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Abstract

I propose a centralized marketplace, a pre-exchange, for health insurer-provider network for-

mation and examine its welfare impact. Current network formation is highly decentralized and

contracting is bilateral within each insurer-provider pair. The key innovation of the pre-exchange

is the introduction of explicitly multilateral contracting. In particular, providers set prices that

depend both on the identity of the insurer as well as the identities of the other hospitals in

the insurer’s network. I refer to this as network-specific pricing. I argue that the introduction

of network-specific pricing enhances efficiency and dramatically lowers equilibrium health care

prices. I first introduce a theoretical model that illustrates the general tension that results from

the key features of the current market structure: network access, bilateral contracting and per-

patient pricing. I then demonstrate how the pre-exchange results in lower equilibrium provider

prices. The main theoretical insight is that bilateral pricing produces a strategic externality

that providers “price out” with network-specific prices. In a companion paper, I evaluate the

impact of introducing a pre-exchange using recent data from Massachusetts.
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Introduction

Christie Romer in the New York Times1:

Here’s a frightening thought: Despite the recent Supreme Court decision upholding the

Affordable Care Act, serious work on more health care legislation is still needed. [...]

Even with the law, health care spending is still projected to rise rapidly over coming

decades, so more steps to contain costs will have to be taken.

OECD 2011 Report2:

Overall, the evidence suggests that prices for health services and goods are substantially

higher in the United States than elsewhere. This is an important cause of higher health

spending in the United States.

Health care spending in the United States is higher than any other nation, and the rate of spending

increases has been widely acknowledged as unsustainable. As such, “cost containment” has received

considerable attention by policy makers, and recent legislation calls for sweeping reform at both

the state and national levels. The pro-competitive aspects of these reforms typically focus on the

incentives of health insurers through the introduction of health insurance exchanges.3

In this paper, I propose a novel mechanism, a health insurance pre-exchange, that focuses on the

incentives of health care providers. I first construct a model to explain why the current market

structure encourages excessively high hospital prices (and profits). I then illustrate how a pre-

exchange addresses the concerns by fostering increased hospital price competition without harming

efficiency.

The key innovation of the pre-exchange is the introduction of explicitly multilateral contracting

between the hospitals and insurers. Bilateral contracts are standard in current network formation,

as each insurer-hospital pair meets independently to discuss terms and finalize agreements. One

1Christie Romer’s New York Times article “Only the First Step in Containing Health Care Costs”
http://www.nytimes.com/2012/07/22/business/health-care-law-and-cost-containment-economic-view.html

2OECD’s Health at a Glance 2011: “Why is Health Spending in the United States So High?”
http://www.oecd.org/unitedstates/49084355.pdf

3The private health insurance market is often cited as a classic example of a market failure due to adverse
selection, but the failure is effectively separate from the concerns regarding cost containment. Provisions in the
recent US reform (the Patient Protection and Affordable Care Act) address these selection issues by simultaneously
mandating insurance purchases and outlawing various types of price discrimination and screening. The list of reforms
is, however, much broader than simply insurance exchanges, and some of the other issues are mentioned below.
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message of this paper is that these bilateral contracts are not rich enough for hospitals to fully

“price out” the relevant network externalities. More precisely: the contracts are rich enough to

price out the network externalities, but only in the absence of strategic behavior.

The central message of this paper, however, is stronger than that: after accounting for strategic

behavior, the structure of bilateral contracting produces a strong strategic complementarity among

the hospital prices. The best response behavior leads to equilibrium hospital profits well in excess

of their contribution to society, and the overall “cost” of health care is excessive.

Pre-exchanges address precisely this issue. In a pre-exchange, hospitals submit different prices for

the various networks that include them. I refer to this as network-specific pricing. In the simplest

terms, hospitals are bidding to exclude other hospitals from an insurer’s network. Equivalently,

hospitals are offering the insurer an explicit per-patient discount for dropping a rival or substi-

tute hospital. While this may initially seem counterproductive, permitting the hospitals to target

their bids to specific networks entirely decouples the problematic strategic complementarity. This

feedback of best responses never starts, and equilibrium prices remain at the desired levels.

Before presenting the formal model, the next section provides some intuition for my results in the

context of a simple example. I then review the literature, and describe some institutional details

that motivate the the structure and assumptions of the formal model. The formal model allows me

to conclude that hospital prices (and profits) are objectively “too high.” With this result in mind,

I then outline pre-exchanges and demonstrate how network-specific pricing contains costs without

reducing welfare.

In a companion paper (available online), I introduce an empirical framework. The goal is to

take these qualitative theoretical insights and quantify the impact in an economically meaningful

setting. Specifically, I use recent health care data from Massachusetts to estimate patient demand

for insurance in a discrete choice framework. I then simulate equilibrium hospital prices in two

settings: (1) a baseline industry model meant to describe the current market structure and (2) the

baseline model augmented with a pre-exchange and network-specific pricing.

Before proceeding to the example, I want to emphasize that the current paper addresses pricing

incentive issues at the network formation stage, an area untreated by other reform efforts. In fact, it

is not clear a priori that the network formation process is malfunctioning in any way or contributing

to the bloated cost of care. I view this as one central contribution of my work: by utilizing tools

from market design and industrial organization, I am able to highlight concerns that may otherwise

go unnoticed.

For instance, in the following motivating example, there will be no “obvious” problems in the

baseline scenario. It is only in the light of a better solution that the problem becomes evident.

In that sense, the problems associated with network formation are particularly inconspicuous, and
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one goal of the current work is to demonstrate the presence and magnitude of the problem.

I defer a proper discussion of other reforms until the literature review, after the example clarifies

my point. The present work should be viewed a complement to other reform efforts, and not a

substitute for them.

1 A Simple Example

Consider a simple environment with a single insurer and two hospitals h1 and h2. The insurer

wants to secure access to a “network” of hospitals, and then offer access to the network in the

downstream insurance market. A network is simply a subset of hospitals, so there are four possible

networks: {h1, h2}, {h1}, {h2}, {}. The insurer has the following valuation v over networks:

v({h1, h2}) = 10 v({h1}) = v({h2}) = 9 v({}) = 0.

To motivate the values of v listed above, consider a downstream insurance market with two con-

sumers, p1 and p2. The “p” suggests that these consumers will be patients that need hospital

treatment. The patients have the following individual valuations over hospitals:

vph h1 h2

p1 5 4

p2 4 5

If the insurer selects the full network {h1, h2}, then patient p1 visits hospital h1 and patient p2

visits hospital h2. If only {h1} is selected for the network, then both patients visit h1. Similarly,

if only {h2} is selected, both patients visit h2. If the insurer’s network has no hospitals, then the

patients go elsewhere. The insurer’s value for a network can then be interpreted as the revenue it

can extract in this downstream insurance market; i.e. the sum of the patient values.

Each hospital has zero marginal cost and enough capacity to treat both patients. Hospitals compete

to be included in the insurer’s network by setting prices, and – given the prices – the insurer selects

a network. For this example, consider two possible types of price competition: (i) linear, per-patient

prices and (ii) lump-sum (total revenue) prices. The former is a familiar piece-rate schedule: the

hospital is paid the submitted price for each patient it treats. The latter is a two-part tariff: the

hospital gets an upfront fee and then treats patients at cost, which is zero. Two-part tariffs are

useful for understanding the problem at hand, and I follow the example with a discussion of the

relationship between two-part tariffs and network-specific pricing.
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I now describe the insurer’s network choice problem under each type of competition. In general, the

insurer will select the network that yields him the highest surplus: his value v less any payments

made to the hospitals.

Linear per-patient prices If the hospitals set per-patient prices (bids) of b1 and b2, the insurer

selects from the following network options with the corresponding surpluses:

{h1, h2 } If the insurer includes both hospitals in the network, then p1 visits h1 and p2 visits h2,

and h1 is paid b1 while h2 is paid b2. This yields a surplus of (5 + 5)− (b1 + b2).

{h1} Now both patients visit h1, and h1 is paid 2b1 for a surplus of (5 + 4)− 2b1.

{h2} Now both patients visit h2 for a surplus of (4 + 5)− 2b2.

Lump-sum (total revenue) prices If the hospitals set lump-sum prices (bids) of B1 and B2,

the insurer selects from the following options and surpluses:

{h1, h2 } Similarly p1 visits h1 and p2 visits h2. Hospital h1 is paid its lump sum B1 and

h2 is paid B2 for a surplus of (5 + 5)− (B1 +B2).

{h1} Both patients visit h1, but h1 is paid its lump-sum B1 for a surplus of (5 + 4)−B1.

{h2} Both patients visit h2, h2 is paid B2 for a surplus of (4 + 5)−B2.

The goal of this lengthy example is to emphasize two points: (i) the difference in the insurer’s

network selection across the competition formats and (ii) the effect on hospital pricing incentives.

Before analyzing the insurer’s network choice decision, consider a simpler problem: when does the

insurer prefer the full network {h1, h2} to the h2-only network {h2}? That is, when does the insurer

want to add h1 to the network?

With lump-sums, the insurer’s cost-benefit analysis is straightforward: the incremental benefit of

adding h1 is 1 (= 10 − 9), and the incremental cost is simply B1. Therefore the insurer (weakly)

prefers {h1, h2} to {h2} exactly when B1 ≤ 1.

Per-patient pricing is more subtle: the incremental benefit remains 1 = (10−9), but the incremental

cost of adding h1 is now b1−b2. This reflects the fact that one patient will switch from h2 to h1, and

therefore the insurer will trade one payment of b2 for one payment of b1; i.e. + b1− b2. The insurer

then (weakly) prefers {h1, h2} to {h2} exactly when the benefit outweighs the cost, b1 − b2 ≤ 1 or

b1 ≤ 1 + b2. Since the direct benefit of adding h1 is constant (=1), the threshold is increasing in b2

because the insurer’s cost-savings are increasing in b2. An important corollary is that the insurer

is more willing to accept higher prices from h1 when h2’s prices are higher.

Figure 1 limits attention to this simplified choice between {h1, h2} and {h2} to illustrate precisely

that point: the insurer is increasingly willing to add h1 for higher prices by h2. I find that examining

this simplified tradeoff is helpful for gaining intuition, but the insurer’s actual choice problem is

richer than this. In particular, the insurer also has the option to select h1-only network, {h1}, and
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Figure 1: Insurer’s Preference between {h1, h2} and {h2}

b1

b2

{h1, h2}

{h2}

per-patient prices

B1

B2

{h1, h2}

{h2}

lump-sum prices

Figure 2 below is a depiction of the mapping from prices to fully optimal network choices.

The left panel of Figure 2 is the insurer’s optimal network choice when hospitals set per-patient

prices. If one hospital is sufficiently cheaper than the other, only the cheap alternative is selected.

If, however, the prices are close enough, |b1 − b2| ≤ 1, both are selected. This {h1, h2} tranche

along the diagonal reflects the cost-savings argument above: if both hospitals set the same price,

for instance, then adding a hospital to the network increases the insurer’s value (+1) without any

associated cost savings (b1 − b2 = 0). Thus, for roughly similar prices, both are included in the

network. This simple point will be key to the analysis below.

The right panel of Figure 2 depicts network choices given lump-sum prices. It has a similar general

structure, with a notable difference along the diagonal. In particular, if B1 = B2 > 1, then the

insurer strictly prefers either smaller network, {h1} or {h2}, to the full network, {h1, h2}. This

follows from the same logic as above: if the insurer includes, say, hospital h2, then it is not willing

to pay B1 > 1 to add h1. Importantly, the insurer includes both hospitals if and only if they each

ask for less than their incremental value (= 1).

By design, per-patient prices and lump-sum prices are not perfectly comparable , but – for illus-

tration purposes – consider a (b1, b2) profile above (1, 1) with b1 ≈ b2 and a (B1, B2) profile such

that (B1, B2) = (b1, b2). If the insurer selects the full network in both cases, the outcomes are fully

equivalent: patients go to the same hospitals and everyone gets the same payoffs. But, with lump-

sum prices, the insurer opts for a smaller network. In that sense, the insurer is “more selective”

with lump-sum prices, i.e. if h is selected in the left panel, then h is selected in the right panel.
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Figure 2: Insurer’s Network Choice
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{h1} or {h2} but not {h1, h2}

Since the full network is efficient, lump-sum pricing competition is pointwise less efficient. Yet,

after accounting for strategic behavior, this “less efficient” market mechanism tends to be – in

equilibrium – at least as efficient and, importantly, generates dramatically lower prices.

Given the structure of the insurer’s network choice, now consider the hospital pricing incentives.

Figure 3 depicts hospital h1’s best response in each environment.

With per-patient prices, the best response is discontinuous: when h2 bids low, h1 bids as high as

possible without getting dropped, b1 = b2 +1. If, however, b2 is high enough, h1 prefers to undercut

to b1 = b2 − 1− ε.4 In this case, the insurer drops h2 and the substantially cheaper h1 treats both

patients. Note that, for moderate prices, h1 is extracting both his increase (+1) in value as well

the cost-savings he provides (+b2). Importantly, the best response is “upward sloping” since h1’s

cost-savings is increasing in h2’s price.5

Contrast this with lump-sum pricing. If h2 bids low, then h1 bids as high as possible without

getting dropped, but this is now simply B1 = 1 for all B2 ≤ 1. If B2 > 1, then h1 prefers to

undercut slightly to B1 = B2 − ε. For moderate bid levels, the complementarity is entirely shut

down. If the symmetric best response h2 is overlaid, the equilibrium lump-sum prices are (1, 1) and

each hospital is extracting exactly its incremental value to the insurer (= 10− 9).

There are no pure strategy Nash equilibria in the per-patient pricing environment, but the minimum

rationalizable bid profile is (2, 2). Although this toy example has discontinuities that I would expect

4The dashed line indicates a “slight undercut.”
5Note that the discontinuity is not coming into play until hospital h2 is bidding three times its marginal value to

the insurer.
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Figure 3: Best Responses for h1
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Figure 4: Nash Equilibrium
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to be “smoothed out” in practical applications, the message is clear: prices are systematically higher

with per-patient pricing than with lump-sum pricing. This is precisely because a hospital wants

to extract both his increase in value as well as his cost-savings. With lump-sum pricing, adding a

hospital yields no cost savings, and so the hospital simply wants to extract its added value. With

per-patient pricing, adding a hospital adds value as well as saves costs, and the cost-savings are

increasing in the price of the other hospital. This produces the strong strategic complementarity

and the resulting systematically higher prices.

From Two-Part Tariffs to Network-Specific Pricing

Among the simplifying assumptions made in the previous example, I abstracted away from the

details of the downstream competition between insurers. The focus of the example, and of the

paper more generally, is capturing the strategic pricing incentives of the hospitals, and including

only a single insurer isolates that effect.

The presence of downstream competition, however, adds an important, unmodeled constraint which

renders two-part tariffs ill-suited to this environment. Namely, with two-part tariffs, price competi-

tion in the downstream insurance market becomes too intense. Once the insurers pay the hospitals

the lump-sum fees, the marginal cost to an insurer of an additional enrollee is substantially below

the average cost of an additional enrollee. As insurers compete à la Bertrand, rational insurance

pricing leads to negative profits. Literature, including Milliou, Petrakis, and Vettas (2004), refer

to this as a “prisoner’s dilemma,” and this is the argument in favor of per-patient pricing: it insu-

lates the supply side from this type of unsustainable downstream competition.6 See Crawford and

Yurukoglu (2012) for further discussion.

The desire to introduce richer contracting while maintaining per-patient pricing leads to the in-

novation of this paper: network-specific pricing. The impact of network-specific pricing can be

thought of in two related ways: (1) synthesizing the desirable effects of two-part tariffs (while still

satisfying the unmodeled constraint presented by downstream competition: per-patient pricing) or

(2) incentivizing more aggressive pricing by making “undercutting” more attractive; i.e. lower risk,

higher reward. For emphasis, I sketch the idea of each below.

To illustrate the synthesis, reconsider the example above with network-specific prices: each hospital

posts two prices, one for each network that includes it. Specifically, hospital h1 now sets b1({h1, h2})
and b1({h1}). The interpretation is that b1({h1, h2}) is the per-patient price the insurer pays h1 if

the full network is chosen and b1({h1}) is the per-patient price if only {h1} is chosen. Informally,

6There are other institutional reasons why contracts are linear: insurance contracts typically require the patient
to pay a percentage of the (per-patient) hospital fee. Another important concern regarding two-part tariffs – that is
outside the model – is moral hazard by the hospitals: once the insurers have paid them the fixed fee, hospitals have
very low incentives for choosing high effort.
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Figure 5: Insurer’s Network Choice
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think of the hospital as typically offering a per-patient discount if the insurer excludes h2 so that

b1({h1}) ≤ b1({h1, h2}). Similarly, hospital h2 sets b2({h1, h2}) and b2({h2}).

Network-specific prices If the hospitals set network-specific prices (bids) of b1({h1}), b1({h1, h2}),
and b2({h2}), b2({h1, h2}), then the insurer selects from the following options and surpluses:

{h1, h2 } Patient p1 visits h1 and p2 visits h2. Hospital h1 is paid b1({h1, h2}) and

h2 is paid b2({h1, h2}) for a surplus of (5 + 5)− (b1({h1, h2}) + b2({h1, h2})).
{h1} Both patients visit h1, and h1 is paid 2b1({h1}) for a surplus of (5 + 4)− 2b1({h1}).
{h2} Both patients visit h2, and h2 is paid 2b2({h2}) for a surplus of (4 + 5)− 2b2({h2}).

To replicate the two-part tariff, set b1({h1, h2}) = 2b1({h1}).7 Since h1 is treating half as many

patients in the full network as it does in the h1-only network, h1’s revenue (profit) is then the

same for either network {h1, h2} or {h1}. Furthermore, by construction, if b1({h1, h2}) = B1 and

b2({h1, h2}) = B2, then the insurer’s choice problem with network specific prices is identical to the

problem with lump-sum prices of B1 and B2.

The network-specific prices then produce precisely the same outcomes as with lump-sum prices,

and yet add the essential benefit that the supply side is insulated from unsustainably aggressive

downstream competition.

I also claim that network-specific pricing can be thought of as fostering more aggressive bidding

than simple per-patient pricing. To see this, consider the per-patient prices of b1 = b2 = 2, and

recall that these are the minimum rationalizable bids. At price profile (2, 2), consider each hospital’s

7In the formal model, two-part tariffs can generally be replicated by network-specific bidding.
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incentive to undercut. In order for hospital h1 to incentivize the insurer to drop h2, he must lower

his price to b1 = 1− ε; this can be seen in Figure 2 above. Such an undercut would lower hospital

profits from 1 × 2 to 2 × (1 − ε), and therefore – at prices of b1 = b2 = 2 – no hospital wants to

lower its price.

Now introduce the obvious corresponding network-specific prices: b1({h1, h2}) = b1({h1}) = 2

and b2({h1}) = b2({h2}) = 2. When each hospital sets the same price on every network, this is

equivalent to simple per-patient pricing. Thus, at these prices, the insurer also selects the full

network, {h1, h2}.

Reconsider hospital h1’s incentive to undercut with network-specific prices. If h1 wants to increase

his quantity, it must incentivize the insurer to switch from the full network to the h1-only network.

To do this, it lowers its price only on the {h1} network, b1({h1}). This is key. If a hospital wants

to change the insurer’s decision, it should lower its price only on an option that is not currently

being selected.

With simple per-patient prices, if hospital h1 lowers its price b1, this impacts the insurers network

choice decision in two ways: (1) it is now more valuable for the insurer to drop h2 and select

the {h1} network, but (2) it also more valuable for the insurer to simply keep the full network

unchanged. That is, with simple per-patient prices, the benefit to the insurer from undercutting

enters both options. Since the insurer retains the option to assemble its favorite network, there

will be some bid profiles where a hospital would lower its price only if the insurer would commit

to dropping the other hospital.

This is the power of network-specific prices: h1 can now target a lower price precisely on the one

option that benefits h1. This forces the insurer to commit to dropping the other hospital if it

wants to accept h1’s lower price. Decoupling the prices across the networks has therefore had an

important, yet unmentioned, consequence: it shuts down part of the option value of the insurer,

and this will translate to more aggressive bidding.

In particular, with simple linear prices, if b1 = 1.5 − ε and b2 = 2, then the insurer continues to

select the full network. But if b1({h1}) = 1.5− ε while b1({h1, h2}) = b2({h1}) = b2({h2}) = 2, the

insurer will now switch to the {h1} network. For concreteness, the relevant calculations are listed

below.

Simple Per-patient

(b1 = 1.5− ε and b2 = 2)

{h1, h2 } 10−(1.5− ε)− 2 = 6.5 + ε

{h1} 9−2(1.5− ε) = 6 + 2ε

{h2} 9−2(2) = 5

Network-specific

(b1({h1}) = 1.5− ε and others at 2)

{h1, h2 } 10−2− 2 = 6

{h1} 9−2(1.5− ε) = 6 + 2ε

{h2} 9−2(2) = 5

10
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As the calculations clarify, with simple per-patient pricing, the price drop increases the insurers

surplus on both the full network, {h1, h2}, as well as the h1-only network, {h1}. With network-

specific pricing, the price decrease only increases the surplus on the targeted network. The key

point is that simple per-patient pricing requires hospital h1 to offer an even larger price decrease

to incentivize the insurer to drop the rival hospital h2 than with network-specific pricing. This

produces a range of prices where the hospital will undercut with network-specific pricing, but will

not undercut with simple per-patient pricing. The particular prices chosen here fall in that range:

b1({h1}) = 1.5 − ε is a profitable deviation for h1: treating two patients at a price of 1.5 − ε is

better than treating one patient at a price of 2.

This is precisely the result: by allowing the hospital to target its prices to specific networks,

it prices more aggressively. In equilibrium, the prices are b1({h1, h2}) = b2({h1, h2}) = 1 and

b1({h1}) = b2({h2}) = 0.5, and the insurer makes the efficient selection: the full network.

The central message of this paper is that this example generalizes. Simple, bilateral, per-patient

pricing creates a strong pricing complementarity and ultimately generates a pricing distortion

that is economically significant. The essence of two-part tariffs solve this problem, but two-part

tariffs are ill-suited for this setting due to the (unmodeled) downstream competition. The presented

alternative, network-specific pricing, overcomes these difficulties and produces the desired outcomes.

Outline and Contributions

The current project is broken into two separate papers: theory (Part I) and empirics (Part II).

This paper is Part I and contains the theoretical framework that generalizes the opening example.

After reviewing the literature, I provide a brief overview of some details of the healthcare market

that motivate some of the modeling assumptions. I then present the formal models: one baseline

model that represents the current market structure, and one counterfactual market design setting

where I introduce pre-exchanges and network-specific pricing.

While the theoretical findings of Part I provide clean, qualitative insights, the most striking result

is the magnitude of this pricing distortion. In the example above, with simple per-patient pricing,

the minimum rationalizable bid is twice as high as the equilibrium network-specific prices. Part II

contains the empirical work that quantifies this impact of pre-exchanges in a practical setting. I use

recent health care data from Massachusetts, both hospital data as well insurance exchange data, to

estimate consumer preferences and then simulate pricing outcomes under each market: the current

baseline and the counterfactual pre-exchanges. This companion paper, Part II, can be found on

my website listed on the cover page.
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2 Related Literature

Below I describe the relation of my work to the fields of industrial organization, market design and

health economics. Several papers that are both IO and health are located in the IO section.

Industrial Organization

The introduction of health insurance pre-exchanges can be thought of as a policy intervention

that fosters upstream competition and, therefore, shares some similarities with recently proposed

regulations of cable channel (un)bundling as studied by Crawford and Yurukoglu (2012). They

estimate a baseline bargaining model, and then examine the counterfactual impact of requiring

cable companies to sell channels à la carte.8 The advance made by Crawford and Yurukoglu (2012)

over previous work is accounting for the regulatory effects on pricing incentives.9 In particular,

allowing channel prices to adjust after regulation results in dramatically higher per-channel prices

and a corresponding ambiguous impact on welfare.

The distinction between our frameworks is the specification of the counterfactual. They keep the

bargaining bilateral and introduce à la carte channel sales. In contrast, I retain the sale of bundles

(i.e. access to hospital networks), but I enrich the network formation process to allow for explicitly

multilateral contracting.

An analogy helps clarify the distinction. Consider a simple market with only two channels, ESPN

and Fox Sports. In their counterfactual, there are two prices total: ESPN sets an à la carte price

πE and Fox Sports sets an à la carte price πF . The consumer then chooses from four options: (i)

buy both channels at a total price of πE + πF (ii) buy just ESPN at price πE (iii) buy just Fox

Sports at price πF or (iv) buy nothing. Note that if ESPN increases its price πE , then consumer

surplus is decreased on both options (i) and (ii).

In my counterfactual, there are four prices total: ESPN sets two prices, πE({E}) and πE({E,F}),
and Fox Sports similarly sets two prices, πF ({F}) and πF ({E,F}). Each channel is setting a

bundle-specifc price for each bundle that includes it. The consumer now chooses from four options:

(i) buy both channels at a total price of πE({E,F}) + πF ({E,F}) (ii) buy just ESPN at price

πE({E}) (iii) buy just Fox Sports at price πF ({F}) or (iv) buy nothing. A crucial distinction is

that no single price enters two options. The prices are, by design, bundle-specific. As in the opening

example, I argue that decoupling prices into bundle-specific components has a dramatic impact on

pricing incentives by effectively unwinding the (problematic) strategic complementarity present in

the upstream market; i.e. channels or hospitals.

8Recent legislation in Massachusetts similarly requires insurers to offer two networks: one standard and one
“limited.” I will discuss this in greater detail below.

9See Crawford (2008), Byzalov (2008) and Rennhoff and Serfes (2008) for work on bundling in the cable industry.
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A recent paper that also (implicitly) introduces this complementarity is Brand, Gowrisankaran,

Nevo, and Town (2012). They study the impact of hospital mergers on post-merger prices and

welfare, and their techniques build on the work of Town and Vistnes (2001) and Capps, Dra-

nove, and Satterthwaite (2003) (discussed below). The key innovation (for my purposes) of Brand,

Gowrisankaran, Nevo, and Town (2012) over the earlier literature is a seemingly simple observation:

the incremental value to an insurer of a adding a high-quality-high-price hospital to a network is

less than the incremental value of a hospital that is high-quality-low-price. That observation drives

them to include prices in a more explicit fashion than the previous literature, and precisely the com-

plementarity I highlight in this paper is present in their work as well. Since Brand, Gowrisankaran,

Nevo, and Town (2012) retain the bilateral pricing upstream, it would be interesting to see how

merger incentives change in an environment with pre-exchanges or network-specific pricing.

An important recent contribution to the literature on network formation is Lee and Fong (2012).

They introduce a dynamic model that captures the evolution of networks through time. Among

their results, they show that networks can be inefficient, and I provide a similar result in the

empirical work below. As in Brand, Gowrisankaran, Nevo, and Town (2012) and Crawford and

Yurukoglu (2012), their dynamic framework utilizes linear bilateral pricing in each stage game.

The closest theoretical IO paper is recent work by Rennhoff and Serfes (2009).10 They study

network formation and à la carte regulation in a simple model with two upstream firms and two

downstream firms. Each upstream firm names one price that applies uniformly to the downstream

firms. Aside from the absence of bundle-specific bidding, this uniform pricing assumption is an

additional degree of separation from my work. My theoretical results suggest that the richer

contracting may be (much) more important than à la carte sales, and it would be interesting to see

how their results change under the more general pricing protocol outlined in this paper.

There are several other papers that study vertical contracting but the key point of differentiation

is that the ultimate downstream consumer (patient) has preferences that depend inherently on the

upstream network or upstream contracting. In that sense this is closer to a three-sided matching

market than a typical vertical market. The consumer also wants access to a great number of

upstream firms (i.e. hospitals), which implies that the health care market shares some structural

properties with the cable television market, mentioned above.

In the empirical companion piece, I estimate patient demand for insurance, and there have been

several advances in recent years. I share the general demand estimation concepts with Ho (2006,

2009) which built on work by Town and Vistnes (2001) and Capps, Dranove, and Satterthwaite

(2003). My estimation benefits from micro patient choice data as well as rather unique network

10There is other work by Gal-Or (1997) that presents a similarly simple theoretical framework. The modeling
assumptions are more relevant to the strict HMO regime witnessed in the 1990s, and her main result is somewhat
inconsistent with modern network formation, namely that insurers’ networks are differentiated.
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and choice set variation. I view these potentially important differences and discuss them at length

in the empirical section. I also contribute to the growing literature using latent class models

for demand estimation. A latent class model is the discrete analog of the more commonly used

(continuous) mixed logit, and the potential benefits have been recently noted by Shen (2009) and

Hess, Ben-Akiva, Gopinath, and Walker (2011). In particular, the formulation allows for closed

form solutions that render computationally intensive simulations unnecessary. Latent class models

also allow for flexible interaction between observable characteristics and the distribution of the

latent variables.

Market Design The theoretical model is formally a combinatorial (procurement) auction: the

insurer will solicit bids from hospitals and select a subset of those hospitals for her network (Immor-

lica, Karger, Nikolova, and Sami (2005), Cramton, Shoham, and Steinberg (2006)). Importantly,

the quantity of patients treated at any particular hospital h depends on the full network choice and

not simply upon whether h is in or out of the network. This externality introduces a price-quantity

tradeoff for the bidding hospitals that is implicitly defined through the insurer’s network choice.

The analogous tradeoffs in other multi-unit auctions (Ausubel (2006)) are typically much more

straightforward by design.11 In practice (as in the baseline model), hospitals submit simple linear

per-patient bid schedules to the insurer. These “simple” bids significantly complicate the analysis,

and a key contribution of this paper is demonstrating how the restriction to simple, linear prices

distorts incentives.

From a design perspective, typical solutions to these types of problems (e.g. two-part tariffs and

non-linear pricing of Wilson (1997) and Armstrong and Vickers (2010)) are ill-suited to this envi-

ronment due to downstream competition; i.e. the insurers will form networks and then compete

downstream for enrollees.12 In the present insurer-hospital setting, as with many oligopoly mar-

kets with vertical contracting, two-part tariffs render the downstream price competition between

insurers too intense, as discussed above.

Standard auction theoretic analysis often maintains the assumption of private consumption values

for both the auctioneer and the bidders, but this is violated in this industrial setting in two respects:

(1) there are competing insurers and (2) each insurer’s value of a network depends upon the

networks of the other insurers. In other words, there are competing auctioneers, and the auctioneers’

reservation values are interdependent and therefore endogenous. I know of no paper that studies

both of these effects, but there has been recent work by Pai (2012) studying competition among

11Ausubel and Cramton (2002) study the incentives for demand reduction in uniform price auctions. There is some
flavor of demand reduction in the present paper, but a hospital’s bid controls its quantity implicitly as it manipulates
the insurer’s network choice. That is, a hospital h can increase its quantity by lowering its bid and enticing the
insurer to foreclose on some of h’s rivals.

12An important example of unmodeled downstream competition is the series of FCC spectrum auctions (Bulow,
Levin, and Milgrom (2009)). The value of a spectrum license to a telecommunications company, e.g. AT&T,
importantly depends upon the licenses obtained by its competitors.
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auctioneers.

The desire to introduce richer contracting while maintaining per-patient pricing leads to the inno-

vation of this paper: network-specific pricing. This is closely related to package pricing (or package

bidding) in the auction literature (Bikhchandani and Ostroy (2002)), which is often motivated by

the presence of complementarities in the auctioned items (Ausubel and Milgrom (2002)).13 In the

present model, there are no complementarities, but there are allocative externalities. As such,

a fundamental portion of the current paper (i.e. the insurer’s network selection protocol) shares

structural properties with common agency games and menu auctions. The seminal references are

Bernheim and Whinston (1986a,b). In that literature, bids are often contingent upon the full out-

come chosen by the common agent, e.g. the insurer and his network choice. In the baseline model

(as in practice), hospital prices are too coarse to fully express some relevant tradeoffs. Maintaining

this assumption retains important qualitative features of the market, but also greatly increases the

difficulty of the analysis. One contribution of the current paper is providing a framework for an-

alyzing complete information first-price bidding games that resist analytical characterization with

standard tools.

Other recent work in market design has focused on bilateral contracting (Hatfield and Kominers

(2010)) and competitive equilibrium pricing (Gul and Stacchetti (1999)) in the absence of strategic

considerations. In the present setting, competitive equilibria (in the usual sense) exist and suggest

the unrealistic outcome of marginal cost pricing; i.e. every hospital would make zero profits in

equilibrium. I feel that incorporating strategic considerations is particularly important here since

this (naive) adaptation of Gul and Stacchetti (1999) produces precisely the opposite result I obtain.

In fact, the contrast is much stronger: linear pricing leads hospitals to earn excessively high profits in

my setting, and excessively low profits (zero profits) in their setting.14 Given that the qualitative

nature of the result pivots on the full consideration of incentives, I view this as an important

contribution of my work.

Health Economics I have already mentioned several health economics papers on network for-

mation and pricing, and there are many others (Wedig (2012), Van Horn and Wedig (2011), Bardey

and Rochet (2010), Burgess, Carey, and Young (2005), Sorensen (2003)).

There is an additional line of research I would like highlight that is nearly unique to health eco-

nomics: cost containment. If cost containment is the major unsolved problem in health care, there

is a host of well-known contributing subproblems; e.g. over-utilization, inefficient practice variation,

misaligned physician incentives, and various difficulties associated with having a large government

payer.15 These are extraordinarily thorny problems that have been known and debated for many

13See Ausubel and Milgrom (2002) for a discussion of complementarities and the “exposure problem.”
14I define “excessively high” as hospitals earning more than their marginal contribution to society.
15Reforms include the (1) reducing consumer moral hazard by taxing overly generous insurance plans (2) reducing
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years. While recent reforms have done a remarkable job at targeting these specific subproblems,

most analysts agree that they collectively will not solve the more general problem of cost con-

tainment – just as the opening quote from Christie Romer suggests. The Kaiser Institute offers a

comprehensive survey of the relevant work.

In this paper, I address network formation as a means of containing costs and this is a pro-market

reform aimed at the supply side. An alternate reform was recently introduced in Massachusetts

which resembles the cable unbundling mentioned earlier. In 2010, the state passed legislation re-

quiring all insurers to (begin to) offer insurance plans with at least two networks: one standard

network and one limited network. The goal is precisely the same as the goal of cable unbundling:

increase upstream competition for downstream consumers. Given the ambiguous impact of un-

bundling in the cable market (Crawford and Yurukoglu (2012)), it is unclear if the introduction of

limited networks alone will have the desired effects. In fact, there are other reasons why limited

networks may be problematic in health insurance that have no counterpart in the cable industry.

The most important is adverse selection. The patients that buy the limited network plans are likely

to be healthier on average. I avoid the issue by focusing on a single insurer with a single network,

but this is an important area for future work. In particular, network-specific bidding together with

multiple network offerings is a promising avenue that deserves attention.

Before presenting the formal model, I introduce some aspects of the health care market and some

intuition for the results.

3 Brief Overview of the Health Care Market

The details of the health care market will shape the modeling assumptions, and this section high-

lights the key features: network access, bilateral contracting and per-patient pricing.

A health insurance contract typically permits an enrollee access to a network of hospitals. That is,

the enrollee pays an upfront premium to the insurer, and then – if sick – can seek treatment at any

of a pre-specified set of hospitals at little-to-no additional cost. I refer to this as network access.

The hospital care is then being paid for by the insurer out of the upfront premium payments,

and the enrollee – if sick – is visiting her preferred hospital in the network. Note that the person

choosing the hospital, i.e. the enrollee (now patient), pays effectively the same amount across all

hospitals.

If an insurer committed to include all hospitals in the network, then hospitals would have strong

supply side moral hazard by aligning incentives through new payment schemes and Accountable Care Organizations
(3) reviewing payments to providers by introducing the Independent Payment Advisory Board and (4) encouraging
proper treatment choice by fostering Cost Effectiveness Research.
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incentives to charge very high prices; i.e. once a network is fixed, a hospital’s own-price elasticity is

close to zero. Insurers counteract this by threatening to drop hospitals from the network that set

prices too high. This effectively reverses the timing: hospitals set prices and then insurer networks

are formed. This practice is deemed selective contracting.16 The hospitals are then competing to

be included in the insurer’s network, and this process fosters a type of downward price pressure.

In practice, the hospital price setting and insurer network decisions are the result of individual

negotiations between hospitals and insurers. In particular, each hospital-insurer pair meets privately

to discuss terms. Hospitals offer terms and rates, and insurers typically have departments devoted

to assessing the value a hospital may add to their existing network. If the terms are agreeable to the

insurer, the hospital is added to the network. An important descriptive detail of these contracts:

they are not explicitly interdependent. Given the large number of illnesses and treatment options,

the contracts themselves are lengthy and complex, but there is effectively zero cross-referencing

across hospitals for a given insurer. I refer to this as bilateral contracting.

Reinhart (2006) contains a detailed account of this price-setting process, and he describes how the

insurer-to-hospital payments are typically either: per procedure, per diem, or per episode,17. For

my purposes, I abstract from the precise details and note that these are all linear per-patient price

schedules. I refer to this as per-patient pricing.

Network access implies that an insurer will not be encouraging its enrollees to visit different in-

network hospitals on the basis of price differential. Rather, the insurer will discipline hospital

prices solely through the threat of exclusion from the network. Bilateral contracting and per-

patient pricing imply that the hospitals will be offering linear supply schedules to the insurer as

they compete to be included to be in the network.

16A similar model of competition is often in place when the end user does not pay on the margin, but rather pays
an upfront fee for access. A helpful example is Netflix’s streaming service: customers pay roughly $8 per month for
unlimited access.

17An episode can be thought of as group of procedures.
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Theory

The formal model extends the previous example to a more general setting. To isolate the pricing

incentives of the hospitals, I continue to focus on the network selection of a single insurer, but that

insurer is now dealing with several hospitals.

The insurer’s network selection is modeled as a competitive bidding procurement auction: the

hospitals compete to be included in the insurer’s networks by submitting per-patient bids, and the

insurer will then select its preferred network. I consider two variants of the auction that vary along

a single dimension: the bid space. In the first variant, hospitals will submit bilateral bids, and I

think of this as representing the current market structure. In the second variant, I introduce the

network-specific bids in what I call a pre-exchange. Framing issues aside, the only formal distinction

is the bid space, and the main conjecture is that, in equilibrium:

bilateral bids >> network-specific bids.

The equilibrium analysis of the bilateral bidding game, unfortunately, is not entirely straightfor-

ward. To overcome this, I introduce two new concepts: pairwise stable equilibrium and marginal

product. I proceed to verify the main conjecture by ultimately proving:

bilateral bids > pairwise stable eq’a > marginal products > network-specific bids.

There are two subsections: one model of the market market (bilateral bids) and one model of the

pre-exchanges (network-specific bids).

4 Model: Current Market Structure (Bilateral Bidding)

There is a single insurer i and a set of hospitals H. The insurer wants to buy access to the

hospitals (for enrollees) by selecting a network N ⊂ H. The insurer’s value of access to a network

N is denoted v(N), which I think of as the revenue he can extract from enrollees downstream or,

relatedly, the total downstream enrollee welfare.

Hospital h ∈ H has per-patient treatment cost ch, and each hospital is assumed to have enough

capacity to service the entire market. If the insurer has access to network N , it sends qh(N) > 0

patients to hospital h ∈ N . If the insurer does not have access to a hospital, the insurer sends zero

patients to that hospital. For instance, in the opening example:

q1({h1, h2}) = q2({h1, h2}) = 1 and q1({h1}) = q2({h2}) = 2.
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The hospitals compete to be included in the insurer’s network by submitting per-patient bids.

Given a profile of bids b = (b1, ..., bH), if the insurer selects network N ⊂ H its payoff is:

V (N, b) = v(N)−
∑
h∈N

bhqh(N).

Similarly, if network N is chosen, hospital h ∈ N realizes profit:

Πh(N, b) = (bh − ch)qh(N).

The insurer will select the network N to solve the following program.

V (b) = max
N⊂H

V (N, b) (opt-b)

That is, given a profile of hospital bids, the insurer is selecting the network that yields him the

highest surplus. The value of the program is denoted opt-b to emphasize bilateral bidding.18 If

the insurer is indifferent, it selects any network that maximizes the sum of hospital profits.19 In

what follows, fix a selection rule consistent with opt-b.

For a bid profile b, let N∗(b) denote the insurer’s optimal network choice, and let q∗h(b) = qh(N∗(b))

denote hospital h’s subsequent quantity of patients. Given a profile of bids b, hospital h’s profit is

then:

Πh(b) = (bh − ch)q∗h(b) (h’s profit)

Note that the quantity of patients the insurer sends to a given hospital depends on the hospital bids

only insofar as the bids determine the insurer’s network choice. This is meant to capture intuition

of network access: for a given network, an insurer has a negligible effect on his own quantity.20 An

insurer’s bid will, however, effect the network chosen.

The next two assumptions capture the intuition that hospitals are substitutes in two respects: (i) if

the insurer adds a new hospital to the network, the number of patients that the other hospitals treat

decreases weakly and (ii) the insurer does not decide to drop a hospital after other rival hospitals

increase their prices. If either of these is failing, then there is some sort of complementarity among

the hospitals.

Assumption 1. The hospitals are network substitutes: the number of patients treated by a

18In the next section, we will see a similar program opt-ns with network-specific bidding.
19This tie-breaking rule uses some value information, but as discussed in Day and Milgrom (2008) is fairly innocent.

See Simon and Zame (1990) for the original discussion.
20This has been estimated recently by Brand, Gowrisankaran, Nevo, and Town (2012): for a 1% increase in a

hospital’s price, it sees 0.03% fewer patients. This estimates holds the network fixed and does not account for the
increased likelihood of being dropped from the network.
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hospital h is weakly decreasing in the size of the network:

h ∈ N ⊂ N ′ ⇒ qh(N) ≥ qh(N ′)

Assumption 2. The hospitals are price substitutes for the insurer: if hospital h is included

at some bid profile b = (bh, b−h), then h continues to be included if the other hospitals (weakly)

increase their bids to b′−h ≥ b−h.

∀b′−h ≥ b−h : h ∈ N∗(bh, b−h)⇒ h ∈ N∗(bh, b′−h)

Furthermore, I would like to capture the notion that the hospitals are (horizontally) differentiated

and, relatedly, that insurer networks are large. Given that (i) hospitals are geographically dispersed

and (ii) the most important factor determining a patient’s hospital choice is driving distance, it

should be unsurprising that insurers often include all hospitals in their networks. See Ho (2009)

for a full discussion. This motivates our next assumption.

Assumption 3. The full network is efficient: if each hospital bids its true marginal cost b =

c = (c1, ..., cH), then the insurer includes all hospitals in the network:

V (H, c) > V (N, c) ∀N 6= H

Let BFN denote the set of bid profiles that result in the full network:

BFN = {b : N∗(b) = H}.

By our tie-breaking assumption, BFN includes all bid profiles for which the full network is weakly

optimal for the insurer:

V (H, b) ≥ V (N, b) ∀N ⇒ b ∈ BFN .

Now consider the insurer’s problem under two bid profiles: c = (c1, ..., cH) and c′ = (∞, c−h).

When all hospitals are bidding their true marginal costs c, the insurer is selecting the efficient full

network. In c′, hospital h is bidding so high as to effectively remove himself from the the problem,

V (c′) = V (H \ {h}, c). Therefore, V (c)− V (c′) is the amount by which h’s presence increases the

total welfare. I record this in the following definition.

Definition 1. Hospital h’s marginal product MPh is the amount by which h increases total

welfare.

MPh = V (H, c)− V (H \ {h}, c).

A market system that gives each firm or agent its marginal product often has many desirable

properties, including proper incentives for investment and entry. However, in most settings, it is

20



Sweeney Pre-Exchanges – Theory

infeasible to give each agent its marginal product. A classic example is the bilateral bargaining

work of Myerson and Satterthwaite (1983). If there is one buyer and one seller, then giving each

agent its marginal product would entail giving the buyer the entire surplus and also giving the seller

the entire surplus. This is clearly infeasible, and most market mechanisms must find some way to

divide the surplus which yields each participant less than its marginal product. Foreshadowing

the results below, in the current market with bilateral pricing, each hospital is earning more than

its marginal product – often much more. These high prices are producing distortions throughout

the broader economy. For details, see the 2009 work by the Council of Economic Advisors: “The

Economic Case for Health Care Reform.”21

Solution Concept

I have now described most of the network formation game between the hospitals and the insurer,

and I complete the model with a solution concept. There is a growing literature in industrial

organization regarding network formation, and the two solution concepts most commonly used

are Nash equilibrium (Ho (2009)) and pairwise Nash bargaining (Crawford and Yurukoglu (2012),

Brand, Gowrisankaran, Nevo, and Town (2012), Horn and Wolinsky (1988)). I now describe each

solution concept in this context.

Definition 2. A profile of hospital bids b = (b1, ..., bH) is a Nash equilibrium if

Πh(bh, b−h) ≥ Πh(b′h, b−h) ∀h ∀b′h

Definition 3. Given a profile of bargaining weights α = (α1, ..., αH), the profile of hospital bids

b = (b1, ..., bH) is a pairwise Nash bargaining solution if

bh ∈ argmax
b′h

[(
Πh(b′h, b−h)

)αh
(
V (b′h, b−h)

)1−αh
]

∀h

where V (b) is payoff to the insurer given bid profile b.

Note that the definitions are equivalent if the hospitals have all of the bargaining power, i.e. αh = 1.

Nash equilibrium is standard, but pairwise Nash bargaining is less familiar. The interpretation of

the latter is as follows: each hospital h meets privately with the insurer to bargain over the bid

bh. Holding fixed the bids of the others at b−h, hospital h and the insurer participate in standard

Nash bargaining with bargaining weights αh and 1− αh. Specifically, they choose b′h to maximize

their Nash product ((b′h − ch)q∗h(b′h, b−h))αh (V (b′h, b−h))1−αh , holding b−h constant. The insurer

21http://www.whitehouse.gov/assets/documents/CEA_Health_Care_Report.pdf
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similarly meets with the other hospitals; a pairwise Nash bargaining solution can then be thought

of as a Nash equilibrium between the Nash bargains.

One major drawback with both these solution concepts is non-existence. The opening example

shows that Nash equilibria may fail to exist, and therefore pairwise Nash bargaining solutions may

also fail to exist when hospitals have the bargaining power.

Remark 1. Pure strategy Nash equilibria do not necessarily exist.

As noted above, this issue stems from the types of sharp discontinuities that are consistently

present in small examples but are likely to be “smoothed out” in practice. Given this, I propose

three reasonable courses of action: (i) analyze the mixed strategy Nash equilibria of the game (ii)

switch to a richer model in hopes of re-establishing equilibria or (iii) use a different solution concept.

I discuss the merits of each below.

Mixed Strategy Nash Equilibria There are both technical and substantive reasons why mixed

strategy Nash equilibria are unsuitable for this analysis. Technically, since the hospital bid space

is a continuum, equilibria become difficult to characterize. But more substantively, randomization

would imply a level of network instability that is simply not present in the data. In fact, many

insurers have virtually no changes to their networks from year to year. Failure to match this

significant qualitative feature of the data suggests mixed strategy Nash equilibria may be unsuited

for the current analysis.

A Richer Model Although the model presented above is a static bidding game, the true underlying

process we seek to model is dynamic. In practice, an insurer-hospital pair may meet every year

or every other year to discuss terms. If the hospital terms are acceptable to the insurer, the pair

sign a (one- or two-year) contract and the insurer includes that hospital in the network for the

duration. An insurer similarly meets with other hospitals over time, and timeline of these contracts

overlap. This suggests that adding a dynamic element may be helpful, and – in fact – this has

been recently investigated by Lee and Fong (2012), as noted earlier. While the line of research

seems quite promising, dynamic models are inherently more complex. Their model is rich enough

to capture meaningful dynamics, but unfortunately resists analytical tractability. Furthermore, I

want a solution concept that can be imported into the empirical framework (outlined below), and

one common expense of dynamic models is a large computational burden.22

Solution Concept: Pairwise Stable Equilibrium I would therefore like to retain the essence of

both Nash equilibrium and pairwise stability in a solution concept that yields reasonable predictions

in the simple static model. Furthermore, since I will argue that bilateral equilibrium prices are too

high, I would like a conservative concept that likely underestimates those prices. In what follows, I

22The framework of Lee and Fong (2012) would be computationally infeasible in my empirical setting.
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illustrate that a concept based on a subset of the necessary conditions23 of both Nash equilibrium

and pairwise stability satisfies these criteria: pairwise stable equilibrium .

To motivate the use of pairwise stable equilibrium, I have the following story in mind. Hospitals

and insurers are meeting periodically over time, but during a meeting a hospital does not simply

name a myopically profit-maximizing bid. Rather, it considers both its static profit as well as the

incentives of the insurer to renegotiate with other hospitals. Re-examine the discontinuities in the

example. Those prices were unstable because hospital h1 would increase his bid up so far that

hospital h2 would undercut and therefore leave h1 dropped from the network. If h1 has even a

moderate amount of sophistication or foresight, I would expect him not to trigger such an event.24

I therefore think of each hospital as submitting its profit-maximizing bid among the bids that do

not trigger a renegotiation with other hospitals. This captures the idea that the hospitals generally

have most of the bargaining power, but each hospital also understands that the insurer retains the

option to recontract with other hospitals.

Pairwise stable equilibria will coincide with the “hospital optimal” pairwise stable outcome. This is

consistent with the general idea of Nash equilibrium (giving the bargaining power to the hospitals)

as well as with pairwise Nash bargaining (the prices must be pairwise stable for each pair).25

Just as Nash equilibria are fixed points of standard (Nash) best responses, pairwise stable equilibria

are fixed points of stable best responses (defined below). Furthermore, pairwise stable equilibria

are conservative in the following sense: stable best responses are everywhere “below” Nash best

responses. This statement will be made precise in Theorem 1. In the example outlined above,

the pairwise stable equilibrium is weakly below all rationalizable bids.

Definition 4. A bid profile b = (bh, b−h) is pairwise stable for h if there exists no other bid b′h
such that both the hospital h and the insurer prefer (b′h, b−h) to (bh, b−h):

Πh(bh, b−h) ≥ Πh(b′h, b−h) ∀b′h ≤ bh

Let BPS
h denote the set of bid profiles that are pairwise stable for h.

Note that formal statement restricts attention to lower bids b′h ≤ bh since higher bids always make

the insurer weakly worse off.

23This type of selection is often used in empirical work to estimate parameters in strategic settings. Loosely
speaking, if an agent is best responding, then her chosen action satisfies a set of payoff inequalities. The full set of
inequalities often poses difficulties, and a subset of these (moment) inequalities is used to estimate parameters.

24Note that this is very different than the nature of undercutting in standard Bertrand models. There, a firm
undercuts to gain all or most of the market share. Here, an additional bid increment results in a small increase in
profit.

25See Jackson and Watts (2002) for a dynamic foundation of pairwise stability.
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Definition 5. A bid profile b is pairwise stable if it is pairwise stable for h for each h:

BPS =
⋂
h

BPS
h .

There are several ways to capture the idea of pairwise stability, but this statement – together with

the tie-breaking rule – ensures that the set of pairwise stable bids is closed.

Figure 6 illustrates the idea in the context of the opening example. The left panel also depicts h2’s

best response, which is the upper envelope of the bid profiles that are pairwise stable for h2.

Figure 6: Pairwise Stable Bids

b1

b2

{h1, h2}{h1}

{h2}

BPS
2 : h2’s pairwise stable bids

b1

b2

{h1, h2}

{h1}

{h2}

BPS = BPS
1 ∩BPS

2

Examining h2’s pairwise stable bids, note that it is comprised of two components: the darker region

corresponds to full network bid profiles, and the lighter corresponds to profiles where only h2 is in

the network. Unsurprisingly, if a bid profile leads to the h2-only network, h2 has no incentive to

renegotiate a lower bid (since he is already servicing the entire market).

The intuition for unstable full network bids is slightly more subtle: if a bid profile b ∈ BFN and

is unshaded, hospital h2 must prefer to undercut. For instance, if b2 = b1 − 1 + ε so that the full

network {h1, h2} is selected, then h2 strictly prefers to drop his bid slightly to b2 = b1 − 1 − ε

to incentivize the insurer to select the h2-only network. A similar argument applies to the entire

wedge of unshaded, full network bids.

This also rules out all bid profiles above h2’s best response: if a lower bid by hospital h2 would make

h2 more profit, then that lower bid is beneficial to both h2 and the insurer. Thus, pairwise stable

bids must be below profit-maximizing bids. This argument is imprecise since the best responses
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are not technically well-defined (due to an “open set” problem). The correct statement – which

captures the same idea – is recorded in the following theorem.

Theorem 1. If a bid profile b is pairwise stable for h, then any more profitable bid must be larger

than bh:

Πh(b′h, b−h) > Πh(b) ⇒ b′h > bh

While the “proof” here is particularly straightforward, all proofs are in the appendix.

This result makes precise the notion that any particular pairwise stable bid profile is “more con-

servative” than Nash equilibrium. Furthermore, if a Nash equilibrium exists, it is pairwise stable;

i.e. at b, if each agent is attaining its maximum profit given b−h, then a fortiori there cannot be a

bid b′h that makes both the insurer and h better off. I record this fact in the following theorem.

Theorem 2. If b is a Nash equilibrium, then b is pairwise stable:

Πh(bh, b−h) ≥ Πh(b′h, b−h) ∀h ∀b′h ⇒ Πh(bh, b−h) ≥ Πh(b′h, b−h) ∀h ∀b′h ≤ bh

The next few results help sketch out the structure of the set of pairwise stable bids BPS , and

these structural results will culminate in establishing BPS as a lattice in the usual component-wise

ordering.

Lemma 1.

(i) The set of pairwise stable bid profiles is non-empty:

BPS 6= ∅.

(ii) If a bid is pairwise stable, then all hospitals are in the network:

BPS ( BFN .

The first part of the lemma is straightforward: if all hospitals bid cost, then the insurer cannot be

made any better off without hospital profits becoming negative. This implies that the bid profile

of marginal costs is pairwise stable and so the set of pairwise stable bids is nonempty.

The second part follows from two assumptions: if all hospitals are included in the network when

all hospitals bid marginal cost (Assumption 3), then our assumption that hospitals are price

substitutes (Assumption 2) guarantees that any excluded hospital can get himself back into the

network by bidding arbitrarily close to marginal cost. Therefore, any bid profile that excludes a

hospital cannot be pairwise stable.
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Figure 6 also suggests a sense in which the set BPS is “monotone,” and the following lemma

formalizes that idea.

Lemma 2.

(i) Fix bh, b−h and b′−h > b−h such that both (bh, b−h) and (bh, b
′
−h) lead to the full network. If

(bh, b
′
−h) is pairwise stable for h, then (bh, b−h) is also pairwise stable for h.

(bh, b
′
−h) ∈ BPS

h ⇒ (bh, b−h) ∈ BPS
h

(ii) Fix bh, b−h and b′h > bh such that both (bh, b−h) and (b′h, b−h) lead to the full network. If

(bh, b−h) is pairwise stable for h, then (b′h, b−h) is also pairwise stable for h.

(bh, b−h) ∈ BPS
h ⇒ (b′h, b−h) ∈ BPS

h

Lemma 2 says that hospital h is more willing undercut (or renegotiate with the insurer) when its

competitor’s prices are high or its own prices are low. The first stems from the idea that if your

competitors are charging low prices, you would need to offer a deep discount to incentivize the

insurer to drop a (cheap) rival. The second is different: you are more content with your quantity

when you are making a higher margin than when you are making a lower margin.

These results together imply that the set of pairwise stable bids is constructed as the intersection

of monotone lower bounds. As suggested in the right panel of Figure 6, these lower bounds trace

out a “diamond shape”; i.e. a lattice.

Theorem 3. The set of pairwise stable bids is a complete lattice in the usual component-wise

ordering:

b, b′ ∈ BPS ⇒ b ∨ b′, b ∧ b′ ∈ BPS

where b ∨ b′ = (max{b1, b′1}, ...,max{bH , b′H}) and b ∨ b′ = (min{b1, b′1}, ...,min{bH , b′H}).

The full solution concept, pairwise stable equilibrium, will be a fixed point of a well-defined best

response operator. From the discussion above, I want to capture both the spirit of a Nash best

response as well as the notion that firms are not myopically bidding to maximize profit. I call this

a stable best response.

Definition 6. Given bids b ∈ BPS, a bid b∗h(b) is a stable best response for h if it maximizes

h’s profit among the bids that are not renegotiated.

b∗h(b) ∈ argmax
b′h

{
Πh(b′h, b−h) : (b′h, b−h) ∈ BPS

}
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Definition 7. A bid profile b is a pairwise stable equilibrium if:

bh = b∗h(b) ∀h.

Figure 7: Stable Best Response for h1
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Given the bids of the hospitals, hospital h knows that some of its bids will be rejected by the

insurer, and some of its (accepted) bids will trigger renegotiation. A bid profile is an equilibrium

if each hospital is choosing its most profitable (acceptable) bid among the bids that do not trigger

a such a renegotiation. This captures the sophistication and stability outlined above.

Figure 8: Pairwise Stable Equilibrium
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Since the set of pairwise stable bids is a lattice, the stable best response for h is increasing in the bids

of the other hospitals −h. This is precisely the strategic complementarity we are concerned about.

Note that the restriction to pairwise stable prices dampens some of the strategic complementarity:

the stable best response is “steeper” than the Nash best response. This keeps with general the

conservative approach taken here.

Corollary 1. The stable best response for h is increasing in the bids of hospitals −h:

b, b′ ∈ BPS & b′−h ≥ b−h ⇒ b∗h(b′) ≥ b∗h(b).

Given the structure of the set of pairwise stable bids, the stable best responses render this a game of

strategic complements. Since the best stable responses are monotone increasing, Tarksi’s theorem

implies that the set of pairwise stable equilibria is a complete lattice.

Theorem 4. The set of pairwise stable equilibria is a complete lattice.

The proof of Theorem ?? presents an algorithm for computing equilibria: iterate the stable best

response operator. A related, generalized algorithm is used in the empirical companion piece.

Effective Marginal Product Bids

Recall the definition of marginal product from earlier.

MPh = V (H, c)− V (H \ {h}, c)

The next result shows that a hospital h’s stable best response to the other hospital’s truthful

bidding yields hospital h exactly his marginal product MPh.

Lemma 3. Fix a hospital h. If hospitals -h submit truthful bids c−h, then hospital h receives his

marginal product MPh by bidding his stable best response, b∗h(c).

This leads to the following definition.

Definition 8. The effective marginal product bid of hospital h is

bMP
h ≡ b∗h(c) =

V (H, c)− V (H \ {h}, c)
qh(H)

+ ch

and let bMP = (bMP
1 , ..., bMP

H ).
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The intuition can be read from the figures: if a hospital h is submitting its stable best response,

then the insurer is indifferent between keeping and dropping hospital h. On a more subtle note, this

occurs precisely when all other hospitals bid marginal cost, and not more generally. For instance,

when b2 > 0, the profile (b∗1(b2), b2) does not lie on the boundary between the {h1, h2} and {h2}
regions, and therefore the insurer is not indifferent between keeping and dropping h2.

Figure 9: Effective Marginal Product Bids

�
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{h1, h2}{h1}

{h2}

bMP
1

�

b1

b2

{h1, h2}{h1}

{h2}

bMP

Figure 9 suggests a finding which holds more generally.

Theorem 5. The effective marginal product bid profile is pairwise stable:

bMP = (bMP
1 , ..., bMP

H ) ∈ BPS .

As I argued above, a natural upper bound on hospital profits is their marginal product, and yet –

in this example – the hospitals are earning twice their marginal products; i.e. b∗h = 2bMP
h for each h

so that the markup the hospitals are charging in equilibrium is 100% higher than the desired upper

bound. As mentioned in the introduction, the magnitude of this gap is one of the main motivations

for the current project.

This brings me to the first main theoretical result: in equilibrium, each hospital bids higher than

its effective marginal product.

Theorem 6. For any pairwise stable equilibrium bid profile b∗, b∗ ≥ bMP .

The preceding results were constructed to make the proof Theorem 6 straightforward: the effective

marginal product bid is an interior point of the lattice of pairwise stable bids. If every hospital
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Figure 10
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bids marginal cost, then the profile of stable best responses is bMP (Lemma 3). Since the stable

best responses are monotone increasing (Corollary 1), bMP
h is the smallest stable best response

for hospital h. Therefore, in any pairwise stable equilibrium, h must be bidding at least bMP
h in

any pairwise stable equilibrium.

5 Market Design: Pre-Exchanges (Network-Specific Bidding)

The previous section established that the current market structure of network access and bilateral

bidding lead to each hospital’s equilibrium profit being higher than its marginal product. The

current section aims to address this issue through a better market design.

The key innovation will be a centralized pre-exchange where where the insurer matches with a

network of hospitals. Crucially, the hospital bidding will no longer be bilateral with the insurer.

Rather, in the pre-exchange, hospitals will submit network-specific bids to the insurer.

On the left of Figure 10 is a depiction of current bilateral bidding framework. While all three

hospitals are submitting bids to the insurer, the insurer only selects the {h1, h3} network. On the

right, a hospital h is now submitting one bid for each distinct network N such that h is in N . The

insurer is again selecting the {h1, h3} network.

More generally, each hospital is now submitting ~bh = (bh(N))N3h which includes one per-patient

bid for each network N such that h ∈ N .26 The full profile is denoted ~b = (~b1, ...,~bH). Given a

26It is often rightly contested that submitting a bid profile of this length would be impossible for any given hospital.
In practice, think of the hospitals as submitting bids to exclude their closest substitutes. For the formal results, I
assume the full bid profile, but I investigate the impact of reduced bidding in the empirical work.
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profile of network-specific bids ~b, if the insurer chooses network N it realizes a surplus of:

V (N,~b) = v(N)−
∑
h∈N

bh(N)qh(N)

and hospital h’s profit is:

Πh(N,~b) = (bh(N)− ch)qh(N).

If the insurer selects a network that does not include some hospital, that hospital’s profit is zero.

As in the baseline model, the insurer selects the network that maximizes its surplus:

V (~b) = max
N⊂H

V (N,~b). (opt-ns)

Let N∗(~b) denote the insurer’s optimal network choice. If the insurer is indifferent, it breaks ties

in favor of maximizing total hospital profits. Let q∗h(~b) = qh(N∗(~b)) denote hospital h’s subsequent

quantity of patients. The program is now tagged opt-ns to note the presence of network-specific

bids, and this contrasts with the earlier opt-b and bilateral bidding.

Before demonstrating that network-specific bids produce desirable outcomes, I provide a quick

discussion of dominated bids.

Dominated Bidding

Given that the hospitals are now submitting network-specific bids, any single hospital h in a network

N can effectively preclude the insurer from selecting N by simply bidding bh(N) =∞. For instance,

in the opening example, suppose b1({h1}) = b2({h2}) = 0 and b1({h1, h2}) = b2({h1, h2}) =∞. In

this case, the insurer is indifferent between either small network, but obviously will not select the

full network. In fact, these bids form a Nash equilibrium (defined below), but setting such high

prices on unselected networks is a never an essential component of any optimal bidding strategy by

a hospital. This motivates the following definition.

Definition 9. A bid profile ~b is weakly dominated if for some network N 6= N∗(~b) there exists

a hospital h ∈ N ∩ N∗(~b) that would get a strictly higher profit if the unchosen network N were

selected:

(bh(N)− ch)qh(N) > (bh(N)− ch)qh(N∗(~b)).

A bid profile ~b is undominated if it is not weakly dominated.

To see why these bids are unreasonable, fix a bid profile ~b that is weakly dominated and the

corresponding h, N , and N∗(~b). If N∗(~b) is selected given ~b, then hospital h can be made no worse

off by lowering his bid slightly on his preferred option N . If the slight move incentivizes the insurer
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to switch to network N , h is strictly better off. If the move does not induce a switch, h’s profit is

unchanged. Following this logic, h can be no worse off by moving his bh(N) bid all the way down

until:

(bh(N)− ch)qh(N) = (bh(N∗(~b))− ch)qh(N∗(~b)).

In this sense, weakly dominated bids are (weakly) inconsistent with profit-maximization, and this

justifies the following restriction.

Assumption 4. For the remainder of the paper, I limit attention to undominated bids.

This is similar to (but weaker than) the typical assumptions of “truthful bidding” used in the

menu auction games of Bernheim and Whinston (1986b) and the related “truncation reports” in

the core-selecting auctions of Day and Milgrom (2008).27 In the menu auction setting, a bid is

truthful if the bidder (e.g. hospital) is simply bidding a lump-sum markup uniformly across all

the options (e.g. networks) that might be chosen. This makes the bidders indifferent among the

possible choices the auctioneer (e.g. insurer) might selection. In my setting, restricting attention

to undominated bids only precludes the bidders from bidding a strictly larger lump-sum markup

on options that are not being selected.28

If multiple hospitals are submitting dominated bids, then there may be equilibria which lead to

unreasonable predictions for precisely the same reasons as in the menu auction games. Bernheim

and Whinston (1986b) refer to these types of bids as not being “serious.”

Undominated bids have an important and useful characteristic: if a hospital is not included in

the chosen network, it must be bidding marginal cost. To foreshadow the results, refer back to

the network-specific bids in our opening example: b1({h1, h2}) = 2b1({h1}) and b2({h1, h2}) =

2b2({h2}). If either hospital is bidding greater than 1, then that bid profile is dominated. This is

illustrated in Figure 11.

Results

While limiting attention to undominated bid profiles is a reasonable restriction, another simple but

useful observation is that all hospitals agree with the insurer’s network selection.

Lemma 4. If a bid profile ~b is undominated, then – holding ~b fixed – the insurer selects the network

27This is also similar to the use of truncation strategies in two-sided matching markets. See Roth and Rothblum
(1999).

28These types of bid limitations have been utilized in other practical settings. See Ausubel and Milgrom (2002)
for a discussion of “activity rules” in various implemented auctions.

32



Sweeney Pre-Exchanges – Theory

Figure 11: Dominated Bidding
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that maximizes each hospital’s profit:

Πh(N∗(~b),~bh) ≥ Πh(N,~bh) ∀h ∀N

This lemma is just a restatement of the definition, but will be useful in establishing the efficiency

of network-specific bidding equilibrium outcomes.

Theorem 7. If a bid profile ~b is undominated, then the efficient (full) network is selected by the

insurer:

N∗(~b) = H.

By Lemma 4, if a bid profile is undominated, then – holding fixed the bid profile – all hospitals

would choose the same network as the insurer. Since total welfare is the sum of all payoffs, and the

transfers simply cancel in the welfare calculation, every hospital can agree with the insurer only if

the welfare maximizing network is chosen.

Furthermore, as illustrated in Figure 11, the following result highlights the power of network-specific

bidding.

Theorem 8. At any undominated bid profile ~b, no hospital earns more profit than its marginal

product.

Most of the economic content of this subsection is contained in Theorem 8: if hospitals are

not submitting dominated bids, then no hospital earns more than its marginal product. Below I

describe a particular bid profile, but this result is quite strong: in any reasonable network-specific

bid profile, the cost of health care is contained.
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Given that the marginal product is an upper bound for hospital profits, the remainder of the section

constructs a bid profile ~bMP such that (i) each hospital earns exactly its marginal product and (ii)
~bMP is both a pairwise stable equilibrium and a Nash equilibrium. The equilibrium bid profile has

a natural interpretation as a two-part tariff (as in the opening example), so it is presented before

any definitions of equilibrium concepts.

Recall the effective marginal product bid profiles from bilateral bidding, bMP where

bMP
h =

V (H, c)− V (H \ {h}, c)
qh(H)

+ ch.

This can be easily extended to a corresponding network-specific bid profile as follows:

bh(N) =
(V (H, c)− V (H \ {h}))

qh(N)
+ ch.

If the insurer selects network N that includes hospital h, the total payment from the insurer to the

hospital is chqh(N) +V (H, c)−V (H \{h}). This resembles a two part tariff, just as in the opening

example: the hospital agrees to treat the patients at cost, chqh(N), plus a lump-sum payment of

V (H, c)− V (H \ {h}), which is independent of the network chosen.

Denote this bid profile as ~bMP . By construction, hospital h earns a profit of V (H, c)− V (H \ {h})
on each network so that ~bMP is undominated. To complete the picture, I verify below that ~bMP is

both a Nash equilibrium as well as a pairwise stable equilibrium.

Definition 10. A bid profile ~b is a Nash equilibrium if, for each h, ~bh maximizes h’s profit,

holding fixed ~b−h:

Πh(~b) ≥ Πh(~b′h,
~b−h) ∀~b′h ∀h

Let ~BNE denote the set of Nash equilibrium bid profiles.

Given that no hospital earns more than its marginal product (Theorem 8), the profile ~bMP is a

Nash equilibrium provided that no hospitals are excluded from the network; i.e. N∗(~bMP ) = H.

This is true under the following mild condition originally introduced by Shapley (1962).

Definition 11. The hospitals are Shapley substitutes if:

V (H, c)− V (N, c) ≥
∑

h∈H\N

V (H, c)− V (H \ {h}, c)

The condition poses no restriction in many settings, e.g. the assignment problem of Shapley

(1962), but is needed here since the insurer’s value function was left fully general. As shown by
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Bikhchandani and Ostroy (2006), this is precisely the right condition to ensure that each hospital

can receive its marginal product. See De Vries, Schummer, and Vohra (2007) for a longer discussion.

Theorem 9. Given bid profile ~bMP , the insurer selects the full network if hospitals are Shapley

substitutes.

Corollary 2. The bid profile ~bMP is a Nash equilibrium if hospitals are Shapley substitutes.

The following (stability-related) definitions are similarly the network-specific bidding counterparts

of the earlier bilateral bidding versions.

Definition 12. A bid profile ~b = (~bh,~b−h) is pairwise stable for h if there exists no other bid
~b′h such that both the hospital h and the insurer prefer (~b′h,

~b−h) to (~bh,~b−h):

Πh(~bh) ≥ Πh(~b′h,
~b−h) ∀~b′h ≤ ~bh

Let ~BPS
h denote the set of bid profiles that are pairwise stable for h.

Definition 13. A bid profile ~b is pairwise stable if it is pairwise stable for h for each h:

~BPS =
⋂
h

~BPS
h .

Definition 14. A bid profile ~b ∈ ~BPS is a pairwise stable equilibrium if, for each h, ~bh

maximizes h’s profit among all pairwise stable bid profiles, holding fixed ~b−h:

Πh(~b) ≥ Πh(~b′h,
~b−h) ∀(~b′h,~b−h) ∈ ~BPS ∀h

Let ~BPSE denote the set of pairwise stable equilibrium bid profiles.

As with bilateral bids, Nash equilibria are also pairwise stable equilibria, which yields the next

result.

Corollary 3. The bid profile ~bMP is a pairwise stable equilibrium.

This concludes the formal results.
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Discussion

The comparative picture is now complete: bilateral bidding produces equilibrium prices which

are systematically higher than the equilibrium prices of network-specific bidding. This systematic

bias stemmed from an additional degree of strategic complementarity that is composed of two

ingredients: (1) the insurer’s network choice decision and (2) the resulting pricing incentives for

the hospitals.

With bilateral bidding, the insurer’s network selection reflects a degree of relative cost-savings:

if some hospital h increases its price, the insurer is more eager to accept a different hospital h′

because this will channel some patients away from the now-more-expensive h. Equivalently, after

h increases its price, the insurer is more reluctant to drop h′ because some of those patients will

flow to the now-more-expensive h. This reasoning produces the long {h1, h2} tranche along the

diagonal in the opening example.

Since each hospital wants to extract both its value added to the insurer as well the cost-savings it

provides, hospital h′ demands a strictly higher price after the rival h increases its price.

In other words, this price increase by h has made the insurer worse off in two ways:

1. The insurer is directly worse off as it is now paying more to that hospital h for every patient

it treats.

2. The insurer is indirectly worse off since it is now in a worse bargaining position with the other

hospitals −h in the network.

This is precisely why network-specific pricing is so powerful in this setting: the indirect effect is

completely absent.29 If the insurer is selecting some network N and hospital h demands a slightly

higher price on network N , this has exactly zero effect on the insurer’s reluctance to drop some other

hospital h′: the prices for network N \{h′} have not changed. The direct effect is present with both

bilateral bidding and network-specific bidding, but it is this indirect effect, this complementarity,

that encourages prices to reach excessive levels. This is precisely the motivation for decoupling the

prices, and the previous results illustrate the impact.

29This also suggests why à la carte pricing may not have the desired effect: the strategic complementarity is still
present.
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6 Conclusion

The current network formation process is a highly evolved system that has settled on an approximate

solution: bilateral contracting. The goal of this paper is to establish that this approximate solution

can be improved substantially through a better market design. In particular, the theoretical results

above suggest a systematic upward bias in hospital prices, which inflates the overall cost of health

care.

Much of the economic intuition can be found in the opening toy example, where hospital profits are

100% higher than their marginal contribution to society. Furthermore, this two-hospital example is

the best case scenario in the following sense: if one hospital incentivizes the insurer to drop its rival,

the remaining hospital gains all of the dropped hospital’s market share. In a more practical setting,

if a hospital is dropped, those patients are typically dispersed among all of the remaining hospitals,

not just to a hospital that drops its price. This further weakens the incentives to undercut, and

this threat of undercutting is the key to restraining prices.

Along these lines, investigations into more general (numerical) problems suggest a degree of excess

hospital markups that is even more alarming than the simple example. Unfortunately, this is a

type of quantitative result that is difficult to capture in an analytically tractable model. This

motivates the empirical work that can be found in the companion paper, Part II: Empirics. The

current paper, Part I: Theory, illustrates the general direction of the bias as well as the underlying

reasoning. The empirical work demonstrates that this is a large, economically meaningful effect.

While this paper uses tools of industrial organization and market design, it is fundamentally a

health economics paper. My proposal of network-specific pricing will require coordination among

both the insurers and the hospitals. I believe in the qualitative nature of these results, and hope

that many states seriously consider centralizing the network formation process along the lines of

the pre-exchanges outlined in the current work.
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Appendix – Theory

Omitted Proofs

Proof of Theorem 1. This follows directly from the definition of pairwise stability.

Proof of Theorem 2. The proof is obvious from the statement. Pairwise stability must satisfy

only downward deviations, while Nash equilibria satisfy both upward and downward deviations.

Therefore, Nash equilibria satisfy the constraints of pairwise stability.

Proof of Lemma 1.

(i) If all hospitals bid cost bh = ch, then the insurer cannot be made better off, and therefore

c ∈ BPS and so BPS 6= ∅.

(ii) By Assumptions 2 and 3, any hospital will be included in the network if they bid marginal

cost. Therefore, any excluded hospital can make itself no worse off by submitting a bid of

cost, and this makes the insurer strictly better off. By continuity, there exists a bid that

would make both the excluded hospital and the insurer better off. Therefore, if a hospital is

not included at a bid profile b, then b is not pairwise stable.

I present the proof of Lemma 2(ii) before the proof of Lemma 2(i).

Proof of Lemma 2(ii). Suppose (bh, b−h) is pairwise stable for h so that for any b̂h < bh,

(bh − ch)qh(bh, b−h) ≥ (b̂h − ch)qh(b̂h, b
′
−h).

Both initial bid profiles lead to the same network

qh(bh, b−h) = qh(b′h, b−h)

and therefore

(b′h − ch)qh(b′h, b−h) ≥ (bh − ch)qh(bh, b−h) ≥ (b̂h − ch)qh(b̂h, b−h)

for all b̂h < bh. This completes the proof.

The following result is useful for proving both Lemma 2(i) and Theorem 3.
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Lemma 5. Consider b, b′ such that b′1 > b1 and b′2 > b2. If (b′1, b−1), (b′2, b−2) ∈ BPS then

(b′1, b
′
2, b−12) ∈ BPS.

Proof of Lemma 5. Fix b, b′ such that b′1 > b1 and b′2 > b2. If (b′1, b−1), (b′2, b−2) ∈ BPS , then

the price substitutes condition (Assumption 2) neither h1 nor h2 can profitably undercut at

(b′1, b
′
2, b−12) ∈ BPS . That is, if h1 wants to undercut at (b′1, b

′
2, b−12) then h1 also wants to undercut

at (b′2, b−2) by Lemma 2(ii). Similarly for h2.

Now suppose h3 wants to undercut at (b′1, b
′
2, b−12) from b3 to b̂3 < b3. Since (b′1, b−1), (b′2, b−2) ∈

BPS , h3 must prefer not to undercut at either of those profiles. By (Assumption 2, h3’s quantity

is the same at each of (b′1, b−1), (b′2, b−2), (b′1, b
′
2, b−12) since they are all full network. This implies

that h3’s quantity must be strictly higher at (b′1, b
′
2, b̂3, b−123) than at (b′1, b̂3, b−13) or (b′2, b̂3, b−23).

However, if h1 is dropped at (b′1, b
′
2, b̂3, b−123), then h1 must also be dropped at (b′1, b̂3, b−13). Simi-

larly for h2. This implies that h3’s quantity is the same across (b′1, b
′
2, b̂3, b−123), (b′1, b̂3, b−13), and

(b′2, b̂3, b−23), a contradiction.

Proof of Lemma 2(i). This follows from successively applying Lemma 5 componentwise.

Proof of Theorem 3. The lattice structure follows from Lemma 2. Completeness follows from

the compactness of BPS , which is closed and bounded by construction.

Proof of Corollary 1. This is a direct consequence of the lattice structure.

Proof of Theorem 4. Define the stable best response mapping F : BPS → BPS defined as

F (b) = (b∗1(b), b∗2(b), ..., b∗H(b)).

Since this mapping is monotone (Corollary 1), apply Tarksi’s fixed point theorem to complete

the proof. For reference, see Topkis (2001).

Proof of Lemma 3. By the definition of the stable best reply, the insurer must be exactly indifferent

between having hospital h in or out of the network: V (b∗h(c), c−h) = V (∞, c−h). However, by

assumption, all hospitals are in network under both bid profiles (ch, c−h) and (b∗h(c), c−h):

qh(c) = qh(b∗h(c−h), c−h).
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Collecting and canceling terms yields the desired equality:

V (c)− V (∞, c−h) = V (c)− V (b∗h(c), c−h)

= (b∗h(c)− ch)qh(c).

Proof of Theorem 5. Given the substitutes assumption, the proof is fairly straightforward: at the

bid profile bMP , each hospital is making a weakly positive profit. Any given hospital would only

find a lower bid more profitable if it increases its quantity. Suppose hospital h lowers its bid all

the way to marginal cost. Since each other hospital h′ is included in the network (by construction)

at the bid profile (ch, b
MP
h′ , c−hh′), hospital h′ must continue to be included in the network at the

higher bid profile (ch, b
MP
h′ , bMP

−hh′). Therefore, even if h lowers its bid to ch, each hospital is still

included in the network and h has not increased his own quantity. This cannot increase h’s profit,

and I conclude that bMP ∈ BPS .

Proof of Theorem 6. The stable best responses to the marginal cost profile are the effective

marginal products:

(b∗1(c), b∗2(c), ..., b∗H(c)) = (bMP
1 , ..., bMP

H ).

Since the stable best responses are monotone increasing, the effective marginal product bid profile

is the smallest stable best response. This completes the proof.

Proof of Lemma 4. By definition, if N∗(~b) is chosen at undominated bid profile ~b, then – by defi-

nition – for all other N :

(bh(N∗(~b))− ch)qh(N∗(~b)) ≥ (bh(N)− ch)qh(N) ∀h ∈ H

which is the desired result.

Proof of Theorem 7. Fix an undominated bid profile b. If the insurer selects network N 6= H,

then

v(N)−
∑
h∈N

bh(N)qh(N) > v(H)−
∑
h∈N

bh(H)qh(H)−
∑

h∈H\N

chqh(H)

Rearranging and collecting terms yields:

V (N, c)−
∑
h∈N

(bh(N)− ch)qh(N) > V (H, c)−
∑
h∈H

(bh(H)− ch)qh(H)
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or

V (N, c) +
∑
h∈H

(bh(H)− ch)qh(H) > V (H, c) +
∑
h∈N

(bh(N)− ch)qh(N).

Since the full network is efficient and the bid profile is undominated, both addends on the right are

larger than their counterparts on the left, a contradiction.

Proof of Theorem 8. Hospital h’s marginal product is:

MPh =

v(H)− chqh(H)−
∑
h′ 6=h

ch′qh′(H)

−
v(H \ {h})−

∑
h′ 6=h

ch′qh′(H \ {h})


= [v(H)− v(H \ {h})− chqh(H)] +

∑
h′ 6=h

ch′qh′(H \ {h})− ch′qh′(H)

 .
At an undominated bid profile ~b, the insurer prefers the full network H network to the smaller

network H \ {h}:

v(H)− bh(H)qh(H)−
∑
h′ 6=h

bh′(H)qh′(H) ≥ v(H \ {h})−
∑
h′ 6=h

bh′(H \ {h})qh′(H \ {h}).

The profit of h is:

bh(H)qh(H)− chqh(H)

≤

v(H)−
∑
h′ 6=h

bh′(H)qh′(H)

−
v(H \ {h})−

∑
h′ 6=h

bh′(H \ {h})qh′(H \ {h})

− chqh(H)

= [v(H)− v(H \ {h})− chqh(H)] +

∑
h′ 6=h

bh′(H \ {h})qh′(H \ {h})− bh′(H)qh′(H)

 .
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Combining the first equality with the second inequality:

MPh −
h’s profit︷ ︸︸ ︷

(bh(H)qh(H)− chqh(H))

≥

∑
h′ 6=h

ch′qh′(H \ {h})− ch′qh′(H)

−
∑
h′ 6=h

bh′(H \ {h})qh′(H \ {h})− bh′(H)qh′(H)


=
∑
h′ 6=h

(
(bh′(H)− ch′)qh′(H)− (bh′(H \ {h})− ch′)qh′(H \ {h})︸ ︷︷ ︸

≥ 0 since bids are undominated

)
≥ 0.

Proof of Theorem 9. The surplus to the insurer of selecting the full network is:

V (H, c)−
∑
h∈H

(V (H, c)− V (H \ {h}, c)) .

The surplus from selecting network N is:

V (N, c)−
∑
h∈N

(V (H, c)− V (H \ {h}, c)) .

Therefore, the insurer selects the full network exactly when:

V (H, c)− V (N, c) ≥
∑

h∈H\N

(V (H, c)− V (H \ {h}, c)) .

Proof of Corollary 2. This follows directly from Theorem 8 and Theorem 9.

Proof of Corollary 3. To verify that ~bMP is a pairwise stable equilibrium (also defined below),

I verify that any hospital h cannot incentivize the insurer to drop another hospital, even if h bids

down to marginal cost. But – by design – bidding down to marginal cost only saves the insurer

one lump-sum payment of V (H, c) − V (H \ {h}, c), and does not change the marginal incentives

to include or exclude other hospitals. Therefore no hospitals are dropped after the price decrease,

and ~bMP is a pairwise stable equilibrium.
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