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Recently, the controlled quantum dynamics of a wide
range of physical systems has become experimentally ac-
cessible. For quantum simulation, Hamiltonian dynamics
of many-body quantum systems exhibits non-trivial phe-
nomena such as many-body localization, scrambling, and
discrete time crystal. For quantum computing, Hamilto-
nian dynamics takes an important rule in quantum algo-
rithms such as quantum phase estimation and adiabatic
quantum computing. Classical simulation of them is vi-
tal to numerically verify these phenomena or the perfor-
mance of quantum algorithms prior to the experiments.
However, classical simulation of quantum many-body dy-
namics is hard in general, because of the exponentially
increasing dimensions of the quantum systems. For a sys-
tem with over 25 qubits an exact diagonalization would
be intractable if there is no symmetry to reduce the di-
mensions. Without the exact diagonalization, we have to
update the state vector step by step with Trotter decom-
position of the Hamiltonian dynamics, which increases
the number of operations substantially. The amount of
memory required to store the state vector exponentially
increases in the number of qubits. Such a massive mem-
ory access makes a reliable classical simulation of quan-
tum dynamics over 25 qubits challenging.

In this work, we propose a method to reduce a com-
putational complexity and memory accesses to acceler-
ate classical simulation of Hamiltonian dynamics using
GPU (graphics processing unit). Specifically, we assume
a Hamiltonian is written as a sum of Pauli products.
We partition the terms in a Hamiltonian into mutually
commuting groups, i.e., each group forms a stabilizer
group. The same technique is also employed to reduce the
number of measurements in variational quantum eigen-
solver [3]. Then, the mutually commuting terms are
made diagonal, that is products of Pauli Z operators,
by a Clifford transformation. To find such a Clifford
transformation, we use an efficient representation of the
stabilizer operators with a binary tableau [1], where an
n-qubit Pauli operator is represented as 2n + 1 bit bi-
nary valuable, for example XY ZI → [1100|0110|0]. Re-
cently, in Ref. [2], the authors use the binary tableau to
reduce the circuit complexity of digital quantum simula-
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tions. However, this optimization is intended to reduc-
ing CNOT counts on a quantum circuit implemented on
a quantum computer. Here we use a similar method to
reduce the number of the memory access to accelerate
classical simulation of Hamiltonian dynamics.

We consider each term in a Hamiltonian as a vertex
and construct a graph, where if two terms are mutually
commuting, corresponding two vertices are connected by
an edge. Then, partitioning the Hamiltonian into mu-
tually commuting terms is equivalent to find cliques in
the corresponding graph. We find a large clique, i.e.,
a large group of commuting terms, by a greedy strat-
egy. Then the commuting terms are diagonalized by
using a sequence of H-CNOT-CZ-S-H gates, where H,
CNOT, CZ, and S indicate the Hadamard, controlled-
NOT, controlled-Z, and phase gates, respectively. While
the Clifford transformation is inserted additionally, the
diagonalized rotations can be implemented with a sin-
gle update of the state vector, which reduces the total
number of memory accesses substantially. Regarding the
Clifford transformation, we provide the fast implementa-
tion of multiple S, CNOT, and CZ gates.

We perform numerical experiments for Hamiltonian
dynamics of the fully connected transverse Ising model
and Majorana fermions with the SYK model. In this sim-
ulation, we use one of the fastest simulator “qulacs”[4]
as a baseline. We further implement an efficient im-
plementation of updating a quantum state by Clifford
transformations and diagonal operations. It is confirmed
that the execution time of simulation with our method is
about 10 times faster than that without the diagonaliza-
tion on both CPU and GPU. For example, the simulating
100 trotter steps of the fully connected transverse Ising
model with 30 qubits, which has 465 terms, can be exe-
cuted in 55 minutes by CPU and 4.2 minutes by GPU,
while a naive implementation of Hamiltonian dynamics
using qulacs takes 7.9 hours on CPU. Since the Ising
dynamics has been frequently employed in quantum al-
gorithms such as quantum approximation optimization
algorithm [6] and quantum machine learning [5, 7], and
quantum annealing [8], this acceleration would helpful to
analyse and improve the performance of quantum algo-
rithms on the near-term quantum computers.
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