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We study supervised learning algorithms
in which a quantum device is used to per-
form a computational subroutine—either
for prediction via probability estimation,
or to compute a kernel via overlap esti-
mation of quantum states. We design im-
plementations of these quantum subrou-
tines using Boson Sampling architectures
in linear optics, supplemented by adaptive
measurements. We then challenge these
quantum algorithms by deriving classical
simulation algorithms for the tasks of out-
put probability estimation and overlap es-
timation and we obtain different classical
simulability regimes for these two tasks in
terms of the number of adaptive measure-
ments and input photons. In both cases,
our results set explicit limits to the range
of parameters for which a quantum advan-
tage with adaptive linear optics over classi-
cal machine learning algorithms can be en-
visaged: we show that the number of input
photons and the number of adaptive mea-
surements cannot be simultaneously small
compared to the number of modes. Inter-
estingly, our analysis leaves open the possi-
bility of a quantum advantage with a single
adaptive measurement.

1 Introduction

Quantum computers promise dramatic advan-
tages over their classical counterparts [1, 2], but a
fault-tolerant universal quantum computer is still
far from being available [3]. The quest for near-
term quantum speedup has thus led to the intro-
duction of various subuniversal models—models
that are believed to have an intermediate com-
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putational power between classical and universal
quantum computing—such as Boson Sampling [4]
or IQP circuits [5], recently culminating with
the experimental demonstration of random cir-
cuit sampling [6].

Finding practical applications for these subuni-
versal models, other than the demonstration of
quantum speedup, is a timely issue, as it may en-
able interesting quantum advantages in the era of
Noisy Intermediate-Scale Quantum devices [3].

Recently, there has been an increased inter-
est on the possibility of enhancing classical ma-
chine learning algorithms using quantum comput-
ers, which includes the development of quantum
neural networks [7–15] and the development of
quantum kernel methods [16–21].

In particular, recent proposals have been driven
by subuniversal models such as Gaussian Boson
Sampling [22, 23] or IQP circuits [5, 16]. In the
latter, the authors considered supervised learning
algorithms in which some computational subrou-
tines are executed in a quantum way, namely the
estimation of the output probabilities of quantum
circuits, or the estimation of the overlap of the
output states of quantum circuits. They showed
that IQP circuits alone could not provide a quan-
tum advantage for these subroutines and there-
fore considered minimal extensions of these cir-
cuits, in terms of circuit depth.

Hereafter, we study the use of Boson Sampling
interferometers [4], with input photons, for sim-
ilar quantum machine learning tasks. Instead
of extending the depth, we allow for adaptive
measurements—intermediate measurements that
drive the rest of the computation—which provide
a natural analogy with the circuit depth in the
linear optics picture [24]: by encoding qubits into
single-photons and using a sufficient number of
adaptive measurements, one can perform univer-
sal quantum computing [25].

We give a detailed prescription for performing
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quantummachine learning with classical data, us-
ing adaptive linear optics for computational sub-
routines such as probability estimation and over-
lap estimation.

We also examine the classical simulability of
these quantum subroutines. More precisely, we
give classical simulation algorithms whose run-
times are explicitly dependent on: (i) the num-
ber of modes m, (ii) the number of adaptive mea-
surements k, (iii) the number of input photons n
and (iv) the number of photons r detected dur-
ing the adaptive measurements. This effectively
sets a limit on the range of parameters for which
adaptive linear optics may provide an advantage
for machine learning over classical computers us-
ing our methods, thus identifying the regimes
where a quantum advantage can be envisaged.
Boson Sampling instances correspond to the case
with no adaptive measurement, while the Knill–
Laflamme–Milburn scheme for universal quantum
computing [25] corresponds to the case where the
number of adaptive measurements scales linearly
with the size of the computation.

For probability estimation, we show that the
classical simulation is efficient whenever the num-
ber of adaptive measurements or the number of
input photons is constant. Moreover, the num-
ber of input photons and the number of adaptive
measurements cannot be simultaneously small
compared to the number of modes (see Table 2).

For overlap estimation, we show a similar be-
haviour, although in this case our results do not
rule out the possibility of a quantum advantage
with a single adaptive measurement (see Tables 3
and 4). Our main technical contribution is an ex-
pression for the inner product of the output states
of two adaptive unitary interferometers which is
essentially independent of the number of adaptive
measurements.

The rest of the paper is organised as follows. In
section 2, we provide a background on quantum
machine learning with classical data and classi-
cal simulation of quantum computations. In sec-
tion 3, we introduce the model of adaptive linear
optics which we consider. We give a prescription
for performing probability estimation and over-
lap estimation with instances of this model, and
detail how to use these as subroutines for ma-
chine learning problems. In section 4, we derive
two classical simulation algorithms, one for each
of these two tasks, and analyze the running time

of these algorithms. We conclude in section 5.

2 Background
2.1 Kernel methods for quantum machine
learning
2.1.1 Encoding classical data with quantum states

We consider a typical machine learning problem,
such as classification problems, where a classical
dataset D = {~x1, . . . , ~x|D|} from an input set X
is given. One method to use quantum comput-
ers to solve such problems is to encode classical
data onto quantum states such that there exist a
so-called feature map ~xl → |φ(~xl)〉 which can be
processed by a quantum computer.

Definition 1 (Feature map [17]). Let F be a
Hilbert space, called feature space, X an input set
and ~x ∈ X . A feature map is a map φ : X → F
from inputs to vectors in the Hilbert space.

Many machine learning algorithms perform well
in linear cases such as the support vector ma-
chines (SVM) which will be use in this article.
However, many real world problems require non-
linearity to make successful predictions. By using
kernel methods one can use estimation methods
that are linear in terms of the kernel evaluations.

Definition 2 (Kernel [17]). Let X be a non
empty set called input set. A function κ : X ×
X → C is called a kernel if for any finite subset
D = {~x1, . . . , x|D|} with M ≥ 2 the Gram ma-
trix K with entries Kl,l′ = κ(~xl, ~xl′) is positive
semidefinite.

The kernel corresponds to a dot product in a fea-
ture space (here in a high-dimensional Hilbert
space). In [17], it is shown that the notion of
feature map in Hilbert space and kernel can be
connected. A straightforward way is to define a
kernel K from a feature map φ as follows:

κ(~xl, ~xl′) = 〈φ(~xl)|φ(~xl′)〉F , (1)

where xm ∈ X , xm′ ∈ X and 〈·, ·〉F is the inner
product over the Hilbert space F .

2.1.2 Using Feature Hilbert Spaces for Machine
Learning

There are two main ways to use feature Hilbert
spaces:
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• The quantum variational classification [16]
or explicit approach [17]: the entire model
computation is on a quantum device trained
by a hybrid variational quantum-classical or
classical algorithms [12, 13, 26]. In this case
the probability distribution over the possi-
ble outcomes is used for the classification.
Hence, while the feature map is used to en-
code the data, the kernel is not known di-
rectly from the quantum device. In [16], the
probability to obtain a certain binary output
bi for the classical data input x is given by:

Pr (bi) = |〈bi|W (θ)Uφ(x)|0⊗n〉|2, (2)

where Uφ(x) encodes the feature map and
W (θ) corresponds to the quantum SVM.

• The quantum kernel estimation [16] or im-
plicit approach [17]: is a quantum-assisted
method where the quantum device is only
used to evaluate the kernel and the rest of
the machine learning algorithm is carried on
by a classical algorithm. In [16], the ker-
nel between two classical data xm and xm′ is
given by:

Km,m′ = 〈0⊗n|U †φ(xm)Uφ(xm′ )|0
⊗n〉. (3)

In order to challenge and justify the use of a
quantum assisted method it is important to con-
sider how hard would it be for a classical machine
to compute the same quantities. Indeed, if the
output probability or kernel could be computed
directly classically, there would be no need for a
quantum computer for this task. Hence, when it
comes to the classical hardness, the first method
requires that estimating the output probability in
Eq. (2) is hard, while the second method requires
that estimating the overlap in Eq. (3) is hard (for
classical computers). We give formal definitions
for these classical simulation tasks in the follow-
ing section.

2.2 Classical simulation of quantum computa-
tions
Depending on the approach used for simulat-
ing classically the functioning of quantum de-
vices, several notions of simulability are com-
monly used. One example is to ask the classi-
cal simulation algorithm to mimic the output of
the quantum computation [27, 28]. Informally,

a quantum computation is weakly simulable if
there exists a classical algorithm which outputs
samples from its output probability distribution
in time polynomial in the size of the quantum
computation. Various relaxations of this defi-
nition are possible, allowing the classical sam-
pling to be approximate rather than exact, or
to abort with a small probability. The exis-
tence of such an efficient classical simulation has
been ruled out for various subuniversal models of
quantum computing, such as IQP circuits [5] or
Boson Sampling [4], under complexity-theoretic
conjectures—both in the exact case and the ap-
proximate case, up to additional conjectures.

While weak simulation of quantum computa-
tions is arguably the most commonly studied,
other notions of classical simulation may be use-
ful: if the output samples of a quantum computa-
tion are used to compute a quantity which may be
computed efficiently classically by other means, it
is no longer necessary to simulate the whole quan-
tum device. We consider two concrete examples
which are prominent for variational quantum al-
gorithms in quantum machine learning: probabil-
ity estimation and overlap estimation [16, 17].

Definition 3 (Probability estimation). Let P be
a probability distribution over M outcomes and
let ε, δ > 0. Given any outcome x in the sam-
ple space of P , probability estimation refers to
the computational task of outputting an estimate
P̃ [x] such that ∣∣∣P̃ [x]− P [x]

∣∣∣ ≤ ε, (4)

with probability greater than 1 − δ, in time
O(poly (Mε ) log 1

δ ).

Efficient probability estimation amounts to out-
putting an estimate of the probability of a fixed
outcome with an additive error polynomially
small and with exponentially small probability
of failure, in polynomial time in the size of the
computation. One may use the samples from a
quantum computation in order to perform effi-
ciently probability estimation for any given out-
come: given a quantum device of size M which
outputs samples from some probability distribu-
tion and a fixed outcome x in the sample space,
one may run the device poly M times, recording
the value 1 whenever the outcome x is obtained
and the value 0 otherwise. Then, the frequency
of the outcome x over the poly M uses of the
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quantum device is a polynomially precise addi-
tive estimate of the probability of the outcome x
with exponentially small probability of failure, by
virtue of Hoeffding inequality [29].

Weak simulation is at least as hard as proba-
bility estimation, since by the previous reason-
ing one may obtain polynomially precise addi-
tive estimates of probabilities from samples of
the probability distribution. Moreover, they are
some quantum computations for which weak sim-
ulation is hard for classical computers (assuming
widely believed conjectures from complexity the-
ory), but probability estimation can be done ef-
ficiently classically. This is the case for IQP cir-
cuits [5, 16], Boson Sampling [4] and even the
period-finding subroutine of Shor’s factoring al-
gorithm [2]. We detail the latter case in Ap-
pendix A, for the sake of clarifying the relations
between these different notions of classical simu-
lation.

A more general computational task than prob-
ability estimation in the context of quantum com-
puting is the following:

Definition 4 (Overlap estimation). Let |φ〉 and
|ψ〉 be quantum output states of two quantum
computations efficiently describable of size M
and let ε, δ > 0. Overlap estimation refers to
the computational task of outputting an estimate
Õ such that ∣∣∣Õ − 〈φ|ψ〉 |2∣∣∣ ≤ ε, (5)

with probability greater than 1 − δ, in time
O(poly (Mε ) log 1

δ ).

The overlap between two quantum states is a
measure of their distinguishability [30] and over-
lap estimation thus is related to quantum state
discrimination. Several techniques exist to per-
form quantumly the overlap estimation of two
states |φ〉 and |ψ〉 [31]. One of them is to per-
form the swap test [32] with various copies of both
states.

Overlap estimation can be also done efficiently
classically for IQP circuits. Nonetheless, this
family of circuits has been identified as a promis-
ing venue for implementing quantum machine
learning algorithms [16], when enlarged to con-
tain similar circuits with bigger depth. Motivated
by this approach, we consider hereafter the case of
another subuniversal model: Boson Sampling [4]
with input photons, supplemented with adaptive
measurements.

3 Quantum machine learning with
adaptive linear optics
In what follows, we study Boson Sampling archi-
tectures [4], supplemented with a given number
of adaptive measurements—that is, some of the
modes are measured throughout the computation
and the rest of the computation can depend on
their outcome—which we refer to as adaptive lin-
ear optics. We derive in this section quantum al-
gorithms for performing probability and overlap
estimation with adaptive linear optics, together
with a prescription for utilising these algorithms
as subroutines in supervised learning algorithms.

3.1 Adaptive linear optics
Hereafter, we detail the computational model of
adaptive linear optics which we consider. We first
introduce a few notations.

In the linear optics picture, the input states
we consider are multimode photon number Fock
states over m modes (we use bold math for multi-
index notations, see Table 1):

|s〉 = 1√
s!
â†s1

1 . . . â†smm |0〉⊗m , (6)

where si and â†i are respectively the number of
photons and the creation operator for the ith

mode. We identify these states with m-tuples of
integers s = (s1, . . . , sm) ∈ Nm. Following [4], let
us define, for all n ∈ N,

Φm,n := {s = (s1, . . . , sm) ∈ Nm, |s| = n}. (7)

This set corresponds to the m-mode Fock states
with total number of photons equal to n, and we
have |Φm,n| =

(m+n−1
n

)
.

We consider a unitary interferometer of size
m, described by an m × m unitary matrix U =
(uij)1≤i,j≤m. Unlike in the circuit picture, the
matrix U does not act on the computational ba-
sis, which is the infinite multimode Fock basis,
but rather describes the linear evolution of the
creation operator of each mode. More precisely,

â†1
...
â†m

 7→ U


â†1
...
â†m

 =


∑m
k=1 u1kâ

†
k

...∑m
k=1 umkâ

†
m

 . (8)

We write Û instead the unitary action of the in-
terferometer on the multimode Fock basis. Be-
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|s| s1 + · · ·+ sm

s! s1! · · · sm!

|s〉 |s1 . . . sm〉

s + t (s1 + t1, . . . , sm + tm)

0m (0, . . . , 0)

1m (1, . . . , 1)

Table 1: Multi-index notations. For allm ∈ N∗, we write
s = (s1, . . . , sm) ∈ Nm and t = (t1, . . . , tm) ∈ Nm.

cause the interferometer conserves the total num-
ber of photons, for all p, q ∈ N, all s ∈ Φm,p and
all t ∈ Φm,q

〈s|Û |t〉 = 0 (9)

whenever p 6= q. Let n ∈ N and s =
(s1, . . . , sm) ∈ Φm,n and t = (t1, . . . , tm) ∈ Φm,n.
Combining Eq. (6) and Eq. (8) we obtain [4]

〈s|Û |t〉 = Per(Us,t)√
s!
√
t!
, (10)

where Us,t is the n×n matrix obtained from U by
repeating si times its ith row and tj times its jth

column for i, j = 1, . . . ,m, and where the perma-
nent of a r× r matrix A = (aij)1≤i,j≤r is defined
as

PerA =
∑
σ∈Sr

r∏
i=1

aiσ(i), (11)

where Sr is the symmetric group over {1, . . . , r}.
We write Prm,n[.|t] the probability distribution

of the outputs over Φm,n of the unitary interfer-
ometer U acting on an input |t〉. With the pre-
vious notations we obtain, for all p, q ∈ N, all
s ∈ Φm,p, and all t ∈ Φm,q,

Prm,n[s|t] = |Per(Us,t)|2

s!t! δpq. (12)

In what follows, we fix the input state |t〉 =
|1n0m−n〉, with single-photon states in the first
n modes, and vacuum states in all other modes,
where the superscript indicates the size of the
string (0, . . . , 0) or (1, . . . , 1) when there is a pos-
sible ambiguity. We consider the case of lin-
ear optical quantum computing with adaptive
photon-number measurements, which we refer to

as adaptive linear optics (Fig. 1). We denote by
k ∈ {0, . . . ,m} the number of single-mode adap-
tive measurements. Without loss of generality,
we assume that the first k modes are adaptively
measured throughout the computation, and we
write p = (p1, . . . , pk) the adaptive measurement
outcomes. For r ∈ N and p ∈ Φk,r, let us define

Up := [1k ⊕ Uk(p1, . . . , pk)] . . . [11 ⊕ U1(p1)]U0,
(13)

where 1j is the identity matrix of size j and where
the unitary matrices Uj depend on the measure-
ment outcomes p1, . . . , pj for all j ∈ {1, . . . , k}.
An adaptive interferometer U over m modes with
n input photons and k adaptive measurements is
then represented as a family of nonadaptive uni-
tary interferometers

U := {Up|p ∈ Φk,r, 0 ≤ r ≤ n} , (14)

for each possible adaptive measurement outcome
p. The matrix Up describes the interferometer in
Fig. 1, when the adaptive measurement outcome
p = (p1, . . . , pk) ∈ Φk,r has been obtained. In
this case, the output state is a pure state which
reads:

Trk
[
(|p〉〈p| ⊗ 1m−k)Ûp |t〉〈t| Ûp†

]
, (15)

where the partial trace is over the first k modes
and where |p〉 denotes the k-mode Fock state
|p1 . . . pk〉. At the end of the computation, all
the remaining m − k modes are measured with
photon-number detection, yielding the final out-
come s = (s1, . . . , sm−k) ∈ Φm−k,n−r.

3.2 Quantum probability and overlap estima-
tion
We now detail how to perform probability esti-
mation or overlap estimation with an adaptive
linear optical interferometer as described in the
previous section. These tasks may be performed
in particular as subroutines for machine learning
algorithms, as detailed in the next section.

For estimating an output probability with
a quantum circuit, one may run the circuit
O(poly m) times, obtaining classical outcomes,
for which the frequency gives a polynomially pre-
cise additive estimate of the probability which can
be computed efficiently. In the case of a circuit
with adaptive measurements, one only looks at
the final measurement outcomes and the same
holds for adaptive linear optical computations.
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pk
<latexit sha1_base64="kdnCA5RGZ5wkg2fv+/7WmHfcOG4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Q/7pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AFYto3W</latexit>

p2
<latexit sha1_base64="zVqSm7nkuXHALgIZSph8/BQiwIg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AECUo2d</latexit>

s1
<latexit sha1_base64="1RWc7C0Sumj8AZJqF+H+E/9n5OI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAFYI2f</latexit>

sm�k
<latexit sha1_base64="tt7dOyzdp0IHAx25NkVszw0BOVU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWsB/QhrLZbtolu5uwuxFK6I/w4kERr/4eb/4bt2kO2vpg4PHeDDPzgoQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TRWibxDxWvQBrypmkbcMMp71EUSwCTrtBdDf3u09UaRbLRzNNqC/wWLKQEWys1NXDTFxEs2G15tbdHGiVeAWpQYHWsPo1GMUkFVQawrHWfc9NjJ9hZRjhdFYZpJommER4TPuWSiyo9rP83Bk6s8oIhbGyJQ3K1d8TGRZaT0VgOwU2E73szcX/vH5qwhs/YzJJDZVksShMOTIxmv+ORkxRYvjUEkwUs7ciMsEKE2MTqtgQvOWXV0mnUfcu642Hq1rztoijDCdwCufgwTU04R5a0AYCETzDK7w5ifPivDsfi9aSU8wcwx84nz9ZqY+T</latexit>

|1i
<latexit sha1_base64="HYi+qGuWADJ/vOJt8E+CnN5z0G4=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PHldReVAYK9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx28IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo96XOFzIixJZQpbm8lbEgVZcZmVLQheIsvL5NmteKdV6p3F+XadR5HAY7hBM7Ag0uowS3UoQEMIniGV3hzlPPivDsf89YVJ585gj9wPn8AuAKQWg==</latexit>

|0i
<latexit sha1_base64="mFbyg4gJW0ZXAvvu82LjFXT3NAg=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PLldReVAYK9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx28IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo96XOFzIixJZQpbm8lbEgVZcZmVLQheIsvL5NmteKdV6p3F+XadR5HAY7hBM7Ag0uowS3UoQEMIniGV3hzlPPivDsf89YVJ585gj9wPn8AtneQWQ==</latexit>

|0i
<latexit sha1_base64="mFbyg4gJW0ZXAvvu82LjFXT3NAg=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PLldReVAYK9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx28IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo96XOFzIixJZQpbm8lbEgVZcZmVLQheIsvL5NmteKdV6p3F+XadR5HAY7hBM7Ag0uowS3UoQEMIniGV3hzlPPivDsf89YVJ585gj9wPn8AtneQWQ==</latexit>

|1i
<latexit sha1_base64="HYi+qGuWADJ/vOJt8E+CnN5z0G4=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PHldReVAYK9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx28IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo96XOFzIixJZQpbm8lbEgVZcZmVLQheIsvL5NmteKdV6p3F+XadR5HAY7hBM7Ag0uowS3UoQEMIniGV3hzlPPivDsf89YVJ585gj9wPn8AuAKQWg==</latexit>{

<latexit sha1_base64="bOGKO5STCvM4FDUSknSgceOIw38=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclqYIui25cVrAXaEKZTE7aoZNJmJkIJdSNr+LGhSJufQt3vo3TNgtt/WHg4z/nzMz5g5QzpR3n2yqtrK6tb5Q3K1vbO7t79v5BWyWZpNCiCU9kNyAKOBPQ0kxz6KYSSBxw6ASjm2m98wBSsUTc63EKfkwGgkWMEm2svn3kBTBgIqfmDjXxQIQF9u2qU3NmwsvgFlBFhZp9+8sLE5rFIDTlRKme66Taz4nUjHKYVLxMQUroiAygZ1CQGJSfzzaY4FPjhDhKpDlC45n7eyInsVLjODCdMdFDtVibmv/VepmOrvyciTTTIOj8oSjjWCd4GgcOmQSq+dgAoZKZv2I6JJJQbUKrmBDcxZWXoV2vuee1+t1FtXFdxFFGx+gEnSEXXaIGukVN1EIUPaJn9IrerCfrxXq3PuatJauYOUR/ZH3+AJoOl6E=</latexit>

{
<latexit sha1_base64="bOGKO5STCvM4FDUSknSgceOIw38=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclqYIui25cVrAXaEKZTE7aoZNJmJkIJdSNr+LGhSJufQt3vo3TNgtt/WHg4z/nzMz5g5QzpR3n2yqtrK6tb5Q3K1vbO7t79v5BWyWZpNCiCU9kNyAKOBPQ0kxz6KYSSBxw6ASjm2m98wBSsUTc63EKfkwGgkWMEm2svn3kBTBgIqfmDjXxQIQF9u2qU3NmwsvgFlBFhZp9+8sLE5rFIDTlRKme66Taz4nUjHKYVLxMQUroiAygZ1CQGJSfzzaY4FPjhDhKpDlC45n7eyInsVLjODCdMdFDtVibmv/VepmOrvyciTTTIOj8oSjjWCd4GgcOmQSq+dgAoZKZv2I6JJJQbUKrmBDcxZWXoV2vuee1+t1FtXFdxFFGx+gEnSEXXaIGukVN1EIUPaJn9IrerCfrxXq3PuatJauYOUR/ZH3+AJoOl6E=</latexit>

Figure 1: Linear optical computing model with k adaptive measurements and input state |1 . . . 10 . . . 0〉, with n
photons over m modes. The output modes are measured using photon number detection. For all j ∈ {1, . . . , k}, the
unitary interferometer Uj , acting on m− j modes, depends on the measurement outcomes p1, . . . , pj . The adaptive
measurement outcomes p1, . . . , pk are used to drive the computation, whose final outcome is s1, . . . , sm−k.

For estimating the overlap of output states of
two unitary quantum circuits, one may run both
circuits in parallel and compare their quantum
output states, for example with the swap test [32].
Doing so a polynomial number of times provides
a polynomially precise estimate of the overlap.
Alternatively, writing C1 and C2 the unitary cir-
cuits, one may build the circuit C1C

†
2 and project

the output quantum state onto the input state.
In the case of circuits with adaptive measure-

ments, there is an output state for each adaptive
measurement outcome. In particular, if the num-
ber of possible adaptive measurement outcomes is
exponential in the size of the computation, then
the probability distribution for these outcomes
has to be concentrated on a polynomial number
of events for the quantum overlap estimation to
be efficient. This is because in order to compute
a polynomially precise estimate of the overlap,
say, | 〈φ|ψ〉 |2, the states |φ〉 and |ψ〉, both cor-
responding to specific adaptive measurement re-
sults, have to be obtained a polynomial number
of times.

For adaptive linear optics overm modes with n
input photons and k adaptive measurements, the
number of possible adaptive measurement out-
comes is given by

n∑
r=0
|Φk,r| =

n∑
r=0

(
k + r − 1

r

)

=
(
n+ k

n

)
,

(16)

where the sum is over the total number of pho-

tons detected at the stage of the adaptive mea-
surements. Hence, for overlap estimation to be
efficient, either the probability distribution for
the adaptive measurements outcomes is concen-
trated on a polynomial number of outcomes, or(n+k
n

)
= O(poly m), which is the case for exam-

ple when n = O(1) and k = O(m), n = O(logm)
and k = O(logm), or n = O(m) and k = O(1).
In what follows, we do not assume concentration
of the adaptive measurement outcome probability
distribution and consider general interferometers
with adaptive measurements. In this context, the
quantum efficient regime for overlap estimation
thus corresponds to

(n+k
n

)
= O(poly m).

Let U = {Ur|r ∈ Φk,r, 0 ≤ r ≤ n} be an adap-
tive linear interferometer with n input photons
and k adaptive measurements and let |φ〉 and |ψ〉
be two output states. Let p and q denote the out-
comes of the adaptive measurements for |φ〉 and
|ψ〉, respectively, so that Up is the interferometer
for |φ〉 and Uq is the interferometer for |ψ〉, with
input Fock state |t〉. With Eq. (15) we obtain

| 〈φ|ψ〉 |2

= Tr
[
Trk[(|p〉〈p| ⊗ 1m−k)Ûp |t〉〈t| Ûp†] |ψ〉〈ψ|

]
= Tr

[
(|p〉〈p| ⊗ 1m−k)Ûp |t〉〈t| Ûp†(1k ⊗ |ψ〉〈ψ|)

]
= Tr

[
Ûp |t〉〈t| Ûp†(|p〉〈p| ⊗ |ψ〉〈ψ|)

]
= Tr

[
|t〉〈t| Ûp† (|p〉〈p| ⊗ |ψ〉〈ψ|) Ûp

]
,

(17)
Because of the conservation of the total number
of photons, the overlap between the states |φ〉 and
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|ψ〉 is zero if |p| 6= |q|.
Otherwise, it can be estimated using a polyno-

mial number of copies of the state |ψ〉 as follows:
send the input |p〉 ⊗ |ψ〉 into the interferometer
with unitary matrix Up† and measure the photon
number in each output mode; record the value 1 if
the measurement pattern matches the Fock state
|t〉 and the value 0 otherwise. Then, the mean of
the obtained values yields a polynomially precise
estimate of the overlap | 〈φ|ψ〉 |2 by Eq. (17) and
Hoeffding inequality.

Note that this overlap estimation requires the
preparation of the Fock state |p〉 but no adaptive
measurements. By symmetry, one could estimate
the overlap alternatively using a polynomial num-
ber of copies of the state |φ〉 and preparing the
Fock state |q〉, or by mixing copies of |φ〉 and |ψ〉.
In practice, one may run the adaptive interferom-
eter U and apply the above procedure for |φ〉 or
|ψ〉 “on the fly”, depending on whether the adap-
tive measurement outcome obtained is equal to
q or p (see Algorithm 1 for overlap estimation
including this state preparation step).

3.3 Support Vector Machine with adaptive lin-
ear optics
3.3.1 Support vector machine with quantum ker-
nel methods

We consider the training dataset T ,
with |T | points of the following form
{(~x1, y1), . . . , (~x|T |, y|T |)}, where ~xl ∈ Rd,
yl ∈ C, ∀l ∈ {1 . . . , |T |} and where C = {−1, 1}
in the case of binary classification.

We also consider a feature map in the form of
unitary operators that is a subset of the family
introduced in Eq. (14): Uφ = {Upl

l }l in which for
each classical data xl there is a unitary operator
Upl
l .
The idea of Support Vector Machine (SVM)

[33–35] is to find the maximum-margin hyper-
plane that divides the group of points by their
y values. Such hyperplane is defined with a vec-
tor ~w ∈ Rd and b ∈ R. With the hard-margin
condition we have,

yl(~w.~xl + b) ≥ 1, ∀l ∈ {1 . . . , |T |}. (18)

In this case, a decision function over a new point
~x can be constructed directly from the hyperplane
as follows:

f(~x) = sign(~w.~x+ b). (19)

Algorithm 1: Overlap estimation for
adaptive linear optics
Input: Adaptive interferometer
U = {Ur|r ∈ Φk,r, 0 ≤ r ≤ n}, adaptive
measurement outcomes p, q.
Parameters: Input |t〉 and number of
shots T .
Set the state preparation counter csp = 0.
Set the overlap counter cover = 0.
while csp < T do

Run U on input |t〉, obtaining adaptive
measurement outcome r and output
state |χ〉.
if r = p then

csp → csp + 1.
Run Uq† on input |q〉 ⊗ |χ〉.
Measure in photon number basis.
Record measurement outcome s.
if s = t then

cover → cover + 1,
else

cover → cover.
else
if r = q then

csp → csp + 1.
Run Up† on input |p〉 ⊗ |χ〉.
Measure in photon number basis.
Record measurement outcome s.
if s = t then

cover → cover + 1,
else

cover → cover.
else

return cover/T .

When we have access to a feature map φ, the
vector ~w can be also written as

~w =
∑

l∈{1...,|T |}
αlylφ(xl), (20)

and the decision function becomes

f(~x) = sign

 |T |∑
l=1

αlylκ(~xl, ~x) + b

 , (21)

where the kernel κ(~xl, ~x) has an interpretation in
terms of the feature map φ as given in Eq. (1).

In order to find the best hyperplane, one
needs to use a quadratic programming solver.
In Sec. 3.3.2, we consider the case where

7



the programming solver is composed of a hy-
brid quantum-classical algorithm whereas in
Sec. 3.3.3, such solver will be external to the
quantum device. The optimisation program that
needs to be solved is:

max LD =
|T |∑
l=1

αl −
1
2
∑
l,l′

αlylαl′yl′κ(~xl, ~xl′)

s.t.
|T |∑
l=1

αlyl = 0

0 ≤ αl ≤ 1/2nλ, ∀l ∈ {1 . . . , |T |},
(22)

where λ is a parameter that is introduced for the
soft-margin condition. By solving such problem,
one obtains the coefficients {α∗l } and b∗ of the
hyperplane (see Eq. (20)) that are optimum.

3.3.2 Explicit method: probability estimation

The explicit method corresponds to the case
where the prediction is obtained from the proba-
bility distribution when using a quantum device.
Inspired by [16], we propose to use adaptive lin-
ear optics for the feature map and use its output
state as an input state of a second quantum de-
vice for the SVM. We show that Boson Sampling
can be used to realize a SVM algorithm by us-
ing a hybrid variational quantum-classical for the
training phase [12, 13, 26].

We write the Boson Sampling interferometer
operation BS(~θ), where ~θ are the parameters of
the beam splitters and phase shifters of the in-
terferometer, since any interferometer can be im-
plemented efficiently with only phase shifters and
beam splitters [36]. In order to make a prediction
we need to bin the outcomes. For a given function
g : Φm,n → {−1,+1}, we can write the following
observable for the binning:

N =
∑

s∈Φm,n
g(s) |s〉 〈s| . (23)

The observable N can also be decomposed in
term of projectors as N = Π(+1) − Π(−1) and
Πy = (1 + yN )/2.

For a given data point ~x with the associated
operation Ûpx

x , the probability to obtain the out-
come y is:

Pr(y|px) = Tr
[
ΠyBS(~θ)Ûpx

x |t〉 〈t| Ûpx†
x BS(~θ)†

]
= 1

2
(
1 + y 〈t| Ûpx†

x BS(~θ)†NBS(~θ)Ûpx
x |t〉

)
.

(24)

Algorithm 2: Explicit method: predic-
tion phase
Input: Training dataset T , feature maps
Uφ, optimisation routine.
Parameters: Input |t〉, number of shots
T , initial be parameters ~θ0.
Set ~θ = ~θ0.
while J(~θ) not converged do

for l = 1 to |T | do
Set cpl = 0.
Set cy = 0 ∀y ∈ C.
while cpl < T do

Run BS(~θ)Upl
l on |t〉, obtaining

adaptive measurement
outcome r and outcome label
y.
if r = pl then

cpl → cpl + 1.
cy → cy + 1.

else
end while

Compute Pr(y|pl) = cy/T .
end for

Compute J(~θ) and update ~θ.
end while

return Value J(~θ∗) and final ~θ∗ .

In the quantum circuit model, it has been explic-
itly shown in [16] that the equivalent of Eq. (24)
in the circuit picture is related to the decision
function of an SVM. This proof relies on de-
composing the variational quantum circuit in the
Pauli basis. Moreover, in [37], the authors pro-
vide a quantum circuit that simulates Boson Sam-
pling with arbitrarily distinguishable particles.
Hence, the unitary BS(~θ) can be decomposed in
the Pauli basis (for qudits), hence providing the
same relation for Eq. (24) to the decision function
of an SVM.

Experimentally the probability, Pr(y|px), can
be obtained via the following approximation

Pr(y|px) ≈
Ty|x
Tx

, (25)

where Tx is the number of times where the value
px has been recorded and Ty|x is the number of
times where the value y has been recorded after
that the value has been also recorded px.

In order to train the Boson Sampler it is nec-
essary to use a cost function J(~θ) and an opti-
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Algorithm 3: Explicit method: predic-
tion phase
Input: Unlabeled data x, feature map
Uφ(x), optimal parameters ~θ∗.
Parameters: Input |t〉, number of shots
Tx.
Set cpx = 0.
Set cy = 0 ∀y ∈ C.
while cpx < Tx do

Run BS(~θ∗)Uφ(x) on |t〉, obtaining
adaptive measurement outcome r and
outcome label y.
if r = px then

cpx → cpx + 1.
cy → cy + 1.

else
end while

Compute Pr(y|px) = cy/Tx.
return Return argmaxy{Pr(y|px)} .

misation routine. For the optimisation routine,
standard variational optimisation methods can be
used such as hybrid variational quantum-classical
or classical algorithms [12, 13, 26]. Different
cost functions can be used such as the empiri-
cal risk function [16] or the square-loss function
[17]. However, other type of cost function are not
suitable for this kind of problems such as the ones
usually used in gate synthesis or quantum state
preparation [38, 39].

The algorithm for the training phase is de-
scribed in Algorithm 2 and the prediction phase
is described in Algorithm 3.

3.3.3 Implicit method: overlap estimation

The implicit method corresponds to the case
where the kernel is computed by a quantum de-
vice, while the rest of the machine learning al-
gorithm can be proceed on a classical machine.
In adaptive linear optics, the kernel can be es-
timated using the Algorithm 1. It is possible to
proceed to both the training and prediction phase
using this hybrid quantum-classical method. The
algorithm for the training phase is described in
Algorithm 4 and the prediction phase is described
in Algorithm 5.

Algorithm 4: Implicit method: training
phase
Input: Dataset T , Feature maps U ,
quadratic programming solver.
Parameters: Input |t〉 and number of
shots T .
for l = 1 to |T | do

for l′ = 1 to |T | do
Run Upl⊗T

l on input |t〉⊗T .
Run Algo. 1 with input Upl

l , U
pl′
l′ .

Store output at kernel matrix entry
Kl,l′ = κ(~xl, ~xl′).
endfor

endfor
Solve the optimisation problem in Eq. (22)
with T and K.
return Return {α∗l } and b.

Algorithm 5: Implicit method: predic-
tion phase
Input: Dataset T , unlabeled data ~x,
optimal SVM parameters {α∗l } and b
Parameters: Input |t〉 and number of
shots T .
Set the variable f = b.
for l = 1 to |T | do

Run Upx⊗T
x on input |t〉⊗T .

Run Algo. 1 with parameters
Upx⊗T
x |t〉⊗T , Upl

l .
f → f + αlylκ(~xl, ~x).
endfor

return Return sign(f).

4 Classical simulation of adaptive lin-
ear optics
The complexity of probability estimation and
overlap estimation of quantum computations has
been well studied in the circuit model [40, 41].
In this section, we challenge the previous quan-
tum algorithms by giving classical algorithms for
probability estimation and overlap estimation for
adaptive linear optics over m modes. We iden-
tify various complexity regimes for different num-
bers of input photons n ≤ m, different number
of adaptive measurements k ≤ m, and differ-
ent number of photons r ≤ n detected during
the adaptive measurements. To do so, we derive
generic expressions for the output probabilities
and for the overlap of output states of linear opti-
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cal interferometers with adaptive measurements.

4.1 Classical probability estimation
Firstly, we obtain a classical algorithm for prob-
ability estimation of adaptive linear optics over
m modes with n input photons and k adaptive
measurements.

We first consider the case k = 0, i.e., Boson
Sampling. The probability of the outcome s ∈
Φm,n for the interferometer U given the input t =
(1n,0m−n) ∈ Φm,n is given by Eq. (12):

Prm,n[s] = 1
s! |Per (Us,t)|2, (26)

where Us,t is the n × n matrix obtained from
U by repeating si times its ith row for i ∈
{1, . . . ,m} and removing its jth column for j =
{n+1, . . . ,m}. When |s| 6= n however, the prob-
ability is 0, since the input t has n photons and
the linear interferometer does not change the to-
tal number of photons.

The permanent of a square matrix of size n can
be computed exactly in time O(n2n), thanks to
Ryser’s formula [42]. However, polynomially pre-
cise estimates of the permanent of a square uni-
tary matrix can be obtained in polynomial time
in the size of the matrix using an algorithm due
to Gurvits [43], later generalised to matrices with
repeated lines or columns [44], so probability es-
timation can be done classically efficiently, which
was already noted in [4].

We now turn to the case k > 0—which to our
knowledge has not been treated elsewhere—using
the notations of section 3.1. This case is a direct
extension of the case k = 0. With Eq. (12), for
r ∈ N, p ∈ Φk,r and s ∈ Φm−k,n−r, the probabil-
ity of an total outcome (p, s) ∈ Φm,n (adaptive
measurement and final outcome) is given by

Prtotalm,n [p, s] = 1
p!s!

∣∣∣Per
(
Up

(p,s),t

)∣∣∣2 . (27)

Let r ∈ {0, . . . , n} and let s ∈ Φm−k,n−r. Then,
the probability of obtaining the final outcome s
after the adaptive measurements reads

Prfinalm,n [s] =
∑

p∈Φk,r

Prtotalm,n [p, s]

= 1
s!

∑
p∈Φk,r

1
p!

∣∣∣Per
(
Up

(p,s),t

)∣∣∣2. (28)

The sum is taken over the elements of Φk,r, which
has

(k+r−1
r

)
elements, where r ≤ n is the total

r
k O(1) O(logm) O(m)

O(1)

O(logm)

O(m)

Table 2: Simulability regimes for probability estimation
as a function of the parameters r (the total number
of photons detected during the adaptive measurements)
and k (the number of single-mode adaptive measure-
ments). In green is the parameter regime for which
the classical probability estimation is efficient, i.e., takes
polynomial time in m, while in red is the regime where
it is no longer efficient.

number of photons detected during the adaptive
measurements. Each permanent in the sum can
be estimated additively with polynomial preci-
sion in time O(poly m), using the generalised al-
gorithm from [44] (see Appendix B for details).
Hence, probability estimation can be done classi-
cally efficiently whenever the sum has a polyno-
mial number of terms. In particular, as long as
both k and r are O(logm), the output probabil-
ity can be estimated efficiently. The simulability
regimes are summarised in Table 2.

The universal quantum computing regime cor-
responds to n = O(m) and k = O(m) [25].
The time complexity of the classical simulation is
O
((k+r−1

r

)
poly m

)
and there is a possibility of

subuniversal quantum advantage for probability
estimation for n = O(logm) and k = O(m), or
n = O(m) and k = O(logm). Moreover, the frac-
tion r

n of input photons detected during the adap-
tive measurements has to be sufficiently large to
prevent efficient classical simulation.

4.2 Classical overlap estimation

In this section, we obtain a classical algorithm for
overlap estimation of adaptive linear optics over
m modes with n input photons and k adaptive
measurements.

Once again, we start with k = 0. With
Eq. (10), the output state of an m-mode inter-

10



ferometer U with input state t ∈ Φm,n reads

|φ〉 =
∑

s∈Φm,n
〈s|Û |t〉 |s〉

=
∑

s∈Φm,n

Per (Us,t)√
s!t!

|s〉,
(29)

where Us,t is the n × n matrix obtained from
U by repeating si times its ith row for i ∈
{1, . . . ,m} and repeating tj times its jth row for
j ∈ {1, . . . ,m}. The composition of two inter-
ferometers is another interferometer which uni-
tary representation is the product of the unitary
representations of the composed interferometers.
Hence, the inner product of the output states |φ〉
and |ψ〉 of two m-mode interferometers U and V
with the same input state t ∈ Φm,n, is equal to
the matrix element t, t of Û †V̂ :

〈φ|ψ〉 =
∑

u,v∈Φm,n
〈t|Û †|u〉 〈v|V̂ |t〉 〈u|v〉

=
∑

s∈Φm,n
〈t|Û †|s〉 〈s|V̂ |t〉

= 〈t|Û †V̂ |t〉

=
Per

[
(U †V )t,t

]
t! ,

(30)

where we used in the third line t ∈ Φm,n and the
fact that Û †V̂ conserves the space Φm,n. With
the input t = (1n,0m−n) with n photons in m
modes, this reduces to

〈φ|ψ〉 = Per
[
(U †V )n

]
, (31)

where (U †V )n is the n × n top left submatrix of
U †V . Hence, the inner product and the overlap
may be approximated to a polynomial precision
efficiently, since this is the case for the perma-
nent [43, 44].

We now consider the case k > 0. Let r ∈ N and
let p ∈ Φk,r. With Eqs. (10) and (15), writing
Pradapm,n [p] the probability of the adaptive measure-
ment outcome p, the output state of the interfer-
ometer Up with k adaptive measurements with
input t = (1n,0m−n) in Fig. 1, when the adap-
tive measurement outcome p is obtained, reads

1√
Pradapm,n [p]

|ψp〉 , (32)

where

|ψp〉 :=
∑

s∈Φm−k,n−r

Per
(
Up

(p,s),t

)
√
p!s!

|s〉 (33)

and where Pradapm,n [p] = 〈ψp|ψp〉. More generally,
the inner product of two (not normalised) output
states |ψp〉 and |ψq〉 of m-mode interferometers
Up and V q with k adaptive measurements thus
is zero if |p| 6= |q|. When |p| = |q| = r, it is given
by

〈ψp|ψq〉 = 1√
p!q!

×
∑

s∈Φm−k,n−r

1
s! Per

(
Up†
t,(p,s)

)
Per

(
V q

(q,s),t

)
.

(34)
This expression is a sum of |Φm−k,n−r| terms,
which is exponential in m whenever n is not con-
stant. In what follows, we show that the ex-
pression in Eq. (34) may be rewritten as a sum
over fewer terms using properties of the perma-
nent [45], which constitutes our main technical
result:

Lemma 1. Let r ∈ N. The inner product of two
(not normalised) output states |ψp〉 and |ψq〉 of
m-mode interferometers Up and V q with adap-
tive measurements outcome p, q ∈ Φk,r is given
by

〈ψp|ψq〉 = 1√
p!q!

×
∑

i,j∈{0,1}n
|i|=|j|=r

Per
(
Ai
)

Per
(
Bj
)

Per
(
Ci,j

)
, (35)

where for all i, j ∈ {0, 1}n such that |i| = |j| = r,

Ai = Up†
(i,0m−n),(p,0m−k) (36)

is an r×r matrix which can be obtained efficiently
from Up,

Bj = V q
(q,0m−k),(j,0m−n) (37)

is an r×r matrix which can be obtained efficiently
from V q, and

Ci,j=Up†
(1n−i,0m−n),(0k,1m−k)V

q
(0k,1m−k),(1n−j,0m−n)

(38)
is an (n−r)×(n−r) matrix which can be obtained
efficiently from Up and V q.

We give a detailed proof in Appendix C. By
Lemma 1, the inner product is expressed as the
modulus squared of a sum over

(n
r

)2 products
of three permanents, of square matrices of sizes
|p| = r, |q| = r and (n − r), respectively. In the
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n
k O(1) O(logm) O(m)

O(1)

O(logm) · · ·

O(m) · · · · · ·

Table 3: Simulability regimes for classical overlap esti-
mation as a function of the parameters n and k. In green
is the parameter regime for which the classical overlap
estimation may be efficient (i.e., may take polynomial
time in m) depending on the value of r, and in red is
the regime where the classical algorithm is no longer ef-
ficient. The cells containing a symbol “· · · ” correspond
to parameter regimes for which the quantum algorithm
for estimating the overlap is no longer efficient.

worst case, when r = n/2, the sum has at most
O(4n) terms, up to a polynomial factor in n. In
particular, when n = O(logm) or r = O(1), the
inner product reduces to a sum of a polynomial
number of terms, which can all be computed in
time O(poly m) with Ryser’s formula [42]. An
interesting fact is that the cost of computing the
inner product does not depend explicitely on the
number k > 0 of adaptive measurements. How-
ever, it does depend explicitly on r the total num-
ber of photons detected during the adaptive mea-
surements, and a larger number of adaptive mea-
surements k favors the detection of a larger num-
ber of photons r.

The overlap of normalised ouput states is given
by

| 〈ψp|ψq〉 |2

〈ψp|ψp〉 〈ψq|ψq〉
, (39)

which may also be computed efficiently when
n = O(logm). In this case, the classical algo-
rithm for overlap estimation simply computes the
above expression, using Lemma 1 for each of the
inner products. The running time of this classi-
cal algorithm thus is O(

(n
r

)2 poly m) and its effi-
ciency is summarised as a function of n and k in
Table 3 and as a function of n and the number of
photons r detected during the adaptive measure-
ments in Table 4.

Since the quantum efficient regime corresponds
to
(k+n
n

)
= O(poly m) there is a possibility of

quantum advantage for overlap estimation when
k = O(1) and n = O(m). However, like for prob-
ability estimation, the fraction r

n of input photons

n
r O(1) O(logn) O(n)

O(1)

O(logm)

O(m)

Table 4: Simulability regimes for classical overlap esti-
mation as a function of the parameters n (total number
of input photons) and r (total number of photons de-
tected in the adaptive measurements). The regimes are
obtained from the running time of the classical algorithm
using Stirling’s equivalent n! ∼

√
2πn( n

e )n.

detected during the adaptive measurements has
to be sufficiently large to prevent efficient classi-
cal simulation. In this case, when the number of
adaptive measurements satisfies k = O(1), the in-
terferometers employed need to concentrate many
photons during the adaptive measurements.

5 Conclusion

In this work, we have given a roadmap for per-
forming quantum variational classification and
quantum kernel estimation using adaptive lin-
ear optical interferometers. We have investigated
the classical simulation transition between Boson
Sampling [4] and the Knill–Laflamme–Milburn
scheme for universal quantum computing [25], in
terms of the number of adaptive measurements
performed. In particukar, we have derived classi-
cal algorithms for simulating the quantum com-
putational subroutines involved: output proba-
bility estimation and output state overlap esti-
mation.

In the case of probability estimation, the pos-
sible regimes for quantum advantage are incom-
patible with near-term implementations: both
the number of adaptive measurements k and the
number of input photons n must be greater than
logm, where m is the number of modes. On the
other hand, for overlap estimation, there is a pos-
sibility of near-term beyond-classical computing
with adaptive linear optics using a single adap-
tive measurement, which requires the preparation
of photon number states. Note that the inter-
ferometer should be concentrating many photons
r at the stage of the adaptive measurements in
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order to obtain possibly hard to estimate over-
laps. Using more adaptive measurements does
not increase the complexity (apart from polyno-
mial factors in m), but may ease the detection of
a larger number of photons during the adaptive
measurements.

Our results suggest regimes where quantum ad-
vantage for machine learning with adaptive linear
optics is possible, in the parameter regimes where
our classical simulation algorithms fail to be effi-
cient: it is an interesting open question whether
better classical simulation algorithms for the
computational subroutines involved can be found,
or even classical algorithms solving directly the
machine learning problems efficiently. In any
case, our results restrict the parameter regimes
for which such a quantum advantage may be pos-
sible: to hope for a quantum advantage, SVM
with adaptive linear optics has to take place ei-
ther in the bunching regime—concentrating many
photons in the adaptive measurements—or using
a number of adaptive measurements scaling with
the size of the problem. In both cases, this im-
poses strong experimental requirements.

Still, our results have identified a sweet spot
for quantum kernel estimation with adaptive lin-
ear optics using a single adaptive measurement,
which would be interesting to demonstrate exper-
imentally. In the longer term, variational classi-
fication with adaptive linear optics could also be
interesting since it may enable quantum advan-
tage in a regime where the quantum algorithm
for overlap estimation is no longer efficient.

As previously mentioned, it is a pressing ques-
tion whether more efficient classical algorithms
may be derived. In practical settings, taking into
account photon losses could help providing more
efficient classical simulation algorithms. We leave
these considerations for future work.
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A Classical probability estimation for Shor’s period-finding algorithm
In this section, we detail the classical probability estimation for Shor’s period-finding algorithm [2].

If N is an n bits integer to factor, the period-finding subroutine measures the output state

1
N

∑
x

∑
y

e
2iπxy
N |y〉 |f(x)〉 (40)

in the computational basis, where f is a periodic function over {0, . . . , N − 1} which can be evaluated
efficiently. The probability of obtaining an outcome y0, f(x0) is given by

Pr [y0, f(x0)] =

∣∣∣∣∣∣ 1
N

∑
f(x)=f(x0)

e
2iπxy0
N

∣∣∣∣∣∣
2

. (41)

Now let

gx0,y0 : x 7→

e
2iπxy0
N if f(x) = f(x0),

0 otherwise.
(42)

The function gx0,y0 can be evaluated efficiently and we have

Pr [y0, f(x0)] =
∣∣∣∣ E
x←N

[gx0,y0(x)]
∣∣∣∣2 , (43)

where E
x←N

denotes the expected value for x drawn uniformly randomly from {0, . . . , N−1}. By virtue

of Hoeffding inequality, this quantity may be estimated efficiently (in n, the number of bits of N)
classically by sampling uniformly a polynomial number of values in {0, . . . , N − 1} and computing the
modulus squared of the mean of gx0,y0 for these values.

However, note that probability estimation of quantum circuits is a BQP-complete computational
task almost by definition, since given a polynomially precise estimate of the probability of acceptance
of an input x to a quantum circuit, one may determine whether it is accepted or rejected by the circuit.
In particular, unless factoring is in P, probability estimation for the quantum circuit corresponding
to Shor’s algorithm as a whole is hard and weak simulation of the period-finding subroutine is also
hard, since in Shor’s algorithm the output samples from the period-finding subroutine are used for a
different classical computation than probability estimation, namely obtaining promising candidates for
the period.

B Efficiency of classical output probability estimation
For an interferometer U over m modes with n input photons and k adaptive measurements with
outcomes p ∈ Φk,r, the expression of the probability of an outcome s obtained in the main text reads:

Prfinalm,n [s] = 1
s!

∑
p∈Φk,r

1
p!

∣∣∣Per
(
Up

(p,s),t

)∣∣∣2, (44)

where t = (1n,0m−n). This is a sum over |Φk,r| =
(k+r−1

r

)
moduli squared of permanents of square

matrices of size n ≤ m. Permanents can be approximated efficiently using a simple randomized
algorithm due to Gurvits:

Lemma 2 ([43]). Let A be an m×m matrix. Then, PerA may be estimated classically with additive
precision ±ε‖A‖m with high probability, in time O(m2

ε2 ), where ‖A‖ is the largest singular value of A.

This algorithm has been refined in the case of matrices with repeated lines or repeated columns:
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Lemma 3 ([44]). Let B be an m × n matrix. Let q = (q1, . . . , qm) ∈ Φm,n and let A = Bq,1n be
the n × n matrix obtained from B by repeating qi times its ith line. Then, PerA may be estimated
classically with additive precision ±ε · q1!...qm!√

q
q1
1 ···q

qm
m

‖B‖m with high probability, in time O(mn
ε2 ), where ‖B‖

is the largest singular value of B. Moreover,

|PerA| ≤ q1! . . . qm!√
qq1

1 · · · q
qm
m

‖B‖m. (45)

This lemma also allows to approximate efficiently |PerA|2. Indeed, let 0 < ε < 1 and let z be an
estimate of PerA with additive error ±ε · q1!...qm!√

q
q1
1 ···q

qm
m

‖B‖m, then |z|2 is a good estimate of |PerA|2:

∣∣∣|z|2 − |PerA|2
∣∣∣ = ||z| − |PerA|| · (|z|+ |PerA|)

≤ ε · q1! . . . qm!√
qq1

1 · · · q
qm
m

‖B‖m ·

|PerA|+ ε · q1! . . . qm!√
qq1

1 · · · q
qm
m

+ |PerA|


≤ ε · q1! . . . qm!√

qq1
1 · · · q

qm
m

‖B‖m ·

ε · q1! . . . qm!√
qq1

1 · · · q
qm
m

+ 2 q1! . . . qm!√
qq1

1 · · · q
qm
m

‖B‖m


≤ 3ε · q1!2 . . . qm!2

qq1
1 · · · q

qm
m
‖B‖2m,

(46)

where we used Eq. (45) in the third line.
In particular, when B is anm×n submatrix of a unitary matrix (implying ‖B‖ ≤ 1), we may compute

an estimate of |PerA|2, where A = Bq,1n is the n × n matrix obtained from B by repeating qi times
its ith line, with additive precision ±ε · q1!2...qm!2

q
q1
1 ···q

qm
m

with high probability, in time O(mn
ε2 ). The matrices

in Eq. (44) are submatrices of unitary matrices, with repeated lines. Hence, estimating independently
all the terms in the sum in Eq. (44), we obtain, in time O(mn

ε2 · |Φk,r|) and with high probability, an
estimate P̃ of the probability Prfinalm,n [s] such that

∣∣∣P̃ − Prfinalm,n [s]
∣∣∣ ≤ ε · 1

s1! . . . sm−k!
∑

p∈Φk,r

1
p1! . . . pk!

· p1!2 . . . pk!2s1!2 . . . sm−k!2

pp1
1 · · · p

pk
k s

s1
1 · · · s

sm−k
m−k

≤ ε · s1! . . . sm−k!
ss1

1 · · · s
sm−k
m−k

∑
p∈Φk,r

p1! . . . pk!
pp1

1 · · · p
pk
k

≤ ε · |Φk,r|,

(47)

where we used that for all n ∈ N, n! ≤ nn. Note that a tighter bound may be obtained, but the
above one is sufficient for our needs. In particular, when |Φk,r| = O(poly m), the above procedure
provides a polynomially precise additive estimate of the probability Prfinalm,n [s] in time O(poly m), with
high probability.

We have

|Φk,r| =
(
k + r − 1

r

)

= k

k + r
· (k + r)!

k!r! .

(48)

This quantity is polynomial in k (resp. in r) when r = O(1) (resp. k = O(1)). Moreover,(
k + r − 1

r

)
≤

k+r−1∑
j=0

(
k + r − 1

j

)
= 2k+r−1,

(49)
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so for k = O(logm) and r = O(logm), we have |Φk,r| = O(poly m). For all other cases, that is
k = O(logm) and r = O(m), k = O(m) and r = O(logm), or k = O(m) and r = O(m), |Φk,r| is
superpolynomial in m, using Stirling’s equivalent n! ∼

√
2πn(ne )n.

C Proof of Lemma 1
We recall Lemma 1 from the main text:

Lemma 1. Let r ∈ N. The inner product of two (not normalised) output states |ψp〉 and |ψq〉 of
m-mode interferometers Up and V q with adaptive measurements outcome p, q ∈ Φk,r is given by

〈ψp|ψq〉 = 1√
p!q!

∑
i,j∈{0,1}n
|i|=|j|=r

Per
(
Ai
)

Per
(
Bj
)

Per
(
Ci,j

)
, (50)

where for all i, j ∈ {0, 1}n such that |i| = |j| = r,

Ai = Up†
(i,0m−n),(p,0m−k) (51)

is an r × r matrix which can be obtained efficiently from Up,

Bj = V q
(q,0m−k),(j,0m−n) (52)

is an r × r matrix which can be obtained efficiently from V q, and

Ci,j = Up†
(1n−i,0m−n),(0k,1m−k)V

q
(0k,1m−k),(1n−j,0m−n) (53)

is an (n− r)× (n− r) matrix which can be obtained efficiently from Up and V q.

Proof. We consider the expression for the inner product obtained in Eq. (34):

〈ψp|ψq〉 = 1√
p!q!

∑
s∈Φm−k,n−r

1
s! Per

(
Up†
t,(p,s)

)
Per

(
V q

(q,s),t

)
. (54)

It is reminiscent of the permanent composition formula [45]: for allm,n, c ∈ N∗, all s ∈ N, all u ∈ Φm,s

and all v ∈ Φn,s,
Per [(MN)u,v] =

∑
s∈Φc,s

1
s! Per (Mu,s) Per (Ns,v) (55)

whereM is a m×c matrix and N is a n×c matrix. However, this formula is not directly applicable to
the expression in Eq. (54). In order to obtain a suitable expression, we first make use of the Laplace
formula for the permanent: we expand the permanent of Up†

t,(p,s) along the columns that are repeated
according to p and we expand the permanent of V q

(q,s),t along the rows that are repeated according to
q. The generalised Laplace column expansion formula for the permanent reads: let n ∈ N∗, let W be
an n× n matrix, and let j ∈ {0, 1}n. Then,

Per (W ) =
∑

i∈{0,1}n
|i|=|j|

Per (Wi,j) Per (W1n−i,1n−j), (56)

where Wi,j is the matrix obtained from W by keeping only the kth rows and lth columns such that
ik = 1 and jl = 1, respectively, andW1n−i,1n−j is the matrix obtained fromW by keeping only the kth
rows and lth columns such that ik = 0 and jl = 0, respectively. This formula is obtained by applying
the Laplace expansion formula for one column various times, for each column with index l such that
jl = 1, and the same formula holds for rows.
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We first apply the general column expansion formula in Eq. (56) to the matrix Up†
t,(p,s) with j =

(1r,0n−r) ∈ {0, 1}n, obtaining

Per
(
Up†
t,(p,s)

)
=

∑
i∈{0,1}n
|i|=r

Per
[(
Up†
t,(p,s)

)
i,j

]
Per

[(
Up†
t,(p,s)

)
1n−i,1n−j

]
. (57)

Let us consider the matrix
(
Up†
t,(p,s)

)
i,j

appearing in this last expression, for i ∈ {0, 1}n. Its rows are
obtained by keeping the first n lines of Up† since t = (1n,0m−n), then by keeping only the lth rows
such that il = 1. Its columns are obtained by repeating pl times the lth column for l ∈ {1, . . . , k} and
sl times for l ∈ {k+1, . . . ,m}, then by only keeping the first r columns since j = (1r,0n−r). However,
since |p| = |j| = r, these are the columes repeated according to p. Hence,(

Up†
t,(p,s)

)
i,j

= Up†
(i,0m−n),(p,0m−k), (58)

where Up†
(i,0m−n),(p,0m−k) is the matrix obtained from Up† by keeping only the lth rows such that il = 1

and removing the others, and by repeating pl times the lth column for l ∈ {1, . . . , k} and removing
the others. Similarly, with |s| = |1n − j| = n− r,(

Up†
t,(p,s)

)
1n−i,1n−j

= Up†
(1n−i,0m−n),(0k,s), (59)

where Up†
(1n−i,0m−n),(0k,s) is the matrix obtained from Up† by keeping only the lth rows such that il = 0

and removing the others, and by repeating sl times the lth column for l ∈ {k+1, . . . ,m} and removing
the others. With Eqs. (57), (58) and (59) we obtain

Per
(
Up†
t,(p,s)

)
=

∑
i∈{0,1}n
|i|=r

Per
(
Up†

(i,0m−n),(p,0m−k)

)
Per

(
Up†

(1n−i,0m−n),(0k,s)

)

=
∑

i∈{0,1}n
|i|=r

Per
(
Ai
)

Per
(
Up†

(1n−i,0m−n),(0k,s)

)
,

(60)

where we have defined, for all i ∈ {0, 1}n such that |i| = r,

Ai := Up†
(i,0m−n),(p,0m−k), (61)

which is an r × r matrix independent of s that can be obtained efficiently from Up.
The same reasoning with the general row expansion formula for the matrix V q

(q,s),t and the rows
i = (1r,0n−r) gives

Per
(
V q

(q,s),t

)
=

∑
j∈{0,1}n
|j|=r

Per
[(
V q

(q,s),t

)
i,j

]
Per

[(
V q

(q,s),t

)
1n−i,1n−j

]

=
∑

j∈{0,1}n
|j|=r

Per
(
V q

(q,0m−k),(j,0m−n)

)
Per

(
V q

(0k,s),(1n−j,0m−n)

)
,

(62)

where V q
(q,0m−k),(j,0m−n) is the matrix obtained from V q by repeating ql times the lth row for l ∈

{1, . . . , k} and removing the others and by keeping only the lth columns such that jl = 1, and where
V q

(0k,s),(1n−j,0m−n) is the matrix obtained from V q by repeating sl times the lth row for l ∈ {k+1, . . . ,m}
and removing the others and by keeping only the lth columns such that jl = 0. Defining, for all
j ∈ {0, 1}n such that |j| = r,

Bj := V q
(q,0m−k),(j,0m−n), (63)
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the expression in Eq. (62) rewrites

Per
(
V q

(q,s),t

)
=

∑
j∈{0,1}n
|j|=r

Per
(
Bj
)

Per
(
V q

(0k,s),(1n−j,0m−n)

)
, (64)

where Bj are r × r matrices independent of s and can be obtained efficiently from V q.
Plugging Eqs. (60) and (64) in Eq. (54) we obtain

〈ψp|ψq〉 = 1√
p!q!

∑
i,j∈{0,1}n
|i|=|j|=r

[
Per

(
Ai
)

Per
(
Bj
)

×
∑

s∈Φm−k,n−r

1
s! Per

(
Up†

(1n−i,0m−n),(0k,s)

)
Per

(
V q

(0k,s),(1n−j,0m−n)

)]
.

(65)

The sum appearing in the second line may now be expressed as a single permanent using the permanent
composition formula: for all i, j ∈ {0, 1}n such that |i| = |j| = r, let us define the (n− r)× (m− k)
matrix

Ũp,i := Up†
(1n−i,0m−n),(0k,1m−k), (66)

and the (m− k)× (n− r) matrix

Ṽ q,j := V q
(0k,1m−k),(1n−j,0m−n), (67)

so that
Up†

(1n−i,0m−n),(0k,s) = Ũp,i
1n−r,s and V q

(0k,s),(1n−j,0m−n) = Ṽ q,j
s,1n−r . (68)

With the permanent composition formula in Eq. (55) we obtain

∑
s∈Φm−k,n−r

1
s! Per

(
Up†

(1n−i,0m−n),(0k,s)

)
Per

(
V q

(0k,s),(1n−j,0m−n)

)
= Per

[(
Ũp,iṼ q,j

)
1n−r,1n−r

]
. (69)

Since Ũp,iṼ q,j is an (n− r)× (n− r) matrix we thus have

∑
s∈Φm−k,n−r

1
s! Per

(
Up†

(1n−i,0m−n),(0k,s)

)
Per

(
V q

(0k,s),(1n−j,0m−n)

)
= Per

(
Ũp,iṼ q,j

)
. (70)

Then, Eq. (65) rewrites

〈ψp|ψq〉 = 1√
p!q!

∑
i,j∈{0,1}n
|i|=|j|=r

Per
(
Ai
)

Per
(
Bj
)

Per
(
Ci,j

)
, (71)

where we have defined

Ci,j := Ũp,iṼ q,j

= Up†
(1n−i,0m−n),(0k,1m−k)V

q
(0k,1m−k),(1n−j,0m−n),

(72)

is an (n− r)× (n− r) matrix which can be obtained efficiently from Up and V q.
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