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This work analyses correlations arising
from quantum systems subjected to se-
quential projective measurements to cer-
tify that the system in question necessar-
ily has a quantum dimension greater than
some dimension d. We refine previous
known methods and show that dimension
greater than two can be certified in sce-
narios which are considerably simpler than
the ones presented before and, for the first
time in this sequential projective scenario,
we certify quantum systems with dimen-
sion strictly greater than three. We also
perform a systematic numerical analysis in
terms of robustness and conclude that per-
forming random projective measurements
on random pure qutrit states allows a ro-
bust certification of quantum dimensions
with very high probability.

1 Introduction

With the recent development of quantum tech-
nologies and the different promising applications,
it is primordial to guarantee the good function-
ing of the used apparatus through certification
or benchmarking methods [I, 2]. Such meth-
ods can rely on fundamental properties of quan-
tum physics to assert properties of quantum sys-
tems such as self-testing [3, 4, 5, 6], random-
ness certification [7, &, 9], dimension witness
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The notion of dimension can be defined in ab-
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stract ways such as “the maximal number of per-
fectly distinguishable states" or as in this paper
we denote by the term dimension the dimension of
a quantum system, Hy = C4. It has been proved
that the usage of qudits instead of qubits is ben-
eficial in a large range of applications in quan-
tum information such as fault-tolerant quantum
computation [16, 17, 18], quantum algorithms
[19, 20, 21], quantum error correction |22, 23, 2],
quantum simulation [25], universal optics-based
quantum computation |26] and quantum commu-
nication [27, 28].

In order to certify dimension of single quantum
systems, one can use outcomes statistics from a
realized experiment in a specific scenario relying
on sequential measurements [12, 29, 30, 31| or
contextuality [13, 32]. However, the dimension
witnesses in [12, 13] are particular cases that are
difficult to extend to general cases due to their
complexity. Another direction is to use the so-
called NPA hierarchy [33, 34] which is a numeri-
cal method that gives an arbitrary close approxi-
mation to the measurement statistics of quantum
systems. Such method has been used to charac-
terize temporal correlations [35], generalized con-
textuality [30, 37] and in particular to charac-
terize dimension |38, 39]. However, the method
introduced in [38, 39] is computationally expen-
sive and does not provide insights about what
scenario to use to certify what dimension.

In this work we are interested in addressing
both issues at the same time. We show that
for dimension certification, it is not necessary to
have a good measurement statistics approxima-
tion when using the NPA hierarchy. This give a
substantial reduction of the computational cost.
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We also identify a way to classify scenarios and
which permit to identify good scenario for dimen-
sion certification. We finally identify the different
advantages to use more experimentally challeng-
ing scenarios in order to have a more accurate
and robust dimension certifying.

This paper is structured as follows. In Sec. 2,
we present some preliminary notions on the nu-
merical methods used to certify dimension of
quantum systems by sequential projective mea-
surements. In Sec. 3, we propose a method to
classify scenarios based on their approximation
in the NPA hierarchy and make a proposal to de-
termine what scenario can be used based on this
classification. We introduce the notion of robust-
ness that is used to provide a certificate for the
dimension. In Sec. 4, we study different scenarios
compare them to each other in the perspective of
dimension certification. In particular we identify
a trade off between the experimental challenges
to perform a scenario and a more robust dimen-
sion certification. We finally show how dimension
witness can be computed from our method and
provide numerical examples.

2 Bounding Finite Dimension in a Se-
quential Measurements Scenario

2.1 Sequential Measurements Scenario

Consider a quantum state p in a finite Hilbert
space Hg = Cy4 which will be subjected to se-
quential projective measurements described by
the projectors Il,,),... Each measurement has an
input (or setting) s € S and an output (or re-
sult) r € R and the input and output of the i-th
measurement will be denoted by s; and r;.

We call an event a representation of an out-
put for a specific input. For instance for a single
measurement, an event is r;|s; which represents
obtaining the output r; for the input s; for the
i-th measurement. Each event is associated to a
projector and for the event r;|s; the associated
projector is I, |,,. Such projectors verify the fol-
lowing conditions, the normalization condition:
>or; s, = 1, where 1 is the identity matrix
and the orthogonality condition Hri|5i]'_'[7",/i‘3i =0
when r; # 7).

For events with multiple measurements the or-
dering is important as it forms a sequence, for
instance, the event r;,7;|s;, s; which represents

obtaining the output r; for the input s; for the
i-th measurement, then obtaining the output r;
for the input s; for the j-th measurement.

After the first measurement on the state p, the
post-measured state is denoted by

= HT1|81pHil‘51/Tr[H’I‘ﬂSlij«ﬂgl] (1)

where Tr[.] denotes the trace and f is the complex
conjugate. After a second measurement, the state
is denoted as

HTQ\Ssz1|81HI2|52/Tr[HT2\52pT1\51H12|52]'

(2)
Fig. 1 illustrates the case of three sequential mea-
surements on the state p.
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Figure 1: Sequential measurements scenario. Each mea-
surement has an input (or setting) s € S and an output
(or result) r € R and the input and output of the i-th
measurement will be denoted by s; and r;.

For simplicity we denote the sequence of out-
puts r = (r1,...,7r,) and the sequence of set-
tings s = (S1,...,5n).
erato (composition of projectors is not a pro-
jector) associated to the event r[s is Ils =
U PP | P

The probability to have the event r|s is given
by the Born’s rule:

The measurement op-

P(I’|S) = Tr[Hr|spHLs]a (3)

In what follows, we consider the case where the
set of measurements to choose from is the same
for each measurement through the sequence.
Moreover, we consider the case where all mea-
surements have the same number of outcomes.
Under such assumption, a scenario is character-
ized by three following parameters:

e The number of measurements: m.

e The maximum length of sequence of mea-
surements: [.

e The number of outcomes for each measure-
ments: o.




We call the MLO (Measurement, Length, Out-
comes) representation of a scenario the triplet:
m-l-o0. As an example the Leggett-Garg scenario
[10] correspond to the 3-2-2 scenario.

We call a behavior, P := { P(r|s)}ss , the prob-
ability distribution over all the possible events in
given sequential measurement scenario. In what
follow, we address the issue of certifying dimen-
sion by their behaviors. In other words, we are
interested to know whether for a behaviour rep-
resented by an outcomes statistic P(r|s), there
exist a d-dimensional state p € Hy and a set
of projective measurements {IL,,, }i; such that

P(r]s) = Tr(IysplT] ).

2.1.1 Unrestricted Dimensional case

We first present the study of behaviors of quan-
tum systems in a sequential measurements sce-
nario without dimensional constraints [35]. To
this end we introduce the so-called moment ma-
trix representation.
symmetric square matrix which entries, in this
case, are all the expectation values of the prod-
uct of pairs of Il;js. We adopted the specific rep-
resentation used in [33, 35|, where in the set of
projectors, for each setting s, one of the result
r is left out and we add the identity matrix to
the list of projectors. The matrix elements of the
moment matrix M are:

A moment matrix M is a

Myjs prisr := e[ Teig ], (4)

where we use the notation Ilgjg = 1 to include the
identity matrix. Note that Moo s =
Mr|s,r\s = P(r]s).

It follows from Born’s rule that the moment
matrix from a behaviour with a quantum realiza-
tion is positive semidefinite (M > 0), and satisfies

Mr|s,0|0 =

Mrls’r/‘sl = Mr//lsll’r///‘slll (5)

when HI|SH1'/|S/ = HI”|S”HTIII‘S///' MOFGOVGI‘, when
no constraints on the dimension are imposed,
Ref. |35] exploited the methods of |33, 34] to prove
a completness relation, that is, every positive
semidefinite operator M respecting the condi-
tions of (5) and Mg gj0 = 1 have a quantum real-
ization. Note that this simple completeness rela-
tion does not hold when dimensional constraints
are imposed [39], this point is discussed in details
in Sec. 2.1.2.

From here that are two types of problem that
we will encounter in what follows:

o Feasibility problem: For a given behavior
P(r|s), there exists a d-dimensional quantum
realization. This problem will be further de-
scribed in Sec. 3.3.

e Optimization problem: Given a set of real
coefficient, 7y what is the maximum value
of 37, s Vs P(r[s). For such optimization it
is convinient to use moment matrices with
linear objective function as shown in Eq. 6a
which is given by a semidefinite program
(SDP).

When the dimension is unrestricted the opti-
mization problem can be written as follows:

p* ;:m]\%x ZVrlsMrls,r\s (6a)
r,s
st Moo =1, (6b)
Mz 0, (6c)
Mr\s,r’|s’ = Mr”|s”,r”’|s”/,
lf HI‘|SH1'/|S/ = HI‘”|S”HI'/”‘S”/' (Gd)

This becomes useful to characterize behaviors via
inequalities as shown in [35]. This approach can
be used to verify the possible quantumness of a
behavior regardless of the dimensionality of its
quantum realization.

2.1.2 Finite Dimensional case

We present the case of certifying the dimension
of a quantum system via its behavior in a se-
quential measurements scenario. Using the Peres-
Mermin square |11, 12] it is possible to derive a
state-independent quantum dimension witnesses
to separate qubits’ behaviors from the above di-
mensions [12]. However, this method can only be
used to separate qubits from the above dimen-
sion and is only based on a specific optimization
problem or witness. Generally, the optimization
problem can be represented by what follows

o =pax Tr[p(X)p] (7a)
s.t. dim(H) < d, (7b)
¢i(X) =0,Vie{l,...,q}, (7c)

where X is a set of observables, p(.) and ¢(.)
are polynomial functions and d and ¢ are both
integers.




This is more general than the case we actually
need to consider here as we might not impose
any constraints represented by the ¢;(.) polyno-
mials. However, the optimization problem de-
scribed in Eq. 8 is regularly encountered in quan-
tum information. For instance, in contextuality,
one of the simplest known inequality is the so-
called KCBS inequality [13]. It resembles very
much to a sequential measurement scenario as we
consider with an MLO of 5-2-2, where we impose
commutation relationships as [X;, X;+1] = 0.

5

Pd.KCBS I:?I_LH%}ICO TT[Z XiXiy1p] (8a)
2 i=1

5.t dim(H) < d, (8D)

(X, Xis1] = 0,Vi € {1,...,5}.

(8¢)

While this optimization program has a clear in-
terpretation it is not straight forward to solve it.
However, it is possible to re-express it using the
moment matrix representation to solve the opti-
mization problem via a hierarchy of semidefinite
programming relaxations |38, 39]. The k-th level
of the hierarchy has the following SDP formula-
tion:

p;,k ::mj\%x Z’Yr|sMr\s,r|s (9&)
s.t. M0|070|0 = 17 (gb)

M e ME, (9¢)

M >0, (9d)

where the set M’j represents the linear span of the
space of moment matrices with a quantum real-
ization satisfying the constrains in Eq. 7c with a
quantum system of dimension d and where k indi-
cates that the moment matrices correspond to a
maximum length of sequence given by the one de-
fine in the scenario (see the MLO scenario repre-
sentation in Sec. 2.1) increased by the value k—1.
hence the first level of the hierarchy correspond
to the scenario and the second level correspond
to the set of moment matrices with the maximum
length of sequences is increased by one.

Each level of the hierarchy in Eq. 9 gives an
approximation of the problem defined in Eq. 9
such that pfl’k > pj. We denote by Q’j the set of
behaviors from a specific level k of the hierarchy

and for a specific dimension d and we called Qg
the set of behavior corresponding to Eq. 9.

For any level £k we are ensured to have and
outer approximation Qg C Q’fl (as illustrated in
Fig. 2). Also, in [39] it is shown that for suf-
ficiently large k, the hierarchy converges to the
set of quantum d-dimension correlations, that is,
there exist a K such that Q§>K = Q,.

P

1—n

Qk

Figure 2: Schematic representation of the sets of be-
haviors in the different level of the hierarchy such that
Q% C Q% C QL. A behavior P is given, with P ¢ QJ.
We have represented the visibility 7 computed with the
generalized robustness (see Sec. 3.3).

In [39], it was shown that for some fixed level k
of the hierarchy the set Q'j may be strictly larger
than Q4. Here we illustrate this fact by present-
ing a different example. In the the guess-your-
neighbor’s-input inequality [11], in particular in
its sequential measurement scenario [35]. It is a
sequential scenario with a MLO of 2-3-2. The
inequality is:

P(000]000) + P(110[011) + P(011]101)
+P(101]110) < 1. (10)

Reference [35] evaluated the SDP in Eq. 6 to find
the maximum value p* ~ 1.0225 when the di-
mension is unrestricted. Here we have used the
methods discussed in [39] to obtain p3 ; ~ 1.1588
for the maximum value for the first level of the
hierarchy for a qubit system. This show that in
the scenario 2-3-2; in the first level of the hier-
archy for qubit, and provides a direct proof that
completeness is not satisfied in the restricted di-
mension case. This also shows that in the sce-
nario 2-3-2, in the first level of the hierarchy for
qubit, some behavior do not admit quantum re-
alization. Hence, the first level of the hierarchy




is not enough to fully characterize the set Qg4 of
sequential quantum correlations. This example is
further discussed in the Appendix A and the code
is provided in [15].

3 Methods and Proposal

As discussed in Eq. 9, one way to characterize the
set Mfl involves finding a basis for its linear span.
In this section we provide a refinement of the ran-
dom method proposed in Ref.[38, 39] to obtain
such basis. Our refinement consists in a system-
atic method to ensure that the random procedure
has obtained the desired basis.

3.1 Building a Basis of Moment Matrices

By using the randomized method described in
Append. B, it is possible to construct multiple
moment matrices from which a basis can be con-
structed. One way is to find the highest num-
ber of linearly independent (LI) moment matrices
or by using the Gram-Schmidt process on a set
of moment matrices until the zero matrix is left
through the process. We use the second method
while keeping the number of linearly independent
moment matrices to characterizecheterize a sce-
nario for a specific dimension and level in the hi-
erarchy.

An efficient way to build a basis using the Gram
Schmidt process is to generate a random moment
matrix and using the standard Gram Schmidt
process on this matrix with the previously gener-
ated moment matrices. By checking the norm of
the matrix after removing the ‘projections’ from
the previous moment matrices and at each itera-
tion we can find when only the null matrix is left
and decide to stop the process. Due to numerical
precision the resulting matrix will be non zero but
small enough to be detected. In Fig. 3 we show
the norm of the resulted moment matrices after
each iteration in the scenario. We clearly see a
drop of the norms through the iterations. Hence
the number of LI moment matrices is the number
of iteration just before such drop. We can clearly
see that such drop does not appear at the same
position depending on the dimension considered.
Further detail on that is presented in Sec. 3.2.
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Figure 3: Norm (in log scale) of the i-th moment matrix
during the Gram Schmidt process in the 3-2-2 scenario
at the first level of the hierarchy and for d € {2,3,4}.
We can see that for all considered cases we observe a
clear drop of the norm to zero (up to numerical artefacts)
indicating when to stop the Gram Schmidt Process.

3.2 Classification via Basis Cardinal

A basis of the set of the moment matrices,
/\/llj, can be constructed following the random-
ized method described in Sec.3.1. The number
of elements in the basis depends on the scenario
(the MLO), the level of the hierarchy k and the
dimension of the Hilbert space d.

In Fig. 4 is represented the number of elements
of the basis as a function of the dimension in
different scenarios. In the tested scenarios with
MLO m-I-2 with m € {2,3,4,5,6} for | = 2 and
m € {2,3,4,5} for [ = 3 the number of ele-
ments in the basis is the same for d = {3,4,5}
and smaller for d = 2. This already tell us the
following important information, in these consid-
ered scenarios we have Qflz% - Qfg%.
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Figure 4: Maximal number of linearly independent (LI)
moment matrices in the sets MZ§[1273,4’5].

To quantify this gap, in Fig. 5 is represented
the ratio between the number of elements of the
basis for d = {3,4,5} and d = 2 as a function
of the number of measurements in the m-2-2 sce-
nario.

Another curve in Fig. 4 corresponds to the sce-
nario 2-3-3 for d = {3,4,5}. In this scenario we
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Figure 5: Ratio between the number of elements of the
basis for d = {3,4,5} (they are all equal in this case)
and d = 2 as a function of the number of measurements
in the m-2-2 scenario.

see that the number of linearly independent mo-
ment matrices for d = 3 is smaller than the one
for d = {4,5}. Hence in the 2-3-3 scenario, we
have Q’j:% C Q(’};é.

3.3 Proposal

Comparing the numbers of elements in the basis
of moment matrices in a way that has been pre-
sented in Sec. 3.2 only gives insights about the
geometry of sets with different dimensions at the
same level of the hierarchy. With this method
and in order to certify a minimum dimension of
a quantum system from its behavior, one could
try to derive the basis for higher level of the hi-
erarchy until its convergence. However, deriving
the method is indeed computationally expensive
and potentially subject to error due to numerical
precisions.

The other option is to use that the fact that
Qg C Q’fl. In this case if we could test whether
a given behavior P is not in QZ. If it is the case
then we know that P ¢ Q,4. But if one find that
P c Qfl this does not imply P ¢ Qg4. In this
method one can certify a minimum dimension of
quantum system by its behavior without the need
to characterize moment matrices sets at a com-
putationally challenging level of the hierarchy.

In addition of simply testing if a given behavior
P belongs to Qlfl, we are also going to quantify
“how much” the behavior is outside the set Qfl.
This will be done by means of robustness, which
is analogous to the robustness of entanglement
[16] and have also been used to quantify quan-
tum EPR-steering [17], measurement incompati-
bility [48, 19], indefinite causality [50], coherence
[51, 52],and other quantities in quantum infor-

mation theory. Given a behavior P, the general
robustness visibility is

given P := {P(r|s)}rs

V= max n
777Pd,k (11)

s.t. P + (1 —n)Pyy € QF
Py € OF,

we can then see that when v < 1, we have
P ¢ Q’Cj. In Fig. 2 is represented this quantity.
Also, if the quantum system describing the ex-
periment is given by p, we can ensure that there
exists a quantum state o such that for every visi-
bility > v, the noisy state np+(1—n)o can gen-
erate behaviors which are not inside Qlj. Interest-
ingly, when solving the robustness optimization
problem presented in Eq.(11), one also obtains
a dimension witness to certify the dimensionality
of the given behavior, this topic will be discussed
in Sec.4.2.1. Further details and a reformulation
of this problem simpler for computer codes can
be found at the Appendix C.

4  Main Results

4.1 Certifying Dimension in the m-I-2 Scenario
4.1.1 3-2-2 Scenario

In order to make a step further in the understand-
ings of the geometry of the sets, we focus here on
the specific 3-2-2 scenario, namely the Leggett-
Garg scenario [10] which is the simplest known se-
quential measurement scenario to observe quan-
tum features. In particular, with an eye toward
certifying dimensions, a legitimate question is
wheter in the 3-2-2 scenario there exists a be-
havior given by a qutrit system that cannot be
reproduce by any qubit system. In other words,
is there a behavior P € Qg such that P ¢ Q.
We show that the answer is yes and using our
method, this question can be addressed without
the need to fully characterize the set of qubit’s
behavior, Qs, as the first level of the SDP hier-
achy [38, 39], @3, turns out to be sufficient.

To go even further, we estimate the probability
P(P ¢ QkIP € Q3), the probability for a qutrit’s
behavior, P € Q3, to be outside the set Q% for a
given k characterizing the level of the hierarchy.
From a geometrical perspective, this probability
is related to the following volume ratio:




V(Q3N Qf)
V(Qs)
where V(.) denotes the volume of the set.

We evaluate the probability P(P ¢ QP ¢
Qg) for d € {3,4,5} and k € {1,2}. In order
to evaluate this probability, we first build the

P(P ¢ Q5P € Q3) = (12)

basis of moment matrices M];E{m} for the sets

QSE{I’Q} with the method described in Sec. 3.1.
Then, with the same method, we also sample the
sets Qgegs4,51 and compute the visibilities (de-
fined in Eq.11) for each sampled data point. For
that purpose we used CVXPY [53, 54| with the
solver MOSEK [55]. We used about 10000 points
to evaluate each probability. Note that the evalu-
ation of the volume depends on the measure used
to sample the space of states and quantum mea-
surements and corresponds to the Haar measure
in our case (see Sec. B). The code is available in
[15].

The probability is evaluated in the following
way:

N <1)
Ntot ’

where N (v > 1) represents the number of data
points with a visibility v > 1 and Ny is the to-
tal number of data points. This ratio gives an ap-
proximation of the ratio of the volumes in Eq. 12.

Finally all the computed probabilities are rep-
resented in the Tab. 1. As these probabilities are
non zero, there are possibilities to find qutrit’s
behaviors in the 3-2-2 scenario that cannot be re-
produce by any qubit’s behavior. To obtain this
information it is not necessary to characterize the
set of qubit’s behavior Qs directly. This is be-
cause the probability P(P ¢ Q3P € Q3) ~ 0.37
and Qy C --- C Q3 C Qd.

PP ¢ Q5P € Q3) ~ (13)

[ =1 [ k=2

0.365198 | 0.392267
4 || 0.268526 | 0.317939
5 || 0.215904 | 0.247898

Table 1: Probability, P(P ¢ Q5|P € Q,), for a behavior
in Qgcy3,4,5) to be outside QQE{I’Z}.

Moreover, we have P(P ¢ QP € Q3) <
PP ¢ Q3P € Q3) ~ 0.39. Hence, a behav-
ior P € Q3 has more chance to be outside the

second level of the hierachy than the first level.
This corresponds well to Q% C Q%. For all the
dimension d € {3,4,5}, we have P(P ¢ Q)P €
Q4) < P(P ¢ Q3P € Q) as shown in Tab. 1.

A result that could seem counterintuitive is
when we compare the probabilities for different
dimension for the same level of the hierarchy. We
find that P(P ¢ Q5P € Q) < P(P ¢ QP ¢
Qu) for d < d' with d,d’ € {3,4,5}. This could
sound counterintuitive as we would expect that
higher dimension could at least perform as good
as the lower dimensions.

The source of these differences is related to the
sampling method. Following the discussion in
Append. B, larger dimension means larger num-
ber of options for binning for the projectors and
the use of the Haar measure to sample unitary
matrices does not necessarily guarantee unifor-
mity at the behaviors level as well. Moreover,
this is related to the so-called Bertrand’s Para-
dox [56], which shows that probabilities may not
be well defined as they rely on the method used
to produce random variables. In the Bertrand’s
Paradox, the method used to sample through
a circle affects the probabilities. We make the
analogy here, where sampling behaviors from dif-
ferent Hilbert spaces of different dimensions im-
pacts the resulted probabilities. For that reasons
the values presented in Tab. 1 are not absolut
and the different dimension are not comparable.
However, within a dimension, as the sampling is
the same, the order relationship is not affected:

PP ¢ QP € Q3) < P(P ¢ Q3|P € Q3).

The results showed in Tab. 1 has two main con-
sequences on our understandings of certifying di-
mensions of quantum systems via their behav-
iors. First, in the 3-2-2 scenario, the Leggett-
Garg inequality [10] is already maximally violated
by a qubit’s behavior. However, our results im-
plies that the 3-2-2 scenario is sufficient and in-
equalities based certification could be build (see
Sec. 4.2.1). Secondly, the only know way to cer-
tify qubit from the above dimensions is through
the Peres-Mermin square [12]|, which corresponds
to the 9-3-2 scenario. Our results provide a re-
duction of the previously known results by six
measurements and shorten the length of the se-
quence of measurements by one which is much
more favorable to experimental perspectives.




4.1.2 Advantage to certify dimension in the m-I-2
Scenario

In the previous section, in Sec. 4.1.1, we show
that the scenario 3-2-2 can be used to certify
some qutrit (and above dimension) behaviors
from qubit’s behaviors by only using the first level
of the hierarchy. Moreover, as shown in Tab. 1
using to the second level increases the chance of
success. In what follow we show what are the ad-
vantage to either increase the number of measure-
ments (m-2-2 scenarios) or to increase the maxi-
mum length of the sequence of measurements (3-
[-2 scenarios).

Following the method explained in Sec. 4.1.1
we evaluate the probability for a random qutrit
behavior, P € Q3, not to be explained by the
approximation of any qubit behavior at the first
level of the hierarchy. In other words, we want
to evaluate P(P ¢ Qi|P € Q3) in the scenario
m—2—2forme{3,...,8}.
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Figure 6: Probability of a random qutrit behavior not
to be reproduce by a behavior in the first level of the
hierachy of qubit behaviors in the m-2-2 scenario.

In Fig 6, we show that such probability in-
creases in a log-like manner until it reaches the
value of 1 in our numerical analysis. Because of
numerical precision, we obtain the value 1 but it
is most likely that this log-like curve actually con-
verges to 1 instead. Regardless of how close to the
value 1 it is, it seems that using more than 5 or 6
measurements do not bring any critical advantage
when trying to certify dimension in this scenario.
However, compared to the 3-2-2 scenario, with a
probability approximately 0.37, by using one ad-
ditional measurement (4-2-2 scenario), this prob-
ability increases to approximately 0.81, which is
about the double and by using two additional
measurements (5-2-2 scenario), this probability
increases to approximately 0.96, which is about
the 2.6 times larger than in the 3-2-2 scenario.
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Figure 7: Critical visibility to ensure that a random qutrit
behaviors is outside of the first level of the hierarchy of
qubit behavior in the m-2-2 scenario.

As explained in Sec. 4.1.1 and in particular in
Eq.13, the probabilities are evaluated by using
the visibility. Looking at the distribution of the
visibility provides also a very good insight as the
visibility has a good geometrical interpretation
and gives a more fine grain level of information.
In Fig 7, we show the distribution of the visibil-
ities of random qutrit behaviors, P € Qs com-
pared to the set Q} in the scenario m — 2 — 2
for m € {3,...,8}. Interestingly all the distribu-
tions are different in way that when the number
of measurement increases in the scenario m-2-2,
the distribution’s mean value becomes smaller.
From a geometric perspective, one can say that
the behaviors are farer to qubit behaviors when
the number of measurement increases.

The other parameter that is possible to change
experimentally is the length of the sequence of
measurement used in the experimental setup. It
is important to clarify that this is different com-
pare to changing the level of the hierarchy. In
the case where we increase the length experimen-
tally we need to collect data for the right length of
sequence, while by increasing the level of the hier-
archy these data would not be given. In Fig 8 we
show the distribution of the visibility of random
qutrit behaviors, P € Q3, compared to the set of
qubit behavior at the first level of the hierarchy
in the scenario 3 — [ — 2 for [ € {3,4}. Similarly
to the number of measurements, increasing the
length of the sequence of measurements makes
the behavior farer to the set of qubit behaviors.

Our analysis shows that there are advantages
to either increase the number of measurements
(m-2-2 scenarios) or to increase the maximum
length of the sequence of measurement (3-I-2 sce-
narios) to increase the change to certify qutrit
behaviors from qubit behaviors. These two pa-




I
S
w

IS
S

w
S

N
=3

Number of samples

=
5

7

o
FS

0.5 0.6 0.8 0.9 1.0

0.7
Visibility

Figure 8: Critical visibility to ensure that a random qutrit
behaviors is outside of the second level of the hierarchy
of qubit behavior in the 3-I-2 scenario.

rameters require a change in the experimental
setup when collecting data while when by increas-
ing the level of the hierarchy it is only about the
data processing on a classical computer. While
we show that increasing the number of measure-
ments or increasing the maximum length of the
sequence of measurement, there are also notice-
able differences. Indeed, in the scenario 8-2-2 the
average visibility is 0.88 (see Fig. 9) while in the
3-4-2 scenario the average visibility is about 0.75.
(see Fig. 10) Hence, increasing the length of the
sequence of measurements seems more effective.
However, this could be more challenging from an
experimental point of view.
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Figure 9: Average visibility of random qutrit behaviors
compared to the first level of the hierarchy of qubit be-
havior in the m-2-2 scenario for m € {3,...,8}.

Our analysis on the distribution of the visibil-
ity also shows that increasing one of these pa-
rameters, could make an experiment more robust
to noise. Because of experimental precisions it
might sometimes not be clear whether a qutrit be-
havior could be obtained with a qubit system. A
solution to this issue is to prefer a scenario where
behaviors are not likely to be close (in a geomet-
rical way) to qubit behaviors. Another important
result, is when increasing these parameters, even
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Figure 10: Average visibility of random qutrit behav-
iors compared to the first level of the hierarchy of qubit
behavior in the 3-1-2 scenario for | € {2,3,4}.

with random measurements, it becomes possible
to certify almost all genuine qutrit behaviors from
any qubit behavior. This is promising for appli-
cations where dimension is critical.

4.2 Dimension Witnesses from the Robust-
ness’ Dual

4.2.1 Building Dimension Witness for qubits

Witnesses are simple to use and commonly used
to test quantum properties in an experimental
setup. From a geometric perspective, they corre-
spond to hyperplanes in the probability space. In
Sec. 2.1.1 we present what we call the feasability
problem to test whether a given behavior admits a
quantum realization with a specific dimension d.
A partial answer to this decision problem could
be done by using the hyperplane in an inequality
form when one ensures that all the behaviors from
quantum realizations with a specific dimension d
do not violate the inequality as a consequence of
the hyperplane separation theorem. Hence, when
the inequality is violated we can infer that the
behavior does not admit a quantum realization
of dimension d.

When a behavior P’ does not belong to the set
QS, one can always find a set of real coefficients
{r/s}rs and a real number z such that

> s Pai(r]s) > —z,VPyy, € OF, (14)
r,s
but
Z'yr‘SP'(r\s) < —zx. (15)

Moreover such inequality can be explicitly ob-
tained by means of the dual formulation of the
robustness optimization problem presented in




Eq. (11). We present the details on the dual for-
mulation and how to construct such inequalities
on the Appendix C. Also, to demonstrate this
technique, we provide an explicit example (avail-
able at the github repository [15]) in the scenario
3-2-2, where we obtained a randomly generated
behavior from a qutrit and solve the generalized
robustness problem. The inequality we obtain
can be used in any experiment in the scenario
3-2-2 to test if the experimentally obtained be-
havior does not admit a a quantum realization
with a qubit.

4.3 Higher Dimension Witness

As it has been shown in Sec. 3.2 and in Fig. 4,
in the 2-3-3 scenario, we have Q'jzé C Qfl;,l,.
This suggests that there might be ququart behav-
iors that cannot be obtain via qutrit behaviors
as we have seen it is the case to certify dimen-
sion higher than two in the m-1-2 scenario pre-
sented in Sec.4.1.2. Following the same method
used in Sec.4.2.1, we provide an explicit example
of an dimension witness and a ququart quantum
state and quantum measurements (available at
the github repository [45]) which behavior can-
not be reproduced by qutrit behaviors. This is
done by generating a random ququart behavior
in the 2-3-3 scenario and computing its visibility
regarding the set Q}_,. Once such behavior is
found we can find the dimension witness by using
the dual problem of the generalized robustness.

5 Conclusion

In this work we have refined the known methods
that analyze correlations arising from quantum
systems subjected to sequential projective mea-
surements to certify that the system in question
necessarily has a quantum dimension greater than
some dimension d. We showed that, in the con-
text of dimension certification, it is not necessary
to go at high level in the NPA hierarchy and in
all the examples we have treated the first level
of the hierarchy was already sufficient to certify
dimensions.

We have shown that scenarios can be classi-
fied by the number of elements in the moment
matrices basis at the first level of the hierarchy.
For all the scenarios where different dimensions
have different number of basis elements we have

proved that dimension can be certified in these
scenarios. While this seems convincing to say
that this property is a necessary condition it is
an open problem. Moreover, we demonstrated
that the randomized method to build the basis of
moment matrices that was previously considered
as a non accurate method due to potential nu-
merical precisions can actually be accurate if one
keeps track of the moment matrices norms in the
Gram Schmidt process. We showed how dimen-
sion witnesses can be obtained from our method
and we have provided concrete numerical exam-
ples.

With this method we found that in the 3-2-2
scenario, while the known Leggett-Garg inequal-
ity is already maximally violated by a qubit’s be-
havior our results implies that the 3-2-2 scenario
is sufficient. So far, the only known way to cer-
tify qubit from the above dimensions was through
the Peres-Mermin square, which corresponds to
the 9-3-2 scenario in our notation. Our results
provide a drastic simplification of the previously
known results by six measurements and shorten
the length of the sequence of measurements by
one which is much more favorable to experimen-
tal perspectives. We provided a deep analysis and
a characterization of scenarios in which dimen-
sion certification of dimension greater than two
is possible. In particular, we use two metrics:
the probability for a random quantum states with
random measurements that does not admit any
qubit quantum realization and the distribution of
the visibility derived from the generalized robust-
ness. We observed that the probability to find
a behaviors with no qubit quantum realization
increases when the experiment is more complex
(more measurements or longer sequence of mea-
surements). This is also possible by increasing
the level of the hierarchy. When we increase the
number of measurements or the length of the se-
quence we see that the distribution of the visibil-
ity shifts to lower values, this can be interpreted
as a more robust certification. In summary, in
the selection of scenarios, when the experiment is
more complex there are more chances to make a
successful certification which is also getting more
robust.

In addition, our methods led us to certify, for
the first time in this projective measurements sce-
nario, quantum systems with dimensions strictly
greater than three.
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We have implemented the methods described
in this paper using the language Python and all
code is publicly available on the online repository
[15] and free to use under the Apache License 2.0.
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Appendix

A Guess Your Neighbor's Input Inequality

In Sec. 2.1.2, we provided a specific example to show that the completeness is not necessarily verified in
at any level of the hierarchy. Moreover, in this specific example there exist no quantum realization. It
is in the case of the so-called guess-your-neighbor’s-input inequality [14], in particular in its sequential
measurement scenario [35]. It is a sequential scenario with a MLO of 2-3-2 and the inequality is:

P(000]000) 4+ P(110[011) + P(011]101) + P(101|110) < 1. (16)

As mentioned in Sec. 2.1.2, by solving the SDP referred in Eq. 6 one can find the maximum value
p* &~ 1.0225 when the dimension is unrestricted [35].

We are interested to know what is the maximum for the behaviors P € Q’éii- This can be done by
solving the SDP in Eq. 9. In this case it is:

PGY NILd=2,k=1 =Iax > ey N1elsMyys (17a)
r,s
s.t. M0|070|0 = 1, (17b)
M e M}Z5, (17¢)
M~ 0, (17d)
where

1 ifrlse E,
YGY NIr|s = | . GYNT (18)

0 otherwise.

and Egy nr = {(000]000), (110]011), (011]101), (101|110)} is the set of events appearing in the inequal-
ity in Eq.10.

PGY NI d=2,k=1 '=max > Yoy N1 xlsMyis (19a)
rs
s.t. M0|0,0‘0 =1, (19b)
M = zn: a; M=, (19¢)
—1
ae RZ”, (19d)
M=o, (19¢)

where {Mé“::ii}?:l is a basis of M*=1.

We obtain p;; &~ 1.1588, showing that in the scenario 2-3-2, some behaviors P € Q’f;% do not
admit any quantum realization. This example shows that the completeness is not verified. The code
is provided in [45].

B Generating Random Moment Matrices

In what follow we refer to the randomized method used in [39]. A moment matrix, M, can be obtained
by the Eq. 21 if a quantum state p and a set of projectors {Il,s} is provided. In the randomized
method, we randomly select a state form the space of states and each projective measurements in the
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set of projectors. They are multiple ways to do this and we have adopted the following one. The state
p is prepared as follows:

p=Ul0)0[U", (20)

where U is a random d X d unitary matrix obtained using the Haar measure [57].

For the projectors, it is more subtle as we need to to satisfied normalization: >, I, ¢ = 1. When the
number of outcomes is equal to the dimension of the Hilbert space, in order to satisfy the normalization
and orthogonality among projectors of different outcomes, all the projectors must be rank-1. However,
when the dimension is larger than the number of outcomes some of the projectors must have higher
rank. The assignment of the rank of the projectors can be done using a pseudorandom number
generator such as the Mersenne Twister [58]. In other words, this corresponds to a binning method.
To assign each result r; € R; to different dimension (to keep the orthogonality), we can define the
different sets B,,s, Vri € R; such that: B, = {0,...,d — 1}, B, 5, N Bys, = 0 if r; # r} and
UTiERiBm\Si = {0, v, d— 1}.

The projector 11, ,, is prepared as follows:

Hri|si = Z USz‘]><J‘UJZ’ (21)
JE€B s
where Us, is a random d X d unitary matrix obtained using the Haar measure [57] and characteristic

of the setting s;. It is important to keep the same unitary U, for all the projectors with the same
setting in order to keep the orthogonality. Then each projectors of sequences of measurements can be
obtained as explained in Sec. 2.1 with the expression Il = II i

A behavior P can also be randomly created using the same technique as the diagonal elements of a
moment matrix obtained by this technique is a behavior.

Tn|sn *+ lry]sye

C Generalised Robustness

In Sec. 3.3 (in particular in Eq. 11) we have presented an optimization problem to quantify “how far”
is a given behavior P := {P(r|s)}rs from the set Q% This quantifier is analogous to the robust of
entanglement’ [16] and we defined it as:

given P := {P(r[s)}rs
v:i= maxn
n.Pak (22)
s.t. P+ (1 —n)Pay € QF

k
Pyr € Qy,

where d is the dimension and k the level of the hierarchy.

By generating a basis {M;}; for Q§ the above optimization problem can be phrased as an SDP:

'We recommend Ref. [47] for an introduction on robust quantifiers and SDP.
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given {M;};, {P(r|s)}rs

V= max n
0,X,R{c;}i,{Bs}s

st. nP(r|s) + Ryjs pls = Xejs,rfs
X =) a;M;
' (23)
R= Z BiM;
Xojo,00 =1
Rojpop=1—1n
X>0, R>0

where a; and B; are real numbers and X and R are matrices of the size of M;. Following the steps of
Ref.[59], the Lagrangian of this optimization problem can then be written as

L=n+ Z’Vr\s (ers,r\s - Xr\s,r|s + UP(f|S)) + Tr (A |:X - Z O‘le‘|> (24)

rls

+ Tr (B lR > BiM;

) + Tr(pX) + Tr(oR) + (1 — 1 — Rojo,0j0) + =(1 — Xogj0,0/0)

=1 (1 -7+ Z%sP(r!S)> +Tr (X [p — 2[0]0){0[0] + D _ Yejs|rls) <F|S|] ) (25)

rls r|s
+Tr (R

for dual variables «y, A, B, p, o, r, and x. The dual program of the SDP described in Eq. 23 can then be
written as

o — 2|0[0)(0]0] + > Yyslrls) <r|s|} ) = Z a; Tr(M;A) — — ZﬁiTr(MiB) +r4x

rls

given {M;};, {P(r|s)}rs

V= min T+r
xﬂnv{’Yr‘S}TSvAvB

st.r=1+ ZFMSP(I‘\S)

r,s

> [rls)(r[slyes = A —[0]0)(0[0] (26)
> [rls)(rls|yes < =B +7(0]0){0[0]

Tr(M;A) = 0, Vi
Tr(M;B) = 0, Vi,

where A and B are are matrices of the size of M;, vys * and 7 are real numbers, [r[s)(r[s| is a matrix of
the size of M; which has value 1 on the component (r|s,r|s) and zero everywhere else. Moreover, the
real coefficiens {7;s }r,s provide an inequality that can be used to certify that the behavior. {P(r[s)}rs
does not admit a quantum realization of dimension d.

More precisely, after solving the optimization problem 26, the given behavior satisfies
> rsWsP(rls) = v — 2 — 1. From the primal, we sce that every behavior {Px(r|s)}rs € QF re-
spects v > 1, hence we have the witness >, Vs Px(r[s) > —z. Note that if the given behavior is
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not inside ng the witness is always violated by this behavior. The primal formulation ensures that if
{P(r|s)}r;s ¢ Q% we have v < 1, hence Y-, (s P(r[s) < —z.
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