
Implementation of Multi-body Interaction for Quantum Annealing

Takayuki Suzuki1 ∗ Hiromichi Nakazato1

1 Department of Physics, Waseda University, Tokyo 169-8555, Japan

Quantum annealing [1, 2] is an algorithm for the com-
binatorial optimization problems, which aims at finding
the minimum of a function called objective function. This
algorithm has some difficulties. One of such difficulties
is that it is hard to implement higher than third-order
terms. The objective function includes arbitrary higher
order terms in general. In quantum annealing machine
such as the device produced by D-Wave Systems Inc.,
however, the objective function is limited up to quadratic
terms because of their architecture [3]. Some solutions
have been proposed so far [4, 5], but these solutions need
many ancilla qubits.
In this paper, we explore the possibility of implement-

ing efficiently higher-order terms in quantum annealing.
Though they have not yet been implemented in quantum
annealing machine [6],“non-stoquastic”terms are highly
demanded by researchers in quantum annealing because
these terms are known to make the device more powerful
[7]. We prove that a combination of these terms and the
“ reverse annealing”technique [8] can realize the multi-
body interaction in the spin system, which corresponds to
the higher-order terms in the objective function. More-
over, we compare the efficiency of the proposed method
with the conventional one.
Here, we illustrate the simplest case where the graph

of the quantum annealer is all-to-all, and the objective
function includes an N -body interaction:
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To find the ground state of HP , we consider the time-
dependent Hamiltonian:
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where we assume

0 ≤ B(0) ∼ C(0) ≪A(0), (3)

0 ≤ A(T/2) ∼ C(T/2) ≪B(T/2), (4)

0 ≤ A(T ) ∼ B(T ) ≪C(T ), (5)
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are satisfied. This Hamiltonian (2) has a symmetry and
we understand that the quantity ⊗N

i=0σ
z
i is a constant

of motion [9]. Moreover, there exists a unitary operator
W transforming ⊗N

i=0σ
z
i into σz

0 because the spectrum of
⊗N

i=0σ
z
i is the same as that of σz

0 . The unitary operator
is expressed explicitly as
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in the standard ordered basis

B̄ = {|00⟩0,i , |01⟩0,i , |10⟩0,i , |11⟩0,i}. (7)

Transforming HS(t) into H̃S(t) = W†HS(t)W, we get
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As we impose A(0) > 0, the ground state of HS(0) is⊗N
i=0 |0⟩i. Therefore, the ground state of H̃S(0) is

W
N⊗
i=0

|0⟩i =
N⊗
i=0

|0⟩i , (10)

and the state evolves in the subspace corresponding to
λ = 0. Moreover, the initial state is also the ground
state of H̃S,0(0) and we can get the ground state of (1)
at t = T when the system has evolved adiabatically.

Conventionally, the number of ancilla qubits to imple-
ment (1) is O(N). Therefore, the proposed method is
superior to the conventional one in this case, but the effi-
ciency depends on the number of the higher-order terms
in the objective function. We will also report such a de-
pendency.
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