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Abstract. We propose a new classical-quantum hybrid algorithm — optimizing parameters
of the quantum circuit with a classical computer efficiently and then generating a non-trivial
quantum state on an actual quantum computer with the optimized parameters. This can solve
the accuracy problem of the existing variational quantum algorithms caused by the operational
and statistical errors and make the best use of near-term quantum computing. As an example,
we apply the proposed method for quantum machine learning of quantum phase of matter,
where the generated quantum states are further used for a clustering algorithm to classify the
underlying quantum phase.
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Classical-quantum hybrid algorithms using varia-
tional quantum circuits [1, 2] repetitively apply the
following process: evaluating observables with the
parameterized quantum circuit, computing a cost
function from them, and updating the parameters
with a classical computer (e.g. using gradient meth-
ods). While this is one of the most promising ap-
plications of NISQ computers [3], there is a severe
problem of accuracy. This is because the cost func-
tion evaluated by sampling, as mentioned above,
suffers from statistical and operational errors.

In this study, we propose a new hybrid classical-
quantum algorithm in which the parameter opti-
mization of the quantum circuit is performed solely
on a classical computer efficiently and the resultant
optimized parameters are further used on an actual
quantum computer to generate non-trivial states.
Since the expectation values to evaluate the cost
function are calculated classically, the proposed al-
gorithm makes the parameter update accurate and
feasible. Of course, a classical simulation of quan-
tum computation is inefficient in general. To handle
this, we assume the cost function (or Hamiltonian)
consists only of local observables and the depth of
the parameterized quantum circuits is low (constant
or logarithmic in the number of qubits). This allows
us to compute the cost functions in polynomial time
on classical computers. Due to this strong assump-
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tion, one might think that there is no need to use
an actual quantum computer. This is true if one
is interested in local observables. However, this is
not the case, if we are interested non-local informa-
tion such as non-local observables or sampling on
the generated quantum states.

As an example of such a problem, we consider a
one-dimensional transverse field cluster model [4].
While this system is exactly solvable, it is known
to exhibit a symmetry-protected topological phase
transition [5] depending on the strength of the mag-
netic field and the associated order parameter con-
sists of non-local observables [6]. As a proof of con-
cept, we got the ground state as mentioned above
and evaluated a non-local order parameter numer-
ically, while the latter should be done on an ac-
tual quantum computer in practice. Furthermore, to
learn the quantum phase, we also calculate the inner
products of the generated quantum states with dif-
ferent magnetic fields, which can be efficiently done
on an actual quantum computer. Thereby, we per-
formed clustering (an unsupervised machine learn-
ing) of two phases, which is in good agreement with
the behavior of the order parameter and could be
applied for the case without the knowledge of the
order parameter.

The same method can be applied for genuine
topologically ordered systems such as the Kitaev
models with perturbations, which would be hard to
be simulated classically.
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