BACKGROUND BRIEFING

Strategies for Success: Implementing Gender Workforce Targets

Equal Futures Program, Centre for Social Justice and Inclusion, University of Technology, Sydney
Dr Linda Peach and Alicia Pearce, June 2019
Keywords: quotas, targets, gender equity, Athena SWAN

Introduction

This background briefing considers the context and implementation of workforce gender targets and quotas in organisations, with a particular focus on science, technology, engineering, maths and medicine (STEMM) in an Australian context. It will be useful background information for anyone interested in the implementation of strategies to achieve organisational gender parity over time. It covers:

- Information about what quotas and targets are and can achieve
- A brief literature review on the use of targets and quotas in achieving organisational change, including challenges and facilitators to success
- Background on current moves to implement gender and diversity workforce targets in STEMM research and higher education institutions, in the context of the Athena SWAN pilot and the 2019 Women in STEM¹ Decadal Plan process.

This brief was prepared to support participants at the Strategies for Success symposium and workshop, hosted by the Centre for Social Justice and Inclusion, UTS, on 25 July 2019 and sponsored by UniBank.

¹ Note that “STEM” refers to science, technology, engineering and maths disciplines, while “STEMM” includes medicine as the fifth component of this group.
Quotas versus targets: What’s the difference?

Creating change in gender inequality is widely acknowledged to be challenging but achievable with persistence, the consistent support of senior leadership, and a clear set of policies, goals and expectations. Quotas and targets have been used with varying degrees of success to improve gender balance in governments, organisations and institutions. Their implementation has led to higher percentages of women in senior leadership roles, on boards, and in sectors that are historically male dominated.

Setting quotas or targets involves setting a goal for the presence of women in the workforce, either at a workforce population level, an organisational level, or at a subset of the organisation where a specific need has been identified. The difference between the two approaches lies in the level of accountability:

- Quotas are mandated levels of expected achievement, often imposed on organisations by governments and external forces.
- Targets are volunteered by individual organisations in response to their specific circumstances.

Quotas

Quotas are mandated requirements, usually imposed by government and supported by organisational strategies around recruitment, retention, and promotion. They generally consist of:

- A percentage (33 to 50 per cent is the usual range)
- A time frame for achievement (3–5 years is the norm)
- Consequences for not reaching them, such as being excluded from tendering for publicly funded projects (Terjesen, Aguilera, & Lorenz, 2015).

Quotas have been introduced in many countries to increase women’s representation in senior leadership roles with varying levels of success (Terjesen et al., 2015). In an Australian context, the Victorian Premier, Daniel Andrews, replaced unsuccessful ‘aspirational’ targets with quotas for appointments to Victorian Government boards in 2015. In 2018, he announced that women are now the majority (63 per cent) of board members of Victorian government agencies in the Treasury portfolio (Towell, 2018). Women have comprised more than 50 per cent of all new appointments to Victorian government boards since 2015, increasing their overall representation from 39 per cent to 53 per cent.

Norway is frequently cited as a model success story for the positive effect of quotas on gender representation. A 40 per cent mandatory quota for women on boards of their public
companies was implemented by the Norwegian government in 2008—this was quickly achieved and has been sustained and exceeded ever since (Milne, 2018). From a very low starting base of 7 per cent, women now hold more than 40 per cent of board positions on Norway’s publicly owned and publicly listed companies (Kløvstad, 2017).

Norway also boasts strong representation of women in the government, with women holding key positions of power—Prime Minister, Finance Minister and head of the powerful employers’ association (Milne, 2018). All three political parties are led by women, and the majority of public sector leaders are also women (Milne, 2018). However, although Norway’s quota for board members has been met and maintained for some time, there has not been a corresponding increase in the number of female CEOs (Klettner, Clarke, & Boersma, 2016; Milne, 2018).

Implementing mandatory quotas for gender representation in the higher education sector remains controversial, and most Australian universities opt for voluntary targets (e.g., The University of NSW, The University of Sydney, Macquarie University, The University of Queensland). Internationally, in Austria, a mandatory quota of 40 per cent women on university bodies was introduced and all but one university achieved this target by 2016 (Pyke & White, 2018). The Flemish government (Belgium, Flanders and Wallonia) introduced a quota in 2012 for public universities to have no more than two-thirds of their decision-making bodies comprising members of the same sex (Voorspoels & Bleijenbergh, 2019). Following this quota implementation, a study of the University of Antwerp found that in response, university bodies focused on compliance, and used a number of tactics to appear to be achieving the quota—essentially undermining the principle of gender equal decision-making while giving the impression of supporting it (Voorspoels & Bleijenbergh, 2019).

France similarly enacted a law requiring a 60/40 gender balance on all public university hiring committees (Woolston, 2019). In a study of the outcomes of this quota, it was found that it actually reduced the numbers of women hired by 38%, and this was particularly pronounced in some male-dominated disciplines such as mathematics and physics (Woolston, 2019).

While quotas are known to achieve quick results in increasing women’s representation, the body count is not always an adequate measure of progress:

- Even where quotas have been introduced, women are more likely to be appointed to junior, non-executive roles rather than into positions that have power and influence equal to the senior men’s roles, giving a false picture of gender parity without any change to the way business is done (Taylor, 2016).
- Complying with gender quotas by focusing on procedural compliance—getting the numbers right on paper—is a strategy adopted by many organisations that appears
to improve gender balance in line with the quota, but in practice makes little difference to gendered decision-making power (Voorspoels & Bleijenbergh, 2019).

- Other criticisms of legislated quotas for gender representation focus on the potential for tokenism, where women are appointed to boards and senior roles in order to meet the quota, despite not being the most suitable candidates (Terjesen et al., 2015).

Despite their failings, quotas have continued to be a relatively popular method of motivating rapid change in gender equality metrics.

Targets

The Workplace Gender Equality Agency (WGEA) describes gender targets as “…achievable, time-framed objectives which organisations can set on a regular basis to focus their efforts on achieving improved outcomes.” (WGEA, 2016, p. 8). Voluntary targets for gender balance have gathered popularity and momentum in recent years, with some notable successes (by self-report). The European Institute for Gender Equality (EIGE) recommends setting gender-specific targets as a way of closing gender gaps (EIGE, 2017).

Targets are intended to address the existing imbalance and environmental norms that often discourage women from applying for particular roles, while allowing for self-regulation rather than imposing mandatory quotas (Pyke & White, 2018).

- Klettner et al. (2016) suggested that voluntary self-regulation may produce more robust results than mandatory quotas.

- In particular, they suggested that voluntary targets may be more effective in bringing about the broad organisational culture change needed to embed gender equality across an organisation.

- However, knowledge amongst managers is generally patchy in relation to how gender targets work and whether the concept of merit is compatible with the implementation of gender targets or quotas (Williamson, Colley, Foley, & Cooper, 2018).

Prompted by high-profile initiatives such as the ASX advocating a target for 30 per cent women on the boards of the top 300 listed organisations (Sprague & Mather, 2018), and awareness-raising efforts by advocacy groups such as the Male Champions of Change (Male Champions of Change: MCC; Chief Executive Women: CEW; MCC, 2018; MCC & CEW, nd), the Diversity Council of Australia (2019) and the regulatory body, WGEA (2019), corporations in Australia have begun to implement their own targets for gender diversity:
• PwC Australia implemented a 40/40/20 target (40 per cent women; 40 per cent men and 20 per cent any gender identity) for future partner admissions; 30 per cent cultural diversity among partner admissions by 2020; and 50 per cent of experienced hire appointments at director level to be women (PwC, 2019).

• KPMG Australia also set a target to have 30 per cent women in partnership by December 2020. From 16 per cent in 2013, the organisation reached 27 per cent by 2019 and is on track to reach 30 per cent by the target date (KPMG, 2019).

• The Australian giant, BHP Billiton, operating in one of the most strongly male-dominated industries of mining, has set a target to have 50 per cent women in its workforce by 2025 (Huang, 2017).

In the higher education sector, targets have been used to some effect. A study of Swedish higher education institutions found that implementing a gender mix policy was a key influence on the increase in numbers of women in senior academic management positions between 1990 and 2010 (Peterson, 2011). The gender mix policy was an informal initiative that sought a minimum of 40 per cent of both women and men in all positions, levels and committees (Peterson, 2011). Over time, the gender mix policy became well-recognised and embedded in institutional cultures and processes that influenced appointments to academia (Peterson, 2011). Critics, however, noted that even though the numbers had improved, it was most often the case that increases in women’s representation were in positions subordinate to men (Peterson, 2011).

At the University of Technology Sydney, the Wingara Indigenous Employment Strategy 2019–2023 sets out targets for increasing Indigenous representation of academic and professional staff at UTS between 2019 to 2023. The Strategy includes 10 key initiatives that are to be achieved through key success indicators and with formal accountability by UTS senior management staff. The Strategy sets out hard targets for the recruitment of Indigenous staff at specified levels of employment, with formal accountability sitting with university and faculty executive to deliver, with support provided through the office of the Pro-Vice Chancellor (Indigenous Leadership and Engagement). Data available in the UTS Athena SWAN application shows the initiative’s success. Based on annual reporting of Indigenous staff, UTS has increased Indigenous staff participation from 18 in 2011 to 48 in 2018 to 67 in June 2019. In 2019, the Indigenous professoriate totals 17.

Case Study: Norwegian Agricultural Boards

In 2004, the Norwegian government introduced voluntary quotas to increase the proportion of women to 40 per cent on the boards of agricultural co-operatives, as a separate measure from the mandatory board quotas mentioned earlier. The introduction of this target saw an increase of women on agricultural boards from 17% in 2003 to 39% in 2009. Before 2004,
agricultural boards were known to have strongly masculine cultures where women were seen to be different and inferior. As a result of voluntary quotas, women are no longer a minority on these boards, and having reached relative gender parity, members of agricultural boards have been able to move beyond traditional notions of male and female to work with each other in the neutral space of ‘board member’. In this way, targets are seen to change the way gender is perceived when relative gender balance is achieved, opening the way to progress more broadly (Brandth & Bjørkhaug, 2015).

Targets for change in STEMM: The Australian Case

Organisations in the STEMM sector are implementing a variety of initiatives to increase its attractiveness to women, including setting targets. The Male Champions of Change STEM group (MCC STEM), supported by the Australian government’s National Innovation and Science Agenda, and representing a diverse range of organisations in the sector, has undertaken to lead and influence change in the representation of women in STEM fields, particularly in leadership positions (MCC STEM, 2017).

Industry associations such as the Australian Academy of Science and the Australian Academy of Technology and Engineering (AATE) are taking the lead on creating change in gender equality in STEMM, both through their own activities and through programs such as Athena SWAN/SAGE in Australian universities.

- The AATE, for example, has implemented a target that 50 per cent of all new Fellows elected to the Academy by 2025 should be women (AATE, 2019).

- The Australian Academy of Science and the AATE also produced the *Women in STEM Decadal Plan* (2019), detailing a roadmap for improving the attraction and retention of women to STEM careers. Among other things, the plan recommends the establishment of a national evaluation framework to guide decision making and drive investment and effort for the improvement of gender equality in STEM fields (Australian Academy of Science, 2019).

This activity follows an international trend. In 2017, at least 30 tech companies in the US had pledged to implement and publish goals to increase diversity and inclusion among their technology workforces (Huang, 2017). Groups of organisations are also collaborating in programmes designed to improve gender equality in senior leadership both within STEM and outside it (Huang, 2017).
Case study: SAGE Athena SWAN Bronze Awards

In 2018, the first cohort of Athena SWAN Bronze Award applications were submitted, with 15 awards awarded to Universities and STEMM research institutions. The Athena SWAN process requires participants to:

- Conduct an audit of gender diversity good practice for their STEMM workforce
- Undertake extensive consultations of staff and a HR and process data analysis to locate potential interventions for cultural and system change to reduce bias
- Create a four-year, whole-of-institution action plan responding directly to findings from the data.

The Athena SWAN process has created a whole-of-sector focus on measurable change toward gender equity in the STEMM workforce. A targeted audit of Athena SWAN applications conducted for this briefing paper found that every successful Athena SWAN application referred to targets of some kind—related to:

- Presence of women in recruitment (application, shortlisting and other targets)
- Women in senior leadership positions
- Pipeline and succession planning
- Gender pay equity targets
- Presence on key organisational committees, such as university senates and other governance bodies.

Some applications also tie these targets to the achievement of corporate KPIs and incorporate them into faculty planning.

“…the STEM graduates of 2030 – 9- and 10-year-olds making their way through primary school in 2019, as well as those entering the workforce from other life journeys – will join workplaces that are respectful, free of harassment and discrimination, value diversity, and structured to support the needs and preferences of their diverse and professional employees.” (Australian Academy of Science, 2019, p. 17)
Pipeline challenges to targets in STEMM

In the STEMM disciplines, a key challenge is the empirical reality that many specialised disciplines are male dominated across the education pipeline and within the workforce. This means that efforts must be made at a whole-of-sector level, rather than confined to individual organisations.

- In Australia’s STEM research sector, women comprise 42 per cent of all academics, 52 per cent of the most junior academics and just 23 per cent of the professoriate (Australian Academy of Science, 2019).
- In STEM organisations more broadly, women occupy 28 per cent of management roles, and only 8 per cent of CEO roles (Australian Academy of Science, 2019).
- The gender pay gap in STEM is also larger than other sectors, with women in the professional, technical and scientific services sector earning on average 23.7 per cent less than men (Australian Academy of Science, 2019).

With an increasing reliance on digital technologies across the globe, the demand for STEM skills is high and growing, but ICT- and STEM-related professions are facing serious skill shortages, posing an unprecedented challenge to recruiting and retaining workers in these fields (Fatourou, Papageorgiou, & Petousi, 2019). The underrepresentation of women in the sector is a key driver of this labour shortage, and achieving gender balance in STEM is expected to benefit the STEM labour force as well as driving research and innovation, leading to economic improvements and increased inclusion for women more generally (Fatourou et al., 2019).

- In 2016, Australia had the lowest proportion of girls electing to take STEM subjects in school (27 per cent) among countries in the Asia Pacific region (Australian Academy of Science, 2019).
- Data provided by Science and Gender Equity Australia shows that despite a relative equality in the overall number of male and female students at university in the STEMM disciplines (including allied health, which is female dominated), the gender gap widens with seniority in the workforce (Science in Australia Gender Equality: SAGE, 2019).
- The ‘leaky pipeline’ effect of women leaving the sector before having established a career is more pronounced in STEM than other fields (Osumi, 2018).

Data from Japan shows that whereas students in the primary and secondary school systems are equally represented in science and maths, the gender gap begins to widen once they reach university, and becomes even more pronounced when applying for faculty roles (Osumi, 2018). Osumi (2018) attributes this to bias against women who are perceived to be
less valuable than men in gaining funding and publications, despite data consistently showing that women produce scholarly outputs at higher rates than their male colleagues.

To address pipeline issues in STEM disciplines, the Women in STEM Decadal Plan (Australian Academy of Science, 2019) was launched in April 2019 after a whole of STEM sector consultation process. The plan takes the approach that demand for science, technology, engineering and maths (STEM) skills in Australia cannot be met over the coming decade unless whole of sector action is taken to maximise the attraction, participation and retention of both men and women in the workforce. It outlines six areas where coordinated action from government, academia, industry, education sector and the broader community will achieve change:

- Leadership and cohesion
- Evaluation: understanding what works
- Culture: inclusive and respectful workplaces
- Visibility: you can’t be what you can’t see
- Education: strong beginnings from primary
- Industry action (Australian Academy of Science, 2019)

The key focus of the plan is on coordinated implementation over the medium to long term, with the term ‘Decadal Plan’ referring to a 10-year timeframe. The Decadal Plan Secretariat, operating from the Academy of Science, is currently in the process of gathering responses to progress this agenda.

Perceptual challenges to targets in STEMM

The primary challenges faced by organisations when implementing targets are perceptions among staff and leadership that:

- gender targets represent a move away from appointments based on merit
- gender targets encourage tokenism (Foley & Williamson, 2019; Pyke & White, 2018)

Even when target setting is voluntary, concerns are often raised about women being appointed unfairly and at the expense of suitably qualified men (Pyke & White, 2018). Given that most senior leaders in organisations are male, these perceptions represent a substantial barrier to the successful implementation of gender balance targets.

Another perception that challenges the implementation of gender balance targets is that suitably qualified women are not available to fill positions—that a pipeline of talent is not
immediately available to meet demand. While this is an observable reality in many specialised STEMM disciplines, as we discuss below, issues of perception may play a part within organisations as they work in the medium to long term to address these issues.

Recently, Australian researchers have suggested that public sector organisations should work to increase the understanding of how merit is constructed and applied, in the context of setting targets linked to merit through all levels of the public sector (Williamson et al., 2018). The implementation of gender equality targets is often derailed at the middle manager level, and these authors further suggest that public sector agencies should engage managers in setting and achieving targets for gender equality and invest in education around how targets and the merit principle are not mutually exclusive.

- Educating managers and those with recruitment responsibilities to understand how unconscious bias influences their recruitment and promotion decisions is key to addressing this barrier (Williamson et al., 2018).
- The impact of bias on the representation of women is evident when, even where quotas have been introduced, women are more likely to be appointed to junior, non-executive roles rather than into positions that have power and influence equal to the senior men's roles (Taylor, 2016).
- Even in Norway—the ‘gold standard’ for improving women’s representation on boards—the quota for board members has been met and maintained or exceeded for some years, but there has not been a corresponding increase in the numbers of women in senior leadership roles (Klettner et al., 2016; Milne, 2018).

Women who pursue careers in STEM disciplines face a variety of challenges. The historical perception of science as a competitive, masculine domain, and the expectation that research careers take precedence over every other aspect of life, make it difficult for young women to establish careers in STEM (Pyke & White, 2018). Women who subscribe to the ‘traditional scientific role model’—that is, aggressive persona, able to follow a relatively inflexible linear career path, and commit to full-time work—are more likely to succeed in a scientific research career (Etzkowitz, Kemelgor, & Uzzi, 2000).

These traditional expectations of research scientists increase the barriers faced by women returning to the sector after career breaks (Herman, 2015). When women in science, engineering and technology careers who had tried to return to these professions after taking a career break were interviewed, it became clear that the “… deep-rooted, gendered associations of science and technology with masculinity” made the sector highly resistant to change, and often led to the ‘fraying’ of women’s career progression after they had taken career breaks (Herman, 2015).
Fostering positive expectations for women in a STEM environment is a key to attracting and retaining women in STEM:

- When a STEM environment was perceived as unwelcoming to women, undergraduate women in STEM courses did not feel that they belonged in STEM and reduced their intentions to pursue STEM careers after graduation (LaCosse, Sekaquaptewa, & Bennett, 2016).
- Women will opt out of a workplace or a career if they feel they don’t fit in, believe they won’t succeed, or feel their sacrifices won’t be rewarded. A study of 1,464 women engineers in the US showed that poor and unfair working conditions were the primary reason why they chose to leave engineering (Gouws, 2018).
- Conversely, if a woman feels that she fits in and belongs in an organisation, she is likely to be more ambitious and is less likely to opt out (Ryan, 2017).
- Anticipated exposure to negative gender stereotypes was found to reduce women’s (but not men’s) STEM career aspirations (Schuster & Martiny, 2017).

Men in STEM tend to underestimate the barriers and challenges that women face when developing their careers in these disciplines, and this poses a problem for how effectively men can be brought along on this journey, or how much resistance there may be to achieving gender balance targets. One study showed that men in STEM perceived academia as an egalitarian environment where gender did not influence achievements (Sattari & Sandefur, 2019). Somewhat contrarily, many of these men also acknowledged they were in privileged positions in relation to women and could recognise the subtle ways in which gender influenced opportunities (Sattari & Sandefur, 2019).

Without addressing these grassroots issues in the STEMM sector, implementing targets for gender balance will continue to be challenging, with progress likely to be patchy and slow. This speaks to the need to take a more holistic view of gender equality in the sector, taking into account the cultural and workplace norms that make it a difficult environment for women. Increasing representation of women in the sector requires change at a fundamental, targeted level.

Facilitators of success in achieving gender balance targets

- Successful implementation of gender balance targets goes beyond headcounts, a measure that can give an under- or over-inflated view of gendered representation (Taylor, 2016).
- There is a need to change culture at a workplace and downstream level in tandem with working towards increased representation.
• This is often overlooked when discussing ‘how many’ of a given group are in senior leadership roles or present in an occupation or industry (Taylor, 2016).

• How targets are implemented, monitored and reported on is a key factor in how effectively they will do their job.

The Helsinki Group, on behalf of the Council of the European Union, drafted guidelines for target setting to improve gender balance among professors and in leadership and decision-making positions (2017). The guidelines included recommendations for monitoring mechanisms at both the national and institutional level; incentives and sanctions applied at a national level to motivate universities and research organisations to implement targets or quotas; active support of senior leaders; and ongoing and targeted training to ensure the necessary culture change takes place in tandem with target setting (The Helsinki Group, 2017).

Setting targets and measuring success

The guidelines proposed by The Helsinki Group for target setting are broadly reflected in the resources of Australia’s federal regulator, the WGEA. According to the WGEA, the key principles of target setting are:

1. Clarity: Set clear targets with timelines to ensure progress can be measured.

2. Small steps: Consider setting interim goals and measures as steps towards a longer-term goal. This will focus immediate efforts and encourage momentum, while enabling the organisation to monitor progress.

3. Control: Ensure managers are able to influence the metrics and have appropriate control over the strategies and initiatives to achieve the targets.

4. Be realistic: Set targets that can be achieved. This requires a thorough analysis of all of the possible barriers to achieving targets and the support needed to maximise the opportunities to achieve them.

5. Embed accountability: Create managerial accountabilities and rewards, e.g. linking remuneration or career progression to achieving targets. (WGEA, 2016, p. 8)

Ensuring that there is accountability to achieve gender balance targets is crucial to successful implementation and to ongoing assessment of their effectiveness and is one of the 10 practices considered to be most effective in bringing about change in gender equality (McKinsey & Company, 2018). Accountability mechanisms keep targets front of mind across an organisation and motivate managers to proactively look for ways to improve gender balance (McKinsey & Company, 2018). Accountability mechanisms differ between quotas and targets, with quotas more likely to carry a formalised penalty imposed on an
organisation by the government. With voluntary targets, accountability is at the level of the leader of a group, department or organisation and is most often linked to rewards and recognition (McKinsey & Company, 2018). For accountability mechanisms to be effective, there is a need to:

- ensure they are realistic and the outcomes are under a manager’s control (McKinsey & Company, 2018)
- institute formal monitoring of progress and publication of regular updates (Williamson et al., 2018).

Accountability mechanisms can also exist outside individual organisations, and the influence of external bodies in holding organisations to account for achieving gender balance targets cannot be overestimated. The National Health and Medical Research Council (NHMRC), for example, has begun to link research funding with universities’ efforts to achieve gender equality through its gender equality strategy (NHMRC, 2018). This strategy aims to foster a gender-equal health and medical research workforce, with a specific focus on the retention and progression of women (NHMRC, 2018). Their stated measure of success is when “… similar numbers of women and men apply for, and are funded through, all NHMRC funding schemes.” (NHMRC, 2018, p. 3)

When assessing the impact of gender balance targets, it is important to look beyond the simple headcount (gender representation metrics). Instead, it is necessary to consider the whole pipeline into a given occupation or leadership role (Taylor, 2016), and to link accountability and reporting with measures of success:

- Peer-to-peer accountability through transparent reporting both vertically and horizontally is a key mechanism for assessing progress towards targets (McKinsey & Company, 2018).
- When managers have made formal commitments to gender balance targets linked to their performance reviews, they are more likely to address underlying issues that affect their capabilities to meet their gender targets (McKinsey & Company, 2018).
- Evaluate impact horizontally by considering associated changes to culture and lived experience of the workplace—perhaps investigating whether there has been a change in employee ratings of diversity-related measures, or a decrease in complaints about some types of behaviour. Employee engagement surveys and focus groups can be a rich source of these data.

When assessing the impact of gender balance targets, it is also important to consider how well the outcomes align with policies. Williamson et al. (2018) note that in public sector workplaces, there remains a gap between women’s lived experiences and the expectations set by policy. For example, are policies related to recruitment, promotion, flexibility and
remuneration aligned with the gender balance targets? If women are leaving or not entering the sector because the workplace is perceived to be unwelcoming, what measures have been put in place that will address these issues? Without addressing them, it is unlikely that gender targets would be achieved.

Conclusion

This briefing paper responds to a particular need for information among leaders, workforce and diversity practitioners in the STEMM sector as we approach the current challenge of implementing strategies to attract and retain women to STEMM. Setting quotas and targets for the recruitment, retention and promotion of women in the STEMM sector, and scaffolding these commitments with genuine strategies to boost workforce culture, is a key contribution to fixing the ‘leaky pipeline’ of women in STEMM education, research and industry. At UTS, our commitments are coordinated across the whole university under the Athena SWAN Action Plan to achieve best practice gender workforce practice. More information about our Equal Futures Program, managed by the Centre for Social Justice and Inclusion, is available at equalfutures.uts.edu.au.

References

