Faculty snapshot

<table>
<thead>
<tr>
<th>Undergraduate</th>
<th>Postgraduate</th>
<th>Higher Degree Research</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,195</td>
<td>2,757</td>
<td>902</td>
<td>10,854</td>
</tr>
</tbody>
</table>

UTS at a glance

- **45,930** students
- **15,134** international students
- **33,070** undergraduate students
- **10,720** postgraduate coursework
- **2,140** higher degree research students
- **3,896** staff

UTS student diversity

- **49%** female students
- **51%** male students
- **31%** are 25 or older
- **49%** also speak a language other than English

Please note the above numbers are approximate as of January 2019.

Contact us

Tel: 1800 774 816 (free call within Australia)
Tel: +61 3 9627 4816 (for international calls)
Web: international.uts.edu.au
Email: international@uts.edu.au

Connect with us

- UTSInternationalstudents
- UTSINT
- UTSFEIT

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Boorooberringal People of the Dharug Nation upon whose ancestral lands our campuses stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these Lands.
Why engineering and IT at UTS?

Advances in engineering and digital technologies are changing the world. Our graduates are next-generation leaders with real-world innovation and entrepreneurship skills in new and emerging fields. Transform the future with degrees that will develop technical skills and build practical experience.

INDUSTRY FOCUSED LEARNING
Theory is great, but nothing prepares you better than real industry experience for the workforce. That’s why we offer hands-on, practice-based learning that cultivates future-ready graduates. Our industry partnerships enable us to offer you working knowledge throughout your degree.

CONNECTIONS THAT COUNT
UTS connects with over 1000 industry partners in teaching and research. Surround yourself with opportunities to engage with companies such as Siemens, Raytheon, Deloitte, PwC, Aurecon, WiseTech Global, Thales, Canon Medical Systems and Cisco.

THE WORLD IS WATCHING
Put yourself in the right place from day one. We may be young, but we’re making our mark quickly. Among universities under the age of 50, UTS is already the No. 1 ranked university in Australia and No. 10 in the world.

EXPAND YOUR HORIZONS
Participate in our Global Exchange, International Studies course or Beyond UTS International Leadership Development (BUILD) program with its overseas volunteering placements, to lay down the foundations for a global career.

INNOVATION HUB
UTS sits in an innovation precinct that is home to Australia’s largest cluster of start-up firms. Our building’s modern teaching spaces and laboratories are designed to inspire and support creativity, entrepreneurship and collaboration.

ENCOURAGING ENTREPRENEURS
Have a great idea? UTS Startups provides resources, industry connections, mentors and other benefits to encourage student entrepreneurship, launch startups and bring your business dreams to reality.

ROB JARMAN – ASSOCIATE DEAN, LEARNING & TEACHING
“UTS offers transformative learning experiences. We prepare students for their future careers through practical, real-world experience. For example, our students engage with industry and researchers in studio learning and practical projects, define problems and develop solutions through design thinking, have internship opportunities, and showcase their skills and capabilities through industry networking, career and award events.

Our facilities have undergone a one billion dollar redevelopment to offer one of the most dynamic, interconnected and student-focused spaces in the world. The UTS Software Studio, 3D Data Arena and ProtoSpace 3D printing facility are giving students real experience that promotes innovation and collaboration.

At UTS, we’re preparing students for the future of work.”
5 star rated for excellence

UTS was awarded 5 stars in all 7 categories by QS World University Rankings (2018-2021)

256 exchange partners in 43 countries

Top 100 Globally for graduate employability
(QS Graduate employability Rankings 2019)

Top 200 universities globally
QS World University Rankings 2019 and Times Higher Education World University Rankings 2019

World standard or above

100 per cent of UTS research at the broad subject level
Excellence in Research for Australia 2019

UTS ranked Australia’s
No. 1 young* uni

No. 2 for Computer Science in Australia
Times Higher Education World University Rankings by Subject 2019

NO. 1 in Australia for the proportion of our research appearing in leading science journals
CWTS Leiden Rankings, 2018

NO. 10 Highest performing university in the world under 50 years old
QS Top 50 Under 50 2019
Tech Lab is an engineering and IT facility inspiring innovation and collaboration between expert researchers, industry partners and government.
The multi-functional site features 9000 square metres of office and laboratory space dedicated to technology innovation.

ProtoSpace is our purpose-built additive manufacturing facility, incorporating 3D printing designed to bring prototype testing and product manufacture within the reach of UTS students.

The building itself is a living, breathing laboratory embedded with wireless sensors to monitor temperature, air quality, noise and dust particles.

A rich environment for you to become professionally competent via an industry collaborative software development experience throughout your degree.
LABORATORIES
The building contains civil, electrical, information and communication technology and mechanical laboratories, where students gain hands-on, practical experience. You will have access to specialised computer labs, including the UTS Remote Laboratory – the largest and one of the world’s most advanced remote laboratories.

LEARNING PRECINCT
In between classes, you can study or conduct group work in the Learning Precinct. This student space is where you can access teachers for individual and small group support, as well as reference materials and software and hardware resources.

DATA ARENA
This 3D data visualisation arena aids researchers to visually present and interact with complex data sets and 3D-spatial modules. It utilises projectors and stimulates weather such as wind and lightning to provide the experience of being immersed in a huge 3D virtual reality experience.

UTS LIBRARY
The UTS Library has expanded to include an underground storage system that uses robotic cranes for the retrieval of less-demanded books, making borrowing faster and simpler. This library upgrade is part of the larger UTS City Campus Master Plan, a $1 billion investment to redevelop UTS.
SHARK-DETECTING SOFTWARE PROTECTS BEACHGOERS
SharkSpotter is a world-first system developed by the Centre of Artificial Intelligence in partnership with drone solutions provider The Ripper Group to prevent shark attacks and save lives at beaches.

Patrolling from the sky, Little Ripper drones are loaded with AI software that distinguishes sharks from other marine life and objects.

If a shark is detected and becomes a threat, the drone’s megaphone can be activated to warn swimmers. It can also drop a live-saving floatation pod with an electronic shark repellent in emergencies.

A cost-effective solution for beach safety over large areas, SharkSpotter won the national AI or Machine Learning Innovation of the Year at the Australian Information Industry Association’s annual iAwards.

Little Ripper drones are currently patrolling major beaches across Australia.

Centre of Artificial Intelligence
FILTRATION SYSTEM PROVIDES CLEAN WATER IN VIETNAM
An inexpensive and sustainable filtration system designed by the Centre for Technology in Water and Wastewater is providing clean drinking water along the Red River Delta in Vietnam.

Working with researchers from Hanoi University of Science and the Institute of Environmental Technology, Vietnam Academy of Science and Technology, the system addresses the issue of groundwater contaminated by arsenic. Previous filtration methods were neither cost-effective or efficient at removing the chemical, which causes major health problems including cancer, gastrointestinal disorders and nerve tissue injuries. Water for daily living at many sites depended on rainwater, which is scarce in dry seasons.

The system was installed and operated in houses, childcare centres, a commune office and commune culture houses in Hanoi and Ha Nam province – a model for clean water that can be adopted worldwide. It won a Technology Against Poverty Prize, a partnership between the Australian Government’s innovationXchange and Google.

Centre for Technology in Water and Wastewater

ROBOTIC TECHNOLOGIES EXTEND WATER PIPE LIFE
UTS and Sydney Water have a strong research partnership spanning over 10 years. The Centre for Autonomous Systems collaborated with Sydney Water to design sensing robotic technologies that extend the lifespan of water and sewer pipes in Australian cities and towns.

Many of the pipes approaching the end of their life are underground and completely replacing them is expensive. As a more cost-effective solution, the water industry and multiple partners are establishing standards, technologies and coatings for lining pipe interiors to extend their use.

The robots developed at UTS are designed to check the quality of liner application and conduct long term performance monitoring of pipes. The technology will help deliver an even more reliable water and wastewater service and reduce disruption due to repairs and replacements.

Centre for Autonomous Systems

LANDMARK INTERNET OF THINGS (IOT) INNOVATION LAB PROMOTES BETTER BUSINESS AND STUDY
UTS is the first academic institution to work with leading technology solutions provider Cisco and analytics software company SAS in a global Internet of Things (IoT) partnership to create a new research and teaching facility.

The UTS–SAS–Cisco IoT Innovation Lab will explore how huge volumes of data generated by massive numbers of IoT devices and sensors can be gathered, stored and analysed to help businesses improve decision-making, build organisational capacity and apply streaming data analytics at the edge to meet new IoT challenges.

The world-first partnership will foster collaboration between top UTS researchers in the area of IoT and harness the power of industry platforms to deliver solutions with impact. Early research will be in the areas of advanced manufacturing, agribusiness and healthcare. The facility’s optimised study environments will promote improved learning outcomes for students.

UTS–SAS–Cisco Innovation Lab
Industry connections

Let a degree at UTS Faculty of Engineering and IT give you the edge.

When you choose to study at the UTS Faculty of Engineering and IT you get to experience the best of both worlds - a great degree and exposure to UTS industry partners.

Add an internship to your degree, work on industry projects in studio subjects, test industry systems in hackathons and pitch your experience at a student showcases.

INTERNSHIPS

All engineering students complete a minimum of 12-weeks work experience in the Bachelor of Engineering (Honours). This ensures you graduate with practical, hands-on experience, to give you a competitive edge when you finish uni.

Engineering students have the option to enrol in the Diploma of Professional Engineering Practice. This is a 48-week structured Practice Program, consisting of two 6-month internships alongside your engineering course.

Students who enrol in the Bachelor of Science in IT can add the Diploma in Information Technology Professional Practice as part of their program. The internship is a structured program, consisting of one nine-month internship alongside your IT course.

GAIN REAL-WORLD EXPERIENCE

Internships are structured programs that give you valuable hands-on work experience. You get to see how the technical knowledge you learn at uni is applied in practice. It’s the perfect way to explore the world of work to learn more about the type of job options and career paths available to you.

BUILD VALUABLE NETWORKS

An internship as part of your UTS Engineering or IT degree is a chance to make valuable connections and start building your industry network. Your internship work colleagues may become lasting contacts who let you know about potential job opportunities and act as your mentors and referees in the future.

PROFESSIONAL FROM DAY ONE

Step one listen, step two do. Engineering and IT subjects are delivered by industry professors who understand the importance of practice. Be a true professional from the start, by applying your skills to real industry challenges, hackathons and showcases.

SEE YOUR IDEAS FLOURISH

TIME Magazine, Snapchat, Reddit, Facebook, Google, Dropbox, WordPress and Yahoo were all founded in universities. Be where opportunities happen. 40% of Sydney’s tech start-ups are in our neighbourhood and we offer dedicated services and programs to mentor students with ideas and ambitions.

INDUSTRY PARTNERS

Accenture
American Express
Aurecon
Bouygues Construction Australia
BT Group
Cochlear
Deloitte
Caltex
Coca-Cola Amatil
Cisco
Commonwealth Bank
KPMG
Lendlease
Microsoft
Nokia
PWC
Qantas
Raytheon
ResMed
Siemens
Thales
Toshiba International Corporation Pty Ltd
Unilever
WiseTech Global
Westpac
Internship FAQs

Q. WHAT ARE THE BENEFITS OF AN INTERNSHIP?
An internship provides you with a unique opportunity to put uni learnings into practice. This means you get to test and refine your practical skills as well as build business acumen around your communication, teamwork and creative skills.

Q. WHAT IS THE DIPLOMA IN INFORMATION TECHNOLOGY PROFESSIONAL PRACTICE?
With the Diploma in Information Technology Professional Practice, you can undertake a minimum of nine months IT work experience in addition to your course. The Diploma is available to students enrolled in the following courses:
- Bachelor of Science in Information Technology
- Bachelor of Science in Games Development
- Bachelor of Computing Science (Honours)
- Bachelor of Science in Information Technology combined degrees

Q. WHAT IS THE DIPLOMA IN PROFESSIONAL ENGINEERING PRACTICE?
It is a 48-week structured Practice Program, consisting of two six-month internships during students’ engineering course. The Diploma in Professional Engineering Practice can be studied together with Bachelor of Engineering (Honours). All engineering students must complete a minimum of 12-weeks work experience.

Q. DO ALL ENGINEERING STUDENTS NEED TO UNDERTAKE AN INTERNSHIP?
All students in the Bachelor Engineering (Honours) must undertake 12 weeks of work experience. Engineering students who want to undertake a longer internship can add the Diploma in Professional Engineering Practice to their degree.

Q. WHAT SUPPORT DO I HAVE SECURING AN INTERNSHIP?
The careers team are available to assist you with your job search. We maintain links with more than 1000 organisations offering both scholarships and internships, the latter being advertised on our in-house jobs portal, CareerHub. We also offer opportunities to find mentors, meet contacts, and build networks that will prove invaluable in your career.

Q. HOW MANY HOURS SHOULD I COMMIT TO MY INTERNSHIP?
An internship is similar to a full-time job. You’ll be expected to commit to the contracted hours of employment during this time. Don’t worry, there are no other compulsory classes during this time so you can solely focus on your work placement.

Q. DO I GET PAID FOR AN INTERNSHIP?
The average weekly salary for UTS Engineering students on their first placement was approximately $680, and $796 while on their second placement (2016). Payment is at the discretion of the employer.

Q. WHAT EMPLOYERS WILL I WORK WITH?
We partner with a range of companies across industry, who employ UTS engineering and IT students. They advertise available internships via CareerHub. You can also look for internships with other employers who are not current partners. These jobs can be found via SEEK or other national job boards.

Eashwinder Deharput – Australia
Mechanical and Mechatronic Engineering, Internship: Thales

“Engineering is one of the degrees where you need to put your theory into practical use and an internship lets you do just that. My internships have helped me plan out the type of engineering path I want to follow and build valuable industry connections that will hopefully help me stand out from the crowd when I’m ready to take the next step in my career.”
Engineering and IT skills are your passport to success.

From the infrastructure of our cities to robotics, green vehicles, recycled water systems, mobile phones and renewable energy, technology is all around us.

Today’s technology professionals are pioneering solutions to global challenges in the areas of energy, water, food, environment, technology, transport, housing and the ageing population. It’s this blend of engineering and technology that will be an in-demand combination across all industries around the world for years to come.

Take a look at the prospects for engineering and IT professionals globally:

151,200 new IT related jobs are predicted to be created in Australia between now and 2020.
Department of Employment, 2016 Industry Employment Projections

76.4% of students were in full-time employment four months after graduation.
Engineering Professions, Australia, 2017 Department of Employment, Australian Government

4,308 vacancies recorded for engineers in Australia.
Engineers Australia, Vacancies Report June 2018

11,000 engineering management roles in Australia available by 2022.
Australian Government, Job Outlook

$64,250 The average starting salary for graduate engineers in Australia is $64,250.
Australian Bureau of Statistics 2018

30% of leading organisations will have a Chief Robotics Officer by 2019.
IDC Futurescape, Worldwide Robotics 2017 Predictions

60,000 job openings around Australia for software and applications programmers by 2022.
Australian Government, Job Outlook

+158% increase in demand for employees with a ‘critical thinking’ mindset over the last three years.
Foundation for Young Australians, The New Work Smarts, 2017

151,200 new IT related jobs are predicted to be created in Australia between now and 2020.
Department of Employment, 2016 Industry Employment Projections

36,000 job openings for ICT Managers around Australia over the next 5 years.
Australian Government Job Outlook

$64,250 The average starting salary for graduate engineers in Australia is $64,250.
Australian Bureau of Statistics 2018
Prepare for the future

Demand for skilled engineers and IT professionals is growing. Here’s some examples of emerging tech careers and the courses to get you there.

ROBOTICS
Blending mechanical engineering, electrical engineering and computer science, intelligent systems will play an important role in business and in day-to-day life.

Consider Mechanical and Mechatronic Engineering, Electrical Engineering or Software Engineering.

ARTIFICIAL INTELLIGENCE (AI)
AI is a part of our everyday lives. Google’s search algorithms, facial recognition tools, virtual personal assistants like Siri or Alexa and video games such as Call of Duty are all examples of AI. By using data from the past we can make almost accurate predictions about the future.

Consider Computing Science, majoring in Data Analytics and Artificial Intelligence.

INTERNET OF THINGS (IoT)
IoT includes networks of physical devices embedded with electronics, sensors, software and network connectivity that is allowing devices to connect and exchange data. IoT will shape the future of farming and many other industries, allowing for smarter decision making, improved monitoring of operations and output and improved offering to customers.

Consider Data Engineering or Electronic Engineering.

AUTONOMOUS VEHICLES
Self-driving cars will be the biggest disruption in transport history! Harnessing tech advances in machine learning, IoT and the cloud, we can expect to see a wide-spread uptake in autonomous vehicles in 10-15 years.

Consider Software Engineering.

3D PRINTING
Additive manufacturing turns 3D digital models into solid objects which are built up in layers. Using various types of material 3D printing has the potential to radically transform the manufacturing industry, medical industry and architecture. UTS has its own 3D printing facility, the ProtoSpace.

Consider using ProtoSpace, our 3D print facility, to support your engineering projects and research.

DATA SCIENCE
Data scientists use automated methods to extract knowledge or insights from structured or unstructured data to improve decision-making. We can see this in our day-to-day via predictive text, suggested Netflix shows based on viewing history and facial recognition on social media.

Consider Data Engineering.
University life

There's no one size fits all approach to university life!

Anyone who has ever been a uni student will tell you that getting involved in clubs and societies makes the whole ride pretty incredible.

We have over 100 clubs and societies on campus, along with bars, cafés and a range of sporting facilities. To ensure you feel confident and supported, we offer help with housing, money, making friends, health, cultural issues and career development.

UTS ENGINEERING SOCIETY
Hang out with your cohort and get involved in social events, industry events and networking opportunities with one of the largest clubs on campus.

UTS ROBOTICS SOCIETY
Discover everything robotics, from servos to software and connect with likeminded students. Gain access to equipment, participate in robot building competitions, and receive support from industry. With projects ranging from fully autonomous robotic systems to candy dispensers, they provide you with the opportunity to combine creativity and technology to form new ways of interacting with the world around us.
utsroboticssociety.org

UTS CYBER SECURITY SOCIETY
Boost your programming knowledge with exclusive workshops and study help sessions and learn how to defend against attacks through the techniques that attackers use.

UTS MOTORSPORTS ELECTRIC
Showcase your ingenuity by building and racing an open-wheel race car. The motorsports club has represented UTS in the Formula SAE Australasia competition for 10 years and raced an electric car in the event for the first time in 2015.
utsmotorsports.com

HELPS
Higher Education Language and Presentation Support (HELPS) provides non-credited English language and academic literacy support to UTS students. Enhance your learning experience with individual and group support in a friendly and respectful environment.
helps.uts.edu.au

We encourage you to check out the full list of clubs and societies at:

PROGSOC
Established by students for students, Progsoc’s main aim is to encourage programming at UTS and enable members to develop non-commercial software and collaborate with organisations who share an interest in programming.
progsoc.uts.edu.au

UTS TECHSOC
UTS TechSoc is the student society for Information Technology at UTS and is now one of the leading social societies at the university, attracting members from a variety of courses and disciplines. UTS TechSoc aims to provide all members with a variety of social and career-focused events.
utstechsoc.com
Discover entrepreneurship

Interested in entrepreneurship but not sure how to get involved?

UTS equips you with the tools to become entrepreneurs, whether it’s with our free entrepreneurship courses, bootcamps, hackathons, internship opportunities or startup community, there’s an entrepreneurship offering available for you!

ENTREPRENEURSHIP BOOTCAMPS
Gain insight into the world of entrepreneurship with our two-day intensive ideate bootcamps! You’ll be introduced to entrepreneurial methods and tools that you can use to solve problems, test ideas, create impact and launch businesses.
entrepreneurship.uts.edu.au

STARTUP INTERNSHIP OPPORTUNITIES
Build an internship experience that matters to you and apply to intern with a startup! It’s an opportunity for startup communities to recruit our best and brightest, inject fresh ideas and perspectives into their startups and inspire the next generation of entrepreneurs. It’s a win/win.
startupidentistry.uts.edu.au

BEGIN YOUR STARTUP JOURNEY
Got an idea? Looking for some inspiration or support?
Join the UTS Startups community, a university-wide program to inspire and support student startups at UTS. It’s not about prescribing a path or formula, but instead creating the environment where UTS startups are exposed to what they need to progress, both inside and outside the university.
startups.uts.edu.au

ROBOTICS FOR REHABILITATION
Mechatronic engineering students developed two prototypes during their Summer Studio to assist with the rehabilitation of stroke victims.

Nisha developed ‘Rehab to the beat’, a virtual piano rehabilitation device for stroke patients to use at home or in their hospital bed. Rowan added ‘Universal Care’, a robotic assistance device that detaches the physiotherapist from the patient. By doing this, the physiotherapist can use a hand controlled mode to move the arm or can set a series of independent games or exercises for the patient to play.

‘Tech Gym’ was showcased at the Summer Studio Exhibition and exposed the team to the partnering opportunity with UTS Startups.

“I’m just blown away with how much support we get. The collaboration space is really nice. The community and the vibe from everyone is phenomenal,” says Rowan.

Within the first two weeks of joining UTS Startups, the Tech Gym team met with an accelerator program and investors. This highlighted the blunt, yet constructive realities of investor and industry expectations, which Rowan and Thirunisha are taking on board to progress to their next big goals.

“Our main milestone would be to have an MVP (minimum viable product) out by the end of summer. The particular medical advice that we’re trying to get is around the Therapeutical Goods Administration regulations and laws and how to go to a clinical trial.”

See page 17 for more info on studios.
Global opportunities

Ready for the world beyond?

Dive headfirst into the language and culture of another country, travel the world during uni break and get a global perspective on your engineering or IT degree that’ll set you apart from your peers.

GLOBAL EXCHANGE
Study overseas for one or two teaching sessions at a UTS partner university. There are 256 exchange partners in over 43 countries and territories to choose from.

INTERNATIONAL INTERNSHIPS
The Bachelor of Engineering (Honours), Diploma in Professional Engineering Practice includes two six-month internships which can be taken with a local or international company. Students who intern overseas develop an international business network, add another language to their resumé, plus gain exposure to multinationals who don’t have offices in Australia.

BUILD FOR SHORT-TERM INTERNATIONAL OPPORTUNITIES
BUILD (Beyond UTS International Leadership Development) is a program that will help you develop your leadership potential through a range of local and global opportunities. Work with a social enterprise or study a summer school in Europe.

OVERSEAS SUMMER AND WINTER SCHOOL
Many of UTS’ partner universities offer ‘for credit’ short-term academic study programs during their summer or winter periods. Use this experience to grow your global portfolio.

Go to TECNUN Universidad De Nararra in Spain or TU Berlin, Germany.

build.uts.edu.au

ENGINEERS WITHOUT BORDERS
Build your leadership and sustainability skills and apply theory to humanitarian engineering projects. Opportunities include doing an internship overseas or participating in an overseas volunteering experience through UTS BUILD.

ewb.org.au/explore/chapters/nsw/uts

Scholarships

UTS is proud to award scholarships to its students every year. Through its scholarships, UTS endeavours to reward achievement and recognise motivation to succeed.

UTS has committed $30 million towards a range of scholarships and grants for commencing and current international undergraduate and postgraduate students up to 2020.

Check out the full range of scholarships here and assess your eligibility to apply.

uts.edu.au/future-students/scholarships
Engineering courses

Take charge of your future at UTS.

WHAT’S IT ALL ABOUT?
Get the in-depth preparation you need to make your mark in the engineering industry. Combine strong technical skills with transformative professional skills in complex problem solving, communication, innovation and teamwork to deliver impact across local and global communities.

Bachelor of Engineering (Honours)

Majors: See majors on pages 20-29
Duration: 4 years full-time
UTS course code: C09066
CRICOS code: 084098A

Professional Recognition: Accredited by Engineers Australia

You have the option of completing the Bachelor of Engineering (Honours) with or without the Diploma in Professional Engineering Practice (see page 18 for details).

Should you choose to enrol in the course without the Diploma, you will still obtain the necessary exposure to professional engineering life - with at least 12 weeks’ work experience.

You will also complete the Engineering Practice Preparation and Engineering Practice Reflection subjects to fulfil the professional practice component of the course, as well as having the chance to specialise with an engineering major. See the full list of engineering majors on pages 20-29.

Mohammed Chowdry – Bangladesh
Bachelor of Engineering (Honours)

“As part of my degree, I also completed a 12-week internship. I did my work experience with an engineering consulting firm where I was given the role of drafting designs for my senior managers. In this role, I could implement what I’d learnt in my subjects, like engineering project management. That was a really good experience because I was exposed to industry and that was thanks to UTS.”
Understand your degree

Let’s break it down. Here’s what a UTS engineering program looks like.

CORE
Core subjects are taken by all engineering students regardless of major and provide the foundation knowledge and skills required of every engineer.

MAJOR
Develop the essential technical knowledge specific to your chosen field of practice.

Major subjects include a final-year Capstone Project, which is an in-depth research study on a topic of your choice. Many students work on their Capstone Project with one of their internship companies, while others work within the Faculty’s research centres.

ELECTIVES
Consolidate your expertise with additional engineering subjects, or expand your interests by enrolling in subjects from other faculties.

PROFESSIONAL PRACTICE
See page 18 for more information on the Diploma of Professional Engineering Practice.

PREPARATION & REFLECTION
These subjects help you get the most out of your internships. You’ll take them before and after your internship. Think resumes preparation, interview advice and e-portfolios including your experience.

STUDIOS
High energy, open-ended and collaborative subjects with input from academics and industry partners.

The team-based projects include a challenging industry task with multiple solutions. Implement the fundamentals of your learning, using the latest tools, whilst developing professional skills in communication, team-work, complex problem solving and creativity.

Highlight the studio experience on your resume as an example of project experience and demonstrate the professional skills you developed at interview.

SUMMER AT UTS
Summer is an optional session, if you are keen to take on extra subjects from November to January.

Summer session is a great way to spread your study load over the full year to give you more balance with your personal or work life.

Failed a subject? Or perhaps life got in the way? Or maybe you’d like to try a student led studio on Humanitarian Engineering? You can also use Summer as an opportunity to catch up on subjects.

summer.uts.edu.au

Bachelor of Engineering (Honours) course structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 3</td>
<td>Session 4</td>
</tr>
<tr>
<td>Core</td>
<td>Core</td>
<td>Core</td>
<td>Core</td>
</tr>
<tr>
<td>Core</td>
<td>Core</td>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Practice Preparation 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engineering courses

Complete a Diploma in Professional Engineering Practice and you’ll get to add real-world experience to your world-class qualification.

Bachelor of Engineering (Honours)
Diploma in Professional Engineering Practice

Majors: See majors on pages 20-29
Duration: 5 years full-time
UTS course code: C09067
CRICOS Code: 084099M

Assumed knowledge: HSC (or international equivalent) English Standard, Mathematics Extension 1 and Physics. English Advanced is recommended, Chemistry is recommended for the Biomedical, Civil and Civil and Environmental majors.

Professional recognition: Accredited by Engineers Australia

Assumed knowledge: HSC (or international equivalent) English Standard, Mathematics Extension 1 and Physics. English Advanced is recommended, Chemistry is recommended for the Biomedical, Civil and Civil and Environmental majors.

Professional recognition: Accredited by Engineers Australia

Assumed knowledge: HSC (or international equivalent) English Standard, Mathematics Extension 1 and Physics. English Advanced is recommended, Chemistry is recommended for the Biomedical, Civil and Civil and Environmental majors.

Professional recognition: Accredited by Engineers Australia

Assumed knowledge: HSC (or international equivalent) English Standard, Mathematics Extension 1 and Physics. English Advanced is recommended, Chemistry is recommended for the Biomedical, Civil and Civil and Environmental majors.

Professional recognition: Accredited by Engineers Australia

Assumed knowledge: HSC (or international equivalent) English Standard, Mathematics Extension 1 and Physics. English Advanced is recommended, Chemistry is recommended for the Biomedical, Civil and Civil and Environmental majors.

Professional recognition: Accredited by Engineers Australia

Choose your major
- Flexible
- Biomedical**
- Civil, including specialisations in Construction and Structures
- Civil and Environmental^b
- Data
- Electrical
- Electronic
- Mechanical
- Mechanical and Mechatronic^d
- Mechatronic
- Software

See pages 20-29 for an explanation of these majors.

**Not available with combined degrees, except Business and Creative Intelligence and Innovation

^Not available with combined degree

Combined degrees
- Bachelor of Arts in International Studies
- Bachelor of Business
- Bachelor of Creative Intelligence and Innovation
- Bachelor of Laws
- Bachelor of Medical Science
- Bachelor of Science

The Diploma in Professional Engineering Practice is not a required element of a combined degree.

Accreditation
This course is accredited by Engineers Australia. Once completed, you will be eligible for graduate membership of Engineers Australia and your qualification will also be recognised by signatories to the Washington Accord, which ensures global mobility for engineering professionals.

For more information visit ieagreements.org/accords/washington/
Bachelor of Engineering (Honours) Diploma of Professional Engineering Practice course structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td>Session 2</td>
<td>Internship 1</td>
<td>Session 2</td>
<td>Session 1</td>
</tr>
<tr>
<td>Core</td>
<td>Core</td>
<td>Core</td>
<td>Internship</td>
<td>Core</td>
</tr>
<tr>
<td>Core</td>
<td>Core</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Work Integrated Learning 1</td>
<td>Major</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Work Integrated Learning 2</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Elective</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td>Elective</td>
</tr>
<tr>
<td>Core</td>
<td>Practice Preparation 1</td>
<td>Core</td>
<td>Practice Reflection 1</td>
<td>Core</td>
</tr>
<tr>
<td>Core</td>
<td>Professional Experience 1</td>
<td>Core</td>
<td>Practice Preparation 2</td>
<td>Core</td>
</tr>
<tr>
<td>Core</td>
<td>Professional Experience 2</td>
<td>Core</td>
<td>Professional Experience 2</td>
<td>Core</td>
</tr>
</tbody>
</table>

Bachelor of Engineering Science*

Duration: 3 years (full-time only)

UTS course code: C10066

CRICOS code: 0339090

As an international student looking for technologist-level studies, this course is for you. You won’t receive professional engineering status, but you will gain graduate attributes similar to those gained in the Bachelor of Engineering (Honours). These will allow you to work with professional engineers.

ENGINEERING MAJORS

Civil, Data, Electrical, Electronic, Flexible, Mechanical, Mechatronic, Software

Not accredited by Engineers Australia
Majors

The major represents your chosen engineering field of practice and will typically influence the career path you take. We have 11 majors to choose from, all leading to a wide range of career options.

Flexible

Explore the world of engineering.

The Flexible major gives you the option to design your own fully accredited interdisciplinary engineering degree with an academic advisor. So you can find that niche area, a blend between two or more existing majors and make it your own.

Alternatively, if you’re not sure which engineering major you want to take, the Flexible major provides an opportunity to explore some engineering disciplines in your first year before transferring to a designated major.

CAREER OPTIONS

Your technical, analytical and practical engineering skills, along with your logical thinking will become your graduate attributes. Add to this an ability to identify problems, focus on solutions, work in teams and manage projects and people and you’ll be sought after in a wide range of areas once you graduate.

Career opportunities span all engineering disciplines, including emerging areas such as:

- Smart cities
- Renewable energy
- Distributed generation
- Internet of Things (IoT)
- Industry 4.0
- Data analytics and visualisation
- Cyber security
- Medical technologies
- Agriculture and food security

“Opting for the flexible major allowed me to tailor my engineering studies to focus on the exact subjects that would develop my skills in line with my career objectives. As I progressed through my engineering degree and after focusing on innovation and electronics, I realised I wanted to deepen my knowledge and understanding of software and software practice. I was able to achieve this by adding 5 software subjects to my flexible major – providing a suitable depth of understanding in software practice, Python, Java and Android development.

At the end of my degree, I have come out with a palette of engineering skills and knowledge, brought from the electrical, innovation and software engineering streams. I’ve found the flexible major has provided me with very relevant exposure to skills which I now use as a graduate engineer in my day to day work.”

Michelle Quaglia – Australia

Flexible Engineering
Biomedical

Break new ground in healthcare.

Biomedical engineering is multi-disciplinary by nature and covers a broad scope of areas relating to medical technology: genomics, tissue engineering, bioinformatics, nanotechnology, 3D printing and bio-instrumentation.

Biomedical engineers design and develop medical-related equipment and systems for analysis, diagnosis, therapy and rehabilitation. Their ultimate goal is to improve healthcare delivery and extend the quality and longevity of human life.

In this program, you’ll learn the basics of biology, information technology, electrical, electronic, and mechanical engineering and medical science. Choose subjects based on your particular areas of interest such as biomedical instrumentation, bioinformatics, biomechatronics, neuroscience, and biomedical applications of artificial intelligence.

CAREER OPTIONS

When you graduate, you’ll be ready to work with other engineers, IT professionals, medical staff and researchers thanks to this multidisciplinary field. As a biomedical engineer, you’ll find opportunities in:
- bioinstrumentation and biomedical device companies
- biotechnology and biomechanics manufacturing companies
- medical research centres or hospitals in Australia or abroad
- medical imaging
- medical devices
- regulatory affairs
- rehabilitation engineering
- biomedical engineering research

You’re also likely to work closely with electrical, mechatronic and ICT engineers and will find opportunities in many of the areas suggested for those majors.

Fatema Ismati – Bangladesh
Biomedical Engineering

“I chose UTS because it offers one of the best engineering courses in Sydney. With its mentoring programs, internship programs and hands-on studio subjects, UTS facilitates both my technical and transferrable skills to help me enter the workforce.

I did an internship at a biomedical instrumentation company and UTS helped me secure the position. I assisted in product testing and parts procurement. I learned something new every day, from soft skills like effective communication to technical skills such as 3D modelling.

I am currently working on EEG signal processing for my studio subject. The project is extremely enticing—EEG signals help classify human emotions and, in turn, massively contributes to the world of psychological treatment.

Relocating to Sydney was nothing short of a rollercoaster ride. I never knew what to expect, but UTS made things easy. Any kind of help was always one phone call away.”
Civil

Build tomorrow’s future.

Civil engineers are problem solvers and visionaries who plan, design, build, maintain and demolish the infrastructure of our country. These include buildings, stadiums, roads, bridges, tunnels, railways, mines, dams, water supply, wastewater treatment as well as the physical infrastructure of electrical and telecommunication systems.

In this civil engineering program, you will learn all the key skills you need to become a professional civil engineer, plus skills in construction, project management, design and surveying. You’ll also learn about the properties and use of concrete, steel, timber and soil, plus the physics and mechanics of large and small structures. You will also gain expertise in water supply systems, flood protection, sanitation, hydraulics and waste disposal.

CAREER OPTIONS
Civil engineers work in office-based jobs in planning, consulting or design as well as outside on construction sites, managing and supervising projects. You will be able to work in any of the areas suggested for the Flexible major, as well as finding a range of civil engineering opportunities with:

– Major development and design firms such as Aurecon, Brookfield Multiplex, Lend Lease, Mirvac, Arup or Landcom
– Government agencies and their contractors
– Local councils
– Local and suburban engineering consultancies specialising in private, residential or commercial developments, water and flood management, road and rail infrastructure, or project management

Civil (Construction)

Meet the demands of a growing city.

Civil construction engineers specialise in the construction of large projects such as high-rise apartments or office blocks. They require high-level skills in communication, leadership, critical thinking and project management.

You’ll learn all the key skills you need to become a professional civil engineer, as well as gain an understanding of human resources, finance, environmental planning and law. This includes development applications and environmental impact assessments. With cross-faculty subjects, you’ll also learn the details of building services such as lifts, air conditioning, cabling, IT and telecommunications.

CAREER OPTIONS
You can work in any of the areas suggested for the Civil major and find opportunities with:

– Major developers
– Private commercial developers and consultancies

This specialisation is also ideal if you want to work as a private developer or consultant, as you’ll have all the skills you need to run an entire construction project from start to finish.

Mathew Da Silva – Australia
Civil Engineering

“As an intern with Sydney Trains, I was involved in major projects, such as rail inspection projects or major re-railing projects. I was introduced to the maintenance world, where I was analysing data, validating it on site, risk assessing the defects and eventually scoping the work and packaging it out.

I was also introduced to the project management side of engineering as I was given a rail testing project where I was tasked with budgeting, scoping, planning, resourcing and executing works. It was a great exposure to the industry and I had always been keen to move into the project management area.”
Civil (Structures)

Build the world around you.

Structural engineers specialise in the analysis and design of structures, ranging from small to large and highly complex. They use advanced design and modelling techniques to design efficient, long-lasting structures and to understand the traditional and advanced materials available for their construction.

In this program, you’ll learn all the key skills you need to become a professional civil engineer, plus gain an advanced understanding of the behaviour of structures under stresses due to extreme weather, earthquakes or explosions.

Using leading-edge computer software to model, analyse and design structures, you’ll also develop skills in assessing structural damage. This includes practical expertise in assessing and improving the safety of older structures that maybe subject to loads and conditions they weren’t originally designed to withstand.

CAREER OPTIONS
You can work in any of the areas suggested for the Civil major as well as finding opportunities with:
- major commercial developers
- government agencies and their contractors
- engineering consultancies, particularly those that specialise in designing and building large structures or assessing existing structures

Suvidya Tuladhar – Nepal
Bachelor of Civil Engineering

“As a civil engineer you can make a mark in the world: you construct bridges, dams, roads, skyscrapers and leave a lasting impact on communities.

The practical based learning approach with strong ties to industry is what attracted me to UTS. I did a 12-week internship at Optik Engineering, found it via UTS CareerHub. The work experience was based at UTS Tech Lab.

My project involved designing structural elements and estimating piling work costs. It required me to implement concepts learnt across many of my subjects. From this experience I have improved my time management, project management and presentation skills.

Applying for a free Engineers Australia student membership can open doors for students through industry connections. Besides internships, I have found programs facilitated by The Women in Engineering and IT (WiEIT) to be very helpful on my path to become a professional in my field. UTS ensures the overall development of a student rather than just the academic aspect.”

Civil and Environmental

Join the global environmental movement.

Civil and Environmental engineers are key to a sustainable future with an expertise that’s in demand to help safeguard our planet. They are experts in assessing environmental impact and design of green buildings, transport, waste and other engineered systems.

Civil and Environmental engineers specialise in the efficient use of energy, protecting soil and water from contamination and design waste, pollution control and resource recovery systems. They are involved in impact assessment, treatment of contaminated sites, as well as management and design concepts across engineering disciplines.

In this program, you’ll learn all the key skills needed to become a professional Civil and Environmental engineer. You’ll also gain expertise in biotechnology, environmental analysis, ecology and physico-chemical processes, plus an understanding of the social, political and legal aspects of environmental planning and management.

You’ll learn to design environmentally sustainable strategies and develop solutions for environmental topics including air, water, soil, noise, climate change and energy in your community.

CAREER OPTIONS
You can work in any of the areas suggested for the Flexible major, plus find opportunities with:
- environmental consultants
- water, waste, soil and energy industries
- local councils and government agencies
- catchment management authorities
- international development organisations
- non-government organisations such as the Australian Conservation Foundation or Greenpeace
Electrical

Use renewable energy to power the future.

Electrical engineers deal with the generation and application of electricity, including high-voltage power generation and supply networks. With traditional power generation at the centre of global warming issues, electrical engineers are now at the forefront of developing renewable energy systems and super-efficient electrical devices that aim to reduce our energy demands.

In this program, you’ll learn all about circuits, large scale electrical system design and operation, energy generation, analogue and digital intelligent control (such as on-board computers in cars, aircraft or trains), ‘fuzzy logic’ systems and instrumentation (such as digital temperature and pressure gauges).

You’ll graduate with practical skills in hardware and software that enable you to design and build large scale electrical and control systems.

CAREER OPTIONS
You can work in any of the areas suggested for the Flexible major, as well as finding opportunities with:

– Car, aircraft and train manufacturers
– Defence agencies and military hardware manufacturers
– Energy companies, including sustainable energy providers
– Biomedical and health engineering companies

You’re also likely to work closely with mechanical, mechatronic, electronic and data engineers and will find opportunities in many of the areas suggested for those majors.

WHAT’S THE DIFFERENCE?
Electronic Engineers design small-scale circuits that live inside smart devices for consumers and industry. You learn about designing sensors, the Internet of Things, electronic components, miniaturization of devices and the software and communications systems that make them work.

Electrical Engineers design, maintain and build high voltage power and control systems that run the world’s electricity grid and other large-scale industrial applications. This includes both traditional and renewable energy generation and control systems such as those found in factories, aircraft, trains and other vehicles.

Kulsoom Hussain – Australia
Electrical Engineering

“I developed an interest in renewable energy when I was studying physics at high school and I really wanted to do more in the area of photovoltaics, and to work with communities, especially in remote areas, to help them access sustainable and reliable power.

I choose UTS because I also wanted to combine it with international studies and UTS was the only place I could do this. I spent a year in China studying Mandarin which was one of the best experiences of my life!

The other reason I chose to study at UTS is the internship component. The internships really give you a lot of valuable experience; a whole year in industry puts you in a better position than other graduates from other universities. UTS also has great industry partnerships and connections which benefit students.

As I am about to leave uni, I am feeling pretty good about my situation – I have enough experience to help me find the right opportunity that aligns with what I want to do.”
Electronic

Design the next generation of smart devices.

Electronic devices are driving tech advances across global industries. Components are becoming smaller, faster, lighter and more power efficient, allowing for revolutions in computation and communication technologies.

As an electronic engineer, you combine engineering techniques and maths to design and build electronic hardware found inside smart devices. These devices include smartphones, smart watches, smart health monitoring devices and many more.

In this program, you’ll learn about digital systems, sensing, electronic analysis and design with a choice of sub-majors in Internet of Things (IoT).

Graduate with practical skills in hardware and software that enable you to design and build miniaturised electronics systems giving you options to move into a range of global high-tech industries.

CAREER OPTIONS
You can work in any of the areas suggested for the Flexible major, plus find opportunities in the following industries:
- Aerospace
- Automotive
- Construction
- Defence
- Marine
- Oil & gas
- Pharmaceutical
- Power generation
- Rail
- Telecommunications

You’re also likely to work closely with mechatronic, electrical and data engineers and will find opportunities in many of the areas suggested for those majors.

Angus Ryan – Australia
Electronic Engineering

“Two six-month internships—the opportunity to work in the field of your degree—as well as a modern, recently-built engineering building were the key factors that led me to study at UTS. I’m taking my first internship at GetShift, a startup at the Australian Technology Park in Eveleigh. I’ve had the opportunity to build my own 3D printer, learn and develop Windows software and design models within CAD. Most importantly, I created my own circuit from scratch. I’ve felt as if I haven’t done a day of work, but rather spent months on my passion!

Studying Electronics Engineering at UTS has been intense but rewarding. I’ve learned so much from circuit design to programming my own digital system. What I enjoy about university is the ability to mould the study plan to your lifestyle, in my case giving myself two days off to work part-time at GetShift.”
Data

Combined expertise in advanced analytics and engineering is the gateway to business innovation.

Data Engineers create and manage secure cyber-physical systems and infrastructure to service the ever-growing demands of our computer-driven data-centric society. These secure software and hardware systems enable organisations to innovate and optimise their services using broadband networking and powerful computing.

You’ll learn professional engineering skills and the entrepreneurial values required to build and manage secure and reliable data platforms. You will also develop skills in advanced practice, gain in-depth knowledge in one or more areas of specialisation and learn to embrace innovation in order to achieve excellence in your engineering future.

Current specialisations include Cybersecurity, Networks, Real-time systems (internet of Things), Data Analytics and Image Processing.

CAREER OPTIONS
- Data Engineer
- Data Architect
- Visualisation Analyst
- Developer, Big Data Platform
- Data Services Engineer
- Data Network Engineer

This major also utilises project-oriented studios with participation from industry mentors.
Software

Future proof your career.

Software engineering is the application of engineering principles to the design, development and maintenance of software. It focuses on large, complex and critical software systems that are interwoven into our daily lives. Examples include power distribution, traffic control, autonomous vehicles and large systems that hold secure data, systems that must work the first and every time.

A software engineer ensures that the software is built systematically, rigorously, measurably, on time, on budget and within specification to meet these complex demands.

You’ll learn the scientific principles and mathematical methods used to solve critical problems in this discipline, as well as the trends and innovations shaping the international software industry. You will also develop skills in design and innovation, project management, economics and finance and commercialisation and entrepreneurship.

CAREER OPTIONS
– Chief Technology Officer
– Development Manager
– DevOps Manager
– Enterprise Architect
– Systems Designer
– Consultant
– Chief Architect

Mikhail Fedulov – Russia
Software Engineering

“Last year I completed five hackathons in five different areas – including the Ericsson Challenge. I enjoy working with other people and being part of a hack team is a great way to learn technical skills, acquire knowledge of tools, and develop in team and project management. I hope to work in consultancy and these are the skills that are in demand.”
Mechanical

At the forefront of technology innovation.

Mechanical engineering is the broadest of all the engineering disciplines. Mechanical engineers design, build and maintain anything that moves — from microscale sensors to jet plane engines, robots, biomedical devices, spacecraft, wind turbines and heavy industrial machinery.

In this major, you’ll study dynamics and learn to calculate and control the movement and interaction of solid objects, fluids, heat and power. You’ll also study some electrical engineering subjects and will apply your learning through hands-on projects that help you build the confidence and ingenuity needed to push the boundaries of machine-based technology.

CAREER OPTIONS

You can work in any of the areas suggested for the Flexible major, plus find opportunities within:

- aerospace companies
- automotive companies
- biomedical and health companies
- chemical industry
- defence agencies
- electronics industry
- marine industry
- materials and metals industry
- pharmaceutical industry
- rail industry
- robotics industry
- utilities industry

You’re also likely to work closely with electrical, mechatronic and ICT engineers and will find opportunities in many of the areas suggested for those majors.

Kate Leone – Australia

Mechanical and Mechatronic Engineering

“The reason I chose UTS was the internship program; it was something I knew employers would regard highly. My first internship was in Hong Kong, for a German company automating a catering services facility at the airport. I had no idea of how I was going to get there and organise everything, so UTS helped me.

For my final-year capstone project, I’m working with UTS Rapido, a unit delivering technical solutions for industry, and another company, AbilityMade. I’m helping them develop a 3D printed foot and ankle orthoses solution that reduces the time from waiting-list to final product from over 12-months to 48 hours. It helps children born with cerebral palsy to walk, so they’ll be able to avoid wheelchairs later in life. I’ve always wanted to do engineering to get a skillset where I could give back.”

Kate Leone – Australia

Mechanical and Mechatronic Engineering

“What’s the difference?

Mechanical engineers design components, machines, systems and processes using principles of motion, energy and force.

Mechatronic engineers focus on making a machine smarter by combining principles of mechanics, electronics and computing.
Mechatronic

Engineering for an autonomous future.

Mechatronic Engineering work on all aspects of the smart machine, from design and testing to manufacturing. They use a combination of mechanical, electronics, computer systems and software engineering to design and build mechanical systems and their controllers, software and hardware, plus electronic processes and the networks that link them.

In this program, you’ll study dynamics (the science of moving things) and learn to calculate and control the movement and interaction of solid objects and electricity. You’ll also learn to design, build and manage automated and autonomous mechanical systems, with an emphasis on robots, smart machines, intelligent control systems and biomedical devices.

CAREER OPTIONS
You can work in any of the areas suggested for the Flexible major, plus find opportunities with:
- advanced machinery and robotics manufacturers
- manufacturing and mining industries
- research groups in nanotechnology, robotics and other developing fields

You’re also likely to work closely with electrical, mechanical and ICT engineers and will find opportunities in many of the areas suggested for those majors.

David Eager
Professor, School of Mechanical and Mechatronic Engineering

“Mechanical and Mechatronic Engineers solve problems, resolve conflict, manage projects and work in diverse teams that include other professionals such as architects, lawyers, doctors and accountants. They make change happen while adding benefits of society. They ask the question, “is there a better way?” and they have a willingness to take reasonable risks with a view to making a significant positive impact.”

Mechanical and Mechatronic

Open up a world of high-performance opportunities.

This major brings together mechanical and mechatronic engineering subjects so that you gain an understanding at both specialisations. You’ll study dynamics (the science of moving things) and learn to calculate and control the movement and interaction of solid objects, fluids, heat and electricity. You will also learn to design, build and manage automated and autonomous mechanical systems, with an emphasis on robots, smart machines, intelligent control systems and biomedical devices.

CAREER OPTIONS
You can work in any of the areas suggested for the Mechanical and Mechatronic majors.
Combined degrees

Why settle for one specialisation? Create your niche by combining your areas of interest.

Bachelor of Engineering (Honours), Bachelor of Business

Duration: 5 years full-time
Add an extra year for the Diploma in Professional Engineering Practice and add an extra year if undertaking Business Honours

UTS course code: C09070
CRICOS code: 084091G

Blend your technical engineering degree with high-level strategic thinking.

With a combined engineering and business degree, you’ll develop the ability to succeed in both engineering and business environments.

As well as the professional engineering skills you’ll develop in your chosen engineering major, you’ll gain valuable and highly sought-after business skills from your business major. You’ll graduate with the ability to use your engineering problem-solving skills in relation to people management, business management, finance, marketing or international business.

ENGINEERING MAJORS
Flexible, Biomedical, Civil, Data, Electrical, Electronic, Mechanical, Mechatronic, Software.

BUSINESS MAJORS

CAREER OPTIONS
You can work in any of the areas suggested for your chosen Engineering major, plus find opportunities in:
- banking
- accounting and economics
- marketing
- any commercial or business sector

Your engineering skills will enable you to understand and develop products so you may find yourself particularly sought after by manufacturing businesses. Your business skills will ensure the product is financed, developed to meet consumer needs and marketed effectively. You’ll also be ideally suited to the financial sector, running your own engineering business or senior management in an engineering setting.
Bachelor of Engineering (Honours), Bachelor of Medical Science

Duration: 5 years full-time
Add an extra year if undertaking the Diploma in Professional Engineering Practice
Add an extra year if undertaking Medical Science Honours

UTS course code: C09074
CRICOS code: 084095D

With a combined engineering and medical science degree, you’ll go far.

Not only do you get to develop professional engineering skills via your chosen engineering major, but you will also gain an in-depth understanding of medical science.

In the medical science side of your degree, you will explore the fields of chemistry, biology, anatomy, biochemistry, microbiology, physiology, neuroscience, pharmacology and medical devices.

As well as your engineering major, you’ll need to complete 13 core Medical Science subjects. For the full list of subjects see the relevant course information at handbook.uts.edu.au/eng

ENGINEERING MAJORS
Flexible, Civil, Data, Electrical, Electronic, Mechanical, Mechatronic, Software.

CAREER OPTIONS
You can work in any of the areas suggested for your chosen engineering major, plus find opportunities in:
- medical technology and instrumentation
- biotechnology and bioengineering
- nanotechnology and molecular biology
- mining, agriculture and fisheries
- environmental science
- food and drink, product design, pest control or pharmaceuticals
Bachelor of Engineering (Honours), Bachelor of Arts in International Studies

Duration: 5 years full-time
Add an extra year if undertaking the Diploma in Professional Engineering Practice

UTS course code: C09068
CRICOS code: 084089B

Open up a whole world of opportunities.

With a combined engineering and international studies degree you’ll not only develop professional engineering skills from your chosen engineering major, you’ll also open up a whole world of opportunities. The international studies component of this course gives you the rare chance to immerse yourself in another language and culture, develop an international perspective on your studies and broaden your thinking. The international studies component of your degree also involves a year abroad in one of the 14 countries that you can choose to study in the degree, pursuing a major research project in a field of your choice. UTS pays for your travel between Sydney and your country of study, tuition fees at the overseas institution, visa fees and the cost of the UTS Overseas Insurance Policy.

ENGINEERING MAJORS
Flexible, Civil, Data, Electrical, Electronic, Mechanical, Mechatronic, Software.

COUNTRIES
Argentina, Canada, Chile, China, Colombia, Costa Rica, France, Germany, Italy, Japan, Latino USA, Mexico, Spain, Switzerland.

CAREER OPTIONS
You can work in any of the areas suggested for your chosen engineering major, within Australia or in another country. Engineering is an international discipline and bilingual, global-thinking engineers are able to problem-solve anywhere in the world.
Bachelor of Engineering (Honours), Bachelor of Science

Duration: 5 years full-time
Add an extra year if undertaking the Diploma in Professional Engineering Practice
Add an extra year if undertaking Science Honours

UTS course code: C09072
CRICOS code: 084093F

Back your engineering projects with scientific rigor.

With a combined engineering and science degree, you’ll gain the technological expertise to determine scientific problems plus the practical engineering skills needed to implement effective solutions. Add to this cutting-edge practical laboratory skills as well as an understanding of intellectual property and the ethical issues related to science research.

You’ll need to choose a single engineering major for the Bachelor of Engineering (Honours) and a single science major for the Bachelor of Science.

Areas in which you can develop skills include DNA-centred technologies and applications, microbiology and biochemistry, therapeutic products (such as vaccines and drugs), scientific research and analysis, energy and resource exploration, urban ecology, and environmental biotechnology and sustainability.

ENGINEERING MAJORS
Flexible, Civil, Data, Electrical, Electronic, Mechanical, Mechatronic, Software.

SCIENCE MAJORS
Chemistry, Applied Physics, Biomedical Science, Biotechnology, Environmental Science, Mathematics, Medical Science, Nanotechnology.

CAREER OPTIONS
You can work in any of the areas suggested for your chosen engineering major, plus find opportunities in:
- medical technology and instrumentation
- biotechnology and bioengineering
- nanotechnology and molecular biology
- mining, agriculture and fisheries
- environmental science
- food and drink, product design, pest control or pharmaceuticals
Bachelor of Engineering Science,^ Bachelor of Laws

Duration: 5.5 years full-time

UTS course code: C10136

CRICOS code: 040713B

^Not accredited by Engineers Australia

A blend of technical knowledge and legal skills.

With a combined engineering science and law degree, you’ll gain a blend of technical knowledge and legal skills that enable you to become a legal practitioner in New South Wales.

As well as the engineering skills you’ll develop via your chosen engineering major, you’ll gain an overview of the legal system, technology legislation, technology-specific criminal law, contract law and environmental law.

If you wish to obtain full recognition as a graduate lawyer, you have the option of completing the Practical Legal Training Program. With a year of further study, you also have the option of graduating as a professional engineer.

ENGINEERING MAJORS
Flexible, Civil, Data, Electrical, Electronic, Mechanical, Mechatronic, Software.

CAREER OPTIONS
You can work in any of the areas suggested for your chosen engineering major, plus find opportunities as a:

- Legal advisor
- Legal investigations analyst
- Patent associate
- Policy analyst
- Compliance and regulatory affairs
- Consultant

You can work in engineering, law firms, or both. Law firms need lawyers with technical expertise and the engineering industry needs technical specialists with legal knowledge. Demand for these skills is high. In fact, this combined course was developed in response to this very demand.
Bachelor of Engineering (Honours), Bachelor of Creative Intelligence and Innovation

Duration: 5 years full-time
UTS course code: C09076
CRICOS code: 084097B

Go a step further. Drive cross-disciplinary, industry and social change.

With a combined engineering and creative intelligence and innovation degree, you’ll gain a blend of technical knowledge underpinned by a philosophy of innovation and creativity that will help you turn ideas into reality. The creative intelligence competencies you’ll pick up should enable you to navigate a rapidly accelerating world of change.

As well as the professional engineering skills you’ll develop via your chosen engineering major, you’ll gain proficient skills in critical, inventive and creative thinking, future scenario building, business analysis, entrepreneurism, problem solving, teamwork and communication. You’ll also develop the ability to work on your own, as well as across and between other disciplines.

ENGINEERING MAJORS
Flexible, Biomedical, Civil, Data, Electrical, Electronic, Mechanical, Mechatronic, Software.

CAREER OPTIONS
You can work in any of the areas suggested for your chosen engineering major and will be well-suited for a career within a fast-paced, innovative engineering environment. Your combined degree will equip you with skills that are particularly useful for positions involving:
- product planning, strategy and design within a solutions focused environment

These skills can also be used to start and market your own business.
IT courses

Take charge of your future in a world of disruptive technologies.

With the Bachelor of Science in Information Technology you’ll learn how to innovate today so that you can help shape tomorrow.

This program sees you combine theoretical knowledge and practical skills in both computing and business analysis to bridge the gap between business needs and innovation. Develop a strong grounding in the fundamentals of IT, while also allowing you to specialise with an IT major and pursue your interests with your remaining elective subjects. You can even choose electives from other faculties and/or undertake a study exchange session overseas.

MAJORS
- Business Information Systems Management
- Data Analytics
- Enterprise Systems Development
- Interaction Design
- Networking and Cybersecurity

CAREERS
- Business analyst
- Computer game designer/animator
- Cloud specialist
- Data analyst
- Database designer/manager
- IT architect
- IT project manager
- Network administrator/manager
- Software developer
- Systems analyst
- Web developer
- Interaction designer

Combine your degree with:
Bachelor of Business, see page 30
Bachelor of Arts in International Studies, see page 32
Bachelor of Laws, see page 34
Bachelor of Creative Intelligence and Innovation, see page 35

Bachelor of Science in Information Technology

Duration: 3 years full-time

UTS course code: C10148

CRICOS code: 040941A

Professional recognition: Graduates are eligible for professional-level membership of the Australian Computer Society

You have the option of completing the Bachelor of Science in IT with or without the Diploma in Information Technology Professional Practice. You’ll follow the course structure outlined on page 37 with a requirement to complete:

- 8 core IT subjects
- 1 IT major from a choice of 5 and,
- 8 electives.

You will gain:
- strong technical skills in IT
- skills in business analysis, problem solving, teamwork and communication
- exposure to real IT problems
- graduates with industry experience are highly sought after by employers
Students who enrol in the Bachelor of Science in IT can transfer to the Bachelor of Science in Information Technology Diploma in Information Technology Professional Practice. This is a structured program designed to gain practical skills, consisting of one nine-month internship alongside your IT course.

See page 38 for information on the Diploma.

Students interested in research and who excel in their studies are eligible to undertake one additional full-time year of study in the Bachelor of Science (Honours) in Information Technology. The Bachelor of Science in IT (Honours) includes a substantial research project under the supervision of a member of academic staff.

Course structure

<table>
<thead>
<tr>
<th>Core (8 subjects)</th>
<th>Major (8 subjects)</th>
<th>Electives (8 subjects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Communication for IT Professionals</td>
<td>Choose one major from the following:</td>
<td>Choose:</td>
</tr>
<tr>
<td>- Introduction to Information Systems</td>
<td>- Business Information Systems Management</td>
<td>- a second IT major</td>
</tr>
<tr>
<td>- Programming Fundamentals</td>
<td>- Data Analytics</td>
<td>OR</td>
</tr>
<tr>
<td>- Web Systems</td>
<td>- Enterprise Systems Development</td>
<td>- 2 sub-majors (IT or from another faculty)</td>
</tr>
<tr>
<td>- Business Requirements Modelling</td>
<td>- Interaction Design</td>
<td>OR</td>
</tr>
<tr>
<td>- Database Fundamentals</td>
<td>- Networking and Cybersecurity</td>
<td>- 1 sub-major and 4 electives</td>
</tr>
<tr>
<td>- Project Management and the Professional</td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td>- Network Fundamentals</td>
<td></td>
<td>- 8 electives</td>
</tr>
</tbody>
</table>

Students may also undertake a global exchange overseas.
Bachelor of Science in Information Technology
Diploma in Information Technology Professional Practice

Students who enrol in the Bachelor of Science in IT can add the Diploma in Information Technology Professional Practice as part of their program. The internship is a structured program, consisting of one nine-month internship alongside your IT course.

Duration: 4 years full-time

UTS course code: C10345

CRICOS Code: 084259M

^Part-time study option is not available to international students

Assumed knowledge: HSC (or international equivalent) Mathematics and any 2 units of English

Recommended Year 12 subjects: Mathematics Extension 1 and English Advanced

Professional recognition:
Graduates are eligible to apply for Professional-level membership of the Australian Computer Society

WHY CHOOSE THIS COURSE?
As well as learning theory, you’ll get the chance to practice it. You will gain:

- strong technical skills in IT
- skills in business analysis, problem solving, teamwork and communication
- exposure to real IT problems – employers look for graduates with industry experience
- the opportunity to undertake a minimum of nine months’ work experience with the Diploma in Information Technology Professional Practice

Vitaly Kuzenkov – Russia
Bachelor of Science in Information Technology
Diploma in Information Technology Professional Practice

“I’ve gained so many skills during my studies at UTS. I have developed new technical, programming, networking and IT skills. Through the subject Communications for IT Professionals, my verbal and written communication skills improved greatly. It’s extremely important to be able to work in teams. Here at UTS, we have a lot of group assignments so you need to cooperate with people and work in a team. Group work also requires leadership in order to organise the group, so I have actually developed my leadership skills too. Also, I’ve developed problem solving skills and analytical skills to critically analyse information. These are all team management skills that will help you succeed.”
Course structure

<table>
<thead>
<tr>
<th>Core (8 subjects)</th>
<th>Major (8 subjects)</th>
<th>Electives (8 subjects)</th>
<th>Diploma in Information Technology Professional Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Communication for IT Professionals</td>
<td>Choose one major from the following:</td>
<td>Choose:</td>
<td>A 9-12 month work placement and supporting subjects at UTS.</td>
</tr>
<tr>
<td>- Introduction to Information Systems</td>
<td>- Business Information Systems Management</td>
<td>- a second IT major</td>
<td></td>
</tr>
<tr>
<td>- Programming Fundamentals</td>
<td>- Data Analytics</td>
<td>- 2 sub-majors (IT or from another faculty)</td>
<td></td>
</tr>
<tr>
<td>- Web Systems</td>
<td>- Enterprise Systems Development</td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>- Business Requirements Modelling</td>
<td>- Interaction Design</td>
<td>- 1 sub-major and 4 electives</td>
<td></td>
</tr>
<tr>
<td>- Database Fundamentals</td>
<td>- Networking and Cybersecurity</td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>- Project Management and the Professional</td>
<td></td>
<td>- 8 electives</td>
<td></td>
</tr>
<tr>
<td>- Network Fundamentals</td>
<td></td>
<td>Students may also undertake a global exchange overseas.</td>
<td></td>
</tr>
</tbody>
</table>

Students may also undertake a global exchange overseas.
Drive innovation with real-world experience.

This premier degree has been developed in collaboration with the software industry to ensure students graduate with the skills required to pursue highly technical careers in artificial intelligence, cybersecurity, data science or quantum computing. With an emphasis on next generation technologies, computer scientists solve deep problems in computing. They theorise, design, develop and apply computing and software for advanced programs.

You’ll work in a studio environment, applying theoretical knowledge to real-world problems. In years three and four of the course, you’ll also develop research skills through computing science studio subjects and specialist subjects, culminating in an honours project in your final year of study.

The Honours component is a one-year, research-based program devoted to a research project. It is the first step towards a career in research and a unique opportunity for students to explore research opportunities at UTS.

Prof Michael Blumenstein
Associate Dean
(Research Strategy & Management)
Faculty of Engineering & Information Technology

"The type of student that would enjoy undertaking a course like the Bachelor of Computing Science would be those that already have a strong background in maths and a love for mathematics and computing in general, such as in the areas of coding and programming."

Duration: 4 years full-time

UTS course code: CO9119

CRICOS code: 092896D

Assumed knowledge: HSC (or international equivalent) Mathematics Extension 1 and any 2 units of English

Recommended Year 12 subjects: English Advanced

Professional recognition:
Graduates are eligible to apply for Professional-level membership of the Australian Computer Society

Choose a Major:
- Artificial Intelligence and Data Analytics
- Business Information Systems Management
- Cybersecurity and Privacy
- Enterprise Systems Development
- Interaction Design
- Mathematical Analysis
- Networking and Cybersecurity
- Operations Research
- Statistics
WHY CHOOSE THIS COURSE?
As a Bachelor of Computing Science (Honours) student, you’ll develop:
- the ability to theorise, design, develop and apply computing and software for advanced programs
- advanced cognitive, technical and communication skills required for a highly rewarding career
- opportunities to work in research. The combination of core computing science subjects, IT majors, electives and research subjects will prepare you to embark on a PhD.

PREPARE FOR THE FUTURE
- Intelligent robots
- Deep learning
- Artificial Intelligence
- Quantum computing
- IoT Security
- Digital Forensics

CAREERS
You will have diverse career opportunities locally and internationally across a range of industries, including science, health, engineering, finance, transport and telecommunications.
- Data scientist
- Artificial Intelligence expert
- Machine learning specialist
- Software designer
- Web development
- Interface designer
- Information systems management
- Network management
- Systems engineer
- Security operations
- Professional computing science researcher

Mustafa Barodawala – Australia
Bachelor of Computing Science (Honours)

“I wanted to study in an area that focuses on technology, but also mathematics. In computing science, maths is the foundation of how we analyse different programs, algorithms and even different computational systems.
Having this unique way of approaching problems allows computer scientists to thoroughly investigate a problem, such as find some hidden-in-plain sight sort of pattern in a data analytics problem, or rule out potential algorithms immediately by predicting their run-time and space requirements.”

Course structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td>Session 2</td>
<td>Session 3</td>
<td>Session 4</td>
</tr>
<tr>
<td>Mathematics (Core)</td>
<td>IT (Core)</td>
<td>IT (Major)</td>
<td>Honours Project Preparation</td>
</tr>
<tr>
<td>IT (Core)</td>
<td>IT (Major)</td>
<td>IT (Core)</td>
<td>Elective</td>
</tr>
<tr>
<td>Comp. Sci. Studio</td>
<td>IT (Major)</td>
<td>Comp. Sci. Studio</td>
<td>Elective</td>
</tr>
</tbody>
</table>
Bachelor of Science in Games Development

Facial recognition, virtual reality, augmented reality and open-source gaming are just the beginning.

Evolving technology is changing the face of the interactive entertainment industry, giving unprecedented opportunities. Today’s games are sophisticated computer programs that often connect thousands of players through virtual worlds and consist of detailed 3D graphics, realistic physics and complex artificial intelligence.

In this program, you’ll develop a sound education in all aspects of information technology as well as the diverse skills necessary for a career in games development. This includes subjects in web systems, programming, networking, interactive media, database management, design and special effects.

WHY CHOOSE THIS COURSE?
At UTS you won’t just learn the theory, but will also practice it. You will gain:
- enhanced work-ready expertise in games development and other IT fields
- creative freedom and practical problem-solving skills based on leading-edge IT theory
- communication skills in a variety of forms including written, verbal, online and technical literacies
- an awareness of the principles of ethics and corporate governance in a variety of settings
- an understanding of industry through showcase events and industry interaction

CAREERS
- Computer animation/graphics specialist
- Cyber security specialise
- Data analyst
- Games developer
- Interaction designer
- IT project manager
- Software developer
- Software engineer
- Systems analyst
- Web developer

Opportunities vary depending on major/sub-major chosen.

Duration: 3 years (full-time)
UTS course code: C10229
CRICOS code: 057197M
Assumed knowledge: HSC (or international equivalent) Mathematics and any 2 units of English
Recommended Year 12 subjects: Mathematics Extension 1 and English Advanced

Professional recognition:
Graduates are eligible to apply for Professional-level membership of the Australian Computer Society
Course structure

<table>
<thead>
<tr>
<th>Core (8 subjects)</th>
<th>Games Development (10 subjects)</th>
<th>Electives (8 subjects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Communication for IT Professionals</td>
<td>– Introduction to Computer Game Design</td>
<td>Choose:</td>
</tr>
<tr>
<td>– Introduction to Information Systems</td>
<td>– Introduction to Computer Graphics</td>
<td>– 2 sub-majors (IT or from another faculty)</td>
</tr>
<tr>
<td>– Programming Fundamentals</td>
<td>– Game Design Studio 1</td>
<td>OR</td>
</tr>
<tr>
<td>– Web Systems</td>
<td>– Game Design Studio 2</td>
<td>– 1 sub-major and 4 electives</td>
</tr>
<tr>
<td>– Business Requirements Modelling</td>
<td>– Applications Programming</td>
<td>OR</td>
</tr>
<tr>
<td>– Database Fundamentals</td>
<td>– Data Structures and Algorithms</td>
<td>– 8 electives</td>
</tr>
<tr>
<td>– Project Management and the Professional</td>
<td>– Introduction to Computer Game Development</td>
<td></td>
</tr>
<tr>
<td>– Network Fundamentals</td>
<td>– Advanced Interaction Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Fundamentals of Interaction Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Advanced Games Programming</td>
<td></td>
</tr>
</tbody>
</table>

Natassja Sundara – Australia
Bachelor of Science in Games Development

“I chose this degree because it allowed me to be creative in technology. It also combines IT subjects with games development, so you can branch into various fields when you graduate—not just games.

Right now I’m a part–time research assistant and games developer on a UTS project for the elderly. I also worked with UTS advanced technology development unit, Rapido. They were doing a VR project for a national tech conference in Sydney and asked me to gamify it.

There have been plenty of opportunities to engage with industry, including showcases where you can demonstrate your project and capabilities. It’s been very enjoyable—challenging but very rewarding.”
Degree add-ons

Stand out from the crowd with a Diploma in Innovation or a Diploma in Languages.

+ Add the Diploma in Innovation

Some people watch the world go by. Others change it. Become a future-shaper with the Diploma in Innovation.

Rather than building the skills for a specific career, the Diploma in Innovation is about preparing for the future of work. In fact, it responds directly to industry demand for graduates who can demonstrate inter- and transdisciplinary approaches in their professional practice. There’s an emphasis on entrepreneurial thinking, too: by the time you graduate, you’ll be ready to be an entrepreneur, serve entrepreneurial clients, or integrate entrepreneurial processes into your day-to-day work.

Our course content embraces the unlimited possibilities of the new world of work. Subjects include extensive studios on innovation and entrepreneurship, explorations of complexity and sustainability and deep dives into concepts of frame innovation and futures thinking.

Interested? You can add the diploma to any UTS bachelor’s degree (excluding the Bachelor of Technology and Innovation and Bachelor of Creative Intelligence and Innovation). What’s more, all your diploma subjects will be offered as winter and summer school intensives, so even though you’re adding an extra qualification, you’ll still graduate on time.

+ Add the Diploma in Languages

Gain a global outlook.

Bring the world to your doorstep with a Diploma in Languages. Add this one-year diploma to your UTS degree to gain language and cultural skills, build your professional identity and graduate with a range of capabilities that will prepare you for an international career. Language options include Chinese, French, German, Italian, Japanese and Spanish.

No need to apply just yet – the diploma is available to students already studying an undergraduate or postgraduate coursework degree program at UTS, so sign up when you enrol. No matter what you study, the diploma can give your qualification an international edge.
What’s next?
Follow these steps to start your UTS journey

1. Find your course
Look for the course you are interested in to start.

2. Meeting the admission requirements
Do you meet both the Academic and English Language Requirements for your course?

 There are English language proficiency requirements for all courses. These requirements may apply to you, even if you are not an international student.

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>IELTS (Academic)</td>
<td>6.5 overall with a writing score of 6.0</td>
</tr>
<tr>
<td>TOEFL (Internet-based)</td>
<td>79-93 overall with a writing score of 21</td>
</tr>
<tr>
<td>PTE (Academic)</td>
<td>58-64</td>
</tr>
<tr>
<td>CAE</td>
<td>176-184</td>
</tr>
<tr>
<td>AE5/AE6 (PASS)</td>
<td>AE5</td>
</tr>
</tbody>
</table>

3. Complete your UTS application
Submit either an online or hardcopy application with supporting documentation required.

4. Submitting your application
Your application, application fee and supporting documentation must be submitted to UTS.

 Recognition of Prior Learning
You may be eligible for recognition of prior learning (RPL) based on previous study. Application for recognition of prior learning must be made at the point of applying for your UTS course.

5. Acknowledgement letter and accepting your offer
Once your application is successful, you will receive an offer letter and can accept your offer.

 Complete the Acceptance form and follow your preferred payment methods.

6. Fees and Finances
Make sure you are up to date with costs of your UTS tuition and amenities fees plus the costs of living in Sydney.

 Understand the costs to support yourself while studying in Sydney including transport and living expenses.

7. Scholarships
UTS has a variety of scholarships on offer to incoming student students to help support career aspirations.
8 Overseas Student Health Cover (OSHC)
You will need to have an Overseas Student Health Cover for the duration of your stay in Australia.

How to apply
uts.edu.au/international-apply

Get in touch
Phone: 1800 774 816 (free call within Australia)
Phone: +61 3 9627 4816
Email: international@uts.edu.au
uts.edu.au/international

9 Accommodation
Feel at Home
There are many convenient accommodation options while studying at UTS. Organise housing for yourself close to uni.
Check out UTS Housing

10 UTS International Contacts
All important contact information can be found here.