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Abstract. Global games are widely used to predict behaviour in games with strategic comple-
mentarities and multiple equilibria. We establish two results on the global game selection. First,
we show that, for any supermodular complete information game, the global game selection is
independent of the payoff functions chosen for the game’s global game embedding. Second,
we give a simple sufficient criterion to derive the selection and establish noise independence in
many-action games by decomposing them into games with smaller action sets, to which we may
often apply simple criteria. We also report in which small games noise independence may be
established by counting the number of players or actions.
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1. Introduction

Games of strategic complementarities, for instance models of financial crises or network extern-

alities, often have multiple equilibria. An important issue, from a theoretical as well as a policy

perspective, is how to predict the equilibrium that will be played. One widely used approach to

predict behaviour in such games is to turn them into “global games”. A global game extends a

complete information game to an incomplete information game with a one-dimensional state

space, such that the original game can be viewed as one particular realisation of the random

state. This state is usually interpreted as an “economic fundamental”. Each player receives a

noisy private signal about the true state. Then, under certain supermodularity and monotonicity

conditions,1 Frankel, Morris and Pauzner [10] (“FMP”) prove limit uniqueness: as the noise in

private signals vanishes, for almost all realisations of the state parameter players coordinate on a

Nash equilibrium of the complete information game given by the payoffs at the true state. This

global game selection (“GGS”) may be used as a prediction and to derive comparative statics

results. Applications include models of speculative attacks (Morris and Shin [17], Cukierman,

Date: First version: December 2009. This revised version: May 2013.
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1FMP assume that there exists an ordering on actions such that players’ incentive to switch to a higher action is
increasing in both the state and the actions of others; and that at sufficiently low (high) states, each player’s lowest
(highest) action is strictly dominant. See Section 2 for precise definitions.
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Goldstein and Spiegel [9], Guimarães and Morris [12], Corsetti, Dasgupta, Morris and Shin [7],

Corsetti, Guimarães and Roubini [8]), banking crises (Goldstein [11], Rochet and Vives [22]),

and investment problems (Steiner and Sákovics [23]). Experiments by Heinemann, Nagel and

Ockenfels [13, 14] show that the GGS is useful for predicting subjects’ behaviour.

Unfortunately, there are many ways to extend a complete information game to a global game,

and which equilibrium is selected may depend on the details of the chosen extension. If multiple

equilibria are replaced by multiple global game selections, this reduces the value of the GGS as

a selection criterion. For instance, it is well-known that the GGS may depend on the distribution

of the noisy private signals. To circumvent this problem, FMP provide some conditions under

which the GGS is noise independent, that is, independent of this distribution.

Furthermore, most applications are limited to binary-action games. In symmetric binary-action

games, the GGS can be easily determined as a player’s best reply to the belief that the fraction of

other players choosing either action is uniformly distributed (see FMP or Morris and Shin [18];

Steiner and Sákovics [23] give a generalisation for a class of asymmetric binary-action games).

In this paper, we extend results on global games in two directions. First, we show that for

any supermodular complete information game, the GGS is independent of the extended payoff

function, as long as it satisfies the usual supermodularity assumptions. Hence, the GGS does

not depend, for example, on the choice of economic fundamental used as a state parameter in

the global game. Our result implies that the distribution of private signals is the only source of

multiplicity for the GGS.

Second, we provide a new and simple method to determine the GGS and check its noise

independence in games with many actions. The GGS is noise independent if the game can be

suitably decomposed into smaller noise independent games. For example, we may split up a

n-action game into many binary-action games and apply simple known criteria for deriving the

GGS. If the smaller games are noise independent and their selections point in direction of the

same action profile, then this action profile is the noise independent selection of the larger game.

Our second result gives a new heuristic for the global game equilibrium prediction that is useful

in economic applications. For instance, introducing a third action in a binary-action game may

change the selection between the two original equilibria. We give an example of a refinancing

model where introducing collateralised loans as a third action besides withdrawing and extending

unsecured loans changes the GGS from the inefficient withdrawal equilibrium to that of unsecured

refinancing. Other models of interest may have many actions and potentially a large number of

equilibria. As an example, we analyse a generalised version of Bryant’s [3] minimum effort game,

to which none of the known easy heuristics may be applied. By decomposing it into binary-action

games, we may derive the GGS and establish its noise independence straightforwardly.

The decomposition of large games is particularly useful, because noise independence is
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typically easier to establish for smaller games, often simply by counting the number of players and

actions. In their seminal paper introducing global games, Carlsson and Van Damme [6] proved

that all two-player two-action games with multiple equilibria are noise independent. In another

application of our methods, we prove the same of all supermodular two-player games in which

one player’s action set is binary. Together with known results, this completes the characterisation

of supermodular games for which noise independence can be established by counting.

Our paper proceeds as follows. Section 2 contains preliminaries. The rest of the paper is

organised around a characterisation of the GGS given in Section 3. Instead of analysing a

sequence of global games with vanishing noise, we show that we may determine the GGS from

a single incomplete information game with simple payoffs. This game is independent of the

state-dependent payoff function that is chosen as an extension of the original game. We use the

characterisation to prove generic uniqueness of the GGS and extend it to discontinuous global

games. In Section 4 we discuss the decomposition method and establish our results on noise

independence. Section 5 contains applications. Section 6 concludes. Proofs are in the appendix.

2. Setting and Definitions

Throughout this paper we consider games played by a finite set of players I, who have finite

action sets Ai = {0, 1, . . . ,mi}, i ∈ I, which we endow with the natural ordering. We define

the joint action set A as
∏

i∈I Ai and write A−i for
∏

j,i A j. For action profiles a = (ai)i∈I and

a′ = (a′i)i∈I in A, we write a ≤ a′ if and only if ai ≤ a′i for all i ∈ I. The lowest and highest

action profiles in A are denoted by 0 and m. A complete information game Γ is specified by its

real-valued payoff functions gi(ai, a−i), i ∈ I, where ai denotes i’s action and a−i ∈ A−i denotes

the opposing action profile. A game Γ is supermodular if for all i, ai ≤ a′i , and a−i ≤ a′−i,

(1) gi(ai, a−i) − gi(a′i , a−i) ≤ gi(ai, a′−i) − gi(a′i , a
′
−i).

This implies a player’s best reply is non-decreasing in the actions of her opponents (see Topkis

[24]; note that property (1) is what FMP refer to as strategic complementarities).

We define a global game G(v) as in FMP [10]: consider payoff functions ui(ai, a−i, θ) that

depend on an additional state parameter θ ∈ R. For each θ, let the game given by the ui(·, θ) be a

supermodular game (Assumption A1). In addition, assume there are dominance regions: there

exist thresholds θ < θ such that the lowest and highest actions in Ai are strictly dominant when

payoffs are given by, respectively, ui(·, θ) and ui(·, θ) (Assumption A2). Furthermore, each ui

satisfies state monotonicity in the sense that higher states make higher actions more appealing

(Assumption A3): there exists K > 0 such that for all ai ≤ a′i and θ ≤ θ ≤ θ′ ≤ θ we have

0 ≤ K(a′i − ai)(θ′ − θ) ≤ (
ui(a′i , a−i, θ

′) − ui(ai, a−i, θ
′)
) − (

ui(a′i , a−i, θ) − ui(ai, a−i, θ)
)
.



4

Finally, each ui is continuous in θ (Assumption A4). In Section 3.3, we will relax A3 and A4.

In the global game G(v), the state θ is realised according to a continuous density with connected

support that includes the thresholds θ and θ in its interior. Players observe θ with some noise, and

then act simultaneously. Formally, let f = ( fi)i∈I denote a tuple of probability densities, whose

supports are subsets of [−1
2 ,

1
2]. Each player i receives a private signal xi = θ + vηi, where each

ηi is drawn independently according to the density fi, and v ∈ (0, 1] is a scale factor. Thus, a

global game G(v) is specified by the payoff functions ui, a prior distribution of states, a noise

distribution f , and a scale factor v, each of which is common knowledge among players.

A strategy si is a function that maps a player’s signal onto an action.2 Joint strategy profiles

are denoted by s = (si)i∈I and s−i = (s j) j∈I−{i}. Slightly abusing notation, denote by s(x) the joint

action profile obtained when each player receives the same signal xi = x. We write s ≤ s′ if and

only if s(x) ≤ s′(x) for all x. A strategy profile s is increasing, if each si is weakly increasing in

xi; it is a (Bayes-Nash) equilibrium if each si(xi) is a best reply against s−i, given ui and using

Bayes’s rule to derive the conditional densities of θ and x−i, given xi.

Following FMP, we also define the simplified global game G∗(v), differing from the global game

G(v) in that its prior is uniform and payoffs are given by ui(ai, a−i, xi) and thus depend directly on

the signals. FMP prove that the equilibrium strategy profile in G∗(v) is unique up to its points of

discontinuity (Lemma A1 in FMP) while G(v) may have multiple equilibrium strategy profiles.

However, the key result on global games says that as the scale factor v goes to zero, the equi-

librium strategy profiles of the games G(v) and G∗(v) all converge to the same limiting strategy

profile, which is increasing and unique up to its finitely many discontinuities (Theorem 1 in FMP).

Theorem 0 (Limit Uniqueness). The global games G(v) and G∗(v) have an essentially unique,

common limit equilibrium strategy profile as the scale factor v goes to zero. More precisely,

there exists an increasing pure limit strategy profile s such that, for each v > 0, if sv is an

equilibrium strategy profile of G(v), and s∗v is the unique equilibrium strategy profile of G∗(v), then

limv→0sv(x) = limv→0s∗v(x) = s(x) for all x except possibly at the finitely many discontinuities of s.

Since a global game’s limit strategy profile s is well-defined up to its points of continuity, we use

s and s to denote its right and left continuous versions.

Finally, we will use the following fact about supermodular incomplete information games. For

a given game and strategy profile s, let β(s) denote the joint upper best reply to s, i.e. the profile

in which each player uses her highest best reply to s−i. Then, β is monotonically increasing in s.

Moreover, if s ≤ β(s), the upper best reply iteration s, β(s), β(β(s)), . . . converges monotonically

2Focusing on pure strategies is without loss of generality and simplifies notation. Supermodularity implies that
highest and lowest equilibrium strategy profiles exist in pure strategies and are bounds on any mixed strategy profile
Since these two equilibria converge almost everywhere to a common limit as the scale factor v goes to zero (Theorem
0), surviving strategies may only mix on a null set of signals, which has no effect on other players’ incentives.
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to an equilibrium strategy profile. This applies in particular to the global games G(v) and G∗(v).

3. Equilibrium Selection via Global Games

Let Γ be a given supermodular complete information game. Often, such a game has multiple

Nash equilibria. In that case, a global game gives a method to resolve equilibrium indeterminacy.

Consider a global game, in which payoffs depend on a state parameter, and suppose that for some

fixed state θ∗, these payoffs coincide with those of Γ. We say that the global game embeds Γ at

state θ∗. If—as the noise in private signals vanishes—the global game’s limit equilibrium strategy

profile is continuous at θ∗, its value at that state determines a particular Nash equilibrium of the

complete information game.3 More generally, consider the left continuous version s and right con-

tinuous version s of the limit equilibrium strategy profile. These determine two (perhaps distinct)

Nash equilibria: s(θ∗) and s(θ∗).4 We refer to them as the lowest and, respectively, highest global

game selection (GGS, following Heinemann et al. [14]). If they coincide, the GGS is unique.

In this section, we give a simple characterisation of the GGS, which shows that it depends

only on the payoff functions of the complete information game Γ and the noise distribution of

private signals f in the global game. The additional modelling choices of the global game—its

prior and its payoff functions at states other than θ∗—do not affect the GGS. We also show that

(for a given noise distribution) the lowest GGS is identical to the highest GGS for almost all

supermodular games. Thus, the GGS is generically unique.

Let us first note that this approach applies to any supermodular complete information game.

Lemma 1. For any supermodular game Γ, there is a global game that embeds it.

To see this, extend the payoff functions gi of the complete information game with a state

parameter θ by setting ui(ai, a−i, θ) = gi(ai, a−i) + θai. The payoff functions ui satisfy the global

game assumptions (A1)–(A4). Choose an appropriate prior with sufficiently wide support and

some noise distribution f for private signals, and our claim is satisfied at θ = 0.

§3.1. A Characterisation of the Global Game Selection

We now show that the GGS induced by the global game may be determined without analysing the

full global game under vanishing noise. Instead, we introduce a much simpler game that allows

us to establish the GGS more directly. Following [10], consider a new incomplete information

game E, in which each agent i has a payoff function ũi(ai, a−i, xi) that depends directly on her

signal xi. The payoff functions ũi are equal to the payoff functions gi of the complete information

game Γ for high signals, but for low signals they make the lowest action dominant (Figure 1):

3Theorem 2 in FMP implies that the limit strategy profile selects a Nash equilibrium of Γ if it is continuous at θ.
4Continuity of the payoff functions ui ensures that s(θ∗) and s(θ∗) are also Nash equilibria of Γ.
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−ai gi(ai, a−i)
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|A| xi
0

0
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1

Figure 1. The lower- f -elaboration E and the attained action ai

(2) ũi(ai, a−i, xi) :=


−ai if xi < 0,

gi(ai, a−i) if xi ≥ 0.

Players’ signals are given by xi = θ + ηi, where the common part θ is drawn uniformly from

a large interval5 and, for each player i, the idiosyncratic part ηi is drawn according to a noise

distribution fi, just like in a global game. We refer to E as the (lower- f -)elaboration of Γ.

Standard results on supermodular games ensure that the elaboration E has a highest equilibrium

strategy profile s and ensure it is increasing. Therefore, s must consist of monotonic step

functions, where at each step at least one player switches to a higher action. Since the joint action

set is finite, s must reach a highest action profile (see again Figure 1). We denote this profile by

a and refer to it as the action profile attained in E. Furthermore, s must be constant for signals

above |A|. This is because the number of steps must be less than the size of the action space;

and a player with signal xi knows that all her opponents receive signals within [xi − 1, xi + 1].

Therefore, the distance between the steps must be less than 1—otherwise the distance can be

shortened without affecting expected payoffs at the steps, contradicting the maximality of s.

Thus, the attained action profile a is equal to s(|A|).
Dually, define the upper- f -elaboration E∂ of the complete information game Γ, similar to the

lower- f -elaboration E, except that payoffs are given by gi if the signal xi ≤ 0 and by ai if xi > 0.

We consider the lowest equilibrium strategy profile in E∂, and denote by a the lowest action profile

that is attained in it. It is found by evaluating the lowest equilibrium strategy profile at x = −|A|.
The following result gives (for the noise distribution f ) the relation between the GGS, the ac-

tion profile a attained in the elaboration E, and the action profile a attained in the elaboration E∂.

Theorem 1. Let G(v) be any global game with noise distribution f that embeds the complete

information game Γ at some state θ∗. Let s and s be the left and right continuous versions of the

essentially unique6 limit equilibrium strategy profile in G(v). Then s(θ∗) = a and s(θ∗) = a.

Note the following implication. In any global game, at any state, as the noise in private signals
5We assume this interval is a superset of [−|A| − 1, |A| + 1], where |A| denotes the cardinality of the joint action set.
6Recall that the limit strategy profile is unique up to its (finitely many) points of discontinuity.
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vanishes, the value taken by its essentially unique limit strategy profile depends only on the com-

plete information game given by the payoffs at this state and the noise distribution f . This holds

because our choice of the embedded complete information game Γ at the start of the section was

entirely arbitrary, and Γ and f are the only ingredients of the global game appearing in E and E∂.

The irrelevance of the prior distribution in the global game for establishing its limit equilibrium

strategy profile was already shown by FMP. It may be surprising that the extended payoff function

is also irrelevant. If one thinks of the GGS as determined by an infection process starting from

the dominance regions, one might imagine that if the complete information game Γ is embedded

at some state θ∗ close to the lower dominance region, this may influence the GGS in such a way

that it selects a lower equilibrium compared to a global game in which Γ is embedded near the

upper dominance region. However, Theorem 1 tells us this is not the case.

A practical way to think about Theorem 1 is the following. In economic applications, the state

θ is typically interpreted as an economic fundamental affecting the decision problem of players.

But several economic variables may be candidates for the state θ. Theorem 1 says that the choice

of the fundamental used to perturb the decision problem is irrelevant: the GGS will be the same.

We sketch the proof of Theorem 1, concentrating on the highest GGS. To this end, we connect

the elaboration E and its attained action profile a with the simplified global game G∗(v) that

determines the GGS. We do this by introducing two additional parameters in E: the scale factor

v and an explicit threshold signal y at which its payoffs change (normalised to 0 in Equation (2)).

Formally, let Ey(v) denote a version of E in which agents receive scaled signals xi = θ + vηi, and

in which payoffs are given by gi for xi ≥ y and by −ai for xi < y. Note that due to the simple

structure of E, any equilibrium strategy profile of E has a scaled and shifted counterpart in Ey(v).

In particular, the highest equilibrium strategy profile s of E has a scaled counterpart in Ey(v)

where the distance between steps is scaled down by a factor v and all steps are shifted to the right

by y. Thus, it prescribes that player i plays action ai for all signals higher than xi = y + v|A|.
Now, we compare the simplified global game G∗(v) and the elaboration Eθ∗(v) (i.e. y is set to

θ∗). For any signal xi and any opposing strategy profile, the upper-best reply in G∗(v) is weakly

higher than in Eθ∗(v): for signals below θ∗ the lowest action is strictly dominant in Eθ∗(v); for

signals above θ∗ a player’s incentive to increase her action increases in xi in G∗(v) but is constant

in Eθ∗(v). In particular, this means that any equilibrium in Eθ∗(v) must be a lower bound on the

unique equilibrium of G∗(v). Letting the scale factor v go to zero, the fact that action ai is played

at xi = θ∗ + v|A| in an equilibrium of Eθ∗(v), together with the right-continuity of the limit profile

s of G∗(v), establishes that the attained profile a is a lower bound on the highest GGS at θ∗. This

argument is also used in the proof of Theorem 4 in FMP.

The key observation behind Theorem 1 is that a converse result also holds: the attained

action profile a also determines an upper bound for the highest GGS. To see this, compare
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the elaboration Eθ(v) with the simplified global game G∗(v), so that the dominance regions

and scale factor v of both games coincide. For signals xi ∈ [θ, θ∗], payoffs in Eθ(v) are given

by gi(·) = ui(·, θ∗), while payoffs in G∗(v) are given by ui(·, xi). State monotonicity of payoff

functions ui (assumption A3) implies that for all signals up to θ∗, best replies in Eθ(v) will be

weakly higher than in G∗(v). This suggest that, at least for small v, a can serve as an upper bound

on s(θ∗), i.e. the actions prescribed at θ∗ by the unique equilibrium s in G∗(v). In the appendix,

we prove this intuition to be correct.

§3.2. The Global Game Selection is Generically Unique

FMP define a global game as a family of supermodular games ordered along a one-dimensional

state space, and find that the GGS is unique at almost all states. Theorem 1 says that for any

given supermodular game, the lowest and highest GGS depend only on the choice of the noise

distribution f and can be determined without reference to any particular global game embedding.

We will complement FMP’s observation by showing that (given f ), if one picks an individual

supermodular game at random, the lowest GGS and highest GGS typically coincide.

More precisely, consider the set of games with player set I and joint action set A, which may

be identified with the Euclidean space R|I×A|. E.g., for two-player two-action games, |I × A| = 8,

corresponding to the number of entries that characterise the payoff matrix. Let S ⊆ R|I×A| be the

subset of supermodular games. For any fixed noise distribution f , denote by S f the subset of

supermodular games in which the GGS is unique; S − f denotes its complement in S , the set of

games in which the GGS is not unique. Then the set S − f is small relative to S f , both in measure

and in a topological sense.

Theorem 2. For any noise distribution f , S f is open and dense in S , while S − f is closed and

nowhere dense in S . Moreover, S f is of infinite Lebesgue measure, while S − f is a null set.

Recall that S f is dense in S if each supermodular game Γ ∈ S − f can be approximated by games

in S f . As jumps in the limit strategy profile of a global game are isolated, we can approximate

any Γ ∈ S − f if we embed it in a global game G(v) with noise distribution f and choose a sequence

of games in S f along the one-dimensional state space of G(v). In the proof, we also establish that

S f is open in S , and thus S − f is closed and nowhere dense. We then show that S − f has Lebesgue

measure zero, by applying a result that connects its topological properties to its measure.

§3.3. Global Game Selection in Discontinuous Global Games

Since Theorem 1 says that the GGS may be determined without reference to any particular global

game embedding, this suggests that the monotonicity (A3) and continuity (A4) assumptions

imposed on the embedding, can be weakened. To see why this may be important in an applied
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context, consider the following n-player speculative attack game:

player i

α > ξ α ≤ ξ
(“don’t attack”) 0 0 0

(“attack”) 1 −1 1

where α is the fraction of players who choose 0.

It is an exemplary regime change game, where players’ payoffs depend on whether they reach

a critical mass ξ. Intuitively, there are at least two ways to embed the game in a global game:

one can perturb the payoffs as in Lemma 1, or one can perturb the critical mass by setting ξ = θ.

In the latter case, which is often considered in the applied literature (e.g. [7, 12, 17, 23]), payoffs

remain unchanged for most changes in the state, jumping at the point where a change in the state

leads to a regime change. Thus the global game payoff functions violate state monotonicity (A3)

and continuity (A4). But even in this case, they satisfy the following assumption:

(A3∗) Weak state monotonicity. Higher states make higher actions weakly more appealing:

(3) for all i, a−i and ai < a′i , ui(a′i , a−i, θ) − ui(ai, a−i, θ) is weakly increasing in θ.

We can show that, even if a global game embedding satisfies only these weakend conditions,

the GGS may be determined analogous to Theorem 1. As before, let Γ be a given supermodular

complete information game. Suppose it is embedded at state θ∗ in a generalised global game,

with payoffs differing from an ordinary global game in that they satisfy (A3∗) but not necessarily

(A3) or (A4). By standard results on supermodular games, for each scale factor v > 0, the highest

and lowest equilibrium strategy profiles ŝv and šv exist nonetheless. We define their pointwise

limits ŝ = lim supv→0 ŝv and š = lim infv→0 šv. Also, for each state θ, consider the complete

information game with payoffs ui(·, θ). We may determine its attained action profiles aθ and aθ
from the associated elaborations Eθ and E∂

θ ; these attained action profiles may be regarded as

functions of θ.7 Using these definitions, we obtain the following result, parallel to Theorem 1:

Theorem 3. Let G̃(v) be a generalised global game with noise structure f that embeds the

complete information game Γ at θ∗. Let ŝ and š be its highest and lowest limit equilibrium

strategy profiles. If (i) the attained equilibria a and a of the game Γ coincide and (ii) the

functions aθ and aθ are continuous at θ∗, then ŝ(θ∗) = a = a = š(θ∗).

To prove this result, we “sandwich” the payoff function of the global game G̃(v) between that of

two “ordinary” global games that approximate it. Then, we use Theorem 1 to show that their limit

strategy profiles coincide at θ∗. This pins down the limit strategy profile of G̃(v) at θ∗ as well.

The regulatory conditions (i) and (ii) are needed because of the weakening of (A3) and (A4).

Note that Theorem 2 guarantees that (i) is satisfied for almost all supermodular games. As for (ii),

(A3∗) implies that the attained profiles aθ and aθ are increasing in θ and thus have only finitely

7We formally define these concepts by substituting ui(·, θ) for gi(·) in the definition of E, E∂, a, and a.
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Symmetric Games Asymmetric Games

actions: 2 each 3 each 4 each actions: 2 each 2 by n 3 each

2 players �a �c ×b 2 players �a ���������g ×c

3 players �b ×d 3 players ×e n/a
n players �b n players ×f n/a

� Noise independent × Counterexample to noise independence exists.
a Carlsson and Van Damme. b FMP. c Basteck and Daniëls. d Basteck et al. e Carlsson.
f Corsetti et al. g This paper, Section 5.

Table 1. Noise (In)dependence

1

X Always noise independent. × Counterexample to noise independence exists. aCarlsson and Van
Damme [6]. bFrankel, Morris and Pauzner [10]. cBasteck and Daniëls [1]. dBasteck et al. [2].
eCarlsson [4]. f Corsetti et al. [7]. gThis paper, see Section 5: Two-player games with 2-by-n-actions.
For empty cells noise dependence follows from an example in smaller games.

Table 1. Noise (In)dependence in Supermodular Games

many discontinuities, as the joint action set is finite. But unlike in an ordinary global game, (i)

does not imply (ii), as aθ and aθ may jump because of a discontinuity in the payoff difference (3).

4. A Decomposition Approach to Noise Independence

A supermodular complete information game Γ, embedded in a global game at a state θ∗, is

called noise independent if, as the noise in private signals vanishes, the global game’s limit

strategy profile takes on the same value at θ∗ regardless of the choice of the noise distribution f .

Theorem 1 implies that noise independence is a well-defined property of the game Γ: it is noise

independent in one global game embedding if and only if it is noise independent in every other.

Many small games, with few players or few actions, are noise independent. Typically, for such

games there are also easy heuristics to find the GGS. For instance, a well-known elementary

condition to judge whether a game is noise independent is the “p-dominance” criterion.

Definition. Given a tuple p = (pi)i∈I , an action profile a∗ is said to be p-dominant if each player

i who expects her opponents to play a∗−i with probability pi would choose a∗i as a best reply.

If a supermodular game Γ has a p-dominant action profile a∗ with
∑

i∈I pi < 1, then a∗ is an

equilibrium robust to incomplete information in the sense of Kajii and Morris [15]. Moreover,

a∗ is robust in all games with payoffs close to those of Γ. Hence, a∗ is the unique GGS in Γ,

regardless of the noise distribution.8 For some games, an even simpler way to determine noise

independence is to count the number of players and actions. Table 1 summarises when this is

possible; for supermodular games indicated with a “X”, noise independence always holds.

Table 1 also shows that noise independence may fail quickly as we enlarge the action sets of

players. In this section, we will show that a game may nevertheless be noise independent if we

can suitably decompose it into smaller games. We start by making a more basic observation: in

certain games with large action sets, the GGS may be determined by solving smaller games.

8See Oury and Tercieux [19] or our working paper version [2]; Morris and Shin [18] provide a heuristic argument.
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Figure 2. Exploiting the GGS of restricted games

Definition. Consider a supermodular complete information game Γ with joint action set A. For

action profiles a ≤ a′, we define [a, a′] := {ã ∈ A | a ≤ ã ≤ a′}. The restricted game Γ|[a, a′] and

elaboration E|[a, a′] are given by restricting the joint action set of Γ and its elaboration E to [a, a′].

Figure 2 now illustrates the idea. If certain action profiles a and a′ are played in equilibrium

strategy profiles of the restricted elaborations E|[0, a] and E|[a, a′], we can “patch” these profiles

together to obtain a strategy profile s in the elaboration E, such that an upper best reply iteration

starting from s is weakly increasing. Hence the attained action profile a in E must be weakly

higher than a′. By Theorem 1, a′ provides a bound on the GGS. We may also do this iteratively:

Lemma 2. Fix a supermodular game Γ and noise structure f . An action profile an is the unique

global game selection, if there is a sequence 0 = a0 ≤ a1 · · · ≤ an ≤ an+1 · · · ≤ am = m such that

(i) a j is the unique global game selection in Γ|[a j−1, a j] for all j ≤ n, and

(ii) a j−1 is the unique global game selection in Γ|[a j−1, a j] for all j > n.

A noise independence result follows as an immediate corollary. If the restricted games in the

hypothesis of Lemma 2 are noise independent, we can use the same decomposition of the game

Γ, regardless of the noise distribution f , and Γ must be noise independent.

Theorem 4. Fix a supermodular game Γ. An action profile an is the unique noise independent

global game selection, if there is a sequence 0 = a0 ≤ a1 · · · ≤ an ≤ an+1 · · · ≤ am = m such that

(i) a j is the unique noise independent global game selection in Γ|[a j−1, a j] for all j ≤ n, and

(ii) a j−1 is the unique noise independent global game selection in Γ|[a j−1, a j] for all j > n.

In Section 5 we apply these results to derive the noise independent GGS in two examples.

The concept of p-dominance reveals another connection between noise independence and

robustness to incomplete information. Together, Proposition 2.7 and 3.8 in Oyama and Tercieux

[21] imply that if a supermodular game Γ can be decomposed—as above—into restricted games,

all of which have a strict p-dominant equilibrium with sufficiently small p, uniform across these

games, then an is also the unique robust equilibrium of Γ.

However, Theorem 4 establishes a more direct result about equilibrium selection in global

games. First, its conclusion holds independently of whether the action profile an is robust to in-

complete information, which is a sufficient, but not a necessary condition for noise independence
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(see the combined results of Basteck and Daniëls [1] and Oyama and Takahashi [20]). Second,

it allows application of a range of known criteria for noise independence besides p-dominance;

e.g., the fact that symmetric three-player three-action games, symmetric n-player binary-action

games, and (as we show below) two-player 2-by-n-action games are noise independent, none

of which are equivalent to the p-dominance criterion. Indeed, we can apply a different criterion

to each restricted game. Thus, our theorem applies under strictly more general conditions.

5. Applications

It remains to show that our results may be applied in economically interesting settings. We report

two examples. In addition, we use Theorem 1 to establish a new noise independence result.

Refinancing Game. Consider a complete information game Γ in which 3 lenders decide whether

or not to refinance a firm invested in a long term project. Each lender can lend one unit of cash.

The firm promises to repay Rh at maturity. However, if the firm cannot fully refinance the project,

it may not be able to repay in full. It may repay Rl < Rh, or default outright and not repay at all.

The firm has the option to issue collateralised debt that gives lenders an additional payoff of

c in both the partial and the complete default scenarios, but yields a lower repayment Rm < Rh

when the project succeeds, as the provision of collateral reduces balance sheet flexibility and

thus is costly for the firm. The following matrix summarises the possible outcomes of the game,

identifying the different lending decisions with actions 0, 1, and 2 as indicated.

lender i

lenders I − {i}
(0, 0) (0, 1), (0, 2) or (1, 1) (1, 2) or (2, 2)

(“don’t lend”) 0 1 1 1

(“secured loan”) 1 c Rl + c Rm

(“unsecured loan”) 2 0 Rl Rh

For Rl = 2
3 and Rh = 2, and in the absence of collateralised debt, the GGS implies that lenders

will not finance the project—recall that in symmetric binary-action games, the GGS is the best

reply to the belief assigning equal probability to opponents’ profiles (0, 0), (0, 2) and (2, 2).

Introducing collateralised loans may change this result. For example, if c = 2
3 and Rm = 3

2 , we

find that in the restricted game Γ|[0, 1] (where lenders choose 0 or 1), the GGS is 1,9 as it is the

best reply to the belief assigning equal probability to (0, 0), (0, 1) and (1, 1). Similarly, the GGS in

Γ|[1, 2] is 2. Thus, by Lemma 2, the GGS in Γ is 2: lenders are willing to provide unsecured loans

if we include option 1. Intuitively, this change occurs because the possibility of opponents ex-

tending secured loans makes action 2 less risky. Note that all of this holds regardless of the noise

distribution, as noise independence is inherited from the two symmetric binary-action games by

Theorem 4, and despite the fact that 3-player 3-action games are not in general noise independent.

9In this section, for brevity we use n ∈ N to denote the action profile where all players use action n.
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Asymmetric Minimum Effort Game. Each player i ∈ I produces an intermediate good that

is a necessary input for a final good. Players choose their production level ai ∈ {0, . . . ,m} and

production of the final good good is amin := min{ai|i ∈ I}. Players’ individual payoff functions

are given by gi(ai, a−i) = bi(amin)−ci(ai), where bi and ci are increasing benefit and cost functions.

This game typically has many equilibria. It generalises a model of Bryant [3] studied by Carlsson

and Ganslandt [5] and Van Huyck et al. [25].10

To solve the game for the GGS, we decompose it into m restricted binary-action games with

joint action sets {k − 1, k}|I|, 0 < k ≤ m. We will determine the GGS in these restricted games.

By Theorem 1, the GGS equals k if and only if in the associated elaboration E|[k − 1, k] we can

construct an increasing strategy profile such that players choose action k for sufficiently high

signals, and from which a best reply iteration leads upwards.

Consider a strategy profile for the elaboration E|[k − 1, k], given by thresholds z = (zi)i∈I such

that each player i switches from action k − 1 to k at zi ∈ [0, |A|]. Let Pi(z) be the probability that

player i attaches to all her opponents playing action k, given their thresholds, when she gets signal

zi. The highest GGS equals k if and only if we can adjust the (zi)i∈I such that each individual

player prefers to play k at her threshold; it is unique if they can be made to strictly prefer this, i.e.

(4) pi :=
ci(k) − ci(k − 1)
bi(k) − bi(k − 1)

< Pi(z),

To solve the restricted game, we use the following fact (proved in the appendix): the beliefs at the

thresholds zi always satisfy the constraint
∑

i∈I Pi(z) = 1. So, summing (4) over all players gives

(5)
∑
i∈I

ci(k) − ci(k − 1)
bi(k) − bi(k − 1)

< 1.

Therfore, a necessary condition for k to be the unique GGS is that players’ aggregate marginal

cost-benefit ratios, when everyone switches from k − 1 to k, are strictly smaller than 1. This is

also sufficient, since k is p-dominant with
∑

pi < 1 when (5) holds, implying noise independent

selection. Conversely, if (5) holds with the inequality reversed, k − 1 must (necessarily) be the

unique GGS—though in this case the restricted game is generally not p-dominant solvable.

Provided the left hand side of (5) crosses 1 at most once and from below for increasing

k = 1, 2, . . . ,m, this decomposition yields a generically unique, noise independent, GGS. (A

sufficient, but not necessary, condition is that the individual ci are convex and bi are concave.)

Two-player games with 2-by-nnn-actions. To conclude, we will use Theorem 1 to prove a new

noise independence result for supermodular 2-by-n games. This completes the characterisation

of supermodular games for which noise independence follows from the size of individual action

sets (Table 1). Let Γ be a supermodular game with player set I = {1, 2}, and action sets A1 = {0, 1}
10Carlsson and Ganslandt [5] consider a form of trembling hand perfection in a symmetric version of this model;
Van Huyck et al. [25] experimentally test a variant with linear and symmetric payoffs.
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and A2 = {0, 1, . . . ,m2}. E.g., player 1 is a government contemplating an infrastructure project

and player 2 is a firm choosing a plant capacity, and their investments are complements.

For an arbitrary noise distribution f , consider the associated elaboration E and its highest

equilibrium strategy profile s, in which players jointly play a = (a1, a2) at sufficiently high signals.

If the attained action ai = 0 for some player i, she plays 0 for all signals in the elaboration E.

Thus the attained action a j, j , i, must be j’s highest best reply to 0. Then, the joint strategy

profile given by si(xi) = 0 for all xi, and s j(x j) = 0 if x j < 0 and s j(x j) = a j if x j ≥ 0 is the

highest equilibrium in a lower- f ′-elaboration under any other noise distribution f ′.

Alternatively, suppose action a1 = 1 and a2 = k > 0. Then the highest strategy profile s may

be identified with a threshold z1
1 and a tuple of thresholds z1

2, z
2
2, . . . , z

k
2, at which players 1 and

2 switch to higher actions. The opposing action distribution faced by player 1 at x1 = z1
1 is

determined by the probabilities Q j = Pr(x2 < z j
2|x1 = z1

1) that player 2 chooses an action below

j = 1, ..., k given that x1 = z1
1. But the opposing action distribution that player 2 faces at each of

her thresholds z j
2 is also described by these probabilities, since for all j = 1, ..., k we find

Pr(x1 > z1
1|x2 = z j

2) = Pr(x1 − x2 > z1
1 − z j

2|x2 = z j
2)

= Pr(x1 − x2 > z1
1 − z j

2|x1 = z1
1) = Pr(x2 < z j

2|x1 = z1
1) = Q j,

where the second equality follows from the uniform prior distribution of θ. Now, if we consider

any other noise distribution f ′ and associated lower- f ′-elaboration E′, we can always construct an

increasing strategy profile s′ in which players jointly play (1, a2) for sufficiently high signals, by

putting z1
1 = 1 and arranging the remaining k thresholds {z1

2, z
2
2, . . . , z

k
2} such that the k independent

equations that determine the Q j, j = 1, ..., k, hold under the new noise distribution.

In this way, the action distributions that players face at their thresholds remain unchanged.

Since they are willing to switch to higher actions given these beliefs, a best reply iteration in

elaboration E′ starting at the profile s′ is monotonic and leads to an equilibrium strategy profile

s∗ ≥ s′ of E′. By Theorem 1, the highest GGS under the noise distribution f ′, a′, is weakly

higher than a, the highest GGS under f . Since f and f ′ were arbitrary, we find that a′ = a. A

dual argument establishes that a′ = a, proving the noise independence of the game Γ.

6. Conclusion

We have shown how, for any supermodular complete information game, we may deduce its

global game selection directly using solely the complete information game’s payoffs and the

global game’s noise distribution (Theorem 1). For almost all games this gives a unique global

game selection (Theorem 2). Our results may be used to establish selection under weakened

assumptions on the global game (Theorem 3), which is useful from an applied perspective.
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From a practical point of view, our most powerful result is Theorem 4. It implies that the

global game selection may be derived by decomposing a many-action game into smaller games,

for which existing heuristics and noise independence results can be applied. As we showed in

Section 5, simplified conditions for the global game selection and a manageable heuristic to

derive it in many-action games make it easier to apply the theory of global games. That should

facilitate new research on topics where strategic complementarities are crucial.

Appendix

Proof of Theorem 1. The lower bound argument used in FMP and given in Section 3.1 yields

s(θ∗) ≥ a. We now prove the converse: s(θ∗) ≤ a. By duality, s(θ∗) ≤ a and s(θ∗) ≥ a also hold.

Consider a simplified global game G∗(v) with noise structure f , and its right continuous,

increasing equilibrium strategy profile s∗v. As v→ 0, s∗v converges to the limit equilibrium strategy

profile s (Theorem 0). For now, assume this limit equilibrium strategy profile is continuous at θ∗.

Then there exist v and δ > 0 such that for all v < v and x ∈ [θ∗−δ, θ∗+δ] we have that s∗v(x) equals

the (highest) GGS s(θ∗), an equilibrium a∗ of the complete information game Γ. Now fix some

v < min{δ, v} and consider Eθ(v), the scaled and shifted version of elaboration E as defined at the

end of Section 3.1. The lower dominance regions, scale factors, and noise distributions of Eθ(v)

and G∗(v) coincide. Assume that in the game Eθ(v) players use the strategy profile s′ given by:

s′(x) =


s∗v(x) if x ≤ θ∗,
s∗v(θ∗) if x > θ∗.

For any player i, and any signal xi < 0, action 0 is dominant both in Eθ(v) and in G∗(v), so for

x < 0, the upper-best reply in Eθ(v) is β(s′)(x) = 0 = s∗v(x) = s′(x). For xi ∈ [θ, θ∗], i’s opponents

receive signals smaller than θ∗ + δ and follow s∗v,−i in Eθ(v). Since the distributions of players’

signals are identical in G∗(v) and Eθ(v), but i’s payoff is given by gi(·) = ui(·, θ∗) in Eθ(v) and

by ui(·, xi) in G∗(v), supermodularity implies that the upper-best reply in Eθ(v) is β(s′)(x) =

β(s∗v)(x) ≥ s∗v(x) = s′(x), for θ ≤ x ≤ θ∗. For xi > θ
∗, player i’s opponents receive signals higher

than θ∗ − δ and, following s′−i, play a∗−i. As a∗ is a Nash equilibrium of Γ, β(s′)(x) ≥ a∗ = s′(x).

In sum, in the elaboration Eθ(v), β(s′) ≥ s′. Hence, an upper-best reply iteration starting at s′

yields a monotonically increasing sequence of strategy profiles that converges to an equilibrium

profile s∗ ≥ s′. It follows that s∗(θ∗) ≥ s′(θ∗) = s∗v(θ
∗) = s(θ∗). As the attained action profile a

is defined as the highest action profile attained in any equilibrium strategy profile in E, and each

equilibrium profile in Eθ(v) has a scaled and shifted counterpart in E, we have a ≥ s∗(θ∗) ≥ s(θ∗).

If the limit strategy profile s is not continuous at θ∗, we may choose a decreasing sequence

θ0, θ1, θ2, . . . converging to θ∗ such that s is continuous at each θn. For each game Γn embedded

at θn, consider the elaboration En, identical to E except that payoffs are given by ui(·, θn) if xi ≥ 0.
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Let sn be the highest equilibrium profile of En and recall sn(|A|) is the highest action profile

played in sn. By the first part of the proof, sn(|A|) ≥ s(θn). As sn is an equilibrium of En,

∀i ∈ I,∀ai ∈ Ai,∀xi ≥ 0,
∫
R|I|−1

(
ui(sn

i (xi), sn
−i(x−i), θn) − ui(ai, sn

−i(x−i), θn)
)
πi(x−i|xi) dx−i ≥ 0,

where πi(·|xi) is the conditional density over opponents’ signals. By state monotonicity (A3), the

sequence of equilibria sn converges to s∗ = inf{sn|n ∈ N}. As payoffs ui are bounded on the com-

pact set A×[θ∗, θ0], the dominated convergence theorem ensures expected payoffs also converge:

∀i ∈ I, ai ∈ Ai, xi ≥ 0,
∫
R|I|−1

(
ui(s∗i (xi), s∗−i(x−i), θ∗) − ui(ai, s∗−i(x−i), θ∗)

)
πi(x−i|xi) dx−i

= lim
n→∞

∫
R|I|−1

(
ui(sn

i (xi), sn
−i(x−i), θn) − ui(ai, sn

−i(x−i), θn)
)
πi(x−i|xi) dx−i ≥ 0

So s∗ is an equilibrium strategy profile in the elaboration E of the game Γ. Finally, since s∗(|A|) =

inf{sn(|A|)|n ∈ N} ≥ inf{s(θn)|n ∈ N} = s(θ∗), we conclude that the attained profile a ≥ s(θ∗). �

Proof of Theorem 2. Fix f . In this proof, for any game Γ ∈ S , denote its associated upper- and

lower- f -elaborations by E(Γ) and E∂(Γ) and their respective attained action profiles by a(Γ) and

a(Γ). Also, for any game Γ ∈ S (with payoffs gi) define a global game embedding as in Lemma 1

by setting uΓ
i (ai, a−i, θ) = gi(ai, a−i) + θai. Given this embedding, Γθ denotes the complete inform-

ation game embedded at θ. For r > 0, let Br(Γ) be the open ball in R|I×A| with radius r around Γ.

To prove that S f is dense in S we may show that if Γ ∈ S − f , there is a game arbitrarily close to

Γ in which the GGS is unique. But this is always true, as the limit equilibrium strategy profile of

Γ’s embedding given by the payoffs uΓ
i is unique up to its finitely many discontinuities (Theorem

0). To prove that S f is open in S , note that if Γ ∈ S f , the limit equilibrium strategy profile of its

embedding given by uΓ
i is constant over some interval (−2ε, 2ε), as the joint action set A is finite.

Then, by the following result, S f is open in S (and hence S − f is closed and nowhere dense in S ):

Claim 1. If Γ ∈ S f and, for some ε > 0 and a∗ ∈ A, a∗ = a(Γθ) = a(Γθ) for all θ ∈ (−2ε, 2ε),

then a∗ = a(Γ′) = a(Γ′) for all supermodular games Γ′ in an ε-neighbourhood of Γ.

Proof. Let Γ′ be a supermodular game in an ε-neighbourhood of Γ. Then for all i, a−i, and a′i < ai,

uΓ
i (ai, a−i,−2ε) − uΓ

i (a′i , a−i,−2ε) = gi(ai, a−i) − gi(a′i , a−i) − 2ε(ai − a′i)

≤ gi(ai, a−i) − gi(a′i , a−i) − 2ε ≤ g′i(ai, a−i) − g′i(a
′
i , a−i),

where g′i denotes the payoffs of Γ′. Thus, for any opposing action distribution, the upper-best

reply in the elaboration E(Γ′), is weakly higher than in E(Γ−2ε). But then the same is true for

their highest equilibrium strategy profiles, so that a(Γ′) ≥ a(Γ−2ε) = a∗. Using a symmetric

argument, we establish that a(Γ′) ≤ a∗. Dually, we may show that a(Γ′) = a∗, proving the claim.

Now, we may establish measure theoretic genericity. A subset P ofR|I×A| is called porous if there
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are λ ∈ (0, 1) and k > 0 such that for any Γ ∈ P and ε ∈ (0, k), there exists Γ′ ∈ R|I×A| such that

Bλε(Γ′) ⊆ Bε(Γ) − P. Any porous subset of R|I×A| is a Lebesgue null set ([16], p. 220–222). Let:

S − f
k := {Γ ∈ S − f | Γθ ∈ S f ,∀θ ∈ (−k, 0) ∪ (0, k)}.

We will prove that S − f
k is porous. Assume Γ ∈ S − f

k and choose ε ∈ (0, k). Setting Γ′ := Γ ε
2
, we

know that the GGS will be unique and identical to that of Γ′ for all games {Γ′θ ∈ S | θ ∈ (− ε2 , ε2 )}.
By Claim 1, we know that the GGS is unique for all supermodular games in an ε

4 -neighbourhood

of Γ′, thus B ε
4
(Γ′)∩S − f

k = ∅. Setting λ = 1
4 , we have for ε ∈ (0, k) that Bλε(Γ′) ⊆ Bε(Γ)−S − f

k , i.e.,

S − f
k is porous. Thus S − f =

⋃
{k∈Q | k>0} S

− f
k is a countable union of Lebesgue null sets and hence a

null set itself. To see that, by contrast, S is of infinite Lebesgue measure, pick a game such that the

inequalities in (1) hold strictly, and note it is contained in an open ball B ⊆ R|I×A| of supermodular

games. Moreover, for each open ball B in S , we find another ball B′ ⊆ S of arbitrarily large

measure, if we multiply the payoffs of all games in B with a sufficiently large constant. �

Proof of Theorem 3. For two different games write Γ1 ≺ Γ2 if for all i, a′i < ai and a−i the corres-

ponding payoffs satisfy g1
i (ai, a−i)−g1

i (a′i , a−i) < g2
i (ai, a−i)−g2

i (a′i , a−i). Given any opposing action

distribution, the lowest best reply in Γ1 will then be weakly lower than the lowest best reply in Γ2.

Now, consider a generalised global game G̃(v) with noise distribution f and payoffs functions

ui. Write Γθ for the complete information game with payoffs u(·, θ). Assume that (i) aθ∗ = aθ∗ = a∗

and (ii) aθ, aθ continuous at θ∗. Note that ŝ ≥ š, so it suffices to show that š(θ∗) ≥ a∗ ≥ ŝ(θ∗).

We will prove the first inequality; the second follows by duality. To do so, we will compare the

payoff functions ui satisfying (A1)–(A3∗) to payoff functions u′i satisfying (A1)–(A4).

First, by continuity of aθ and aθ at θ∗, there is some nearby, game Γθ∗−ε embedded at θ∗ − ε
whose GGS is unique and equal to a∗. Next, consider the game Γ′ given by g′i(ai, a−i) =

ui(ai, a−i, θ
∗ − ε)− kai, k > 0. By Claim 1, we can choose k such that the GGS in Γ′ is unique and

equal to a∗. Furthermore, w.l.o.g., assume that there exist extreme values θ̌ < θ and θ < θ̂ such that

we have a chain of four games satisfying Γθ̌ ≺ Γ′ ≺ Γθ∗ ≺ Γθ̂. Using this chain, we construct u′:

u′i(ai, a−i, θ) =



ui(ai, a−i, θ̌) if θ < θ∗ − ε,
θ∗−θ
ε

ui(ai, a−i, θ̌) +
θ−(θ∗−ε)

ε
g′i(ai, a−i) if θ∗ − ε ≤ θ < θ∗,

θ̂−θ
θ̂−θ∗g

′
i(ai, a−i) + θ−θ∗

θ̂−θ∗ui(ai, a−i, θ
∗) if θ∗ < θ < θ̂,

(θ̂ + 1 − θ)ui(ai, a−i, θ
∗) + (θ − θ̂)ui(ai, a−i, θ̂) if θ̂ ≤ θ < θ̂ + 1,

ui(ai, a−i, θ̂) if θ̂ + 1 ≤ θ,
Comparing the payoffs u′ with u, we see that under u′ the dominance regions have been shifted

to the right, the game Γθ̌ is now embedded at θ∗−ε, Γ′ at θ∗, Γθ∗ at θ̂, Γθ̂ at θ̂+ 1 and the remaining

games are linear interpolations. Thus, for any θ, the lowest best reply under u is weakly higher
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than under u′. Also, since payoffs are linearly interpolated between Γθ̌ ≺ Γ′ ≺ Γθ∗ ≺ Γθ̂, payoff

differences are piecewise linear in θ, thus satisfy (A3). Clearly, (A4) is satisfied as well.

Finally, consider the global game G′(v) with the newly constructed payoff function u′, and the

same noise distribution f and prior as G̃(v). For any v > 0, G′(v) has a lowest equilibrium strategy

profile, denoted s′v. As best replies are higher under u than under u′, for the lowest equilibrium

strategy profile in G̃(v) we find šv ≥ s′v. Thus, š(θ∗) = lim infv→0 šv(θ∗) ≥ limv→0 s′v(θ
∗) = a∗,

where the last equality follows by Theorem 1 and the fact that a∗ is the unique GGS of Γ′. �

Proof of Lemma 2. Let us first prove two claims about restricted games of Γ:

Claim 2. Consider four action profiles a, b, c, d such that a ≤ b ≤ d and a ≤ c ≤ d. Then the

highest GGS in Γ|[a, b] is weakly lower than the highest GGS in Γ|[c, d].

Proof. Consider the highest GGS a in Γ|[a, b]. By Theorem 1 there exists an equilibrium strategy

profile s in E|[a, b] prescribing the action profile a for high signals. Define a strategy profile s′

pointwise as max{c, s(x)} for each signal tuple x. Due to supermodularity, an upper best reply

iteration in E|[c, d] starting from s′ will be increasing. Thus, there exists an equilibrium strategy

profile in E|[c, d] that prescribes actions weakly higher than a for high enough signals.

Claim 3. Consider three action profiles a ≤ b ≤ c. If, for fixed f , a is the unique GGS in Γ|[a, b]

and b is the unique GGS in Γ|[b, c], then a is the unique GGS in Γ|[a, c].

Proof. Consider the highest GGS a in Γ|[a, c]. Since b is the highest GGS in Γ|[b, c], Claim 2

implies a ≤ b. In addition, a is the highest GGS in Γ|[a, a], as the highest equilibrium strategy

profile in E|[a, c] (which attains a) is also an equilibrium profile in E|[a, a]. Since a ≤ a ≤ b,

Claim 2 applied to the games Γ|[a, a] and Γ|[a, b] yields a ≤ a, proving Claim 3.

Now, applying Claim 3 iteratively to the sequence an ≤ an+1 · · · ≤ am, we see that an is the unique

GGS in Γ|[an,m]. Hence, by Claim 2, the highest GGS in Γ = Γ|[0,m], a, is weakly lower than

an. By a dual argument, an is the unique GGS in Γ|[0, an], and the lowest GGS in Γ = Γ|[0,m], a,

is weakly higher than an. Together, this yields a = a = an. �

Proof of inequality (5). Fix a noise distribution f ; let Fi be the c.d.f. of player i’s density fi. Then∑
i∈I

Pi =
∑
i∈I

∏
j∈I−{i}

Pr(x j ≥ z j|xi = zi) =
∑
i∈I

∫ |A|+1

−|A|−1
fi(zi − θ)

∏
j∈I−{i}

(1 − F j(z j − θ)) dθ.

Picking some player t ∈ I and integrating by parts the summand corresponding to i = t gives(1 − F1(z1 − θ))
∏

j∈I−{t}
(1 − F j(z j − θ))


|A|+1

−|A|−1

−
∫ |A|+1

−|A|−1

∑
i∈I−{t}

 fi(zi − θ)
∏

j∈I−{i}
(1 − F j(z j − θ))

 dθ

+
∑

i∈I−{t}

∫ |A|+1

−|A|−1
fi(zi − θ)

∏
j∈I−{i}

(1 − F j(z j − θ)) dθ =

∏
j∈I

(1 − F j(z j − θ))

|A|+1

−|A|−1

= 1. �
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