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Introduction
Imperfect measurements contribute greatly to errors in
currently available quantum devices. Recently, meth-
ods to mitigate measurement errors were proposed, rely-
ing on classical post-processing of experimental statistics,
preceded by the suitable device characterization [1–11].
Those techniques suffer from the curse of dimensionality
due to characterization cost, sampling complexity and the
complexity of post-processing, all scaling exponentially
with the number of qubits N . Fortunately, some interest-
ing problems in quantum computing, including Quantum
Approximate Optimization Algorithms (QAOA) [12], re-
quire simultaneous estimation of a number of a few-
particle marginals. This suggests that error mitigation
techniques can be efficiently applied in this setting. In
this work we report a measurement noise model which
captures cross-talk between measurement errors, can be
efficiently described and characterized, and which admits
effective noise-mitigation on the level of marginal proba-
bility distributions. We test error-mitigation on experi-
ments on 15 qubits on IBM’s superconducting quantum
device and conclude good performance. Furthermore,
we study effects of readout noise and its mitigation on
QAOA, together with analysis of sampling complexity of
energy estimation.

Result 1a – readout noise model
As a model for readout noise, we consider stochastic map
Λ which has a specific structure imposed by the locality
of the cross-talk interactions in the readout noise, namely

ΛX1...XN |Y1...YN
=

∏
Ci

Λ
YN(Ci)
XCi

|YCi
, (1)

where we label matrix elements by classical bit-strings,
with X1 . . . XN denoting the classical state of N qubits
which is the (possibly erroneous) output of the measure-
ment device provided that input was the state |Y1 . . . YN 〉.
In Eq.(1), we consider a set {Ci}Ki=1 of disjoint parti-
tions (clusters) of qubits, together with the indices of
their neighbors N (Ci). Each partition (cluster) charac-
terizes qubits for which measurement noise is strongly
correlated, while the exact form of of the noise depends
on the input state YN (Ci) of the neighbors. The struc-
ture of correlations is inferred from the noise characteri-
zation procedure (described below), and does not neces-
sarily correspond to physical connectivity of a device.

Result 1b – noise mitigation on marginals
We show that if the Eq. (1) holds for global distribution,
then the marginal distributions are affected by stochas-
tic noise. This allows us to perform the noise-mitigation
individually on marginal distributions up to some error
which depends on the level of correlations and number of

gathered samples. Crucially, our noise-mitigation proce-
dure exhibits low sampling and computational complex-
ity, contrary to the naive procedure performed globally.

Result 1c – efficient noise characterization
To characterize noise matrices, we use generalization of
Quantum Overlapping Tomography [13] to probe diag-
onal elements of the detector’s POVM efficiently. This
allows to capture k-qubit correlations in N -qubit device
using only ∝ exp (k) logN quantum circuits consisting of
only 1-qubit gates. To benchmark our error-mitigation,
we experimentally implement ground states of diagonal
Hamiltonians and perform noise-mitigation on the level
of marginals. In Fig. 1 we present results of such ex-
periments on 15 qubits (IBM’s Melbourne device) for
600 Hamiltonians encoding random MAX-2SAT prob-
lems with clause density 4 and 600 fully-connected Hamil-
tonians with random interactions. We conclude a good
performance of our noise model compared to no mitiga-
tion and to the simple uncorrelated noise model.

Result 2 – readout noise in QAOA
We study how readout noise and mitigation procedure af-
fect the performance of QAOA. We observe that for the
numerically studied instances the realistic readout noise
can affect QAOA procedure in two ways – first by reduc-
ing the quality of energy estimators, and second by slow-
ing down the convergence of the algorithm. Importantly,
we also observe that employing the error-mitigation pro-
cedure allows to circumvent these undesirable effects. To
back these statements we perform exhaustive numerical
experiments of noisy QAOA on 8 qubits using classical
optimizer known as Simultaneous Perturbation Stochas-
tic Approximation [14]. In Fig. 2 we present exemplary
results of numerical optimization simulations, with mea-
surement noise model based on results of IBM’s device
characterization. We conclude effectiveness of the error-
mitigation scheme compared to no mitigation.

Result 3 – statistical errors for local Hamiltonians
We present arguments why in the task of energy esti-
mation of local Hamiltonians, one can expect that local
terms will effectively behave as uncorrelated variables in
a sense of statistical fluctuations. This holds for a broad
classes of quantum states, which include Haar-random
states, typical states in local random circuits, and states
at the beginning and at the end of the QAOA optimiza-
tion. Observed effects drastically lower the sampling
complexity of the energy estimation task in QAOA, and,
as a result, lower the errors in noise-mitigation on the
marginal distributions. The arguments are based on ran-
dom matrix theory, theory of random quantum circuits
[15], information spreading [16] in shallow circuits, and
analysis of correlations propagation in QAOA [17].
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FIG. 1. Noise mitigation benchmark for 15q experiments on IBM’s Melbourne device. Shown are results for estimation of
energy of the ground states of 600 Hamiltonians encoding a) MAX 2-SAT problem with clause density 4, and b) fully-connected
graph with random interactions. Vertical axis presents the absolute value of the difference between true and estimated state
energies, divided by the number of qubits (hence error per single qubit). Red bars correspond to unmitigated results, magenta
bars correspond to noise-mitigation based on simple uncorrelated readout noise model, and green bars correspond to noise-
mitigation based on our correlated noise model from Eq. (1). Each estimator was obtained from ≈ 41000 samples.

FIG. 2. Numerical simulation of QAOA for 8 qubits for Hamiltonians encoding random MAX-2-SAT instances with clause
density 4. Each data point is an average over 92 Hamiltonians. Vertical axis shows energy difference per qubit calculated for a)
estimators of energy (this represents error in energy estimation), and b) expectation values on optimized states (this represents
error in obtained QAOA parameters). Plotted are three types of optimization – the optimization guided by noisy estimators
(red triangles), the optimization guided by noise-mitigated estimators (green stars), and noiseless optimization (blue dots) given
for reference. Each estimator was calculated from ≈ 1000 samples. Shown error bars are 1σ.
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