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Abstract
Imitation learning in a high-dimensional environ-
ment is challenging. Most inverse reinforcement
learning (IRL) methods fail to outperform the
demonstrator in such a high-dimensional envi-
ronment, e.g., Atari domain. To address this chal-
lenge, we propose a novel reward learning module
to generate intrinsic reward signals via a genera-
tive model. Our generative method can perform
better forward state transition and backward ac-
tion encoding, which improves the module’s dy-
namics modeling ability in the environment. Thus,
our module provides the imitation agent both the
intrinsic intention of the demonstrator and a better
exploration ability, which is critical for the agent
to outperform the demonstrator. Empirical results
show that our method outperforms state-of-the-art
IRL methods on multiple Atari games, even with
one-life demonstration. Remarkably, our method
achieves performance that is up to 5 times the
performance of the demonstration.

1. Introduction
Imitation Learning (IL) offers an approach to train an agent
to mimic the demonstration of an expert. Behavioral cloning
(BC) is probably the simplest form of imitation learning
(Pomerleau, 1991). The promise of this method is to train a
policy to predict the demonstrator’s actions from the states
using supervised learning. However, despite its simplic-
ity, behavioral cloning suffers from a compounding error
problem if the data distribution diverges too much from the
training set (Ross et al., 2011). In other words, an initial
minor error can result in severe deviation from the demon-
strator’s behavior. On the other hand, inverse reinforcement
learning (IRL) (Abbeel & Ng, 2004; Ng & Russell, 2000)
aims at recovering a reward function from the demonstra-
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Figure 1. Generative intrinsic reward driven imitation learning
(GIRIL) seeks a reward function to achieve three imitation goals.
1) Match the basic demonstration-level performance. 2) Reach
the expert-level performance. and 3) Exceed expert-level perfor-
mance. GIRIL performs beyond the expert by generating a family
of intrinsic rewards for sampling-based exploration.

tion, and then execute reinforcement learning (RL) on that
reward function. However, even with many demonstrations,
most state-of-the-art inverse reinforcement learning meth-
ods fail to outperform the demonstrator in high-dimensional
environments, e.g., Atari domain.

In our quest to find a solution to this curse of dimensionality,
the primary goal to train an agent to reach the expert-level
performance with limited demonstration data. This goal is
very challenging because, in our context, limited demonstra-
tion data means that the agent can only learn from the states
and actions recorded from gameplay up until the demon-
strator, i.e. the player, loses their first life. We call this
a “one-life demonstration”. With currently-available ap-
proaches, it is unrealistic to expect an agent to even develop
sufficient skills to match a player’s basic demonstration-
level performance. Our ultimate goal for imitation learning
is to build an agent that yields better-than-expert imitation
performance from only a one-life demonstration. Figure 1
illustrates the three steps towards achieving this goal.

Most existing IRL methods fail to reach the first goal in
Figure 1, i.e. the demonstration-level performance. This is
because IRL methods seek a reward function that justifies
demonstrations only. Given extremely limited state-action
data in a one-life demonstration, the recovered reward can
be biased. Executing RL on such reward usually results
in an agent performing worse than the demonstration. To
address this problem, we propose Generative Intrinsic Re-
ward driven Imitation Learning (GIRIL), which seeks a
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family of intrinsic reward functions that enables the agent
to do sampling-based exploration in the environment. This
is critical to better-than-expert performance.

GIRIL operates by reward inference and policy optimization,
and includes a novel generative intrinsic reward learning
(GIRL) module based on a generative model. We chose
variational autoencoder (VAE) (Kingma & Welling, 2013)
as our model base. It operates by modeling the forward
dynamics as a conditional decoder and the backward dy-
namics as a conditional encoder. The decoder learns to
generate diverse future states from the action conditioned
on the current state. Accordingly, the encoder learns to
encode the future state back to the action latent variable
(conditioned on the current state). In this way, our gen-
erative model performs better forward state transition and
backward action encoding, which improves its dynamics
modeling ability in the environment. Our model generates a
family of intrinsic rewards, which enables the agent to do
sampling-based exploration in the environment, which is
the key to better-than-expert performance.

Within our chosen domain of Atari games, we first gener-
ated a one-life demonstration for each of six games and
then trained our reward learning module on the correspond-
ing demonstration data. Finally, we optimize the policy on
the intrinsic reward that is provided by the learned reward
module. Empirical results show that our method, GIRIL,
outperforms several state-of-the-art IRL methods on mul-
tiple Atari games. Moreover, GIRIL produced agents that
exceeded the expert performance for all six games and the
one-life demonstration performance by up to 5 times. The
implementation will be available online1.

2. Problem Definition and Related Work
Problem definition The problem is formulated as a
Markove Decision Process (MDP) defined by a tuple
(S,A, P, r, γ), where S is the set of states, A is the set
of actions, P : S ×A× S → R+ is the environment tran-
sition distribution, r : S → R is the reward function, and
γ ∈ (0, 1) is the discount factor (Puterman, 2014). The
expected discounted return of the policy π is given by

η(π) = Eτ
[∑
t=0

γtrt

]
,

where τ = (s0, a0, · · · , aT−1, sT ) denotes the trajectory,
s0 ∼ P0(s0), at ∼ π(at|st), and st+1 ∼ P (st+1|st, at).

Inverse reinforcement learning was proposed as a way to
find a reward function that could explain observed behavior
(Ng & Russell, 2000). With such a reward function, an
optimal policy can be learned via reinforcement learning
(Sutton et al., 1998) techniques. In the maximum entropy

1https://github.com/xingruiyu/GIRIL

variant of inverse reinforcement learning, the aim is to find
a reward function that makes the demonstrations appear
near-optimal on the principle of maximum entropy (Ziebart
et al., 2008; 2010; Boularias et al., 2011; Finn et al., 2016).
However, these learning methods still seek a reward function
that justifies the demonstration data only. And, since the
demonstration data obviously does not contain information
on how to be better than itself, achieving better-than-expert
performance with these methods is difficult.

Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016) treats imitation learning problem as a distribu-
tion matching based generative model, which extends IRL
by integrating adversarial training technique (Goodfellow
et al., 2014). However, this also means that GAIL inher-
its some problems from adversarial training along with its
benefits, such as instability in the training process. GAIL
performs well in low-dimensional application, e.g., MuJoCo.
However, it does not scale well to high-dimensional scenar-
ios, such as Atari games (Brown et al., 2019a). Variational
adversarial imitation learning (VAIL) (Peng et al., 2019)
improves GAIL by compressing the information via varia-
tional information bottleneck. We have included both these
methods as comparisons to our GIRIL in our experiments.

Schroecker et al. (2019) proposed to match the predecessor
state-action distributions modeled by the masked autoregres-
sive flows (MAFs) (Papamakarios et al., 2017). Although
they have demonstrated the advantages of their approach
against GAIL and BC with robot experiments, their ap-
proach still requires multiple demonstrations to reach good
performance levels and high-dimensional game environ-
ments were not included in their evaluations.

Despite their generative ability, GAIL and VAIL just match
the state-action pairs from the demonstrations only. GIRIL
also uses a generative model, but it does not depend on dis-
tribution matching. Rather, it simply improves the modeling
of both forward and backward dynamics of MDP in the
environment. Moreover, our method utilizes the generative
model based reward learning to generate a family of intrin-
sic rewards for better exploration in the environment, which
is critical for better-than-expert imitation.

Reward learning based on curiosity Beyond the afore-
mentioned methods, reward learning is another important
component of reinforcement learning research. For example,
intrinsic curiosity module (ICM) is a state-of-the-art explo-
ration algorithm for reward learning (Pathak et al., 2017;
Burda et al., 2019). ICM transforms high dimensional states
into a visual feature space and imposes cross-entropy and
Euclidean loss to learn the feature with a self-supervised
backward dynamics model. The prediction error in the
feature space becomes the intrinsic reward function for ex-
ploration. Although ICM has a tendency toward over-fitting,
we believe it has potential as a good reward learning mod-
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ule and so have incorporated it to perform that function in
the experiments. Accordingly, we have treated the result-
ing algorithm curiosity-driven imitation learning (CDIL) as
related baseline in our experiments.

Reward learning for video games Most imitation learning
methods have only been evaluated on low-dimensional envi-
ronments, and do not scale well to high-dimensional tasks
such as video games (e.g., Atari) (Ho & Ermon, 2016; Finn
et al., 2016; Fu et al., 2018; Qureshi et al., 2019). Tucker
et al. (2018) showed that state-of-the-art IRL methods are
unsuccessful on the Atari environments. Hester et al. (2018)
proposed deep Q-learning from demonstrations (DQfD),
utilizing demonstrations to accelerate the policy learning
in reinforcement learning. Since DQfD still requires the
ground-true reward for policy learning, it cannot be con-
sidered as a pure imitation learning algorithm. Ibarz et al.
(2018) proposed to learn to play Atari games by combin-
ing DQfD and active preference learning (Christiano et al.,
2017). However, it often performs worse than the demon-
strator even with thousands of active queries from an oracle.
Brown et al. (2019a) learns to extrapolate beyond the sub-
optimal demonstrations from observations via IRL. How-
ever, their method relies on multiple demonstrations with
additional ranking information. Our method outperforms
the expert and state-of-the-art IRL methods on multiple
Atari games, requiring only a one-life demonstration for
each game. Moreover, our method does not require any
ground-truth rewards, queries or ranking information.

3. Imitation Learning via Generative Model
Most of the existing IRL methods do not scale to high-
dimensional space, and IL from a one-life demonstration is
even more challenging. Our solution to address this chal-
lenge, Generative Intrinsic Reward driven Imitation Learn-
ing (GIRIL), seeks a reward function that will incentivize
the agent to outperform the performance of the expert via
sampling-based exploration. Our motivation is that the ex-
pert player’s intentions can still be distilled even from the
extremely limited demonstration, like the amount of data col-
lected prior to the player losing a single life in a Atari game.
And when a notion of the player’s intentions is combined
with an incentive for further exploration in the environment,
the agent should be compelled to meet and exceed each
of the three goals: par basic demonstration performance,
par expert performance and, ultimately, better-than-expert
performance. GIRIL works through two main mechanisms:
intrinsic reward inference and policy optimization2.

Intrinsic Rewards Since hand-engineering extrinsic re-
wards are infeasible in complex environments, our solu-
tion is to leverage intrinsic rewards that enable the agent

2Policy can be optimized with any policy gradient method.

to explore actions that reduce the uncertainty in predict-
ing the consequence of the states. Note, in ICM (Pathak
et al., 2017), a network-based regression is used to fit the
demonstration data, it is likely to overfit to the limited state-
action data drawn from a one-life demonstration. And ICM
only produces deterministic rewards. These two problems
limit its exploration ability. Empirically, CDIL can only
outperform the basic one-life demonstration with the guide
of limited exploration ability. Therefore, it is imperative to
call for intrinsic reward inference with more powerful ex-
ploration ability to achieve better-than-expert performance.

Generative Intrinsic Reward Learning (GIRL) To em-
power the generalization of intrinsic rewards on unseen
state-action pairs, our novel reward learning module is based
on conditional VAE (Sohn et al., 2015). As illustrated in Fig-
ure 2, the module is composed of several neural networks,
including recognition network qφ(z|st, st+1), a generative
network pθ(st+1|z, st), and prior network pθ(z|st). We re-
fer to the recognition network (i.e. the probabilistic encoder)
as a backward dynamics model, and the generative network
(i.e. the probabilistic decoder) as a forward dynamics model.
Maximizing the following objective to optimize the module:

L(st, st+1; θ, φ) = Eqφ(z|st,st+1)[log pθ(st+1|z, st)]
−KL(qφ(z|st, st+1)‖pθ(z|st))
− αKL(qφ(ât|st, st+1)‖πE(at|st))]

(1)
where z is the latent variable, πE(at|st) is the expert policy
distribution, ât = Softmax(z) is the transformed latent
variable, α is a positive scaling weight.

The first two terms of the right-hand side (RHS) in Eq. (1)
denote the evidence lower bound (ELBO) of the conditional
VAE (Sohn et al., 2015). These two terms are critical for
our reward learning module to perform better forward state
transition and backward action encoding. In other words,
the decoder performs forward state transition by taking the
action ãt and output the reconstruction ŝt+1. On the other
hand, the encoder performs backward action encoding by
taking in the states st and st+1 and producing the action
latent variable z. Additionally, we integrated the third term
of the RHS in Eq. (1) to further boost the backward action
encoding. The third term minimizes the KL divergence
between the expert policy distribution πE(at|st) and the
action encoding distribution qφ(ât|st, st+1), where ât =
Softmax(z) is transformed from the latent variable z. In
this way, we combine a backward dynamics model and a
forward dynamics model into a single generative model.

Note that the full objective in Eq. (1) is still a variational
lower bound of the marginal likelihood log(pθ(st+1|st)),
which is reasonable to maximize as an objective of our re-
ward learning module. Typically, we have pθ(st+1|z, st) ∝
exp(−λ‖ŝt+1 − st+1‖22), where ŝt+1 = decoder(ãt, st) is
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Figure 2. Illustration of the intrinsic reward inference procedure of
the proposed GIRIL model.

the reconstruction of st+1. By optimizing the objective, we
improve the forward state transition and backward action
encoding. Therefore, our reward learning module can better
model the dynamics in the environment. During training,
we use the latent variable z as the intermediate action ãt.

Unlike GAIL and VAIL, the forward state transition in our
GIRL captures the dynamics of the MDP; while its back-
ward action encoding use states st and st+1 to infer expert’s
action information. These two parts are critical for im-
proving the generalization of intrinsic rewards of GIRL on
unseen state-action pairs in the environment, resulting in
more effective exploration ability.

Sampling-based reward for exploration After training, we
infer intrinsic reward with the trained reward module fol-
lowing the inference procedure in Figure 2. Each time we
first sample a latent variable z from the learned encoder by

z = encoder(st, st+1)

and transform it into an action encoding ât = Softmax(z).
The Softmax transformation used here is continuous ap-
proximation of the discrete variable (i.e. action) for bet-
ter model training (Jang et al., 2017). We then achieve
an intermediate action data ãt by calculating a weighted
sum of the true action at and the action encoding ât, i.e.
ãt = β ∗ at + (1 − β) ∗ ât, where β ∈ (0, 1] is a positive
weight. We use the learned decoder to generate the recon-
struction ŝt+1 from the state st and the intermediate action
ãt. The intrinsic reward is calculated as the reconstruction
error between ŝt+1 and st+1:

rt = λ‖ŝt+1 − st+1‖22 (2)

where ‖ · ‖2 denotes the L2 norm, λ is a positive scaling
weight, ŝt+1 = decoder(β ∗at+(1−β)∗Softmax(z), st).

Policy Optimization Algorithm 1 summarizes GIRIL’s full
training procedure. The process begins by training a reward
learning module for E epochs (steps 3-6). In each training
epoch, we sample a mini-batch demonstration data D̃ with
a mini-batch size of B and maximize the objective in Eq.
(1). Then in steps 7-9, we update the policy π via any policy
gradient method, e.g., PPO (Schulman et al., 2017), so as to

Algorithm 1 Generative Intrinsic Reward driven Imitation
Learning (GIRIL)

1: Input: Expert demonstration D = {(si, ai, si+1)}Ni=1.
2: Initialize policy π, encoder qφ and decoder pθ.
3: for e = 1, · · · , E do
4: Sample a batch of demonstration D̃ ∼ D.
5: Train qφ and pθ to maximize the objective (1) on D̃.
6: end for
7: for i = 1, · · · ,MAXITER do
8: Update policy via any policy gradient method, e.g.,

PPO on the intrinsic reward inferred by Eq. (2).
9: end for

10: Output: Policy π.

Table 1. Demonstration lengths in the Atari environment.
Demonstration Length # Lives

Game One-life Full-episode available
Space Invaders 697 750 3

Beam Rider 1,875 4,587 3
Breakout 1,577 2,301 5
Q*bert 787 1,881 4

Seaquest 562 2,252 4
Kung Fu Master 1,167 3,421 4

optimize the policy π with the intrinsic reward rt inferred
by Eq. (2).

A family of reward function for exploration Our method
generates a family of reward functions instead of a fixed
one. After training, we achieve a family of reward functions
r(st, at, z) with z ∼ N (µ,σ) where N denotes the Gaus-
sian distribution. The mean µ and variance σ are the output
of the encoding network, which is adaptively computed ac-
cording to the state of environment. The reward inference
procedure is shown in Figure 2. This provides more flexibil-
ity than a fixed reward function for policy learning. With the
family of reward functions, the agent can perform sampling-
based exploration in the environment, which is critical for
the agent achieving better-than-expert performance from the
limited data in a one-life demonstration.

4. Experiments and Results
4.1. Atari

We evaluate our proposed GIRIL on one-life demonstration
data for six Atari games within OpenAI Gym (Brockman
et al., 2016). The games and demonstration details are
provided in Table 1.

As mentioned, a one-life demonstration only contains the
states and actions performed by a expert player until they
die for the first time in a game. In contrast, one full-episode
demonstration contains states and actions after the expert
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Table 2. Architectures of encoder, decoder and policy network for Atari games.
encoder decoder policy network

4× 84× 84 States and Next States One-hot Actions and 4× 84× 84 States 4× 84× 84 States
dense # Actions→ 64, LeakyReLU

concatenate States and Next States dense 64→ 1024, LeakyReLU
3× 3 conv, 32 LeakyReLU 3× 3 deconv, 64 LeakyReLU 8× 8 conv, 32, stride 4, ReLU
3× 3 conv, 32 LeakyReLU 3× 3 deconv, 64 LeakyReLU 4× 4 conv, 64, stride 2, ReLU
3× 3 conv, 64 LeakyReLU 3× 3 deconv, 32 LeakyReLU 3× 3 conv, 32, stride 1, ReLU
3× 3 conv, 64 LeakyReLU 3× 3 deconv, 32 LeakyReLU dense 32× 7× 7→ 512

dense 1024→ µ, dense 1024→ σ concatenate with States Categorical Distribution
reparameterization→ # Actions 3× 3 conv, 32 LeakyReLU

Latent Variable 4× 84× 84 Predicted Next States Actions

player losing all available lives in a game. Therefore, the
one-life demonstration data is (much) more limited than an
one full-episode demonstration. We have defined the perfor-
mance tries as: basic one-life demonstration-level - game-
play up to one life lost (“one-life”), expert-level - gameplay
up to all-lives lost (“one full-episode”), and beyond expert
- “better-than-expert” performance. Our ultimate goal is to
train an imitation agent that can achieve better-than-expert
performance from the demonstration data recorded up to
losing their first life.

4.1.1. DEMONSTRATIONS

To generate one-life demonstrations, we trained a Proximal
Policy Optimization (PPO) (Schulman et al., 2017) agent
with the ground-truth reward for 10 million simulation steps.
We used the PPO implementation with the default hyper-
parameters in the repository (Kostrikov, 2018). As Table 1
shows, the one-life demonstrations are all much shorter than
the full-episode demonstrations, which makes for extremely
limited training data.

4.1.2. EXPERIMENTAL SETUP

Our first step was to train a reward learning module for
each game on the one-life demonstration. The proposed
reward learning module consists of an encoder and a de-
coder. The encoder consists of four convolutional layers
and one fully-connected layer. Each convolutional layer
is followed by a batch normalization layer (BN) (Ioffe &
Szegedy, 2015). The decoder is nearly an inverse version
of encoder without the batch normalization layer, except
that the decoder uses the deconvolutional layer and also
includes an additional fully-connected layer at the top of
the decoder and a convolutional layer at the bottom. For
both the encoder and the decoder, we used the LeakyReLU
activation (Maas et al., 2013) with a negative slope of 0.01.
Training was conducted with the Adam optimizer (Kingma
& Ba, 2015) at a learning rate of 3e-5 and a mini-batch size
of 32 for 50,000 epochs. In each training epoch, we sampled
a mini-batch of data every four states. We have summarized

the detailed architectures of the encoder and the decoder
network in Table 2.

To evaluate the quality of our learned reward, we used the
trained reward learning module with a λ of 1.0 to produce
rewards, and trained a policy to maximize the inferred re-
ward function via PPO. We normalize st+1 and ŝt+1 to
[-1,1] before calculating the reward. To further speed up the
learning of value function, we performed standardization on
the rewards by dividing the intrinsic rewards with a running
estimate of the standard deviation of the sum of discounted
rewards (Burda et al., 2019). The same discount factor γ
of 0.99 was used throughout the paper. We set α = 100
for training our reward learning module. More experiments
have been shown in the Appendix. Additionally, an ablation
study in Section A.1 shows the impact of standardization.

We trained the PPO on the learned reward function for 50
million simulation steps to obtain our final policy. The PPO
is trained with a learning rate of 2.5e-4, a clipping threshold
of 0.1, an entropy coefficient of 0.01, a value function coeffi-
cient of 0.5, and a GAE parameter of 0.95 (Schulman et al.,
2016). We compared game-play performance by our GIRIL
agent against behavioral cloning (BC), and two state-of-the-
art inverse reinforcement learning methods, GAIL (Ho &
Ermon, 2016) and VAIL (Peng et al., 2019). Additionally,
we adopt the intrinsic curiosity module (ICM) (Pathak et al.,
2017; Burda et al., 2019) as a reward learning module, and
also compare against with the resulting imitation learning
algorithm CDIL. We have shown more details about the
CDIL algorithm in the Appendix.

For a fair comparison, we used an identical policy network
for all methods. The architecture of the policy network
is shown in Table 2. We used the actor-critic approach
in the PPO training for all imitation methods except BC
(Kostrikov, 2018). The discriminator for both GAIL and
VAIL takes in a state (a stack of four frames) and an ac-
tion (represented as a 2d one-hot vector with a shape of
(|A| × 84× 84), where |A| is the number of valid discrete
actions in each environment) (Brown et al., 2019b). The
network architecture of GAIL’s discriminator D is almost
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(a) Space Invaders. (b) Beam Rider. (c) Breakout.

(d) Q*bert. (e) Seaquest. (f) Kung Fu Master.

Figure 3. Average return vs. number of simulation steps on Atari games. The solid lines show the mean performance over five random
seeds. The shaded area represents the standard deviation from the mean. The blue dotted line denotes the average return of expert. The
area above the blue dotted line means performance beyond the expert.

the same as the encoder of our method, except that it only
outputs a binary classification value, and − log(D(s, a)) is
the reward. VAIL was implemented following the repository
of Karnewar (2018). The discriminator network architec-
ture has an additional convolutional layer (with a kernel
size of 4) as the final convolutional layer to encode the la-
tent variable in VAIL. We used the default setting of 0.2
for the information constraint (Karnewar, 2018). PPO with
the same hyper-parameters was used to optimize the policy
network for all the methods. For both GAIL and VAIL, we
trained the discriminator using the Adam optimizer with a
learning rate of 0.001. The discriminator was updated every
policy step. The ablation study in Section A.1 will show the
effects of different reward functions in GAIL and different
information constraints in VAIL.

4.1.3. RESULTS

Figure 3 shows the average performance of the expert,
demonstration and imitation learning methods with 5 ran-
dom seeds. The results reported for all games with our
method, with the exception of Seaquest, were obtained by
offering the standardized intrinsic reward. The Seaquest
results were obtained with the original reward to show that

our method also works well without standardization, achiev-
ing better performance than other baselines on multiple
Atari games. There is more discussion on the influence of
standardizing rewards in the ablation study in Section A.1.

What we can clearly see from Figure 3 is that performance
of the one-life demonstration is much lower than that of the
expert. IL from such little data in a one-life demonstration
is challenging. However, as shown in Figure 1, our first goal
is to train an agent to outperform the player’s performance
up to the point of losing one life. This is a start, but it is
still a long way from building an agent that can ultimately
succeed in the game. Therefore, the second goal is to equal
the player’s performance across all lives. And, since we
always want a student to do better than their master, the
third goal is for the agent to outperform the expert player.

Better-than-expert Imitation Figure 3 shows that BC and
random agent are hopelessly far from achieving the first goal.
GAIL only manages to exceed the one-life demonstration
for one game, Q*bert. VAIL did better than GAIL, achiev-
ing the first goal with three games and the second goal with
two. CDIL managed to exceed one-life performance in all
six games and even up to goal three, better-than-expert per-
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Table 3. Average return of GIRIL, CDIL, BC and state-of-the-arts IRL algorithms, GAIL (Ho & Ermon, 2016) and VAIL (Peng et al.,
2019), with one-life demonstration data on six Atari games. The results shown are the mean performance over 5 random seeds with
better-than-expert performance in bold.

Expert Demonstration Imitation Learning Algorithms Random
Game Average Average GIRIL CDIL VAIL GAIL BC Average

Space Invaders 734.1 600.0 992.9 668.9 549.4 228.0 186.2 151.7
Beam Rider 2,447.7 1,332.0 3,202.3 2,556.9 2,864.1 285.5 474.7 379.4

Breakout 346.4 305.0 426.9 369.2 36.1 1.3 0.9 1.3
Q*bert 13,441.5 8,150.0 42,705.7 30,070.8 10,862.3 8,737.4 298.4 159.7

Seaquest 1,898.8 440.0 2,022.4 897.7 312.9 0.0 155.2 75.5
Kung Fu Master 23,488.5 6,500.0 23,543.6 17,291.6 24,615.9 1,324.5 44.9 413.7

Figure 4. Performance improvement of GIRIL on six Atari games.
The results are averages over 5 random seeds and reported by
normalizing the one-life demonstration performance to 1.

formance, on three games, while our GIRIL accomplished
all three goals on all six games and often with a performance
much higher than the expert player. A detailed quantitative
comparison can be found in Table 3.

The full comparison of imitation performance is shown in
Figure 4. To make the comparison more clear, we report the
performance by normalizing the demonstration performance
to 1. GIRIL’s performance excels the expert performance on
all six games, and often beating the one-life demonstration
by a large margin, for example, 2 times better on Beam
Rider, 3 times better on Kung Fu Master, and 4 times better
on Seaquest. More impressively, our GIRIL exceeds the
one-life demonstration performance on Q*bert by more than
5 times and the expert performance by more than 3 times.

Overall, CDIL came in second our GIRIL. It outdid the
one-life demonstration on all six games, but only the expert
performance on three, Beam Rider, Breakout and Q*bert. It
is promising to seed that both GIRIL and CDIL performed
better than the two current state-of-the-arts, GAIL and VAIL.
GAIL only stepped out of the lackluster performance with
Q*bert. However, VAIL beat the one-life performance on

Beam Rider, Q*bert and Kung Fu Master, and the expert
performance on Beam Rider and Kung Fu Master. It is
clear that, overall, VAIL performed better than GAIL in
every game. We attribute VAIL’s improvements to the use
of variational information bottleneck in the discriminator
(Tishby & Zaslavsky, 2015; Alemi et al., 2017).

Comparison with generative model based imitation
learning Although GAIL and VAIL are based on generative
models just like our GIRIL, they do not have a mechanism
for modeling the dynamics of the environment. Distribu-
tion matching is done by brute-force and, because one-life
demonstration data can be extremely limited, direct dis-
tribution matching may result in an over-fitting problem.
This is probably the most limiting factor over GAIL and
VAIL’s performance. Our method, GIRIL, uses a generative
model to better perform forward state transition and back-
ward action encoding, which improves the modeling of both
forward and backward dynamics of MDP in environment.
Moreover, our method generates a family of intrinsic reward
via the sampling-based reward inference. This enables the
agent to do sampling-based exploration in the environment.
As shown in Figure 3, GIRIL’s performance improves at a
sharp rate to ultimately outperform the expert player. The
difference between matching demonstration performance
and delivering better-than-expert performance comes as a
result of the enhanced ability to explore, which is also a
benefit of our generative model. A final observation is that
GIRIL was often more sample-efficient than the other base-
lines.

Comparison with curiosity-based reward learning The
ICM reward learning module is also able to provide the
imitation agent with an improved ability to explore. How-
ever, the limited demonstration data will give this model
a tendency to overfit. Even so, CDIL exceeded the expert
performance on three of the games: Beam Rider, Breakout
and Q*bert. Granted, for Beam Rider and Breakout, the
improvements were only negligible. However, GIRIL’s use
of generative model to improve dynamics modeling clearly
demonstrates the performance improvements to be gained
from better exploration ability.
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Table 4. Parameter Analysis of the GIRIL with different β on Atari games. Best performance in each row is in bold.
Expert Demonstration GIRIL with different β.

Game Average Average 1.0 0.999 0.99 0.95 0.9
Space Invaders 734.1 600.0 992.9 1,110.9 997.3 1,032.1 1,042.6

Beam Rider 2,447.7 1,332.0 3,202.3 3,351.4 3,276.5 3,402.6 3,145.0
Breakout 346.4 305.0 426.9 397.5 419.3 416.0 361.5
Q*bert 13,441.5 8,150.0 42,705.7 25,104.9 29,618.8 23,532.2 38,296.1

Seaquest 1,898.8 440.0 2,022.4 526.4 443.3 433.4 355.6
Kung Fu Master 23,488.5 6,500.0 23,543.6 16,521.4 23,847.7 20,388.5 19,968.6

4.1.4. ABLATION STUDY OF OUR METHOD WITH
DIFFERENT β .

When β = 1, we construct a basic version of our reward
using the decoder only. When blending actions with dif-
ferent β values, we construct a complete version of our
reward that uses both encoder and decoder. Table 4 re-
ports results of our methods, GIRIL, on the six Atari games
with different β. The action sampling from the encoder
enforces the agent with additional exploration. As a result,
it potentially further improves the imitation performance vs
β = 1, eg., improving 1.29% on Kung Fu Master with a β
of 0.99, improving 6.25% on Beam Rider with a β of 0.95
and improving 11.88% on Space Invaders with a β of 0.999.
Overall, our method generates a family of reward functions,
and enables the imitation agent to achieve better-than-expert
performance on multiple Atari games. The full learning
curves of our method with different β have been shown in
the Appendix.

4.2. Continuous control tasks

Except the above evaluation on the Atari games with high-
dimensional state space and discrete action space, we also
evaluated our method on continuous control tasks where
the state space is low-dimensional and the action space
is continuous. The continuous control tasks were from
Pybullet3 environment.

4.2.1. DEMONSTRATIONS

To generate demonstrations, we trained a PPO agent with the
ground-truth reward for 5 million simulation steps. We used
PPO implementation in the repository (Kostrikov, 2018)
with the default hyper-parameters for continuous control
tasks. In each task, we used one demonstration with a fixed
length of 1,000 for evaluation.

4.2.2. EXPERIMENTAL SETUP

Our first step was also to train a reward learning module
for each continuous control task on the one demonstration.
To build our reward learning module for continuous tasks,

3https://pybullet.org/

we used two-layer feed forward neural networks with tanh
activation function as the model bases of the encoder and
decoder. Two addition hidden layers were added to the
model base in encoder to output µ and σ, respectively. The
dimension of latent variable z is set to the action dimension
for each task. Additionally, we used a two-layer feed for-
ward neural network with tanh activation function as policy
architecture. The number of hidden unit is set to 100 for all
tasks. To extend our method on continuous control tasks,
we made minor modification on the training objective. In
Atari games, we used KL divergence to measuring the dis-
tance between the expert policy distribution and the action
encoding distribution in Eq. (1). In continuous control tasks,
we instead directly treated the latent variable z as the ac-
tion encoding and used mean squared error to measure the
distance between the action encoding and the true action
in the demonstration. We set the scaling weight α in Eq.
(1) to 1.0 for all tasks. Training was conducted with the
Adam optimizer (Kingma & Ba, 2015) at a learning rate of
3e-5 and a mini-batch size of 32 for 50,000 epochs. In each
epoch, we sampled a mini-batch of data every 20 states.

To evaluate our learned reward, we used the trained reward
learning module with a λ of 1.0 to produce rewards, and
trained a policy to maximize the inferred reward function
via PPO. States st+1 and ŝt+1 were also normalized to [-
1,1] before calculating rewards using Eq. (6). We trained
the PPO on the learned reward function for 10 million sim-
ulation steps to obtain our final policy. The PPO is trained
with a learning rate of 3e-4, a clipping threshold of 0.1, an
entropy coefficient of 0.0, a value function coefficient of 0.5,
and a GAE parameter of 0.95 (Schulman et al., 2016).

For a fair comparison, we used a two-layer feed forward
neural network with tanh activation function as the feature
extractor in ICM, and the discriminator in GAIL and VAIL.
The number of hidden layer was also set to 100. The reward
function of GAIL and VAIL was chosen according to the
original papers (Ho & Ermon, 2016; Peng et al., 2019). The
information constraint Ic in VAIL was set to 0.5 for all
tasks. In our experiments with continuous control tasks, we
use mean squared error as the discrepancy measure in the
objective of backward dynamics of ICM (in Eq. (3)). To
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Table 5. Average return of GIRIL, CDIL, BC and state-of-the-arts inverse reinforcement learning algorithms GAIL (Ho & Ermon, 2016)
and VAIL (Peng et al., 2019) with one demonstration data on continuous control tasks. The results shown are the mean performance over
3 random seeds with best imitation performance in bold.

Demonstration Imitation Learning Algorithms
Task Average GIRIL CDIL VAIL GAIL BC

InvertedPendulum 1,000.0 990.2 979.7 113.6 612.6 36.0
InvertedDoublePendulum 9,355.1 9,164.9 7,114.7 725.2 1,409.0 241.6

enable fast training, we trained all the imitation methods
with 16 parallel processes.

4.2.3. RESULTS

Table 5 shows the detailed quantitative comparison of the
demonstration and imitation methods. The results shown in
the table were the mean performance over 3 random seeds.
Under a fair comparison, our method GIRIL achieves the
best imitation performance in both continuous control tasks,
i.e. InvertedPendulum and InvertedDoublePendulum. CDIL
also achieves performance that is close to the demonstration,
while still slightly worse than our method. A comparison of
full learning curves can be found in Figure 5.

(a) InvertedPendulum. (b) InvertedDoublePendulum.

Figure 5. Average return vs. number of simulation steps on contin-
uous control tasks.

4.3. Full-episode Demonstrations

Figure 6 shows the average return versus number of full-
episode demonstrations on both Atari games and continuous
control tasks. The results shows that our method GIRIL
achieves the highest performance across different numbers
of full-episode demonstrations. CDIL usually comes the
second best, and GAIL is able to achieve good performance
with more demonstrations in continuous control tasks. De-
tailed quantitative results have been shown in the Appendix.

5. Conclusion
This paper focused on imitation learning from one-life game
demonstration in the Atari environment. We propose a novel
Generative Intrinsic Reward Learning (GIRL) module based
on conditional VAE that combines a backward dynamics

(a) Breakout. (b) Space Invaders.

(c) InvertedPendulum. (d) InvertedDoublePendulum.

Figure 6. Average return vs. number of full-episode demonstra-
tions on Atari games and continuous control tasks.

model and a forward dynamics model into one generative
solution. Our generative model can better perform forward
state transition and backward action encoding, which im-
proves the modeling of both forward and backward dynam-
ics of MDP in environment. The better dynamics model-
ing enables our model to generate more accurate rewards.
Moreover, our model generates a family of intrinsic rewards,
enabling the imitation agent to do sampling-based explo-
ration in the environment. Such exploration enables our
imitation agent to learn to outperform the expert. Empirical
results show that our method outperforms all other baselines
including a state-of-the-art curiosity-based reward learning
method, two state-of-the-art IRL methods, and behavioral
cloning. A comparative analysis of all methods shows the
advantages of our imitation learning algorithm across multi-
ple Atari games and continuous control tasks. An interesting
topic for future investigation would be to apply our GIRL
to a typical, but difficult, exploration task.
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