Engineering & IT
Postgraduate Courses
International Students
Entrepreneurial. Creative.
Contents

5 Why UTS?
7 A modern precinct
9 Research with impact
11 Academic leaders
13 Your questions answered
15 Student services
16 Scholarships
17 Discover entrepreneurship
18 University life
19 Engineering courses
19 Course matrix
21 Master of Engineering Management
23 Master of Environmental Engineering Management
26 Master of Engineering
30 Master of Professional Engineering
32 Double Degrees
36 Engineering majors
39 Engineering research
41 IT courses
41 Course matrix
43 Master of IT
48 Master of Science in Internetworking
51 Master of Interaction Design
53 IT majors
55 IT research
57 How to apply

Faculty snapshot
7,195 undergraduate
2,757 postgraduate
902 higher degree research
10,854 total

UTS at a glance
45,930 students
15,134 international students
33,070 undergraduate students
10,720 postgraduate coursework
2,140 higher degree research students
3,896 staff

UTS student diversity
49% female students
51% male students
31% are 25 or older
49% also speak a language other than English

Please note the above numbers are approximate as of January 2019.

Contact us
Tel: 1800 774 816 (free call within Australia)
Tel: +61 3 9627 4816 (for international calls)
Web: international.uts.edu.au
Email: international@uts.edu.au

Connect with us

Acknowledgement of Country

UTS acknowledges the Gadigal People of the Eora Nation and the Booroobongal People of the Dharug Nation upon whose ancestral lands our campuses stand. We would also like to pay respect to the Elders both past and present, acknowledging them as the traditional custodians of knowledge for these Lands.
Why UTS?

Rapid advances in engineering and information technology are re-shaping the future of work.

Stay up-to-date with the latest technical knowledge and leadership skills with a postgraduate degree, giving you a competitive edge with employers.

Work with global experts in state-of-the-art facilities on the city fringe and revolutionise the future you.

CONNECTIONS THAT COUNT

UTS connects with over 1000 industry partners in teaching and research. Surround yourself with opportunities to engage with companies such as Siemens, Raytheon, Deloitte, PwC, Aurecon, WiseTech Global, Thales, Canon Medical Systems and Cisco.

INDUSTRY FOCUSED LEARNING

Theory is great, but nothing prepares you better than real industry experience for entering the workforce. That’s why we offer hands-on, practice-based learning that cultivates future-ready graduates. Our industry partnerships enable us to offer you working knowledge throughout your degree.

BE AMONG THE BEST

We’re ranked in the top 200 universities globally placing us in the top 1%. We’re also the no. 1 young university in Australia.

LEADING THE WAY IN GLOBAL RESEARCH

Our researchers are delivering breakthrough solutions which have the power to transform our future. UTS researchers have developed an inexpensive technology to provide a model for clean water which can be adopted worldwide, saving millions from potentially life-threatening illnesses.

COLLABORATIVE ECOSYSTEM

There are no more ‘lecture’ rooms, but collaborative rooms where students can move freely to discuss ideas, question the class content and work on team projects. Learning activities and experiences are based on real world examples so you can easily draw parallels between theory and practical working examples.

ROB JARMAN – ASSOCIATE DEAN, LEARNING & TEACHING

“UTS offers transformative learning experiences. We prepare students for their future careers through practical, real-world experience. For example, our students engage with industry and researchers in studio learning and practical projects, define problems and develop solutions through design thinking, have internship opportunities, and showcase their skills and capabilities through industry networking, career and award events.

Our facilities have undergone a one billion dollar redevelopment to offer one of the most dynamic, interconnected and student-focused spaces in the world. The UTS Software Studio, 3D Data Arena and ProtoSpace 3D printing facility are giving students real experience that promotes innovation and collaboration.

At UTS, we’re preparing students for the future of work.”
QS Graduate Employability Rankings 2019
Top 100
Globally for graduate employability
QS Graduate Employability Rankings 2019

Top 200
Universities globally
QS World University Rankings 2019
and Times Higher Education World University Rankings 2019

World standard or above
100% of UTS research at the broad subject level
Excellence in Research for Australia 2019

Top 50
Global ranking of Computer Science & Engineering subjects
Academic Ranking of World Universities (ARWU) conducted by the Shanghai Rankings 2019

No.1
UTS ranked Australia’s #1 young* uni

No.1
in Australia for the proportion of our research appearing in leading science journals
CWTS Leiden Rankings, 2018

No.10
Highest performing university in the world under 50 years old
QS Top 50 Under 50 2019
A modern precinct

There is no better place to see your future from.

TECH LAB
Tech Lab is an engineering and IT facility inspiring innovation and collaboration between expert researchers, industry partners and government.

The multi-functional site features 9000 square metres of office and laboratory space dedicated to technology innovation.

IN-BUILT RESEARCH SENSORS
The building itself is a living, breathing laboratory embedded with wireless sensors to monitor temperature, air quality, noise and dust particles.

PROTOSPACE
ProtoSpace is our purpose-built additive manufacturing facility, incorporating 3D printing designed to bring prototype testing and product manufacture within the reach of UTS students.

SOFTWARE DEVELOPMENT STUDIO
A rich environment for you to become professionally competent via an industry collaborative software development experience throughout your degree.
LABORATORIES
The building contains civil, electrical, information and communication technology, and mechanical laboratories, where students gain hands-on, practical experience. You will have access to specialised computer labs, including the UTS Remote Laboratory – the largest and one of the world’s most advanced remote laboratories.

LEARNING PRECINCT
In between classes, you can study or conduct group work in the Learning Precinct. This student space is where you can access teachers for individual and small group support, as well as reference materials and software and hardware resources.

DATA ARENA
This 3D data visualisation arena aids researchers to visually present and interact with complex data sets and 3D-spatial modules. It utilises projectors and stimulates weather such as wind and lightning to provide the experience of being immersed in a huge 3D virtual reality experience.

UTS LIBRARY
The UTS Library has expanded to include an underground storage system that uses robotic cranes for the retrieval of less-demanded books, making borrowing faster and simpler. This library upgrade is part of the larger UTS City Campus Master Plan, a $1 billion investment to redevelop UTS.
SHARK-DETECTING SOFTWARE PROTECTS BEACHGOERS

SharkSpotter is a world-first system developed by the Centre of Artificial Intelligence in partnership with drone solutions provider The Ripper Group to prevent shark attacks and save lives at beaches.

Patrolling from the sky, Little Ripper drones are loaded with AI software that distinguishes sharks from other marine life and objects.

If a shark is detected and becomes a threat, the drone’s megaphone can be activated to warn swimmers. It can also drop a life-saving floatation pod with an electronic shark repellent in emergencies.

A cost-effective solution for beach safety over large areas, SharkSpotter won the national AI or Machine Learning Innovation of the Year at the Australian Information Industry Association’s annual iAwards.

Little Ripper drones are currently patrolling major beaches across Australia.

Centre of Artificial Intelligence
FILTRATION SYSTEM PROVIDES CLEAN WATER IN VIETNAM

An inexpensive and sustainable filtration system designed by the Centre for Technology in Water and Wastewater is providing clean drinking water along the Red River Delta in Vietnam.

Working with researchers from Hanoi University of Science and the Institute of Environmental Technology, Vietnam Academy of Science and Technology, the system addresses the issue of groundwater contaminated by arsenic. Previous filtration methods were neither cost-effective nor efficient at removing the chemical, which causes major health problems including cancer, gastrointestinal disorders and nerve tissue injuries. Water for daily living at many sites depended on rainwater, which is scarce in dry seasons.

The system was installed and operated in houses, childcare centres, a commune office and commune culture houses in Hanoi and Ha Nam province – a model for clean water that can be adopted worldwide. It won a Technology Against Poverty Prize, a partnership between the Australian Government’s innovationXchange and Google.

Centre for Technology in Water and Wastewater

ROBOTIC TECHNOLOGIES EXTEND WATER PIPE LIFE

UTS and Sydney Water have a strong research partnership spanning over 10 years. The Centre for Autonomous Systems collaborated with Sydney Water to design sensing robotic technologies that extend the lifespan of water and sewer pipes in Australian cities and towns.

Many of the pipes approaching the end of their life are underground and completely replacing them is expensive. As a more cost-effective solution, the water industry and multiple partners are establishing standards, technologies and coatings for lining pipe interiors to extend their use.

The robots developed at UTS are designed to check the quality of liner application and conduct long term performance monitoring of pipes. The technology will help deliver an even more reliable water and wastewater service and reduce disruption due to repairs and replacements.

Centre for Autonomous Systems

LANDMARK INTERNET OF THINGS (IOT) INNOVATION LAB PROMOTES BETTER BUSINESS AND STUDY

UTS is the first academic institution to work with leading technology solutions provider Cisco and analytics software company SAS in a global Internet of Things (IoT) partnership to create a new research and teaching facility.

The UTS-SAS-Cisco IoT Innovation Lab will explore how huge volumes of data generated by massive numbers of IoT devices and sensors can be gathered, stored and analysed to help businesses improve decision-making, build organisational capacity and apply streaming data analytics at the edge to meet new IoT challenges.

The world-first partnership will foster collaboration between top UTS researchers in the area of IoT and harness the power of industry platforms to deliver solutions with impact. Early research will be in the areas of advanced manufacturing, agribusiness and healthcare. The facility’s optimised study environments will promote improved learning outcomes for students.

UTS-SAS-Cisco IoT Innovation Lab
Academic leaders

In the Faculty of Engineering and IT we teach from experience.

Associate Professor Sarath Kodagoda, School of Mechanical and Mechatronic Engineering

Sarath is the Program Coordinator for Mechatronic Engineering. He is a recipient of two teaching awards from Office for Learning and Teaching at UTS and five research awards from the International Water Association, Australian Water Association, NSW Water Association, UTS Vice-Chancellor’s Award for Research Excellence and B/HERT Award. His research interests include robotics, data analytics and machine learning.

uts.edu.au/staff/sarath.kodagoda

Professor Joanne Tipper, School of Biomedical Engineering

Joanne is the Head of School for Biomedical Engineering. Leading a team of world-renowned academics, her teaching areas include biomaterials, joint replacement technology and tissue engineering. With over 80 peer reviewed publications, her work has contributed to the understanding of implant failure and the development of longer lasting, more reliable devices.

uts.edu.au/staff/joanne.tipper

Dr Priyadarsi Nanda, School of Electrical and Data Engineering

Priyadarsi is a core research member of the Centre for Real-time Information Networks and the Research Centre for Innovation in IT Services and Applications. He has expanded his research activities to include Cyber Security, IoT Security, network Quality of Service, assisted health care using sensor networks and wireless sensor networks.

uts.edu.au/staff/priyadarsi.nanda
Professor Francesca Iacopi, School of Electrical and Data Engineering

Francesca is a materials scientist and nanoelectronics expert with nearly 20 years’ industry and academic experience. Among her accolades is a Global Innovation Award at the 2014 TechConnect World Summit in Washington DC, for discovering new graphene fabrication processes.

Her research interests involve designing nanodevices with ultra-low energy consumption and minimal loss that contribute to a sustainable future. Francesca’s teaching areas include IoT components and technologies, micro and nanofabrication, materials science and semiconductor technology.

Collaborating, among others, with partners from Intel, AMD, Samsung and Texas Instruments on electronics miniaturisation, Francesca enabled the use of nanoporous insulators in modern semiconductors.

uts.edu.au/staff/francesca.iacopi

Associate Professor Paul Kennedy, School of Software

Paul has received an Office for Learning and Teaching (OLT) Citation for Outstanding Contributions to Student Learning as well as a UTS Learning and Teaching Award for Strengthening the UTS Model of Learning for “a decade long contribution to data analytics teaching, learning and academic leadership.” His research focuses on the data analytics of biomedical data, primarily childhood cancer.

uts.edu.au/staff/paul.kennedy

Distinguished Professor Jie Lu

Jie is the Director of Decision Systems & e-Service Intelligence Lab in Centre for Quantum Computing and Information Systems. Her main research interests lie in the area of decision support systems, recommender systems, knowledge-based prediction and warning systems, fuzzy and uncertain information processing and e-Service intelligence. She has won seven Australian Research Council (ARC) Discovery Project grants and 10 other research grants. She received the first UTS Research Excellence Medal for Teaching and Research Integration in 2010.

uts.edu.au/staff/jie.lu
Your questions answered

WHAT’S THE DIFFERENCE BETWEEN RESEARCH AND COURSEWORK?
Postgraduate coursework involves studying a series of subjects to update your existing skills or knowledge in a particular area and requires the completion of core units and electives. You’ll be required to attend lectures, classes, seminars, or laboratory sessions and complete assignments and exams.

Research degrees require you to undertake a research project that contributes to the field in which you study. For more information on research degrees at UTS see pages 39-40 and 55-56.

HOW MUCH TIME SHOULD I DEDICATE TO STUDY?
In addition to contact class time, which can be calculated using the timetable planner, you will probably spend double that in individual or group study and project work. Our buildings are open 24/7, with award-winning spaces that allow flexibility.

AM I ELIGIBLE FOR RECOGNITION OF PRIOR LEARNING (RPL)?
All applicants are assessed individually based on relevant tertiary qualifications. If you have a recent tertiary qualification in engineering, IT or a related field, you may be eligible for up to 24 credit points.

Credit cannot be applied to combined degrees.

Don’t forget, applications for RPL should be submitted, where possible, at the time of applying to UTS and no later than the time of formal enrolment.

uts.edu.au/future-students/information-technology/essential-information/recognition-prior-learning

<table>
<thead>
<tr>
<th>Course</th>
<th>Eligibility requirement</th>
<th>Maximum credit granted</th>
</tr>
</thead>
<tbody>
<tr>
<td>C04271 ME; C04277 ME (Ext); C04309 MPE</td>
<td>UTS-recognised bachelor’s degree in engineering (minimum 4 years full-time)</td>
<td>24 credit points</td>
</tr>
<tr>
<td>C04275 MEM</td>
<td>UTS-recognised bachelor’s degree (minimum 3 years full-time)</td>
<td>24 credit points</td>
</tr>
<tr>
<td>C04272 MEEM</td>
<td>UTS-recognised bachelor’s degree in engineering or the natural and physical sciences (minimum 4 years full-time)</td>
<td>24 credit points</td>
</tr>
<tr>
<td>C04295 MIT</td>
<td>UTS-recognised bachelor’s degree in information technology or related fields</td>
<td>24 credit points</td>
</tr>
</tbody>
</table>
ARE SCHOLARSHIPS AVAILABLE?
Yes, there are scholarships available for incoming and current students. Learn more about the range of scholarships available on page 16.

uts.edu.au/future-students/scholarships

PREPARE FOR YOUR FUTURE CAREER
UTS will help you prepare for your career. From day one, you will have access to career support, including CV writing sessions, networking events, job interview preparation and much more.

uts.edu.au/careers

HOW MUCH WILL IT COST?
Postgraduate study is an investment in your future. Tuition fees are determined by the course in which you are enrolled and the credit point value of the subjects.

You can calculate an approximate course fee using the UTS Course Fee Calculator.

uts.edu.au/future-students/postgraduate/essential-info/what-will-it-cost

HOW CAN I APPLY?
As an international student, there are a few steps you must follow to apply.

Head to uts.edu.au/international to find the course information, fees and application details relevant to you.

PLEASE CONTACT
Calling from Australia: 1800 774 816
Calling from overseas: +61 3 9627 4816
Email: international@uts.edu.au
Student services

ORIENTATION
orientation.uts.edu.au

UTS provides a wide range of services to enhance the learning, health and wellbeing of all UTS students.

Take advantage of these services and societies from day one and get the most out of your time at UTS.

The UTS orientation program welcomes you to university life and helps you to get the most out of your student experience.

Discover the services available, find out course and subject information, tips on living in Sydney and meet new friends.

All students are expected to attend orientation activities and orientation is compulsory for international students.

PEER NETWORK
uts.edu.au/peer-network

Peer Networkers are student volunteers who are there to help new students when they first arrive on campus and throughout each session.

The Peer Network also encourages students to connect with others from Australia and around the world through the weekly Peer Network Café.

UTS INTERNATIONAL
uts.edu.au/international

The UTS International Student Centre provides international students with face-to-face contact to answer your enquiries regarding studies, administrative issues and living in Sydney.

AN OPEN AND RESPECTFUL ENVIRONMENT
uts.edu.au/current-students/support

UTS is a diverse community, welcoming many different cultures and faiths.

There is a chaplaincy service, which includes Baha’i, Buddhist, Christian, Jewish and Islamic chaplains, as well as clubs and societies offering spiritual support.

HIGHER EDUCATION LANGUAGE AND PRESENTATION SUPPORT (HELPS)
uts.edu.au/helps

UTS provides free English language and academic literacy skills assistance to students. Services include weekly study, reading and speaking skills workshops, writing clinics and daily drop in consultation. Practise speaking English with staff and student volunteers through the daily Conversations@UTS sessions.

PEER LEARNING – UPASS
uts.edu.au/upass

UPASS is a study group facilitated by senior students who have done well in a subject, tutoring more junior students. Within a session, you may review lecture notes, participate in problem solving activities or prepare for exams.

KICKSTART@UTS

The KickStart@UTS program introduces new international research degree students to the various sources of support available to assist you in preparing for research study.

CAREER SUCCESS
careers.uts.edu.au

Your career is in your hands: preparation for graduate success can start from your first months at university as you begin building your professional network. UTS offers resources and tools to guide you on the path to your professional career.
Scholarships

FEIT Scholarships for Engineering and IT

<table>
<thead>
<tr>
<th>Scholarship name</th>
<th>Benefit</th>
<th>Award criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering and IT Postgraduate Academic Excellence Scholarship</td>
<td>UTS will cover 25% of each Recipient’s UTS tuition fees for the course enrolled in for the duration of the Scholarship.</td>
<td>Academic merit in the most recently completed tertiary qualification recognised by UTS for entry into the selected UTS Faculty of Engineering and Information Technology Masters by coursework program.</td>
</tr>
<tr>
<td>Master of Professional Engineering Scholarship</td>
<td>UTS will cover 25% of each Recipient’s UTS tuition fees for the course enrolled in for the duration of the Scholarship.</td>
<td>Acceptance into the UTS Master of Professional Engineering.</td>
</tr>
</tbody>
</table>

uts.edu.au/future-students/scholarships
Discover entrepreneurship

Interested in entrepreneurship but not sure how to get involved?

UTS equips you with the tools to become entrepreneurs, whether it’s with our free entrepreneurship courses, bootcamps, hackathons, internship opportunities or startup community, there’s an entrepreneurship offering available for you!

ENTREPRENEURSHIP BOOTCAMPS
Gain insight into the world of entrepreneurship with our two-day intensive Ideate bootcamps! You’ll be introduced to entrepreneurial methods and tools that you can use to solve problems, test ideas, create impact and launch businesses.

entrepreneurship.uts.edu.au

STARTUP INTERNSHIP OPPORTUNITIES
Build an internship experience that matters to you and apply to intern with a startup! It’s an opportunity for startup communities to recruit our best and brightest, inject fresh ideas and perspectives into their startups and inspire the next generation of entrepreneurs. It’s a win/win.

startupinternships.uts.edu.au

BEGIN YOUR STARTUP JOURNEY
Got an idea? Looking for some inspiration or support?

Join the UTS Startups community, a university-wide program to inspire and support student startups at UTS. It’s not about prescribing a path or formula, but instead creating the environment where UTS startups are exposed to what they need to progress, both inside and outside the university.

startups.uts.edu.au
University life

To ensure you feel confident and supported, we offer help with housing, money, making friends, health, cultural issues and career development.

Here are just a sample of clubs and programs at UTS. You can check out the full list of programs and events to help you broaden your social network at uts.edu.au/current-students/university-life

PROGSOC
Progsoc is a society established by students for students who have an interest in programming. Its main aim is to encourage programming within UTS and to enable its members to develop non-commercial software and collaborate with organisations who share an interest in programming.

progsoc.uts.edu.au

UTS TECHSOC
UTS TechSoc is the student society for Information Technology at UTS and is now one of the leading social societies at the university, attracting members from a variety of courses and disciplines. UTS TechSoc aims to provide all members with a variety of social and career-focused events.

utstechsoc.com

CYBER SECURITY SOCIETY
Boost your programming knowledge with exclusive workshops and study help sessions and learn how to defend against attacks through the techniques that attackers use. The Cyber Security Society aims to encourage personal and professional development and offers guidance and support to anyone with the interest to learn!

HELPS
Higher Education Language and Presentation Support (HELPS) provides non-credited English language and academic literacy support to UTS students. Enhance your learning experience with individual and group support in a friendly and respectful environment.

uts.ac/HELPsProgram

UTS ROBOTICS SOCIETY
Discover everything robotics, from servos to software, and connect with likeminded students. Gain access to equipment, participate in robot building competitions, and receive support from industry.

utsroboticssociety.org

WOMEN IN ENGINEERING AND IT
The Women in Engineering and IT program fosters a network of passionate females and males who are actively involved in the development of our next generation of young engineering and IT professionals. Come along to a community event or apply to take part in the Lucy Mentoring program.

wieit.uts.edu.au

ENGINEERS WITHOUT BORDERS
Build your leadership and sustainability skills and apply theory to humanitarian engineering projects. Opportunities include doing an internship overseas or participating in an overseas volunteering experience through UTS BUILD.

ewb.org.au/explore/chapters/nsw/uts

UTS ENGINEERING SOCIETY
Hang out with your cohort and get involved in social events, industry events and networking opportunities with one of the largest clubs on campus.

utsengsoc.com.au

UTS MOTORSPORTS ELECTRIC
Showcase your ingenuity by building and racing an open-wheel race car. The motorsports club has represented UTS in the Formula SAE Australasia competition for 10 years, and raced an electric car in the event for the first time in 2015.

utsmotorsports.com

18
POSTGRADUATE ENGINEERING

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Professional engineers seeking to enhance knowledge and skills gained in their first degree</td>
<td>Professional engineers seeking to enhance technical knowledge in one or more fields of engineering</td>
<td>Professionals seeking managerial growth to add to technical skills</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course duration*</th>
<th>1.5 – 2 years full-time*</th>
<th>1.5 – 2 years full-time*</th>
<th>1– 1.5 years full-time**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>12</td>
<td>16</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course structure</th>
<th>Master of Engineering</th>
<th>Master of Engineering (Extension)</th>
<th>Master of Engineering Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 x 6 credit point professional engineering subjects</td>
<td>3 x 6 credit point professional engineering subjects</td>
<td>3 x 6 credit point professional engineering subjects</td>
</tr>
<tr>
<td></td>
<td>5 x 6 credit point Major choice subjects</td>
<td>5 x 6 credit point Major choice subjects</td>
<td>5 x 6 credit point Major choice subjects</td>
</tr>
<tr>
<td></td>
<td>2 x 6 credit point graduate project subjects</td>
<td>2 x 6 credit point graduate project subjects</td>
<td>2 x 6 credit point graduate project subjects</td>
</tr>
<tr>
<td></td>
<td>2 x 6 credit point electives</td>
<td>2 x 6 credit point electives</td>
<td>2 x 6 credit point electives</td>
</tr>
<tr>
<td></td>
<td>3 x 6 credit point professional engineering subjects</td>
<td>3 x 6 credit point professional engineering subjects</td>
<td>3 x 6 credit point professional engineering subjects</td>
</tr>
<tr>
<td></td>
<td>5 x 6 credit point Major choice subjects</td>
<td>5 x 6 credit point Major choice subjects</td>
<td>5 x 6 credit point Major choice subjects</td>
</tr>
<tr>
<td></td>
<td>2 x 6 credit point graduate project subjects</td>
<td>2 x 6 credit point graduate project subjects</td>
<td>2 x 6 credit point graduate project subjects</td>
</tr>
<tr>
<td></td>
<td>2 x 6 credit point electives</td>
<td>2 x 6 credit point electives</td>
<td>2 x 6 credit point electives</td>
</tr>
</tbody>
</table>

| Entry requirements | Bachelor’s degree in Engineering or equivalent / higher qualification, with no more than 25% of subjects failed. Applicants proposed major must be in same field of practice undertaken in undergraduate level | Bachelor’s degree in Engineering or equivalent / higher qualification, with no more than 25% of subjects failed. Applicants proposed major must be in same field of practice undertaken in undergraduate level | Bachelor’s degree or equivalent / higher qualification, with no more than 25% of subjects failed |

* You may be eligible for maximum 24 credit points of ‘recognised prior learning’ (RPL) based on a UTS recognised bachelor’s degree in engineering (minimum 4 years full-time).

** You may be eligible for maximum 24 credit points of ‘recognised prior learning’ (RPL) based on a UTS recognised bachelor’s degree (minimum 3 years full-time).
The UTS suite of postgraduate engineering programs offer you the opportunity to enhance your technical and management skills, to challenge yourself by investigating real issues facing the world today and to connect and engage with experts in the field. But which degree will meet your needs?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent graduates seeking accreditation in Australia.</td>
<td>Professionals seeking to commence or enhance their leadership capabilities</td>
<td>Professionals seeking to commence or enhance their leadership capabilities, plus refine their technical knowledge</td>
<td>Engineers and technical specialists seeking to lead in the field of environmental engineering and management</td>
</tr>
<tr>
<td>1.5 – 2 years full-time*</td>
<td>2 years full-time</td>
<td>2 years full-time</td>
<td>1 – 1.5 years full-time**</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>4 x 6 credit point professional engineering subjects</td>
<td>4 x 6 credit points professional engineering subjects</td>
<td>7 x 6 credit point professional engineering subjects</td>
<td>3 x 6 credit point professional engineering subjects</td>
</tr>
<tr>
<td>5 x 6 credit point Major choice subjects</td>
<td>4 x 6 credit point Core Subjects (Engineering Management)</td>
<td>5 x 6 credit point major choice subjects</td>
<td>5 x 6 credit point Core subjects (Environmental Engineering Management)</td>
</tr>
<tr>
<td>3 x 6 credit point graduate project subjects</td>
<td>8 x 6 credit point Core Subjects (Business Administration)</td>
<td>2 x 6 credit point graduate project subjects</td>
<td>2 x 6 credit point electives</td>
</tr>
<tr>
<td>2 x 3 practice stream subjects</td>
<td>2 x 6 credit point electives</td>
<td>2 x 6 credit point electives</td>
<td>2 x 6 credit point electives</td>
</tr>
</tbody>
</table>

Bachelor's degree in Engineering, Engineering science or technology, or equivalent / higher qualification, with no more than 25% of subjects failed. Applicant's proposed major must be in same field of practice undertaken in undergraduate level

Bachelor's degree in Engineering with grade point average (GPA) of 2.75 on 4 point scale, with no less than 10% fails; or GMAT with overall minimum score of 550 with verbal 25, quantitative 35 and AWA 4.0, or minimum 4 years full-time engineering related work experience

Bachelor's degree in Engineering or equivalent / higher qualification, with no more than 25% of subjects failed. Applicant proposed major must be in same field of practice undertaken in undergraduate level

Bachelor's degree in Engineering or the natural and physical sciences, or equivalent / higher qualification, with no more than 25% of subjects failed
Master of Engineering Management

Course code: C04275
CRICOS code: 081088E
Duration: 1-1.5 years full-time
Study load: 72 credit points (12 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 22

Admission requirements:
A UTS recognised bachelor’s degree, or an equivalent or higher qualification, with no more than 25% of subjects failed.

NATALIE JOSEFSEN – NORWAY
Master of Engineering Management

With a five-year integrated master’s degree in Chemical Engineering complete, Natalie was keen to ensure her management skills were in line with her strong technical knowledge.

“I wanted to see the bigger view of engineering so I decided to pursue a career in management. I’m currently taking a subject in risk management which is really interesting. We’re re-creating situations or scenarios that take place in industry and suggesting re-engineered solutions to increase safety and prevent future risks.”

Through the UTS learning.futures model, Natalie is putting theory into practice through weekly team projects and working with her industry mentor through the Lucy Mentoring Program.

“I’m learning key leadership skills in class and applying them in group projects and in industry. The most important thing I’m learning is the importance of good communication. This seems so obvious but it’s critical to making it a success. When you’re working within a team, you must first understand what people are good at. You must also make people comfortable and include everyone in the process to ensure the best output. This requires strong communication, which is needed in every industry. It can be a challenge of course, but you learn a lot about yourself and good business practice.”

Read more student profiles
uts.edu.au/eng-student-profiles
Graduate Certificate in Engineering Management

Course code: C11239
CRICOS code: 081085G
Duration: 0.5 year full-time
Study load: 24 credit points (4 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)

Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 22
Admission requirements: A UTS recognised bachelor’s degree, or an equivalent or higher qualification, with no more than 25% of subjects failed.

COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Graduate Certificate in Engineering Management</th>
<th>Master of Engineering Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineering Stream</td>
<td>Choose 1 of the following:</td>
<td>Choose 2 of the following:</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Managing Projects</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Major Stream</td>
<td>Choose 2 of the following:</td>
<td>Choose 6 of the following:</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Applied Financial Management</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Economic Evaluation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Quality Planning and Analysis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Value Chain Engineering Systems</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Electives†</td>
<td>Choose 1 elective</td>
<td>Choose 2 electives</td>
</tr>
<tr>
<td>Project Stream</td>
<td>N/A</td>
<td>Complete 2 subjects</td>
</tr>
<tr>
<td>Engineering Project Preparation</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Engineering Graduate Project</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Please note: Elective subjects are taken from postgraduate-level Faculty subjects and may need prior approval. You may also need pre-requisite knowledge for some electives.
Join the global environmental movement.

Environmental engineers are key to a sustainable future with the expertise needed to safeguard our planet.

The Environmental Engineering Management program develops leadership skills in environmental management, addressing issues that are high on political and professional agendas.

This course is relevant to practising professionals in engineering and the natural and physical sciences.

Master of Environmental Engineering Management

- **Course code:** C04272
- **CRICOS code:** 081089D
- **Duration:** 1-1.5 years full-time
- **Study load:** 72 credit points (12 subjects)
- **Study mode:** Standard mode (weekly attendance with some evening classes)
- **Available intakes:** Autumn (March) / Spring (July)
- **How to apply:** See page 57
- **English language requirements:** See page 57
- **Course structure:** See page 25
- **Admission requirements:** A UTS recognised bachelor’s degree in engineering or the natural and physical sciences, or an equivalent or higher qualification, with no more than 25% of subjects failed.
Graduate Certificate in Environmental Engineering Management

Course code: C11237
CRICOS code: 081086G
Duration: 0.5 year full-time
Study load: 24 credit points (4 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 25

Admission requirements:
A UTS recognised bachelor’s degree in engineering or the natural and physical sciences, or an equivalent or higher qualification, with no more than 25% of subjects failed.

RONNY SCHNAPP – AUSTRALIA
Graduate Certificate in Engineering Management

For Ronny Schnapp, the challenge of undertaking a postgraduate degree while working full-time pales in comparison to his experience as an undergraduate student.

“I actually struggled through my bachelor’s degree, probably because I was very young and not really psychologically prepared for the experience,” he says.

“But having done a lot of learning in other environments since I graduated, returning to uni as a postgraduate student has been more enjoyable. I’ve realised [that] as a mature-age student, I’ve got more grasp on how to learn.”

Ronny, a power systems analyst, studies two subjects a session, and completes his assignments after work and on weekends. He is now planning to extend his graduate certificate into a Master of Engineering.

His goal is to start moving through the ranks of the engineering profession to work in management.

“What we need more of in Australia are engineers with sound management qualifications and abilities,” he says.

“I’m confident that my studies have given me the abilities and knowledge to be a good leader.”

Read more student profiles
uts.edu.au/eng-student-profiles
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Master of Environmental Engineering Management</th>
<th>Graduate Certificate in Environmental Engineering Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineering Stream</td>
<td>Choose 2 of the following:</td>
<td>Choose 1 of the following:</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Managing Projects</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Choose 1 of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Financial Management</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Economic Evaluation</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Quality Planning and Analysis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Technology and Innovation Management</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Value Chain Engineering Systems</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Ecology and Sustainability</td>
<td></td>
<td>Compulsory Subject</td>
</tr>
<tr>
<td>Core Subjects (Environmental Engineering Management)</td>
<td>Choose 5 of the following:</td>
<td>Choose 1 of the following:</td>
</tr>
<tr>
<td>Advanced Water and Wastewater Treatment</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Air and Noise Pollution</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Contaminated Site and Waste Remediation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Decentralised Environmental Systems</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ecology and Sustainability</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Energy Demand Analysis and Forecasting</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Environmental Assessment and Planning</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Environmental Management of Land</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Environmental Policy for Energy Systems</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Environmental Risk Assessment</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Geographic Information Systems</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Green Technologies: Water-Waste-Energy Nexus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Policy and Planning of Energy Conservation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Site Investigations and Monitoring for Infrastructure Projects</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Sustainable Energy Resources</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Waste and Pollution Management</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Electives</td>
<td>Choose 2 electives</td>
<td>Choose 1 elective</td>
</tr>
<tr>
<td>Project stream</td>
<td>Complete the following subjects:</td>
<td></td>
</tr>
<tr>
<td>Engineering Project Preparation</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Engineering Graduate Project</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Please note: Elective subjects are taken from postgraduate-level Faculty subjects and may need prior approval. You may also need pre-requisite knowledge for some electives.
Stay ahead of the game.

We live in a time of great change, driven by new knowledge and rapidly evolving technology.

The UTS Engineering Program is designed for professional engineers who want to explore complex engineering issues.

Access to real-world industry and research projects will develop your skills in problem solving, application of theory, design, creativity and stakeholder communication – all crucial skills to a successful career in industry.

This course has been designed to give you the flexibility to choose from 15 majors, an engineering graduate project* and a choice of electives.

*The engineering graduate project is only available at Master’s level.

MAJORS
- Biomedical Engineering
- Civil Engineering
- Computer Control Engineering
- Cyber Security Engineering
- Environmental Engineering
- Geotechnical Engineering
- Manufacturing Engineering and Management
- Operations
- Robotics
- Software Systems Engineering
- Structural Engineering
- Telecommunications Engineering
- Water Engineering
- No Specified Major

Master of Engineering

Course code: C04271
CRICOS code: 081087F
Duration: 1-1.5 years full-time
Study load: 72 credit points (12 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 28

Admission requirements:
A UTS recognised bachelor’s degree in engineering, or an equivalent or higher qualification, with no more than 25% of subjects failed. The applicant’s proposed major must be in the same field of practice undertaken at the undergraduate level.

Major in Robotics

Australia is on track to achieve a $2.2 trillion boost to national income by 2030 from increases to productivity through automation.

Delivered through practical studios, this multidisciplinary major will give you an advanced knowledge of robotic engineering. This includes the application of design thinking, a deep understanding of the traditional principles of robot motion systems, industrial application of robotics and advanced subjects that consider collision, avoidance and optimisation for robot trajectory planning and control.

Underpinned by maths, hardware and software, control and planning, sensing and perception, this major is motivated by real-world application to respond to global demand.

Major in Cyber Security engineering

The major in Cyber Security has been designed to cover a complete cyber security solution. It will give you a critical understanding of information governance and assurance, combined with technology risk management practices.

The major is broken into three main areas; policy (20%), application (30%) and technology (50%).
Go a step further.
In addition to the course structure of the Master of Engineering, this extension course includes a sub-major worth 24 credit points.
Note: the sub-major must be in a different field of engineering to the major.
You can either start in this course or progress into it after completing at least one session of the Master of Engineering.

Master of Engineering (Extension)

Course code: C04277
CRICOS code: 081094G
Duration: 1.5-2 years full-time
Study load: 96 credit points (16 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 28
Admission requirements:
A UTS recognised bachelor’s degree in engineering, or an equivalent or higher qualification, with no more than 25% of subjects failed. The applicant’s proposed major must be in the same field of practice undertaken at the undergraduate level.

SUB MAJORS
You will choose 24 credit points (4 subjects in most cases) as part of your sub-major (advanced choice).
- Biomedical Engineering
- Civil Engineering
- Computer Control Engineering
- Cyber Security Engineering
- Environmental Engineering
- Geotechnical Engineering
- Manufacturing Engineering and Management
- Operations
- Robotics
- Software Systems Engineering
- Structural Engineering
- Telecommunications Engineering
- Water Engineering
- No specified sub major

Graduate Certificate in Engineering

Course code: C11236
CRICOS code: 081083K
Duration: 0.5 year full-time
Study load: 24 credit points (4 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Admission requirements:
A UTS recognised bachelor’s degree in engineering, or an equivalent or higher qualification, with no more than 25% of subjects failed. The applicant’s proposed stream must be in the same field of practice undertaken at the undergraduate level.
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Master of Engineering</th>
<th>Master of Engineering (Extension)</th>
<th>Graduate Certificate in Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineering Stream</td>
<td>Choose 2 of the following:</td>
<td>Choose 2 of the following:</td>
<td>Choose 1 of the following:</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Managing Projects</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Choose 1 of the following:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Financial Management</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Economic Evaluation</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Quality Planning and Analysis</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Technology and Innovation Management</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Value Chain Engineering Systems</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Major Choice (see pages 36-38 for the list of majors available)</td>
<td>Choose 5 subjects from your chosen major</td>
<td>Choose 5 subjects from your chosen major</td>
<td>Choose 2 subjects from your chosen stream</td>
</tr>
<tr>
<td>Sub-Major (Advanced Choice) (see pages 36–38 for the list of sub-majors available)</td>
<td>N/A</td>
<td>Choose 4 subjects from your chosen sub-major</td>
<td>N/A</td>
</tr>
<tr>
<td>Electives*</td>
<td>Choose 2 electives</td>
<td>Choose 2 electives</td>
<td>Choose 1 elective</td>
</tr>
<tr>
<td>Project stream</td>
<td>Complete 2 subjects</td>
<td>Complete 2 subjects</td>
<td>N/A</td>
</tr>
<tr>
<td>Engineering Project Preparation</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Engineering Graduate Project</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Please note: Elective subjects are taken from postgraduate-level faculty subjects and may need prior approval. You may also need pre-requisite knowledge for some electives.

ROJAN SHRESTHA – NEPAL

Graduate Certificate in Engineering

“While I was studying at UTS, I took some subjects that were based on UTS’s collaboration with Nokia.” Rojan says.

“UTS has developed a work-based learning approach that I liked very much. When I started working, I didn’t need much technical training. I just went there, understood the company and got started straight away.”

“When employers look for their prospective employees, they look for people who they need to use less resources for the training. I believe the time I spent with UTS not only helped me with my technical skills but also developed a can-do attitude which will help me for my future career.”

Master of Engineering (Advanced)

Course code: C04278
CRICOS code: 081093G
Duration: 2 years full-time
Study load: 96 credit points (16 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: Internal Course Transfer
English language requirements: See page 57

Admission requirements:
Applicants are required to have: (i) completed 48 credit points in the Master of Engineering (C04271) or Master of Engineering (Extension) (C04277); and (ii) received approval of a member of academic staff to act as their research project supervisor.

Explore an in-depth research study in a major field of engineering.

This program involves undertaking substantial research study in a major field of engineering. This course will put you at an advantage should you apply for a higher degree by research program such as a PhD.

You will complete two professional engineering subjects, six subjects as part of your major and either a research project (over a period of 1 year) or a research project with a combination of electives.

Note: you must find a research supervisor before transferring into this course.
Master of Professional Engineering

Course code: C04309
CRICOS code: 088084G
Duration: 2 years full-time
Study load: 96 credit points
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 31
Admission requirements: A UTS recognised bachelor’s degree in engineering, engineering science or technology, or an equivalent or higher qualification, with no more than 25% of subjects failed. The applicant’s proposed major must be in the same field of practice undertaken at the undergraduate level.

Become a certified Engineer in Australia

This course enables students to deepen knowledge and expertise in their field, and be ready-to-practice in engineering. Importantly this course is accredited by Engineers Australia.

This course allows students to choose a program of study that not only helps to deepen the body of knowledge acquired in their first degree, but also gives them an opportunity to be prepared to embark on a 12-week professional experience, or equivalent (as required by Engineers Australia).

It also provides a unique opportunity to deepen their knowledge and gain practical skills by undertaking an independent engineering graduate project in a particular major.

MAJORS
- Biomedical
- Civil
- Cyber Security
- Robotics
- Mechanical Engineering

Graduate Certificate in Engineering Studies

Course code: C11238
CRICOS code: 081084J
Duration: 0.5 year full-time
Study load: 24 credit points (4 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 31
Admission requirements: A UTS recognised bachelor’s degree in a non-cognate engineering field, or an equivalent or higher qualification.

MAJORS
- Biomedical
- Civil
- Cyber Security
- Robotics
- Mechanical Engineering

Engineering and Information Technology
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Master of Professional Engineering</th>
<th>Graduate Certificate in Engineering Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice (Professional Engineering) (12cp)</td>
<td>Choose 2 of the following:</td>
<td>Choose 1 of the following:</td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Managing Projects</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Choice (Professional Engineering) (6cp)</td>
<td>Choose 1 of the following:</td>
<td></td>
</tr>
<tr>
<td>Applied Financial Management</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Economic Evaluation</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Quality Planning and Analysis</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Technology and Innovation Management</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Value Chain Engineering Systems</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Design and Innovation Fundamentals</td>
<td>Compulsory subject</td>
<td>N/A</td>
</tr>
<tr>
<td>Engineering Review 1</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Engineering Review 2</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Electives (12cp)</td>
<td>Choose 2 electives</td>
<td>Choose 1 elective</td>
</tr>
<tr>
<td>Major (54cp)</td>
<td>Complete 5 subjects from your chosen major</td>
<td>N/A</td>
</tr>
<tr>
<td>Project (18cp)</td>
<td>Complete the following subjects:</td>
<td>N/A</td>
</tr>
<tr>
<td>Engineering Project Preparation</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Engineering Graduate Project Part 1</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Engineering Graduate Project Part 2</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Engineering Practice Stream (6cp)</td>
<td>Complete 1 of the following:</td>
<td>N/A</td>
</tr>
<tr>
<td>Engineering Practice Preparation 1</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Engineering Practice in an Australian Context</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Engineering Work Experience</td>
<td>Compulsory subject</td>
<td></td>
</tr>
<tr>
<td>Engineering Workplace Reflection</td>
<td>Compulsory subject</td>
<td></td>
</tr>
</tbody>
</table>
Doctorial degrees

Do your career goals span multiple disciplines?
This combined degree links two of UTS’s world-leading programs to bridge the gap between engineering and business for emerging leaders.

Strengthen your skills in project management, decision-making and risk management as well as finance, marketing, accounting and strategic management.

This unique degree is for students with a Bachelor in Engineering who want to take the next step in their management career.

YAZMIN JIMENEZ LAGOS – PERU
Master of Engineering Master of Engineering Management

Engineer Yazmin decided soon after her bachelor’s degree that she wanted to pursue a postgraduate study to broaden her career prospects.

“I realised after working three years with a concrete firm that I needed a change in my career. I wanted to develop my technical skills in the construction industry and eventually move to a management role. To be a successful manager, it’s important to have strong technical skills to be able to lead a team. I was drawn to this program as it develops capabilities in both areas.”

When the Lucy Mentoring Program opened up to Master’s students in 2018, Yazmin took the opportunity to work with a mentor from Lendlease, one of Australia’s largest construction firms, where she experienced life as a professional in the industry.

“My mentor was a Construction Manager so I had the opportunity to assist with construction projects and go on site – that is difficult experience to get as a student so I was really happy to have that opportunity. I met people from across the business who explained their area of work and what they’re responsible for. This opened my eyes to specialist areas within construction that I hadn’t considered previously.”

Learn more about the Women in Engineering and IT community and the opportunities available for postgraduate students. wieit.uts.edu.au

Master of Engineering
Master of Engineering Management

Course code: C04273
CRICOS code: 081095F
Duration: 2 years full-time
Study load: 96 credit points (16 subjects)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 33
Admission requirements:
A UTS recognised bachelor’s degree in engineering, or an equivalent or higher qualification, with no more than 25% of subjects failed. The applicant’s proposed major must be in the same field of practice undertaken at the undergraduate level.
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Master of Engineering</th>
<th>Master of Engineering Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineering Stream</td>
<td></td>
<td>42cp</td>
</tr>
<tr>
<td>Choose 5 of the below subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Financial Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership and Responsibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Planning and Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology and Innovation Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value Chain Engineering Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 2 subjects from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME major choice</td>
<td></td>
<td>30cp</td>
</tr>
<tr>
<td>Complete 5 subjects in your chosen major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Stream</td>
<td></td>
<td>12cp</td>
</tr>
<tr>
<td>Complete the following 2 subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Project Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Graduate Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>12cp</td>
</tr>
<tr>
<td>Choose 2 electives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note: Elective subjects are taken from postgraduate-level faculty subjects and may need prior approval. You may also need pre-requisite knowledge for some electives.
Redefine your technical understanding whilst developing advanced leadership skills with a combined engineering program.

Choose from a variety of management and leadership subjects including advanced project management, judgment and decision-making, risk management and people management.

By following the course structure, you can complete the two degrees concurrently in only two years, rather than three years individually.

Master of Engineering Management
Master of Business Administration

Course code: C04274
CRICOS code: 081096E
Duration: 2 years full-time
Study load: 96 credit points
Study mode: Standard mode (weekly attendance with some evening classes)

Available intakes: Autumn (March) / Spring (July)

How to apply: See page 57

English language requirements: See page 57

Course structure: See page 35

Admission requirements:
A UTS recognised bachelor’s degree in engineering with a minimum grade point average (GPA) of 2.75 on a four-point scale, with less than 10% fails; or GMAT with overall minimum score of 550 with verbal 25, quantitative 35 and AWA 4.0; or demonstrated 4 years full-time (or equivalent) engineering-related work experience.

JUAN FELIPE MENDEZ DIAZ – COLOMBIA
Master of Engineering Management Master of Business Administration

When technology consultant Juan Felipe Mendez Diaz found himself getting involved in the business side of projects, negotiations started to become complicated.

“I’m an engineer, so I don’t have a business background,” he says. Originally from Colombia, Juan Felipe knew exactly what to focus on when undertaking a postgraduate degree. “I decided to go more for the management and MBA side.”

On choosing UTS, Juan Felipe says: “It’s the only uni that offers a mix between business and engineering. That was perfect for me in terms of what I wanted to do, and how I wanted to build my career.”

He found UTS’s modern learning environment engaging. “It’s group-focused, a more up-to-date way of teaching. The spaces are different—you can tell just by looking at the buildings. The classrooms are designed to how the subjects should be taught.”

The diversity of students was another appeal. “I’m always trying to learn from different cultures and interact with different people.”

Juan Felipe says the degree is broadening his business expertise in preparation for the future. “It helps me bridge the gap that I had.”

Read more student profiles uts.edu.au/eng-student-profiles
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Master of Engineering Management, Master of Business Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineering Stream</td>
<td></td>
</tr>
<tr>
<td>Complete the following subjects:</td>
<td>24cp</td>
</tr>
<tr>
<td>Managing Projects</td>
<td></td>
</tr>
<tr>
<td>Judgment and Decision Making</td>
<td></td>
</tr>
<tr>
<td>Risk Management in Engineering</td>
<td></td>
</tr>
<tr>
<td>Systems Engineering for Managers</td>
<td></td>
</tr>
<tr>
<td>Core Subjects (MEM)</td>
<td>24cp</td>
</tr>
<tr>
<td>Choose 2 subjects from the following:</td>
<td></td>
</tr>
<tr>
<td>Advanced Project Management</td>
<td></td>
</tr>
<tr>
<td>Integrated Logistic Support</td>
<td></td>
</tr>
<tr>
<td>Managing Information Technology in Engineering</td>
<td></td>
</tr>
<tr>
<td>Quality and Operations Management Systems</td>
<td></td>
</tr>
<tr>
<td>Quality Planning and Analysis</td>
<td></td>
</tr>
<tr>
<td>Technology and Innovation Management</td>
<td></td>
</tr>
<tr>
<td>Value Chain Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>Complete the following subjects as part of the Project stream:</td>
<td></td>
</tr>
<tr>
<td>Engineering Project Preparation</td>
<td></td>
</tr>
<tr>
<td>Engineering Graduate Project</td>
<td></td>
</tr>
<tr>
<td>Core Subjects (MBA)</td>
<td>48cp</td>
</tr>
<tr>
<td>Complete the following subjects as part of the MBA:</td>
<td></td>
</tr>
<tr>
<td>Accounting for Managerial Decisions</td>
<td></td>
</tr>
<tr>
<td>Economics for Management</td>
<td></td>
</tr>
<tr>
<td>Financial Management</td>
<td></td>
</tr>
<tr>
<td>Managing, Leading and Stewardship</td>
<td></td>
</tr>
<tr>
<td>Marketing Management</td>
<td></td>
</tr>
<tr>
<td>Organisational Dialogue: Theory and Practice</td>
<td></td>
</tr>
<tr>
<td>People, Work and Employment</td>
<td></td>
</tr>
<tr>
<td>Strategic Management</td>
<td></td>
</tr>
<tr>
<td>Total Credit Points</td>
<td>96cp</td>
</tr>
</tbody>
</table>
Engineering majors

The following is an overview of subjects available in each major. For detailed course structures and requirements visit the UTS engineering handbook at handbook.uts.edu.au/eng.

Within each major, a project component is incorporated comprising two subjects (12 credit points):
- Engineering Project Preparation
- Engineering Graduate Project

Biomedical Engineering

Core - 2 compulsory subjects
- Biomedical Instrumentation
- Biomedical Signal Processing

Choice - choose 3 subjects from the following:
- Advanced Robotics
- Bionanotechnology
- Bioinformatics
- Biomedical Polymer
- Human Anatomy and Physiology
- Human Pathophysiology
- Medical Devices and Diagnostics
- Medical Imaging
- Neural Networks and Fuzzy Logic
- Physiological Bases of Human Movement
- Wireless Access Networking Technologies

Civil Engineering

Core - choose 2 subjects from the following:
- Road Engineering Practice
- Catchment Modelling
- Concrete Technology and Practice
- Geographic Information Systems

Choice - choose 3 subjects from the following:
- Advanced Soil Mechanics and Foundation Design
- Applied Geotechnics
- Contaminated Site and Waste Remediation
- Design for Durability
- Flood Estimation
- Pavement Analysis and Design
- Site Investigations and Monitoring for Infrastructure Projects
- Traffic and Transportation
- Urban Stormwater Design

Computer Control Engineering

Core - 2 compulsory subjects
- Advanced Robotics
- Neural Networks and Fuzzy Logic

Choice - choose 3 subjects from the following:
- Biomedical Instrumentation
- Fundamentals of Software Development
- Systems Quality Management
- Wireless Access Network Technologies
- Advanced Sensor Networks
Cyber Security Engineering

Core - 2 compulsory subjects
- Cyber Security Essentials
- UNIX Systems Programming

Choice - choose 3 subjects from the following:
- Cloud Security
- Cloud Computing and Software as a Service
- Communication Protocols
- Cyber Security for Mobile Platforms
- Digital Forensics
- Infrastructure for Cloud Computing
- IoT Security
- Network Security Appliances

Operations

Core - 2 compulsory subjects
- Operations Engineering
- Quality and Operations Management Systems

Choice - choose 3 subjects from the following:
- Integrated Logistic Support
- Quality Planning and Analysis
- Reliability Availability and Maintainability
- Technology and Innovation Management
- Value Chain Engineering Systems

Software Systems Engineering

Core - 2 subjects
- UNIX Systems Programming (compulsory)
- .NET Enterprise Development (choose one)
- Advanced Internet Programming (choose one)

Choice - choose 3 subjects from the following:
- Cloud Computing and Software as a Service
- Enterprise Software Architecture and Middleware
- Enterprise Software Testing
- iOS Application Development
- Advanced Sensor Networks

Structural Engineering

Core - choose 2 subjects from the following:
- Bridge Design
- Finite Element Analysis
- Steel and Composite Design
- Prestressed Concrete Design

Choice - choose 3 subjects from the following:
- Advanced Soil Mechanics and Foundation Design
- Application of Timber in Engineering Structures
- Concrete Technology and Practice
- Design for Durability
- Facade Engineering
- Site Investigations and Monitoring for Infrastructure Projects
- Structural Dynamics and Earthquake Engineering

Telecommunications Engineering

Core - 2 compulsory subjects
- Communication Protocols
- Telecommunications Industry Management

Choice - choose 3 subjects from the following:
- 4G/5G Mobile Technologies
- Advanced Sensor Networks
- Android Application Development
- Enterprise Software Architecture and Middleware
- Fundamentals of Software Development
- iOS Application Development
- MPLS and Services Architecture
- Network Management
- Software Defined Networks
- Transmission Systems
- Wireless Access Network Technologies

Energy Planning and Policy

Core - 5 compulsory subjects
- Electricity Sector Planning and Restructuring
- Energy Modelling
- Environmental Policy for Energy Systems
- Evaluation of Infrastructure Investments
- Regulatory Economics
Environmental Engineering

Core - 2 compulsory subjects
- Advanced Water and Wastewater Treatment
- Green Technologies: Water-Waste-Energy Nexus

Choice - choose 3 subjects from the following:
- Air and Noise Pollution
- Contaminated Site and Waste Remediation
- Decentralised Environmental Systems
- Environmental Assessment and Planning
- Geographic Information Systems
- Industrial Water Pollution Control Engineering
- Site Investigations and Monitoring for Infrastructure Projects
- Sustainable Energy Resources
- Waste and Pollution Management

Geotechnical Engineering

Core - choose 2 subjects from the following:
- Advanced Soil Mechanics and Foundation Design
- Applied Geotechnics
- Pavement Analysis and Design
- Problematic Soils and Ground Improvement Techniques

Choice - choose 3 subjects from the following:
- Contaminated Site and Waste Remediation
- Geographic Information Systems
- Road Engineering Practice
- Traffic and Transportation

Manufacturing Engineering and Management

Core - 2 compulsory subjects
- Computer-aided Mechanical Design
- Design Optimisation for Manufacturing

Choice - choose 3 subjects from the following:
- Advanced Flow Modelling
- Air and Noise Pollution
- Airconditioning
- Control of Mechatronic Systems
- Internal Combustion Engines
- Managing Projects
- Materials Handling
- Sensors and Signal Processing
- Turbomachines

Water Engineering

Core - 2 compulsory subjects
- Catchment Modelling
- Urban Stormwater Design

Choice - choose 3 subjects from the following:
- Contaminated Site and Waste Remediation
- Decentralised Environmental Systems
- Environmental Management of Land
- Flood Estimation
- Floodplain Risk Management
- Site Investigations and Monitoring for Infrastructure Projects

Robotics

Core - 2 compulsory subjects:
- Robotics Studio 1
- Robotics Studio 2

Choice - choose 2 subjects from the following:
- Advanced Robotics
- Biomedical Instrumentation
- Control of Mechatronic Systems
- Engineering Graduate Project
- Fundamentals of Software Development
- Neural Networks and Fuzzy Logic
- Robotics Studio 3
- Start-up Data, Marketing and Sales

No Specified Major

See the Handbook for course structure at handbook.uts.edu.au/eng/pg

For a list of subjects available to students undertaking no specified major, visit handbook.uts.edu.au/directory/cbk90968

Disclaimer: not all subjects listed are offered every session or year.
Solutions with real-world impact.

When you choose a Master of Engineering (Research) or PhD at UTS, you will be part of a lively and rigorous research culture. Our researchers are recognised leaders in their fields with a reputation for driving innovation and creating solutions with real world impact.

feit.uts.edu.au/research

UTS is a major force in a range of specialisations including:

> intelligent mechatronic systems
> quantum computation and intelligent systems
> innovation in IT services and applications
> health technologies
> green energy vehicle innovation
> real-time information networks
> built infrastructure
> technology in water and wastewater
> advanced analytics
> electrical machines and power electronics
> energy policy
> human-centred technology design
> site Investigations and Monitoring for Infrastructure Projects

KATELYN BYWATERS – AUSTRALIA
Doctor of Philosophy in Sustainable Futures

Katelyn Bywaters’ final year Capstone Project as a Civil Engineering undergraduate led to an unexpected opportunity. Involving train station passenger movement tracking and exit routes, it caught the attention of two professors, who invited her to become a doctoral researcher on a UTS collaboration with Transport for NSW.

“In the Capstone, I really enjoyed doing research and it’s not something I’d thought about before,” Katelyn says. “Research is a career path that’s not as talked about, especially in your undergraduate years. When the opportunity came up, I took it and really enjoy it.”

She’s now a member of the Responsive Passenger Information Project, which is developing technology to address rising congestion in the Sydney Trains Network.

“I’m specifically looking at the passenger flow in Town Hall Station.”

A move from the Central Coast to Sydney ensued. “UTS is a very central campus,” Katelyn says. “There’s so many social and support programs, like Women in Engineering and IT.”

“UTS fosters very practical projects. It allows you to make the transition of either staying in academia, or doing research in industry.”

Read more student profiles
uts.edu.au/eng-student-profiles
Master of Engineering (Research)

<table>
<thead>
<tr>
<th>Course code:</th>
<th>C03017</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRICOS code:</td>
<td>009468B</td>
</tr>
<tr>
<td>Duration:</td>
<td>International</td>
</tr>
<tr>
<td>2 years full-time</td>
<td></td>
</tr>
<tr>
<td>Available intakes:</td>
<td>Autumn (March) / Spring (July)</td>
</tr>
</tbody>
</table>

Our Research Courses

As a Master of Engineering (Research) or PhD student, you must find an academic with expertise in your chosen field to supervise your research. As we focus on industry collaboration, proposals that involve direct working relationships with industry professionals are strongly encouraged.

Applicants must secure the agreement of a supervisor prior to lodging an application.

For more information on Research in the Faculty of Engineering and Information Technology, including research areas and academic supervisors, visit feit.uts.edu.au or email feit.hdr@uts.edu.au.

Doctor of Philosophy

<table>
<thead>
<tr>
<th>Course code:</th>
<th>C02018</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRICOS code:</td>
<td>036570B</td>
</tr>
<tr>
<td>Duration:</td>
<td>International</td>
</tr>
<tr>
<td>4 years full-time</td>
<td></td>
</tr>
<tr>
<td>Available intakes:</td>
<td>Autumn (March) / Spring (July)</td>
</tr>
</tbody>
</table>

A PhD involves an intense period of supervised study and research, culminating in the submission of a thesis. You must, through original investigation, make a distinct and significant contribution to the knowledge of your field of specialisation.
Information technology courses

POSTGRADUATE IT

<table>
<thead>
<tr>
<th>Course Duration</th>
<th>Number of Subjects</th>
<th>Course Structure</th>
<th>Entry Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER OF INFORMATION TECHNOLOGY</td>
<td>16</td>
<td>4 x 6 credit points professional stream subjects 3 x 6 credit points core stream subjects 6 x 6 credit points major subjects 1 x 6 credit point project subject 2 x 6 credit points electives</td>
<td>Bachelor’s degree or equivalent / higher qualification with no more than 25% of subjects failed</td>
</tr>
<tr>
<td>MASTER OF INFORMATION TECHNOLOGY (EXTENSION)</td>
<td>16</td>
<td>3 x 6 credit points core stream subjects 6 x 6 credit points major subjects 4 x 6 credit points sub-major subjects 1 x 6 credit point project subject 2 x 6 credit points electives</td>
<td>Bachelor’s degree in Information Technology or equivalent / higher qualification in a related discipline and no more than 25% of subjects failed</td>
</tr>
<tr>
<td>MASTER OF SCIENCE IN INTERNETWORKING</td>
<td>12</td>
<td>5 x 6 credit points internetworking core subjects 6 x 6 credit points internetworking choice subjects 1 x 6 credit point project choice</td>
<td>Bachelor’s degree in Information Technology or equivalent / higher qualification in a related discipline with no more than 25% of subjects failed</td>
</tr>
</tbody>
</table>

You may be eligible for maximum 24 credit points of ‘recognised prior learning’ (RPL) based on a UTS recognised bachelor’s degree in information technology or related fields.
The UTS suite of postgraduate engineering programs offer you the opportunity to enhance your technical and management skills, to challenge yourself by investigating real issues facing the world today, and to connect and engage with experts in the field. But which degree will meet your needs?

<table>
<thead>
<tr>
<th>MASTER OF SCIENCE IN INTERNETWORKING (EXTENSION)</th>
<th>MASTER OF INTERACTION DESIGN</th>
<th>MASTER OF INTERACTION DESIGN (EXTENSION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professionals who wish to become a CISCO Certified Network Associate (CCNA)</td>
<td>Professionals who are interested in the intersection of technology, design, innovation and entrepreneurship</td>
<td>Professionals who are interested in the intersection of technology, design, innovation and entrepreneurship</td>
</tr>
<tr>
<td>Technical skill development and career advancement for non-networking graduates</td>
<td>Develop skills to create user-friendly products or services that address a specific need</td>
<td>Develop skills to create user-friendly products or services that address a specific need</td>
</tr>
<tr>
<td>2 years full-time</td>
<td>1.5 years full-time</td>
<td>2 years full-time</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>4 x 6 credit points professional stream subjects</td>
<td>8 x 6 credit point core subjects</td>
<td>8 x 6 credit point core subjects</td>
</tr>
<tr>
<td>5 x 6 credit points internetworking core subjects</td>
<td>4 x 6 credit point choice (Interaction Design) subjects</td>
<td>4 x 6 credit point choice (Interaction Design) subjects</td>
</tr>
<tr>
<td>6 x 6 credit points internetworking choice subjects</td>
<td>1 x 6 credit point project choice</td>
<td>4 x 6 credit point extension choice (Interaction Design)</td>
</tr>
<tr>
<td>Bachelor’s degree or equivalent / higher qualification with no more than 25% of subjects failed</td>
<td>Bachelor’s degree or equivalent / higher qualification with no more than 25% of subjects failed</td>
<td>Bachelor’s degree or equivalent / higher qualification with no more than 25% of subjects failed</td>
</tr>
</tbody>
</table>
Technical IT

Take charge of your future today.
The Internet of Things, robotics, augmented and virtual reality, wearables and advanced machine learning are all the way of the future.
Keep pace with a postgraduate program that lets you stay ahead of the curve.
There are multiple entry points depending on your level of experience and educational background, including options for majors and electives to suit your area of expertise.

Master of Information Technology

Course code: C04295
CRICOS code: 084256C
Duration: 2 years full-time
Study load: 96 credit points (16 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 47
Professional recognition:
Graduates are eligible to apply for professional-level membership of the Australian Computer Society.
Admission requirements:
A UTS recognised bachelor’s degree, or an equivalent or higher qualification, with no more than 25% of subjects failed.

Majors

Business Information Systems
Learn the processes, tools and technologies required to transform data into information and information into knowledge so as to enable sound business decision-making.
Learn how to apply business intelligence techniques to extract information on market trends and behaviour, effectively analyse and utilise data and create business intelligence systems to support decision-making.

Cyber Security
The major in Cyber Security has been designed to cover a complete cyber security solution. It will give you a critical understanding of information governance and assurance, combined with technology risk management practices.
The major is broken into three main areas; policy (20%), application (30%) and technology (50%).

Data Analytics
Learn to develop and apply business analytics systems and enhance the technology services within your organisation. Data analytics is an emerging and rapidly-expanding area where mathematics and statistical methods interact with powerful information technologies to improve the flow of massive amounts of data for business.

Interactive Media
Learn to better respond to and manage the fast-evolving needs of the industry. Learn more about the software and hardware technologies utilised in the development and maintenance of websites, create strategies for web-presence and develop detailed proposals and specifications. Engage with interdisciplinary approaches to information and interaction design and immerse yourself in a blend of design, media and technology.

Internetworking
Gain the necessary knowledge and skills in network design and management, helping you to tackle networking issues that come with an ever-more connected world. Learn about network and systems security, and develop enterprise-scale web applications involving technologies such as .NET, Web Services and Java 2 Enterprise Edition (J2EE). UTS IT is a Cisco Networking Academy.

Software Development
Discover how to solve typical software development challenges for a business such as: integrating commercial off-the-shelf systems with legacy applications; managing and deploying outsourced development or maintenance; integrating software systems when companies merge; deploying and managing web-based systems such as business to business (B2B) and business to consumer (B2C), and managing the challenges of identity and access in publicly exposed systems. Choose a number of subjects in various programming languages to enhance your technical skills in your work as a developer, programmer or software engineer.

Choice (no specified major)
If you would like to choose subjects from a variety of areas within IT, then this option may suit you. Subjects include 4G Mobile Technologies, Digital Media Technologies, Data Mining and Visualisation and many more.
Visit handbook.uts.edu.au/it for details.
“UTS is a practice-oriented university,” says international student Shamsheer Verma. Keen to pursue an interest in machine learning and leverage programming skills from high school, his study at UTS led to work on the award-winning SharkSpotter—a drone with software that detects sharks and saves beachgoers’ lives.

Shamsheer’s contributions included developing the software interface and adding functionality. “I gained a lot of knowledge and experience,” he says. One memorable trial involved five days at France’s Reunion Island. “I was given full responsibility to plan and operate SharkSpotter during the entire journey.”

Relocating to Australia away from family wasn’t easy, he says, but UTS’s societies and clubs helped build a diverse and supportive social network. “Moreover, because UTS is centrally located, I can find opportunities related to my field of study and build my network.”

While the university’s Careers centre and CareerHub provided invaluable help for jobs, Shamsheer’s current Data Analyst position at the Commonwealth Bank came from industry engagement during work as a UTS casual academic. “It has been life-altering,” he says. “I’m able to practically implement the skills that I have harnessed at UTS and see the results in real-time and on real scenarios.”

Read more student profiles
uts.edu.au/it-student-profiles
Go a step further.

The Master of Information Technology (Extension) provides the opportunity to complete a sub-major consisting of 4 subjects (24 credit points). The sub-major is your chance to deepen your knowledge in a secondary area of interest in the field of IT.

Master of Information Technology (Extension)

Course code: C04296
CRICOS code: 084254E
Duration: 2 years full-time
Study load: 96 credit points (16 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 47
Professional recognition:
Graduates are eligible to apply for professional-level membership of the Australian Computer Society.
Admission requirements:
A UTS recognised bachelor’s degree in information technology, or an equivalent or higher qualification, with no more than 25% of subjects failed.

SUB MAJORS
- Business Information Systems
- Cyber Security
- Data Analytics
- Interactive Media
- Internetworking
- Software Development
- Choice (no specified major)
See majors on pages 53-54.

COURSE STRUCTURE
See page 47

Graduate Certificate in Information Technology

Course code: C11142
CRICOS code: 084251G
Duration: 0.5 year full-time
Study load: 24 credit points (4 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 47
Admission requirements:
A UTS recognised bachelor’s degree in information technology, or an equivalent or higher qualification, with no more than 25% of subjects failed.
Master of Information Technology (Advanced)

<table>
<thead>
<tr>
<th>Course code:</th>
<th>C04297</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRICOS code:</td>
<td>084255D</td>
</tr>
<tr>
<td>Duration:</td>
<td>2 years full-time</td>
</tr>
<tr>
<td>Study load:</td>
<td>96 credit points (16 subjects)</td>
</tr>
<tr>
<td>Study mode:</td>
<td>Standard mode (weekly attendance with some evening classes)</td>
</tr>
<tr>
<td>Available intakes:</td>
<td>Autumn (March) / Spring (July)</td>
</tr>
<tr>
<td>How to apply:</td>
<td>Internal course transfer</td>
</tr>
<tr>
<td>English language requirements:</td>
<td>See page 57</td>
</tr>
<tr>
<td>Course structure:</td>
<td>See page 47</td>
</tr>
</tbody>
</table>

Professional recognition:

Graduates are eligible to apply for professional-level membership of the Australian Computer Society.

Admission requirements:

Applicants are required to have: (i) completed 48 credit points in the Master of Information Technology (Extension) (C04296); and (ii) received approval from a member of academic staff to act as their research project supervisor.

Explore an in-depth research study in a major IT field.

As part of this course you will complete three core subjects, five subjects as part of your major and a research project (over a period of 1 year) or a combination of electives and a research project. This course may also improve your chances of being considered for higher degree by research programs such as a PhD.
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Graduate Certificate in Information Technology</th>
<th>Master of Information Technology (Extension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Stream (MIT)</td>
<td>Select 1 of the following:</td>
<td>Complete the following subjects:</td>
</tr>
<tr>
<td>Project Management</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IT Professional and Society</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Technology Research Preparation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Major/Stream</td>
<td>Choose 3 subjects from your chosen stream:</td>
<td>Complete 6 subjects from your chosen major:</td>
</tr>
<tr>
<td>Sub-major choice</td>
<td>N/A</td>
<td>Choose 4 subjects from your chosen sub-major</td>
</tr>
<tr>
<td>IT Project and Electives</td>
<td>N/A</td>
<td>Choose 3 subjects</td>
</tr>
<tr>
<td>Research</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Graduate Certificate in Information Technology Studies</th>
<th>Master of Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Stream (IT)</td>
<td>Complete the following subjects:</td>
<td>Complete the following subjects:</td>
</tr>
<tr>
<td>Enabling Enterprise Information Systems</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fundamentals of Software Development</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Database</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LANS and Routing</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Core Stream (MIT)</td>
<td>N/A</td>
<td>Complete the following subjects:</td>
</tr>
<tr>
<td>Project Management</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>IT Professional and Society</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Technology Research Preparation</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td>N/A</td>
<td>Complete 6 subjects from your chosen major</td>
</tr>
<tr>
<td>IT Project and Electives*</td>
<td>N/A</td>
<td>Choose 3 subjects</td>
</tr>
</tbody>
</table>

Please note: Elective subjects are taken from postgraduate-level faculty subjects and may need prior approval. You may also need pre-requisite knowledge for some electives.
Internetworking

Networking skills are in demand in almost every sector.

Expand your expertise with a postgraduate Internetworking program where you can tailor your subject choices to suit your interests and advance your career path.

Designed to meet industry demand for computer network professionals, this course is ideal for computing science, engineering and IT graduates, with or without networking experience.

Enjoy hands-on learning experience using a variety of resources, as well as support from Cisco Systems for broad computer network and relevant applications.

This includes routing, switching, security, wireless and VoIP, mobile computing, web systems, and cloud computing and operating systems.

Develop in-depth knowledge with a program that covers all aspects of the organisational use of networks such as design, implementation, security, management, end systems and applications.

Master of Science in Internetworking

Course code: C04160
CRICOS code: 043341A
Duration: 1.5 years full-time
Study load: 72 credit points (12 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 50
Professional recognition:
Students can prepare for Cisco CCNA and CCNP industry certification.

Admission requirements:
A UTS recognised bachelor’s degree in information technology or a related discipline, or an equivalent or higher qualification, with no more than 25% of subjects failed.

YEE CHING LEUNG – AUSTRALIA
Master of Science in Internetworking

“The networking and technology knowledge that I have acquired from the course, such as routing, security, mobile and internet computing are invaluable. As a result, I am better equipped to design and develop more reliable, robust and efficient software applications,” she says.

“Many of the students in this course are studying part-time and have a full-time professional job. This has provided a lot of opportunities for me to meet professionals in other business areas, creating social networking opportunities and exploring different industry practices,” she says.

Read more student profiles uts.edu.au/it-student-profiles

Networking skills are in demand in almost every sector.

Expand your expertise with a postgraduate Internetworking program where you can tailor your subject choices to suit your interests and advance your career path.

Designed to meet industry demand for computer network professionals, this course is ideal for computing science, engineering and IT graduates, with or without networking experience.

Enjoy hands-on learning experience using a variety of resources, as well as support from Cisco Systems for broad computer network and relevant applications.

This includes routing, switching, security, wireless and VoIP, mobile computing, web systems, and cloud computing and operating systems.

Develop in-depth knowledge with a program that covers all aspects of the organisational use of networks such as design, implementation, security, management, end systems and applications.

Master of Science in Internetworking

Course code: C04160
CRICOS code: 043341A
Duration: 1.5 years full-time
Study load: 72 credit points (12 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 50
Professional recognition:
Students can prepare for Cisco CCNA and CCNP industry certification.

Admission requirements:
A UTS recognised bachelor’s degree in information technology or a related discipline, or an equivalent or higher qualification, with no more than 25% of subjects failed.

YEE CHING LEUNG – AUSTRALIA
Master of Science in Internetworking

“The networking and technology knowledge that I have acquired from the course, such as routing, security, mobile and internet computing are invaluable. As a result, I am better equipped to design and develop more reliable, robust and efficient software applications,” she says.

“Many of the students in this course are studying part-time and have a full-time professional job. This has provided a lot of opportunities for me to meet professionals in other business areas, creating social networking opportunities and exploring different industry practices,” she says.

Read more student profiles uts.edu.au/it-student-profiles
Graduate Certificate in Internetworking

Course code: C11145
CRICOS code: 063424K
Duration: 0.5 year full-time
Study load: 24 credit points (4 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)

Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course structure: See page 50
Admission requirements:
A UTS recognised bachelor’s degree in information technology or a related discipline, or an equivalent or higher qualification, with no more than 25% of subjects failed.

Master of Science in Internetworking (Extension)

Course code: C04224
CRICOS code: 055279C
Duration: 2 years full-time
Study load: 96 credit points (16 subjects)
Study mode: Standard mode (weekly attendance with some evening classes)
Available intakes: Autumn (March) / Spring (July)
How to apply: See page 57
English language requirements: See page 57
Course Structure: See page 50
Recognition:
Graduates are eligible to apply for professional-level membership of the Australian Computer Society.
Admission requirements:
A UTS recognised bachelor’s degree, or an equivalent or higher qualification, with no more than 25% of subjects failed.

JACOB TAYLOR – AUSTRALIA
Master of Science in Internetworking

It took a couple of attempts, but Jacob Taylor is now ensconced in the UTS Master of Science in Internetworking – and he’s pretty happy about it.

“I’ve really been enjoying it so far. It’s very hands-on, and I don’t feel like I’m spending a lot of unnecessary time learning unnecessary theory,” he says.

“The teachers give you the baseline understanding of how something works, as opposed to just making it work for you. I feel that I’m getting both an understanding of the general concepts of networking while also becoming skilled.”

The course content is already shaping his career – Jacob was recently offered a promotion at his current employer after he undertook a Juniper workshop at UTS.

“Because I did the special training that was offered by UTS, and because I had the general understanding and the foundations of networking, I was able to advance quickly,” he says.

“I like the options that this course is giving me. Do I want to take an academic path, or an industry-centric path, or maybe a bit of both? I feel like this program enables that – I have that choice.”

Read more student profiles uts.edu.au/it-student-profiles
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Master of Science in Internetworking (Extension)</th>
<th>Master of Science in Internetworking</th>
<th>Graduate Certificate in Internetworking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Stream (Internetworking) (24cp)</td>
<td>Complete the following subjects: N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT Professional and Society</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enabling Enterprise Information Systems</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internetworking Core (30cp)</td>
<td>Complete the following subjects: Complete the following subjects: Complete the following subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANS and Routing</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Technology Research Preparation</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Communications and Computing</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cyber Security Essentials</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Select 1 of the following:</td>
<td>Select 1 of the following:</td>
<td>Select 1 of the following:</td>
<td></td>
</tr>
<tr>
<td>UNIX Systems Programming</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Advanced Internet Programming</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>.NET Application Development</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Internetworking Choice (36cp)</td>
<td>Complete 6 subjects</td>
<td>Complete 6 subjects</td>
<td>Complete 1 subject</td>
</tr>
<tr>
<td>Research Choice (6cp)</td>
<td>Select 1 of the following:</td>
<td>Select 1 of the following:</td>
<td>N/A</td>
</tr>
<tr>
<td>Research Project</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Industry Project</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
Interaction design

Are you inspired by the intersection of technology, design, innovation and entrepreneurship?

New technological developments e.g. 3D printing, drones, driverless vehicles, social robotics and augmented reality, will fuel the growth of the global digital economy. To meet this growth, interaction designers will be tasked with creating user-centric solutions, overseeing the design of every digital touch point and creating a holistic experience.

By deeply understanding people’s practices, environments and values, you can create products which fit meaningfully into users lives.

Master
Course code: C04222
CRICOS code: 096325G
Course duration: 1.5 years (full-time)
Study load: 72 credit points (12 subjects)

Master (Extension)
Course code: C04234
CRICOS code: 096324G
Course duration: 2 years (full-time)
Study load: 96 credit points (16 subjects)
Intake: Autumn (March) and Spring (July)

Admission requirements:
A UTS recognised bachelor’s degree, or an equivalent or higher qualification, with no more than 25% of subjects failed.

COURSE STRUCTURE*

<table>
<thead>
<tr>
<th>Core subjects A</th>
<th>Master</th>
<th>72 credit points</th>
<th>Master (Extension)</th>
<th>96 credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Interaction Design</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Advanced Interaction Design</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Prototyping Physical Interaction</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Storytelling and Sense-making Studio</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Core subjects B

<table>
<thead>
<tr>
<th>Core subjects B</th>
<th>Master</th>
<th>72 credit points</th>
<th>Master (Extension)</th>
<th>96 credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-Centred Design Research Methods</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Digital Experience Design</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Digital Media Studio (12 credit points)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Choice

<table>
<thead>
<tr>
<th>Choice</th>
<th>Master</th>
<th>72 credit points</th>
<th>Master (Extension)</th>
<th>96 credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analytics module</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Games Design Module</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Graduate Research Project + Elective option</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Interaction Programming module</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Extension choice

<table>
<thead>
<tr>
<th>Extension choice</th>
<th>Master</th>
<th>72 credit points</th>
<th>Master (Extension)</th>
<th>96 credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate research project and elective option</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Innovation Studio</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

*Elements of the course structure may change.
IT majors

The following is an overview of subjects available in each major. For detailed course structures and requirements visit the UTS Information technology handbook at handbook.uts.edu.au/it

Within each major, a project component is incorporated comprising two subjects (12 credit points):

Business Information Systems

Core - 2 compulsory subjects
- Global Information Systems
- Technology and Innovation Management

Choice - choose 4 subjects from the following:
- Business Intelligence
- Business Systems Design
- Information Systems Architecture Design
- Enterprise Business Requirements
- Advanced Project Management
- IT Contracts and Outsourcing
- Sustainability and Information Systems
- Economic Evaluation
- Value Chain Engineering Systems

Interactive Media

Core - 2 compulsory subjects
- Storytelling and Sense-making Studio
- Digital Experience Design

Choice - choose 4 subjects from the following:
- Computer Game Design
- Interactive Media
- Interactive Arts
- Human-centred Design Methods
- Advanced Interaction Design
- Fundamentals of Interaction Design
- Digital Media Technologies
- Digital Media Studio

Data Analytics

Core - 2 compulsory subjects
- Advanced Data Analytics Algorithms
- Data Visualisation and Visual Analytics

Choice - choose 4 subjects from the following:
- Advanced Database
- Fundamentals of Data Analytics
- Building Intelligent Agents
- Business Intelligence for Decision Support
- Business Intelligence Modelling and Analysis
- Deep Learning and Convolutional Neural Network
- Object-Relational Databases
- Cloud Computing and Software as a Service
- Social and Information Network Analysis
<table>
<thead>
<tr>
<th>Software Development</th>
<th>Software Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core - 2 compulsory subjects</td>
<td>Core - compulsory subject</td>
</tr>
<tr>
<td>Enterprise Business Requirements</td>
<td>UNIX Systems Programming</td>
</tr>
<tr>
<td>Enterprise Software Architecture and Middleware</td>
<td></td>
</tr>
<tr>
<td>Choice - choose 4 subjects from the following:</td>
<td>Choice - choose 1 of:</td>
</tr>
<tr>
<td>.NET Enterprise Development</td>
<td>Advanced Routing Principles</td>
</tr>
<tr>
<td>Advanced Interaction Design</td>
<td>Multilayer Switched Networks</td>
</tr>
<tr>
<td>Internet Programming</td>
<td>Mobile Communications and Computing</td>
</tr>
<tr>
<td>Advanced Software Modelling</td>
<td>Internet Programming</td>
</tr>
<tr>
<td>Advanced Internet Programming</td>
<td>LANS and Routing</td>
</tr>
<tr>
<td>Enterprise Software Testing</td>
<td>Network Management</td>
</tr>
<tr>
<td>Systems Quality Management</td>
<td>Cyber Security Essentials</td>
</tr>
<tr>
<td>.NET Application Development</td>
<td>Software Defined Networks</td>
</tr>
<tr>
<td>Fundamentals of Interaction Design</td>
<td>Infrastructure for Cloud Computing</td>
</tr>
<tr>
<td>IOS Application Development</td>
<td>Systems Administration</td>
</tr>
<tr>
<td>Object-Relational Databases</td>
<td></td>
</tr>
<tr>
<td>Cloud Computing and Software as a Service</td>
<td></td>
</tr>
<tr>
<td>Social and Information Network Analysis</td>
<td></td>
</tr>
<tr>
<td>Cyber Security</td>
<td>Cyber Security</td>
</tr>
<tr>
<td>Core - 2 compulsory subjects</td>
<td>Core - compulsory subject</td>
</tr>
<tr>
<td>Cyber Security Essentials</td>
<td>UNIX Systems Programming</td>
</tr>
<tr>
<td>UNIX Systems Programming</td>
<td></td>
</tr>
<tr>
<td>Choice - choose 4 subjects from the following:</td>
<td>Choice - choose 1 of:</td>
</tr>
<tr>
<td>Digital Forensics</td>
<td>Advanced Routing Principles</td>
</tr>
<tr>
<td>Network Security Appliances</td>
<td>Multilayer Switched Networks</td>
</tr>
<tr>
<td>Cloud Security</td>
<td>Mobile Communications and Computing</td>
</tr>
<tr>
<td>Cyber Security for Mobile Platforms</td>
<td>Internet Programming</td>
</tr>
<tr>
<td>IoT Security</td>
<td>LANS and Routing</td>
</tr>
<tr>
<td>Infrastructure for Cloud Computing</td>
<td>Network Management</td>
</tr>
<tr>
<td>Cloud Computing and Software as a Service</td>
<td>Cyber Security Essentials</td>
</tr>
<tr>
<td>LANS and Routing</td>
<td>Software Defined Networks</td>
</tr>
<tr>
<td></td>
<td>Infrastructure for Cloud Computing</td>
</tr>
<tr>
<td></td>
<td>Systems Administration</td>
</tr>
<tr>
<td>Choice (No specified major)</td>
<td>Choice (No specified major)</td>
</tr>
</tbody>
</table>
See the Handbook for course structure at handbook.uts.edu.au/it/pg
For a list of subjects available to students undertaking no specified major, visit handbook.uts.edu.au/directory/cbk91043.html
IT research

Solutions with real-world impact.

When you choose a research degree at UTS, you will be part of a lively and rigorous research culture. UTS researchers are recognised leaders in their fields with a reputation for driving innovation and creating solutions with real world impact.

feit.uts.edu.au/research

WILDER PERDOMO CHARRY – COLOMBIA
Doctor of Philosophy (Information Systems, Software Engineering, Analytics)

Having lectured IT and software engineering at universities in Colombia, Wilder Perdomo Charry is undertaking a PhD to broaden his expertise and forge new connections.

“Academia generally contributes inside the university, but what happens outside? I want to develop new things, innovate and contribute to the government or industry.”

Thanks to a sponsorship agreement between UTS and The Foundation for the Future of Colombia (COLFUTURO) and a UTS International Research Scholarship, Wilder relocated to Sydney for further studies. “UTS is a pioneer in software engineering and IT, and it has a good relationship with industry and government,” he says. “It has interesting projects that enrich my study opportunities here.”

He found student resources invaluable at the start. HELPS English language support helped improve his fluency; Wilder now assists other international students. He also works at UTS as a casual academic, helps various faculty teams and enjoys giving back to the university. “You can share knowledge, have different opportunities and get to know different academic processes in another country.”

“I’ve learned different things as an academic, but I am strengthening my technical and academic skills here,” he says. “This program opens doors for me to work in different industries. In the future, I want to start my own company.”

Read more student profiles
uts.edu.au/it-student-profiles
COURSES IN RESEARCH

<table>
<thead>
<tr>
<th>Course name</th>
<th>Subjects</th>
<th>Admission requirements</th>
</tr>
</thead>
</table>
| MASTER OF SCIENCE (RESEARCH) IN COMPUTING SCIENCES | - Technology Research Preparation
- Technology Research Methods
- Thesis (Computing Science) | A UTS recognised bachelor’s degree in computing science, or an equivalent or higher qualification, or other evidence of general and professional qualifications that demonstrates potential to pursue graduate research studies. |

<table>
<thead>
<tr>
<th>Course code:</th>
<th>C03025</th>
<th>CRICOS code:</th>
<th>001121E</th>
<th>Duration:</th>
<th>2 years full-time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MASTER OF ANALYTICS (RESEARCH)</th>
<th>Subjects</th>
<th>Admission requirements</th>
</tr>
</thead>
</table>
| - Technology Research Preparation
- Technology Research Methods
- Thesis (Analytics) | A UTS recognised bachelor’s degree in analytics, computing science, applied statistics or applied mathematics, or an equivalent or higher qualification, or other evidence of general and professional qualifications that demonstrates potential to pursue graduate research studies. |

<table>
<thead>
<tr>
<th>Course code:</th>
<th>C03051</th>
<th>CRICOS code:</th>
<th>075277F</th>
<th>Duration:</th>
<th>2 years full-time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DOCTOR OF PHILOSOPHY</th>
<th>Subjects</th>
<th>Admission requirements</th>
</tr>
</thead>
</table>
| - Technology Research Preparation
- Technology Research Methods
- PhD Thesis in: Analytics; or Information Systems; or Software Engineering | A UTS recognised master’s by research or bachelor’s degree with first or second class honours (division 1), or an equivalent or higher qualification, or other evidence of general and professional qualifications that demonstrates potential to pursue graduate research studies. |

<table>
<thead>
<tr>
<th>Course code:</th>
<th>C02029 and C02047</th>
<th>CRICOS code:</th>
<th>009469A and 058666A</th>
<th>Duration:</th>
<th>4 years full-time</th>
</tr>
</thead>
</table>

RESEARCH SUPPORT

The UTS Graduate Research School provides support to research students, supervisors and early career researchers at UTS. It offers development through research education programs, policy development, advice and scholarships.

Contact us:

Web: uts.edu.au/research-and-teaching/research-degrees

Tel: +61 2 9514 1336

Email: grr@uts.edu.au

RESEARCH SCHOLARSHIPS

UTS offers a range of scholarships for research students.

For more information visit: uts.edu.au/scholarships
What’s next?

Follow these steps to start your UTS journey.

1. Find your course
 Not sure what to study? Look for the course just for you to start your journey at UTS.

2. Meeting the admission requirements
 Do you meet both the Academic and English Language Requirements for your course?
 There are English language proficiency requirements for all courses.
 - IELTS (Academic) 6.5 overall with a writing score of 6.0
 - TOEFL iBT 79-93 overall with a writing score of 21
 - PTE (Academic) 58 – 64
 - CAE 176-184

3. Complete your UTS application
 Submit either an online or hardcopy application with the required supporting documentation.

4. Submitting your application
 Your application, application fee and supporting documentation must be submitted to UTS.
 Recognition of Prior Learning
 Your previous studies in another country may be considered for credit towards your course. You may be eligible for Recognition of Prior Learning.

5. Acknowledgement letter and accepting your offer
 You will receive an acknowledgement letter once UTS has received your application. Once your application is successful, you will receive an offer letter and can accept your offer!
 Complete the Acceptance form and follow your preferred payment methods.

6. Fees and Finances
 Make sure you are up to date with costs of your UTS tuition and amenities fees.
 Understand the costs to support yourself while studying in Sydney, including transport & living expenses.
Overseas Student Health Cover (OSHC)
You will need to have Overseas Student Health Cover for the duration of your stay in Australia. You can arrange your OSHC online.

Accommodation
Understand the costs to support yourself while studying in Sydney including transport, cost of living and exciting events here.

Feel at Home
There are many convenient accommodation options while studying at UTS. Organise housing for yourself close to uni.

Check out UTS Housing

How to apply
uts.edu.au/international-apply

Get in touch
Phone: 1800 774 816 (free call within Australia)
Phone: +61 3 9627 4816
Email: international@uts.edu.au

uts.edu.au/international

Visit UTS and UTS International Contacts
All important contact information can be found here.
See you at UTS!
CONNECT WITH US

UTSFEIT
utsengineeringandit
UTSFEIT

Connect with us
1800 774 816
(free call within Australia)
+61 3 9627 4816
international@uts.edu.au
uts.edu.au/international

DISCLAIMER: The information in this brochure is correct as at February 2019. Changes in circumstances after this date might alter the accuracy or currency of the information. UTS reserves the right to alter any content described in this brochure without notice. Readers are responsible for verifying information that pertains to them by contacting the university.

UTS CRICOS 00099F
22614 MAY 2019
Images: Toby Burrows, Andy Roberts, Padraig Treanor, Anna Zhu.

*Times Higher Education Young University Rankings 2018,
QS Top 50 Under 50 2019