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Recent advances in NISQ technologies have led to
an experimental demonstration of quantum (com-
putational) supremacy of random circuit sampling
(RCS) [1] and quantum chemistry calculations [2] on
Google’s 53-qubit superconducting quantum com-
puter. RCS is the task of sampling from the output
distribution of a randomly selected quantum circuit,
a leading candidate for a task unreachable by clas-
sical simulations due to its rigorous hardness guar-
antees based on two ingredients available in random
quantum circuits: a worst-to-average-case reduction
[3, 4] and anticoncentration [5].

We propose a quantum advantage scheme based on
a fermionic analogue of Boson Sampling: Fermion
Sampling with magic input states. The scheme
utilizes a restricted set of gates and layouts na-
tive to superconducting qubit architecture used in
simulations of quantum chemistry [6] known as
passive (or particle-number-preserving) and active
fermionic linear optics (FLO). While FLO circuits
with computational-basis input states can be effi-
ciently simulated classically [7, 8], FLO circuits ini-
tialized in a special “magic” resource state leads to
output distribution that is hard to classically simu-
late in the worst-case [9–11]. The magic states can
be prepared using 3 entangling gates per each and
every disjoint block of four qubits. (See Figure 1).

FIG. 1. A schematic of the Fermion Sampling task. The
magic input states are prepared by a simple circuit and
sent through a generic FLO circuit, which can be decom-
posed in the layout shown on the bottom left. One then
samples from the computational-basis output distribu-
tion.

We prove two main technical results that underpin

hardness of the proposed scheme:

(i) Robust worst-to-average-case hardness reduc-
tion for computation of probabilities for pas-
sive and activle FLO circuits initialized in
magic states.

(ii) Anticoncentration of probability amplitudes in
the output of the scheme for both passive and
active FLO circuits initialized in magic states.

These results put Fermion Sampling at the same
level as RCS [3, 4] in terms of state-of-the-art hard-
ness guarantees, surpassing that of Boson Sampling.
In addition, the advantage of our scheme compared
to RCS is that FLO circuits can be efficiently certi-
fied due to its low-dimensional structural properties,
while the disadvantage is the depth required to guar-
antee the worst-case hardness and slight weaker ro-
bustness. The scheme has the potential to be imple-
mentable in near-term quantum devices due to the
compatiblity with existing superconducting qubit
architecture used to demonstrate quantum chem-
istry simulations [2].

Instrumental to our proofs is the fact that active
and passive FLO circuits are representations of the
low-dimensional (of dimensions scaling polynomially
with the number of qubits n) Lie groups U(n) and
SO(2n) respectively. For the worst-to-average case
reduction, we follows the state-of-the-art technique
by Movassagh [4], which utilizes Cayley path to con-
struct a low-degree rational interpolation between
the worst-case and average-case circuits, while gen-
eralizing it in two significant directions. First, while
the interpolation in [4] is performed directly at the
level of physical circuits, ours is performed at the
level of group elements which are then represented
as circuits. Secondly, while [4] applies the interpo-
lation to local one- and two-qubit gates that con-
stitute the circuit, we directly apply it to a global
circuit while maintaining the low-degree nature of
the rational functions, which is required for the ro-
bust reduction. For the anticoncentration property,
we do not use the 2-design property but instead re-
lies on group-theoretic properties of the circuits.
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