret the constant as meaning that all else being equal, respondents would prefer to not have a 
vaccine than to have one.  To explain this somewhat counter-intuitive result, we note that the average 
estimated	utilities	for	the	first	three	alternatives	over	all	observations	within	the	data	are	5.859,	5.917	
and 5.368 respectively, which are computed purely based on the attributes of the design with no constant 
terms. Given that utility is relative, and the fact that estimation of the parameters within the model will 
be such that the predicted choice shares will replicate as best as possible the known market shares of the 
data,	the	single	constant	term	associated	with	the	final	alternative	in	this	case	is	forced	to	be	positive,	
against our a priori expectations. This later requirement that the predicted shares from the model equal 
the actual shares in the data is also the reason that the constants in the second model are negative. For this 
second model, the vaccine alternatives return positive utilities on average, producing average utilities of 
1.139, 1.326 and 0.589. Independent of the reason why, the strict interpretation of the constants for this 
second model is that after accounting for the design attributes, the sample population would once again 
prefer not to have a vaccine.

1  Soekhai et al. (2019) separate this into 118 papers reporting using MMNL and 12 GMNL 
models. Following Hess and Rose (2012) and Hess and Train (2017), we do not view the two as 
being different models and consider the GMNL model to be a specific functional form of the MMNL 
model.
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Comparing	the	parameter	estimates	of	the	two	models,	whilst	the	signs	of	the	coefficients	from	two	models	
are	the	same,	the	magnitudes	are	very	different.	To	demonstrate	how	big	these	differences	are	in	practical	
terms, we present the marginal willingness to pay (WTP) estimates for the two models at the base of the 
table. As shown in the table, the WTP estimates for the second model are almost half those obtained from 
the	first	model,	being	anywhere	between	$10	and	$20	different	for	all	but	the	mild	reactions	attribute.	
We	note	however	that	these	WTP	estimates	are	statistically	significantly	different	only	for	the	efficacy	
attribute.	As	noted	previously,	the	efficacy	attribute	is	the	attribute	that	is	most	similar	on	average	across	
the three vaccine alternatives within the data (see Table 2). In any case, to highlight concerns related to 
attempts	to	meaningfully	interpret	the	constants	from	DCEs,	the	first	model	suggests	that	the	sample	is	
willing	to	pay	$1,297.75	to	avoid	having	a	vaccine,	all	else	being	equal.	Results	from	the	second	model	
suggest	that	people	are	willing	to	pay	in	the	vicinity	of	$650	to	avoid	having	a	vaccine,	all	else	being	equal. 
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Par. (rob. t-rat.) Par. (rob. t-rat.)

Model constants

ASC no choice 4.592 (15.64) - -
ASC Alt A - - -3.298 (-10.50)
ASC Alt B - - -3.459 (-11.36)
ASC Alt C - - -3.672 (-11.95)

Attributes

Price -0.004 (-7.21) -0.005 (-10.66)

Mild reactions (n in 10,000) -0.002 (-7.86) -0.001 (-6.26)
Severe reactions (n in 10,000) -0.063 (-24.35) -0.058 (-22.01)
Efficacy 0.084 (27.70) 0.071 (22.59)
Mode of Administration (Needle)* -0.164 (-11.77) -0.150 (-10.48)
Performed at doctor’s surgery** -0.101 (-6.25) -0.081 (-5.02)

Performed at pharmacy** 0.168 (9.19) 0.152 (8.26)

Months till Available -0.144 (-24.11) -0.136 (-21.76)

Model fit

LL(0) -23688.998 -23688.998
LL(β) -13358.696 -13284.862
ρ2 0.436 0.439
Adj ρ2 0.564 0.561
AIC 26735.392 26591.724
BIC 26805.107 26676.931
N 2136 2136
K 9 11

Willingness to Pay estimates

WTP 95% con. int. WTP 95% con. int.

ASC no choice -$1,297.75 (-$1717.01 - -$878.49) - -
ASC Alt A - - $617.19 ($439.16 - $796.13)
ASC Alt B - - $647.33 ($467.25 - $827.93)
ASC Alt B - - $687.28 ($501.4 - $872.39)
Mild reactions (n in 10,000) $0.44 ($0.27 - $0.61) $0.24 ($0.15 - $0.33)
Severe reactions (n in 10,000) $17.93 (-$12.92- $22.93) $10.84 ($8.62 - $13.06)
Efficacy -$23.62 (-$30.5 - -$16.74) -$13.32 (-$16.13 - -$10.5)
Mode of Administration (Needle)* $46.30 ($30.39 - $62.21) $28.05 ($20.14 - $35.96)
Performed at doctor’s surgery** $28.61 ($15.97 - $41.24) $15.09 ($8.20 - $21.98)
Performed at pharmacy** -$47.39 (-$63.45 - -$31.32) -$28.53 (-$36.46 - -$20.59)
Months till Available $40.65 ($27.60 - $53.70) $25.43 ($19.21 - $31.65)

 
* Effects coded (base is pill) 
** Effects coded (base is performed at hospital)

 Table 5: MNL model results
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6.2 MMNL and EC model outcomes

Table 6 presents the results of four models, two Mixed Multinomial Logit (MMNL) models and two 
Error Components (EC) estimated on the same data as previously reported. Both MMNL models assume 
normal distributions for the non-cost attributes and constants, and log-normals for the cost attributes. 
All	four	models	were	estimated	in	Pythonbiogeme	[1]	using	2000	MLHS	draws.	The	first	MMNL	and	
EC models assume only a single constant for the no-choice alternative whilst the second model allows 
for	three	alternative	specific	constants.	With	respect	to	the	MMNL	models,	examining	the	means	of	the	
constant terms only, it is noticeable that the signs of the constants are now the reverse of those reported 
earlier. Indeed, the signs of constants from both models now conform to our a priori expectations. We 
note	however	that	for	the	first	model,	the	standard	deviation	parameter	for	the	constant	is	excessively	
large, being twice the magnitude of the mean estimate. As such, we conclude that the model under 
this	specification	with	non-uniform	choice	shares	may	trade-off	the	mean	estimate	of	the	constant	for	
increased	 heterogeneity.	Whilst	 the	WTP	 estimates	 (confidence	 intervals	 are	 computed	 for	 the	mean	
estimates	only	using	the	delta	method)	obtained	between	the	two	MMNL	model	specifications	are	much	
more similar, this has come at the cost of increased heterogeneity for the constant. In this way, the model 
is	able	 to	 reproduce	 the	choice	shares	however	 the	analyst	may	conclude	 that	 there	exists	 significant	
preference heterogeneity where very little really exists, as per the second model results.
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MMNL 1 MMNL 2 EC 1 EC 2

Moment Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Model constants

ASC no choice Mean 
Std Dev.

-285 
4.34

(-3.03) 
(8.04)

- 
-

- 
-

-0.033 
-

(0.07) 
-

- 
-

- 
-

ASC Alt A Mean 
Std Dev.

- 
-

- 
-

2.61 
0.559

(3.41) 
(6.65)

- 
-

- 
-

1.250 
-

(2.66) 
- 

ASC Alt B Mean 
Std Dev.

- 
-

- 
-

2.44 
0.284

(3.22) 
(1.29)

- 
-

- 
-

1.080 
-

(2.33) 
-

ASC Alt C Mean 
Std Dev.

- 
-

- 
-

2.34 
0.686

(3.07) 
(8.18)

- 
-

- 
-

0.921 
-

(1.98) 
-

Attributes

Price Mean 
Std Dev.

-5.700 
1.840

(-30.39)
(29.05)

-5.650 
1.850

(-29.17 
(23.54

-0.005 
-

(-8.93) 
-

-0.006 
-

(-11.50) 
-

Mild reactions (n in 10,000) Mean 
Std Dev.

-0.003 
0.005

(-10.31)
(10.31)

-0.003 
0.006

(-9.40)
(10.44)

-0.002 
-

(-10.54) 
-

-0.002 
-

(-9.28) 
-

Severe reactions (n in 10,000) Mean 
Std Dev.

-0.105 
0.095

(-21.71)
(17.98)

-0.107 
0.102

(-20.29)
(18.12)

-0.067 
-

(-23.73) 
-

-0.062 
-

(-21.20) 
-

Efficacy Mean 
Std Dev.

0.126 
0.088

(23.93)
(12.78)

0.121 
0.089

(20.09 
(15.70)

0.086 
-

(26.55) 
-

0.074 
-

(21.76) 
-

Mode of Administration 
(needle)

Mean 
Std Dev.

-0.165 
0.198

(-7.19)
(2.18)

-0.181 
0.236

(-7.70)
(3.82)

-0.119 
-

(-7.71) 
-

-0.109 
-

(-7.00) 
-

Performed at doctor’s 
surgery**

Mean 
Std Dev.

-0.068 
0.419

(-2.74)
(9.25)

-0.066 
0.391

(-2.57)
(7.35

-0.107 
-

(-6.14) 
-

-0.085 
-

(-4.94) 
-

Performed at pharmacy** Mean 
Std Dev.

0.208 
0.319

(7.84)
(4.89)

0.219 
0.347

(7.61)
(5.15)

0.142 
-

(7.46) 
-

0.126 
-

(6.47) 
-

Months till available Mean 
Std Dev.

-0.255 
0.236

(-21.13)
(23.15

-0.278 
0.249

(-21.15)
(21.72)

-0.144 
-

(-22.66) 
-

-0.137 
-

(-20.54) 
-

Error component

Alt A, B and C - - - - 4.470 (16.16) 4.700 (16.4)

Model fit

LL (0) -23688.998 -23688.998 -23688.998 -23688.998

LL (β) -10,512.352 -10,449.106 -11,562.246 -11,506.667

ρ2 0.556 0.559 0.512 0.514

Adj ρ2 0.439 0.435 0.486 0.483

AIC 21060.704 20942.212 23144.492 23037.334

BIC 21162.704 21066.879 23201.159 23105.334

N 2136 2136 2136 2136

K 18 22 10 12

 Table 6: MMNL model results
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The last two models nest an error component associated with the non-nested logit model. These error 
components	systematically	vary	jointly	the	utility	functions	of	these	alternatives,	producing	correlated	
utilities that imply that respondents are more likely to trade between these alternatives than between these 
alternatives and the status quo option. This type of model appears not to be widely used within the health 
economics	literature,	rather	being	used	in	environmental	economics	to	account	for	status	quo	effects	in	
unlabelled DCEs (see Scarpa et al. 2005). Examining the results obtained from the two EC models show 
that	attempting	to	account	for	status	quo	effects	need	not	solve	issues	related	to	preference	imbalance	
between alternatives when such preference imbalance exists between the non-status quo alternatives. 
In	both	EC	models,	the	error	components	are	statistically	significant	suggesting	that	there	does	indeed	
exist	substation	effects	between	the	non-status	quo	alternatives	present	within	the	data.	In	the	first	model,	
with	a	single	status	quo	constant,	the	constant	is	no	longer	statistically	significant,	whilst	the	ASCs	of	the	
second	model	are	statistically	significant	and	positive.	Of	particular	interest	are	the	WTP	estimates	which	
are	markedly	different	to	those	obtained	from	the	MNL	and	MMNL	models,	suggesting	that	the	error	
components	are	accounting	for	effects	not	dealt	with	by	either	of	these	models.	However,	the	comparing	
the	WTP	estimates	obtained	by	the	two	EC	models	suggest	differences,	which	underscores	our	argument	
that preference imbalance can exist in unlabelled DCEs between non-status quo alternatives which only 
the inclusion of ASCs can account for.

MMNL 1 MMNL 2 EC 1 EC 2

Moment Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Model constants

ASC no choice Mean 
Std Dev.

-285 
4.34

(-3.03) 
(8.04)

- 
-

- 
-

-0.033 
-

(0.07) 
-

- 
-

- 
-

ASC Alt A Mean 
Std Dev.

- 
-

- 
-

2.61 
0.559

(3.41) 
(6.65)

- 
-

- 
-

1.250 
-

(2.66) 
- 

ASC Alt B Mean 
Std Dev.

- 
-

- 
-

2.44 
0.284

(3.22) 
(1.29)

- 
-

- 
-

1.080 
-

(2.33) 
-

ASC Alt C Mean 
Std Dev.

- 
-

- 
-

2.34 
0.686

(3.07) 
(8.18)

- 
-

- 
-

0.921 
-

(1.98) 
-

Attributes

Price Mean 
Std Dev.

-5.700 
1.840

(-30.39)
(29.05)

-5.650 
1.850

(-29.17 
(23.54

-0.005 
-

(-8.93) 
-

-0.006 
-

(-11.50) 
-

Mild reactions (n in 10,000) Mean 
Std Dev.

-0.003 
0.005

(-10.31)
(10.31)

-0.003 
0.006

(-9.40)
(10.44)

-0.002 
-

(-10.54) 
-

-0.002 
-

(-9.28) 
-

Severe reactions (n in 10,000) Mean 
Std Dev.

-0.105 
0.095

(-21.71)
(17.98)

-0.107 
0.102

(-20.29)
(18.12)

-0.067 
-

(-23.73) 
-

-0.062 
-

(-21.20) 
-

Efficacy Mean 
Std Dev.

0.126 
0.088

(23.93)
(12.78)

0.121 
0.089

(20.09 
(15.70)

0.086 
-

(26.55) 
-

0.074 
-

(21.76) 
-

Mode of Administration 
(needle)

Mean 
Std Dev.

-0.165 
0.198

(-7.19)
(2.18)

-0.181 
0.236

(-7.70)
(3.82)

-0.119 
-

(-7.71) 
-

-0.109 
-

(-7.00) 
-

Performed at doctor’s 
surgery**

Mean 
Std Dev.

-0.068 
0.419

(-2.74)
(9.25)

-0.066 
0.391

(-2.57)
(7.35

-0.107 
-

(-6.14) 
-

-0.085 
-

(-4.94) 
-

Performed at pharmacy** Mean 
Std Dev.

0.208 
0.319

(7.84)
(4.89)

0.219 
0.347

(7.61)
(5.15)

0.142 
-

(7.46) 
-

0.126 
-

(6.47) 
-

Months till available Mean 
Std Dev.

-0.255 
0.236

(-21.13)
(23.15

-0.278 
0.249

(-21.15)
(21.72)

-0.144 
-

(-22.66) 
-

-0.137 
-

(-20.54) 
-

Error component

Alt A, B and C - - - - 4.470 (16.16) 4.700 (16.4)

Model fit

LL (0) -23688.998 -23688.998 -23688.998 -23688.998

LL (β) -10,512.352 -10,449.106 -11,562.246 -11,506.667

ρ2 0.556 0.559 0.512 0.514

Adj ρ2 0.439 0.435 0.486 0.483

AIC 21060.704 20942.212 23144.492 23037.334

BIC 21162.704 21066.879 23201.159 23105.334

N 2136 2136 2136 2136

K 18 22 10 12

MMNL 1 MMNL 2 EC 1 EC 2

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Par. (rob. 
t-rat.)

Willingness to Pay

ASC no choice $156.73  
($31.25 - $517.25)

- 
-

$6.81 
(-$174.25 - $187.88)

- 
-

ASC Alt A - 
-

-134.03 
(-$490.25 - -$23.99)

- 
-

-$195.38 
(-$339.17 - -$51.60)

ASC Alt B - 
-

-125.3 
(-$463.65 - -$20.46)

- 
-

-$168.12 
(-$309.19 - -$27.05)

ASC Alt C - 
-

-120.17 
(-$447.66 - $17.84)

- 
-

-$143.86 
(-$285.65 - -$2.07)

Mild reactions (n in 10,000) $0.18  
(-$2.45 - $3.20)

$0.17  
(-$2.45 - $3.22)

$0.17  
(-$2.45 - $3.22)

$0.33 
($0.24 - $0.42)

Severe reactions (n in 10,000) $5.77  
(-$1.68 - $23.98)

$5.49  
(-$1.78 - $24.43)

$13.67 
($10.64 - $16.71)

$9.68 
($8.11 - $11.25)

Efficacy ($6.93) 
(-$27.28 - $0.80)

($6.21) 
(-$26.66 - $1.48)

-$17.64 
(-$21.95 - -$13.34)

-$11.61 
(-$14.03 - -$9.19)

Mode of administration 
(needle)

$9.07  
(-$8.15 - $43.77)

$9.30  
(-$6.71 - $45.44)

$24.22 
(15.016 - $33.42)

$17.07 
($13.87 - $20.30)

Performed at doctor’s 
surgery**

$3.72  
(-$17.73 - $32.37)

$3.37  
(-$17.71 - $31.82)

$21.80 
($12.97 - $30.64)

$13.28 
($7.26 - $19.30)

Performed at pharmacy** ($11.44) 
(-$50.68 - $6.16)

($11.25) 
(-$52.24 - $5.92)

-$29.10 
(-$39.07 - -$19.13)

-$19.70 
(-$22.88 - -$16.51)

Months till available $14.02  
($1.41 - $51.65)

$14.28  
(-$1.66 - $54.92)

$29.35 
($21.38 - $37.32)

$21.46 
($16.44 - $26.49)
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7.0 Consequences
In	a	recent	paper,	[3]	demonstrated	the	ability	of	DCEs	to	predict	real	world	outcomes.	Whilst	we	do	not	
argue	against	the	overall	findings	of	this	paper,	we	do	suggest	that	caution	should	be	given	to	how	this	
result should be interpreted. As indicated above, econometrically, the constants of discrete choice models 
ensure that the predicted choice shares match as closely as possible the actual market shares within the 
data, after accounting for the role of the design attributes. Given that DCEs involve the creation of multiple 
hypothetical and non-existent markets, it is questionable why the market shares from data collected from 
such experiments would be similar to those of real markets. To demonstrate, consider three choice tasks 
contained	within	the	data.	Table	7	presents	the	actual	data	for	the	first	respondent	for	choice	tasks	1	and	5,	
and for the second respondent for choice task 5 only. The base of the table, in the absence of a real-world 
vaccine,	we	create	a	single	hypothetical	vaccine	to	represent	a	revealed	preference	alternative.	The	final	
two columns of the table present the choice probabilities derived for each choice task based on the two 
MNL models presented in Table 7. 

It	 is	evident	 that	 the	 individual	choice	 tasks	 represent	markets	defined	by	different	product	offerings,	
none of which matches the real-world market and that the estimated choice probabilities do not relate 
to those obtained from the revealed preference data. Further, even if one choice task in the experiment 
is	designed	to	match	real	world	market	offerings,	as	per	[3],	discrete	choice	models	are	estimated	on	all	
observations	within	the	data,	the	majority	of	which	will	not	match	real-world	market	conditions.	

Table 7: Empirical choice data

Resp Set Alt ASC1 ASC2 ASC3 No Mld Sev. Eff. Ndle Doc. Pharm. Avail. Pr Pr 
(MNL1)

Pr 
(MNL2)

1 1 1 1 0 0 0 10 2 84 -1 -1 -1 14 100 0.05 0.06

1 1 2 0 1 0 0 20 10 99 -1 1 0 2 0 0.83 0.83

1 1 3 0 0 1 0 200 2 84 1 0 1 10 80 0.07 0.06

1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05

1 5 1 1 0 0 0 20 2 94 -1 1 0 4 40 0.38 0.43

1 5 2 0 1 0 0 10 1 94 -1 0 1 4 40 0.54 0.50

1 5 3 0 0 1 0 100 2 89 1 0 1 12 140 0.05 0.03

1 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.03

2 5 1 1 0 0 0 10 2 99 -1 1 0 2 40 0.84 0.86

2 5 2 0 1 0 0 200 10 89 1 0 1 14 120 0.02 0.02

2 5 3 0 0 1 0 20 1 89 1 1 0 8 60 0.11 0.09

2 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.03

Popn RP Vac-
cine 0 0 0 0 8 5 97 1 0 1 5 36.3 0.91 0.99

Popn RP No 0 0 0 1 0 0 0 0 0 0 0 0 0.09 0.01

 
In addition, we argue that if the objective of a study is prediction, it will generally be possible to 
calibrate a model to reproduce existing market shares, using procedures such as those as outlined 
by [8]. Putting aside any requirement to also calibrate the non-constant parameters to match those 
obtained from revealed preference data sources, assume that the real share of vaccine uptake is 
0.78. Applying the parameters from the first model to the RP data reported in Table 4 but changing 
the constant to 5.6901 reproduces this ‘real’ market share. Similarly, applying the estimates from 
the second model but changing the constant to 4.4637 will result in a predicted uptake for the 
vaccine of 0.78. 
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As noted, it is generally possible to predict known market shares simply by calibrating the model 
(possibly including calibrating the non-constant terms of the model at the same time). It is for this 
reason that we suggest care be taken in interpreting the results reported by [3]. Indeed, we argue 
that the true test of how well the outputs of DCEs perform is how well the model predicts outcomes 
given changes to the market attributes. 

To demonstrate, consider the two calibrated models applied to our hypothetical real market choice task. 
Both models predict a 78 percent uptake of the vaccine given the attribute levels assumed. Changing 
the	efficacy	attribute	from	97	percent	to	90	percent	however	leads	to	a	predicted	66.39	precent	vaccine	
uptake	based	on	the	first	model,	and	a	68.30	percent	uptake	based	on	the	second	model.	Which	model	
predicts better given the changing market conditions is the more relevant test, given that both models 
predict the same outcomes given the base scenario. To highlight this point further, Figure 2 presents 
three sigmoidal curves obtained from the two MNL models reported in Table 5, using the original 
constant	obtained	from	MNL	1,	the	first	MNL	with	the	new	calibrated	constant,	and	MNL	2	with	the	
new calibrated model. Figure 2(a) represents the sigmoidal probability curve computed by changing the 
Efficacy	attribute	level,	holding	all	other	attributes	constant	at	the	RP	levels	assumed	in	Table	7.	Figure	
2(b) represents the sigmoidal probability curve for price derived in the same manner. As can be seen, 
the	sigmoidal	curves	for	the	uncalibrated	constants	are	extremely	different	than	for	those	for	the	models	
with	calibrated	constants	suggesting	that	failure	to	calibrate	the	constant	terms	may	result	in	different	
predictions to those based on calibrated models. Further, as can be seen in Figure 2(a), despite predicting 
the	same	percent	of	vaccine	uptake	at	the	calibrated	forecast	level,	significant	differences	in	predictions	
can occur as one changes attribute levels away from this initial forecast amount. Again, this highlights 
the importance of constants in forecasting, and demonstrates that if properly calibrated, the importance 
of forecasting is not in predicting the initial forecast market share, but rather, in how the model performs 
given changes from the initially assumed attribute levels. 

(a) Sigmodal curve for efficacy
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(b) Sigmodal curve for price

8.0 Discussion and conclusions
In this paper, we argue that many papers within the health economics literature dealing with unlabelled 
alternatives, particularly those that include a no-choice alternative, assume utility functions with either 
no constants or only a single constant. We demonstrate that in cases where the choice shares of the 
non-status	quo	alternative	are	non-uniformly	spread,	such	a	specification	can	result	in	biased	parameter	
estimates, including for the non-constant attributes of the model.

We therefore recommend that all discrete choice models include constants for all but one alternative, 
even	if	said	constants	are	not	statistically	significantly	different	from	one	another.	This	recommendation	
is not limited to DCEs that include a status quo or no choice alternative, but all models estimated using 
unlabelled DCEs. Indeed, this recommendation extends to models estimated on both stated preference 
and revealed preference data, as the issues discussed herein extend to both data types. In making this 
recommendation, we note that given utility is relative, it should not matter which alternatives these 
alternative	specific	constant	be	associated	with.	We	further	recommend	that,	space	permitting,	research	
papers	report	on	the	descriptive	statistics	of	the	data,	and	not	just	discuss	the	experimental	design	used	to	
generate the data. In many cases, such as those reported herein, the design properties will not translate to 
the	data	set.	Given	that	models	are	estimated	on	the	final	data,	and	not	on	the	design,	it	stands	to	reason	
that more time should be devoted to reporting on the data, similar to Table 4 presented within this paper. 
In doing so, we hope that researchers will provide more detailed commentary of the outputs of discrete 
choice experiments, particularly with respect to the estimated constants. 
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As	evidenced	through	an	empirical	data	set,	the	constants	obtained	from	discrete	choice	models	reflect	
the	market	shares	of	the	hypothetical	choice	sets	defined	from	the	experiment,	which	in	many	cases	may	
be meaningless in terms of any attempt to provide real world behavioural meaning to them, without 
reference to the descriptive statistics of the data.

We also note that there is an increasing interest in testing whether the results obtained from DCEs are 
externally valid or not. We argue that how such questions are examined be carefully considered within 
the future. As noted, the outputs of any discrete choice model can be calibrated to forecast existing 
market shares, whereas the real test of model performance with respect to prediction, is how well the 
model predicts, at least in the aggregate, after changes to the market occur. In this regard, understanding 
how	well	models	forecast	is	likely	to	much	more	difficult,	given	that	it	will	be	necessary	to	observe	real	
changes	to	the	levels	of	the	attributes	of	the	alternatives	existing	with	real	markets	over	time,	and	not	just	
observing the attribute levels at one point of time.
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