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Quantum technology has been growing rapidly, pro-
viding a variety of applications. Tasks in quantum in-
formation processing take advantages over their classical
counterpart by exploiting quantum resources: e.g., non-
classicality has recently been introduced as a resource
quantifying the metrological power [1–3]. Thus it is a
crucial issue to identify quantum resources required to
obtain quantum advantages. Quantum resource theo-
ries (QRTs) [4] provide a comprehensive framework for
quantifying and manipulating quantum resources. In a
realistic situation, quantum resources are contaminated
by noisy environment. To overcome practical noise, we
study resource concentration in which one aims to pro-
duce more resourceful output by consuming contami-
nated copies.

In this work, we study the limitation for the concen-
tration of nonclassicality by looking into the properties
of resource measures. Let us begin by briefly introducing
the basic formalism of QRTs. A resource theory is deter-
mined by free states and free operations. The golden rule
of QRTs is that free operations never create resources.
Resource can be quantified by a proper resource measure
R. One of the important properties of a resource mea-
sure is the monotonicity which states that R does not
increase under free operations. We also introduce an-
other important property called tensorization property,
R (ρ⊗ σ) = max{R(ρ), R(σ)}, used to derive our main
result. The goal of resource concentration is to obtain
output state with higher resource from noisy states. Con-
sider that one is given noisy resource states ρ1, ρ2, · · · , ρN
and is to produce output state σ = Φ(ρ) using free op-
erations Φ. One can say that (s)he successfully obtain
concentrated resource state if R(σ) > maxiR(ρi). If R
satisfies both monotonicity and tensorization property,
one can readily show that achieving the above inequality
is impossible.

In the continuous-variable system, an N -mode state ρ
is called classical if it can be written as a convex mixture
of coherent states. In the resource theory of nonclas-
sicality, the free states becomes the set of states with
positive P function. We choose the following operations
as free operations: (1) passive linear unitaries and dis-
placements, (2) adding classical ancilla modes, (3) pro-
jection onto coherent states, (4) classical mixing. The
nonclassicality depth τm [5, 6] is defined by the minimum
amount of added noise τ which makes the s-parametrized
qusiprobability function positive. We here prove that the

nonclassicality depth satisfies the monotonicity and the
tensorization property. Importantly, the monotonicity
holds even for conditional operations which allows post-
selection. Using these properties, we find that the non-
classicality depth can never be concentrated by classical
operations even probabilistically.

Recently, nonclassicality has been studied as a re-
source quantifying the quantum advantage in metrolog-
ical tasks [1–3]. The metrological power of nonclassical-
ity, F1, is defined by the maximal advantage in displace-
ment estimation among all directions in the phase space.
The monotonicity under deterministic free operations is
proved in [1, 2] with a slightly different set of free op-
erations. For conditional operations Φ(·) =

∑
j Φj(·),

another form of monotonicity is proved which states that
pjF1

(
Φj(⊗N

i=1ρi)
)
6 F1(⊗N

i=1ρi) under classical opera-
tions and destructive measurements. The metrological
power obeys the tensorization property as well [2]. While
the concentration using deterministic free operations is
not allowed, a probabilistic concentration of F1 is pos-
sible. When one tries to obtain the target state σT by
probabilistic concentration, the success probability is up-
per bounded by Psucc 6 maxi F1(ρi)/F1(σT). It is worth
noting the upper bound does not depend on the number
of input copies.

It may seem that the no-go theorems for two different
measures of nonclassicality contradict each other. We
show that the nonclassicality depth and the metrologi-
cal power are looking into different aspects of nonclassi-
cality by examining practical concentration protocols for
cat states and for noisy single-photon states. This work
leads us to understand which operations are essentially
required to obtain more resourceful states.
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