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Abstract. We introduce a systematic framework to characterize how well a quantum map, which trans-
forms operators to operators, can be physically implemented. We decompose a quantum map into a linear
combination of physically implementable operations and introduce the physical implementability measure as
the least amount of negative portion that the quasiprobability must pertain. We show this measure satisfies
many desirable properties and possesses an operational meaning within error mitigation, quantifying the
ultimate sampling cost achievable using quantum devices. We further resolve the error mitigation cost for
basic quantum channels and show that global error mitigation has no advantage over local error mitigation
for parallel noise.
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1 Introduction

The postulates of quantum mechanics prescribe that
the evolution of a closed quantum system must be uni-
tary [1]. The physically implementable quantum opera-
tions are obtained in the reduced dynamics of subsystems
and are mathematically characterized by completely pos-
itive and trace-preserving maps (CPTPs). Nevertheless,
many quantum maps, such as positive but not completely
positive maps, which are impossible to be physically im-
plemented, are also fundamental ingredients from theo-
retical and practical perspectives. This motivates us to
study the problem of physically approximating such ‘non-
physical’ quantum maps.

2 Physical implementability measure

In this paper, we introduce a systematic framework to
resolve this task, using the powerful quasiprobability de-
composition technique [2, 3, 4, 5, 6]. More specifically, we
decompose a target quantum map N into a linear combi-
nation of physically implementable quantum operations,
i.e. CPTPs. Then we define the physical implementabil-
ity measure of N as the least amount of negative portion
that the quasiprobability must pertain:

ν(N ) := log min

{∑
α

|ηα|

∣∣∣∣∣ N =
∑
α

ηαOα

}
, (1)

where each Oα is CPTP and ηα is real.
This measure bears interesting properties. It is effi-

ciently computable via semidefinite programs. It satisfies
the additivity property with respect to tensor products.
This property ensures that parallel application of quan-
tum maps cannot make its physical implementation ‘eas-
ier’ compared to implementing these quantum maps indi-
vidually. It also satisfies the monotonicity property with
respect to quantum superchannels. We derive bounds on
this measure in terms of its Choi operator’s trace norm.
These bounds are tight in the sense that there exist quan-
tum maps for which the bounds are saturated. What’s
more, we derive analytical expressions of this measure for
some inverse maps of practically interesting CPTP maps.

3 Application in error mitigation

We endow ν an operational interpretation within the
quantum error mitigation framework as it quantifies the
ultimate sampling cost achievable using the full express-
ibility of quantum computers. Consider the task of es-
timating the expected value Tr[ρA] for an observable A
and a quantum state ρ. Preparation of ρ inevitably suffers
from noise modeled by some CPTP N . We can perform
its invertible map N−1 to cancel the noise

Tr
[
N−1 ◦ N (ρ)A

]
= Tr[ρA]. (2)

However, N−1 might not be implementable and (2) can-
not be carried out physically. We propose a probabilistic
error cancellation technique to deal with this issue and it
turns out that the incurred sampling cost is quantified by
ν. The mitigation procedure roughly goes as follows.

1. Decompose N into a combination of CPTPs as (1).

2. Iterate the following sampling procedure M times:

(a) In the m-th iteration, sample O(m) from distribu-
tion {Oα, |ηα|/

∑
α |ηα|}. Let η(m) be the sampled

coefficient.

(b) Compute the expectation Tr
[
O(m) ◦ N (ρ)A

]
.

3. Compute the empirical mean value ξ :=
2ν(N)

M

∑M
m=1 sgn

(
η(m)

)
Tr
[
O(m) ◦ N (ρ)A

]
. Output ξ

as an unbiased estimate of Tr[ρA].

We further explore the operational properties of this
error mitigation procedure based on the nice properties
ν and its connection to the sampling cost. First, since
ν(N ) is efficiently computable, we can estimate the sam-
pling cost of arbitrary quantum maps, yielding a feasible
way to deal with quantum noise beyond the NISQ era [7].
Second, ν(N ) gives the physical limits of error mitigation
via the quasi-probability method. Notably, we find that
certain Pauli channel can not be mitigated while it has
a positive quantum capacity. Third, the additivity of ν
implies that for parallel quantum noise, global error miti-
gation has no advantage over error mitigation locally and
individually.
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