Efficient verification of continuous-variable quantum states and devices without
assuming identical and independent preparation
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Continuous-variable (CV) quantum information, encoded in an infinite-dimensional Hilbert space,
is widely used in many quantum information protocols [1, 2]. To demonstrate quantum advantage in
these protocols, certification of realistic implementations of quantum states and quantum devices is an
essential step [3]. However, in realistic scenarios, we cannot guarantee identical and independent (i.i.d)
state and device preparation. Important examples include adversarial scenarios, where one cannot trust
if one is given the same state or device in each subsequent run. For instance, in verifiable blind quantum
computing [4], the potential existence of a malicious server sending arbitrary entangled states to steer
computational results makes state verification in adversarial scenarios important. Also, in the presence
of time-dependent noise, correlated noise can be created between subsequent uses of quantum devices,
so one cannot trust that a realistic quantum device outputs identical and independent states in each
run. In this paper, we propose verification protocols for CV entangled states and CV quantum devices
in these non-i.i.d scenarios.

State verification [5-13] addresses the problem of whether or not a state generated by a quantum
device is close enough to a specified target pure state. Most proposed methods work well and efficiently
when states have i.i.d preparation [5, 6, 8]. In the non-i.i.d setting, one powerful method is to employ the
quantum de Finetti theorem [14], which enables us to approximate a collection of non-i.i.d states with
a smaller set of i.i.d states after a randomising procedure followed by tracing out some subsystems [7,
12, 13]. This then allows us to use known verification methods on those i.i.d states. In the CV setting,
there are two main classes of quantum de Finetti theorems and they are separated into the infinite
dimension d — oo setting [15] relying on rotational randomization on multimode phase space, and the
finite d case [16, 17] relying only on permutation randomization. However, in the d — oo case, the
rotational randomising procedure to enable the state after randomization to be approximated by an
i.i.d state is not easily implementable. To enable the use of a finite d de Finetti theorem in the CV
setting, which is infinite dimensional, one must filter those CV states, which are close to finite d states,
using CV measurements and such tests have been shown to work for single-mode CV states [12] and
certain photonic states [13]. However, for this method, the approximation error between the permutation
randomised state and an almost i.i.d state scales exponentially with d [16, 17], implying that this method
is not preferable for the multimode setting. In our approach, we propose an alternative test utilizing the
finite d de Finetti theorem [14], which relies not only on permutation randomization, but also rotational
randomization at each single-mode phase space. This rotational randomization at each mode, unlike
multimode rotational randomization, is easily implemented by random choices of quadrature basis for
homodyne detections. This test allows us to have a quadratic scaling of the approximation error between
the state after randomization and an i.i.d state with respect to d, preferable for verification of multimode
entangled CV states, which are crucial for many quantum protocols to provide a quantum advantage.

For a verification test to be reliable, we also need to ensure that the completeness and soundness
of the protocol is good enough. Completeness refers to a high probability that the correct state is
flagged as correct by our protocol and soundness is a low probability of a false positive. Our new
technique allows us to guarantee both the completeness and soundness of our protocol. We also extend
our state verification protocol to CV non-i.i.d quantum-device verification using the fact that any test
on a quantum channel can be done via preparing an entangled input state and applying tests at both
the output and the ancillary system [18]. Quantum device verification [19] is the problem of determining



whether the outputs of a quantum device is close to associated target output states, averaged over all
possible input states.

Our CV quantum state and device verification schemes comprise of a dimension test and a fidelity
test. The dimension test is to filter the CV states so that we can apply the finite d quantum de Finetti
theorem. The fidelity test is the verification protocol used on the resulting approximated i.i.d state. Our
verification scheme can be used to verify any multimode Gaussian pure states and one particular type of
non-Gaussian states: CV hypergraph states [11, 20]. The sample complexity of this verification scheme is

0] ({?4 Poly (ln kTm)), where k is the number of modes, m is the number of copies we want of the target

state, and € is a maximal error probability. Compared to the sample complexity O (ki’rfz Poly (ln ’%’”‘)) in

i.i.d scenario, we see that a polynomial increase in k, m and € are required to relax the i.i.d assumption.
Similar results hold for device verification.
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