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1 Introduction

The success of a society often hinges on the design of its institutions, from markets to

voting. From a game-theoretic perspective, the basic requirement of an institution is

that it admits an equilibrium satisfying properties that the society deems desirable, as

forwarded by the literature on mechanism design. A more satisfactory way of designing an

institution is to have all of its equilibria to be desirable, or to achieve full implementation.

However, this latter implementation approach has been often criticized for employing

abstract institutions to deliver its results, especially, the usage of unbounded integer games

which rules out some undesired outcomes via an infinite chain of dominated actions (see

the surveys of Moore [22], Jackson [12], Maskin and Sjöström [20], and Serrano [29], for

example).

In a recent paper, Lee and Sabourian [17] extend the scope of implementation to

repeated environments in which the agents’ preferences evolve stochastically, and demon-

strate a fundamental difference between the problems of one-shot and repeated imple-

mentation. In particular, they establish, with minor qualifications, that in complete

information environments a social choice function is repeatedly implementable in Nash

equilibrium if and only if it is efficient, thereby dispensing with Maskin monotonicity [19]

that occupies the critical position in one-shot implementation and yet often amounts to a

very restrictive requirement, incompatible with many desirable normative properties in-

cluding efficiency (e.g. Mueller and Satterthwaite [26], Saijo [28]). The notion of efficiency

represents a basic goal of an economic system and therefore the sufficiency results in Lee

and Sabourian [17] offer strong implications. However, the results also take advantage of

integer arguments to eliminate unwanted equilibria.1

One response in the implementation literature, both in one-shot and repeated setups,

to the criticism of its constructive arguments is that the point of using abstract mecha-

nisms is to demonstrate what can possibly be implemented in most general environments;

in specific situations, more appealing constructions may also work. According to this view,

the constructions allow us to show how tight the necessary conditions for implementation

1More recently, Mezzetti and Renou [21] have derived conditions for Nash implementation in any
finite or infinite repeated implementation problems with complete information. They identify a dynamic
monotonicity property which is equivalent to Maskin monotonicity in a static implementation setup, and
implies efficiency in the range (to be defined below) in an infinitely repeated setup with sufficiently patient
agents, as in Lee and Sabourian [17]. Integer games are also used to establish their sufficiency results.

2



are. Another response in the one-shot literature has been to restrict attention to more

realistic, finite mechanisms. However, using a finite mechanism such as the modulo game

to achieve Nash implementation brings an important drawback: unwanted mixed strategy

equilibria. This could be particularly problematic in one-shot settings since, as Jackson

[11] has shown, a finite mechanism that Nash implements a social choice function could

invite unwanted mixed equilibria that strictly Pareto dominate the desired outcomes.

This paper explores the question of implementing efficient social choice functions in

a repeated environment by considering only finite mechanisms. Our approach appeals to

bounded rationality of the agents. In particular, we pursue the implications of agents who

have a preference for less complex strategies (at the margin) on the mechanism designer’s

ability to discourage undesired equilibrium outcomes.2

In order to achieve implementation under changing preferences, a mechanism has to be

devised in each period to elicit the agents’ information. A key insight in Lee and Sabourian

[17] is that the mechanisms can themselves be made contingent on past histories in a

way that, roughly put, each agent’s individually rational repeated game payoff at every

history is equal to the target payoff that he derives from implementation of the desired

social choices. Part of the arguments for this result involves an extension of the integer

game.

In this paper, we will require each mechanism to be simple and finite but introduce

a non-stationary sequence of mechanisms in terms of its path dependence, via enforcing

different mechanisms at different histories. Our precise constructions generate, under

minor qualifications, the following equilibrium features:

• Every pure strategy Nash, or subgame perfect, equilibrium repeatedly implements

the efficient social choice function.

• Every mixed strategy Nash, or subgame perfect, equilibrium is strictly Pareto-

dominated by the pure equilibria.

• Randomization can be eliminated altogether by invoking subgame perfection and

an additional equilibrium refinement, based on a “small” cost associated with im-

plementing a more complex strategy.

2The complexity cost in our analysis is concerned with implementation of a strategy. The players are
assumed to have full computational capacity to derive best responses.
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Thus, even with simple finite mechanisms, the freedom to choose different mechanisms

at different histories enables the planner to design a sequence of mechanisms such that

every pure equilibrium attains the desired outcomes; at the same time, if the players were

to randomize in equilibrium, the strategies would prescribe:

(i) inefficient outcomes, which therefore make non-pure equilibria in our repeated set-

tings are less plausible from the efficiency perspective (as alluded to by Jackson

[11]); and, moreover,

(ii) a complex pattern of behavior (i.e., choosing different mixing probabilities at dif-

ferent histories) that could not be justified by payoff considerations, as simpler

strategies could induce the same payoff as the equilibrium strategy at every history.

We emphasize that, although the evolution of mechanisms follows a complex pattern,

each mechanism that we employ has a simple two-stage sequential structure and a finite

number of actions that is independent of the number of players (unlike the modulo game,

for instance).

Our complexity refinement is particularly appealing and marginal for two reasons. On

the one hand, the notion of complexity needed to obtain the result stipulates only a partial

order over strategies such that stationary behavior (i.e., always making the same choice)

is simpler than taking different actions at different histories (any measure of complexity

that satisfies this will suffice). On the other hand, the equilibrium refinement requires

players to adopt minimally complex strategies among the set of strategies that are best

responses at every history. This contrasts with the more standard equilibrium notion

in the literature on complexity in dynamic games that asks strategies to be minimally

complex among those that are best responses only on the equilibrium path (see, for

instance, the survey of Chatterjee and Sabourian [7]).

Various refinements have been explored in the one-shot implementation literature to

obtain more permissive results than what is implied by Maskin monotonicity. The role of

credibility in the context of extensive form mechanisms was studied by Moore and Repullo

[23] and Abreu and Sen [4]. Jackson, Palfrey and Srivastava [13] and Sjöström [30] adopt

the notion of undominated Nash equilibrium to derive strong implementation results using

only finite mechanisms and allowing for mixed strategies. These latter objectives were

also addressed by Abreu and Matsushima [1][2] who consider virtual implementation in

4



iteratively undominated strategies. In contrast to these works, our paper is concerned with

the problem of (exact) repeated implementation with randomly evolving preferences.

The paper is organized as follows. In Section 2, we describe and discuss the problem

of repeated implementation. Section 3 presents our main analysis and results for the case

of two agents. The analysis for the case of three of more agents, appearing in Section 4,

builds on from the material on the two-agent case. We offer some discussion on how to

extend our results in Section 5 before concluding in Section 6. Appendices are provided

to present some proofs and additional results omitted from the main text for expositional

reasons.

2 The Setup

The following describe the repeated implementation setup introduced by Lee and Sabourian

[17] (henceforth, LS).

2.1 Basic Definitions and Notation

An implementation problem, P , is a collection P = [I, A,Θ, p, (ui)i∈I ] where I is a finite,

non-singleton set of agents (with some abuse of notation, I also denotes the cardinality

of this set), A is a finite set of outcomes, Θ is a finite, non-singleton set of the possible

states, p denotes a probability distribution defined on Θ such that p(θ) > 0 for all θ ∈ Θ

and agent i’s state-dependent utility function is given by ui : A×Θ→ R.

An SCF f in an implementation problem P is a mapping f : Θ → A, and the range

of f is the set f(Θ) = {a ∈ A : a = f(θ) for some θ ∈ Θ}. Let F denote the set of all

possible SCFs and, for any f ∈ F , define F (f) = {f ′ ∈ F : f ′(Θ) ⊆ f(Θ)} as the set of

all SCFs whose ranges belong to f(Θ).

For an outcome a ∈ A, define vi(a) =
∑

θ∈Θ p(θ)ui(a, θ) as its (one-shot) expected util-

ity, or payoff, to agent i and, for an SCF f , define vi(f) =
∑

θ∈Θ p(θ)ui(f(θ), θ). Denoting

the profile of payoffs associated with f by v(f) = (vi(f))i∈I , let V =
{
v(f) ∈ RI : f ∈ F

}
be the set of expected utility profiles of all possible SCFs. Also, for a given f ∈ F , let

V (f) =
{
v(f ′) ∈ RI : f ′ ∈ F (f)

}
be the set of payoff profiles of all SCFs whose ranges

belong to the range of f . We refer to co(V ) and co(V (f)) as the convex hulls of the two

sets, respectively.
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LS define efficiency of an SCF in terms of the convex hull of the set of expected utility

profiles of all possible SCFs since this reflects the set of (discounted average) payoffs

that can be obtained in an infinitely repeated implementation problem. A payoff profile

v′ = (v′1, .., v
′
I) ∈ co(V ) is said to Pareto dominate another profile v = (v1, .., vI) if v′i ≥ vi

for all i with the inequality being strict for at least one agent; v′ strictly Pareto dominates

v if the inequality is strict for all i.

Definition 1 (a) An SCF f is efficient if there exists no v′ ∈ co(V ) that Pareto domi-

nates v(f); f is strictly efficient if it is efficient and there exists no f ′ ∈ F , f ′ 6= f ,

such that v(f ′) = v(f).

(b) An SCF f is efficient in the range if there exists no v′ ∈ co(V (f)) that Pareto

dominates v(f); f is strictly efficient in the range if it is efficient in the range and

there exists no f ′ ∈ F (f), f ′ 6= f , such that v(f ′) = v(f).

2.2 Repeated Implementation

We refer to P∞ as the infinite repetitions of the implementation problem P = [I, A,Θ, p, (ui)i∈I ].

Periods are indexed by t ∈ Z++ and the agents’ common discount factor is δ ∈ (0, 1).

In each period, the state is drawn from Θ from an independent and identical probability

distribution p. For an (uncertain) infinite sequence of outcomes a∞ =
(
at,θ
)
t∈Z++,θ∈Θ

,

where at,θ ∈ A is the outcome implemented in period t and state θ, agent i’s (repeated

game) payoff is given by

πi(a
∞) = (1− δ)

∑
t∈Z++

∑
θ∈Θ

δt−1p(θ)ui(a
t,θ, θ).

We assume that the structure of P∞ (including the discount factor) is common knowl-

edge among the agents and, if there is one, the planner. The realized state in each period

is complete information among the agents but unobservable to a third party.

Next, we define mechanisms and regimes. A mechanism is defined as g = (M g, ψg),

where M g = M g
1 × · · · ×M

g
I is a cross product of message spaces and ψg : M g → A is an

outcome function such that ψg(m) ∈ A for any message profile m = (m1, . . . ,mI) ∈M g.3

3Note that this is a normal form representation of a mechanism. If one considers a mechanism in
extensive form, Mi can be interpreted as the set of player i’s pure strategies in the mechanism and the
outcome function, ψ, as a mapping from the set of all possible observable paths induced by the players’
strategy profiles.
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Mechanism g is finite if ‖M g
i ‖ < ∞ for every agent i. Let G be the set of all feasible

mechanisms.

A regime specifies a history-dependent “transition rules” of mechanisms contingent

on the publicly observable history of mechanisms played and the agents’ corresponding

actions. It is assumed that a planner, or the agents themselves, can commit to a regime

at the outset.

Given mechanism g = (M g, ψg), define Eg ≡ {(g,m)}m∈Mg , and let E = ∪g∈GEg.
Then, H t = E t−1 (the (t−1)-fold Cartesian product of E) represents the set of all possible

publicly observable histories over t− 1 periods. The initial history is empty (trivial) and

denoted by H1 = ∅. Also, let H∞ = ∪∞t=1H
t with a typical history denoted by h ∈ H∞.

We define a regime, R, as a mapping R : H∞ → G. Let R|h refer to the continuation

regime that regime R induces at history h ∈ H∞ (thus, R|h(h′) = R(h, h′) for any

h, h′ ∈ H∞). We say that a regime R is history-independent if and only if, for any t and

any h, h′ ∈ H t, R(h) = R(h′), and that a regime R is stationary if and only if, for any

h, h′ ∈ H∞, R(h) = R(h′).

Given a regime, an agent can condition his actions on the past history of realized

states as well as that of mechanisms and message profiles played. Define Ht = (E ×Θ)t−1

as the (t− 1)-fold Cartesian product of the set E ×Θ, and let H1 = ∅ and H∞ = ∪∞t=1H
t

with its typical element denoted by h.

Then, we can write each agent i’s mixed (behavioral) strategy as a mapping σi :

H∞ × G × Θ → 4 (∪g∈GM g
i ) such that σi(h, g, θ) ∈ M g

i for any h ∈ H∞, g ∈ G and

θ ∈ Θ, where 4 before a set means the set of all probability measures over the set. Let

Σi be the set of all such strategies, and let Σ ≡ Σ1 × · · · × ΣI . A strategy profile is

denoted by σ ∈ Σ. We say that σi is a Markov (history-independent) strategy if and

only if σi(h, g, θ) = σi(h
′, g, θ) for any h,h′ ∈ H∞, g ∈ G and θ ∈ Θ. A strategy profile

σ = (σ1, . . . , σI) is Markov if and only if σi is Markov for each i.

Suppose that R is the regime and σ the strategy profile chosen by the agents. Then,

for any date t and history h ∈ Ht, we define the following:

• gh(σ,R) ≡ (Mh(σ,R), ψh(σ,R)) refers to the mechanism played at h.

• πh
i (σ,R), with slight abuse of notation, denotes agent i’s expected continuation

payoff at h. For notational simplicity, let πi(σ,R) ≡ πh
i (σ,R) for h ∈ H1.
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• Ah,θ(σ,R) ⊂ A denotes the set of outcomes implemented with positive probability

at h when the current state is θ.

When the meaning is clear, we shall sometimes suppress the arguments in the above

variables and refer to them simply as gh, πh
i and Ah,θ.

A strategy profile σ = (σ1, . . . , σI) is a Nash equilibrium of regime R if, for each i,

πi(σ,R) ≥ πi(σ
′
i, σ−i, R) for all σ′i ∈ Σi. Let Ωδ(R) ⊆ Σ denote the set of (pure or mixed

strategy) Nash equilibria of regime R with discount factor δ.

LS propose the following two notions of Nash repeated implementation.

Definition 2 (a) An SCF f is payoff-repeatedly implementable in Nash equilibrium

from period τ if there exists a regime R such that Ωδ(R) is non-empty and every

σ ∈ Ωδ(R) is such that πh
i (σ,R) = vi(f) for any i, t ≥ τ and h ∈ Ht(σ,R) on the

equilibrium path.

(b) An SCF f is repeatedly implementable in Nash equilibrium from period τ if there

exists a regime R such that Ωδ(R) is non-empty and every σ ∈ Ωδ(R) is such that

Ah,θ(σ,R) = {f(θ)} for any t ≥ τ , θ ∈ Θ and h ∈ Ht(σ,R) on the equilibrium path.

The first notion represents repeated implementation in terms of payoffs, while the

second asks for repeated implementation of outcomes and, therefore, is a stronger con-

cept. Repeated implementation from some period τ requires the existence of a regime

in which every Nash equilibrium delivers the correct continuation payoff profile or the

correct outcomes from period τ onwards for every possible sequence of state realizations.

With no restrictions on the set of feasible mechanisms and regimes, LS establish that,

with some minor qualifications, an SCF is payoff-repeatedly implementable (repeatedly

implementable) in Nash equilibrium if it is efficient in the range (strictly efficient in the

range); also, efficiency in the range is necessary for Nash repeated implementation when

the agents are sufficiently patient.

2.3 Obtaining Target Payoffs

Before embarking on our main analysis, we present an observation about the repeated

implementation setup that will play an important role in the constructive arguments

below. In our setup, the planner can implement the payoff profile of a fixed outcome and
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that of a dictatorship if the agents are rational and the dictator’s maximal outcome in

each state generates a unique payoff profile. More generally, the planner can enforce a

dictatorship over a restricted range of outcomes. Moreover, if the agents are sufficiently

patient, by enforcing a non-stationary sequence of dictatorships, the planner can obtain

any convex combination of the above payoff profiles.

Formally, let d(i, N) denote a dictatorial mechanism in which agent i is the dictator

over the set of outcomes N , or simply (i, N)-dictatorship; formally, d(i, N) = (M,ψ) is

such that Mi = N ⊆ A, Mj = {∅} for all j 6= i and ψ(m) = mi for all m ∈M . Note that,

if N is a singleton set, d(i, N) implements a constant SCF.

For any N ⊆ A, let Υi(N, θ) ≡ {arg maxa∈N ui(a, θ)} represent the set of agent i’s best

outcomes among the set N in state θ, and define vji (N) =
∑

θ∈Θ p(θ) maxa∈Υj(N,θ) ui(a, θ)

as i’s maximum one-period payoff if j is the dictator and always acts rationally given the

outcome set N . Clearly, vii(N) then is i’s unique maximal one-period payoff. In addition,

let

Φ =
{

(i, N) ∈ I × 2A : uj(a, θ) = uj(a
′, θ) ∀a, a′ ∈ Υi(N, θ) ∀θ ∈ Θ ∀j ∈ I

}
,

that is, Φ is the set of all (i, N)-dictatorships that yield unique payoff profiles.4

Now, for any d(i, N) with (i, N) ∈ Φ, let vi(N) denote the unique payoff profile and

W = {vi(N)}(i,N)∈Φ denote the set of all payoff profiles from such dictatorial mechanisms.

By applying the algorithm of Sorin [31] to our setup, we have the following.

Lemma 1 Fix any W ∗ ⊂ W and suppose that δ ∈
(

1− 1
|W ∗| , 1

)
. Then, for any payoff

profile w ∈ co(W ∗), there exists a history-independent regime that generates a unique

(discounted average) payoff profile equal to w.

Proof. Note that vi(N) is the one-period payoff profile under (i, N)-dictatorship when i

acts rationally. Thus, for any w ∈ co(W ∗), there exists a history-independent sequence

of dictatorial mechanisms, or payoffs belonging to W ∗, such that the corresponding dis-

counted average payoff profile equals w if δ > 1− 1
|W ∗| . See Sorin [31] (or Lemma 3.7.1 of

Mailath and Samuelson [18]) for details.

4Note that with strict preferences every (i,N)-dictatorship yields unique payoffs.
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3 Two Agents

In this paper, we first report our results for I = 2. Our approach to the case of I ≥ 3

involves more complicated constructions that will build on from the material of this sec-

tion. Also, as in the one-shot implementation problem, there is a difference between the

two-agent and three-or-more-agent cases in our setup for ensuring the existence of truth-

telling equilibrium. This is due to the fact that, with two agents, it is not possible to

identify the misreport in the event of disagreement. One way to deter deviations from

truth-telling in our regime construction with I = 2 is to invoke an additional requirement

known as self-selection, as adopted in the one-shot literature.5 In our main analysis below,

we shall make the same assumption. Alternatively, when the agents are sufficiently pa-

tient, intertemporal incentives can be designed to support truth-telling, which we discuss

in Appendix A.2.

3.1 Regime Construction

Suppose that I = 2, and fix an SCF f that is efficient in the range. Consider dictatorial

mechanisms over the range of the SCF, d(1, f(Θ)) and d(2, f(Θ)). Suppose that both

of these dictatorships yield unique payoffs, i.e. (i, f(Θ)) ∈ Φ for all i, and also that

v1(f(Θ)) 6= v2(f(Θ)) since otherwise the problem is trivial. For each i = 1, 2, it is

clearly the case that vii(f(Θ)) ≥ vi(f) and, hence, efficiency in the range implies that

vji (f(Θ)) ≤ vi(f) for j 6= i. Thus, by Lemma 1, for each i, j = 1, 2, i 6= j, there exists

a history-independent regime Si that alternates the two dictatorial mechanisms in a way

that yields a unique (discounted average) payoff profile wi = (wii, w
i
j) such that wii = vi(f)

if δ ∈
(

1
2
, 1
)
. Since f is efficient in the range it must be that, for j 6= i, wij ≤ wjj . Moreover,

this inequality is strict if v(f) cannot be obtained by a convex combination of the payoffs

from d(1, f(Θ)) and d(2, f(Θ)).

In what follows, we assume that δ ∈
(

1
2
, 1
)

and the condition below.

Condition φ. (i) (i, f(Θ)) ∈ Φ for all i.

(ii) v(f) 6= γv1(f(Θ)) + (1− γ)v2(f(Θ)) for all γ ∈ [0, 1].

Thus, for each i regime Si can be constructed with payoffs wii = vi(f) and wij < wjj , j 6= i.

5This condition is originally from Dutta and Sen [8] and is weaker than the “bad outcome” condition
in Moore and Repullo (1990).
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We make several observations about condition φ. First, both parts of condition φ

are generic: strict preferences would imply that all dictatorships yield unique payoffs and

hence ensure part (i), and part (ii) is true as long as v(f) is an extreme point of the convex

hull of the set of feasible payoffs that can be generated from the range of f (recall that f

is assumed to be efficient in the range). Second, when part (ii) fails to hold so that v(f)

can be obtained exactly by a convex combination of d(1, f(Θ)) and d(2, f(Θ)), we can not

only implement the desired payoff profile at the outset but also, by Fudenberg and Maskin

[9], one can actually alternate the two dictatorships in such a way that the continuation

payoffs at any date are arbitrarily close to v(f) if the players are sufficiently patient.

In terms of payoff-repeated implementation, therefore, condition φ imposes almost no

additional loss of generality. Third, there are other ways to construct Si with desired

payoff properties. For instance, if there exists some ã ∈ A such that vi(ã) < vi(f) for all

i, Si can be built by alternating d(i, f(Θ)) and constant enforcement of ã.

Given condition φ, we can further alternate the two dictatorships to construct a set of

regimes X(t) for each t = 1, 2, . . . and another regime Y that respectively induce unique

payoff profiles x(t) and y satisfying the following condition:

w2
1 < y1 < x1(t) < w1

1 and w1
2 < x2(t) < y2 < w2

2. (1)

To construct these regimes, let x(t) = λ(t)w1 + (1− λ(t))w2 and y = µw1 + (1− µ)w2

for some 0 < µ < λ(t) < 1. By condition φ, these payoffs satisfy (1). Furthermore,

since wi for each i is a convex combination of the two dictatorial payoffs v1(f(Θ)) and

v2(f(Θ)), such payoffs can be obtained by regimes that appropriately alternate between

the two dictatorships. These constructions are illustrated in Figure 1 below.

As mentioned earlier, we invoke an additional condition to guarantee existence of a

desired equilibrium in the regime that we construct to obtain the sufficiency results. For

any f , i and θ, let Li(θ) = {a ∈ f(Θ)|ui(a, θ) ≤ ui(f(θ), θ)} be the set of outcomes

among the range of f that make agent i strict worse off than f . We say that f satisfies

self-selection in the range if L1(θ) ∩ L2 (θ′) 6= ∅ for any θ, θ′ ∈ Θ.

Next, we define the following extensive form mechanism, referred to as ge:

Stage 1 - Each agent i = 1, 2 announces a state, θi, from Θ.

Stage 2 - Each agent announces an integer, zi, from the set Z ≡ {0, 1, 2}.

11



Figure 1: Regime construction
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The outcome function of this mechanism depends solely on the agents’ announcement

of states in Stage 1 and is given below:

(i) If θ1 = θ2 = θ, f(θ) is implemented.

(ii) Otherwise, an outcome from the set L1(θ2) ∩ L2(θ1) is implemented.

Using this mechanism together with the history-independent regimes X(t) and Y

constructed above, we define regime Re inductively as follows. First, mechanism ge is

played in t = 1. Second, if, at some date t ≥ 1, ge is the mechanism played with a pair

of states θ˜ = (θ1, θ2) announced in Stage 1 followed by integers z˜ = (z1, z2) in Stage 2,

the continuation mechanism or regime at the next period is given by the transition rules

below:

Rule A.1: If z1 = z2 = 0, then the mechanism next period is ge.

Rule A.2: If z1 > 0 and z2 = 0 (z1 = 0 and z2 > 0), then the continuation regime is

S1 (S2).

Rule A.3: If z1, z2 > 0, then we have the following:
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Rule A.3(i): If z1 = z2 = 1, the continuation regime is X ≡ X(t̃) for some

arbitrary but fixed t̃, with the payoffs henceforth denoted by x.

Rule A.3(ii): If z1 = z2 = 2, the continuation regime is X(t).

Rule A.3(iii): If z1 6= z2, the continuation regime is Y .

This regime thus employs only the outcomes in the range of the SCF, f(Θ). Let us

summarize other key features of this regime construction. First, in mechanism ge, the

implemented outcome depends solely on the announcement of states, while the integers

dictate the continuation mechanism. In contrast to the corresponding constructions in

LS, here we allow the agents to choose integers from only a finite set and also invoke a

two-stage sequential structure. The latter change, as will be clarified shortly, enables us

to define the notion of complexity of a strategy in a natural way.

Second, announcement of any non-zero integer effectively ends the strategic part of the

game. Our regime is similar to that of LS in that when only one agent, say i, announces

a positive integer this agent obtains his target payoff vi(f) in the continuation regime

Si (Rule A.2). The rest of transitions are designed to achieve our new objectives. In

particular, when both agents report positive integers, by (1), the continuation regimes are

such that the corresponding continuation payoffs, x(t) or y, are strictly Pareto-dominated

by the target payoffs v(f). Furthermore, when both agents report 2 (Rule A.3(ii)) the

continuation regimes could actually be different across periods. This feature will later be

used to facilitate our refinement arguments.

Note that, in this regime, the histories that matter are only those at which the agents

engage in mechanism ge. Using the same notation as before, we denote by Ht the set of all

such finite histories observed by the agents at the beginning of period t; let H∞ = ∪∞t=1H
t.

Also, since ge has a two-stage sequential structure, we additionally describe information

available within a period, which we call partial history. Let Dθ = Θ and Dz = Θ × ΘI

denote the set of partial histories at Stage 1 and at Stage 2 of the mechanism, respectively,

and let d ∈ Dθ ∪ Dz ≡ D index a single such partial history. Thus, d = θ is a partial

history that represents the beginning of Stage 1 after state θ has been realized, and

d = (θ, θ˜) ∈ Dz refers to the beginning of Stage 2 after realization of θ followed by profile

θ˜ ∈ Θ2 announced in Stage 1.

We can now define strategies and payoffs for the above regime as follows. With slight

abuse of notation, a mixed (behavioral) strategy of agent i = 1, 2 in regime Re is the

13



mapping σi : H∞ × D → (4Θ) ∪ (4Z) such that, for any h ∈ H∞, σi(h, d) ∈ 4Θ if

d ∈ Dθ and σi(h, d) ∈ 4Z if d ∈ Dz. Let Σi be the set of i’s strategies in Re. We write

πh
i (σ,Re) as player i’s continuation payoff under strategy profile σ at history h ∈ H∞,

i.e. when the history is such that the mechanism to be played is ge.

3.2 Nash Equilibria

We begin the analysis of the above regime by establishing existence of a Nash equilibrium

in which the desired social choice is always implemented. In this equilibrium, both players

adopt Markov strategies, always announcing the true state followed by integer zero.

Lemma 2 Regime Re admits a Nash equilibrium, σ∗, in Markov strategies such that,

for any t, h ∈ Ht and θ ∈ Θ on the equilibrium path, (i) gh(σ∗, Re) = ge and (ii)

Ah,θ(σ∗, Re) = {f(θ)}.

Proof. Consider σ∗ ∈ Σ such that, for all i, σ∗i (h, θ) = θ for all h ∈ H∞ and θ ∈ Dθ, and

σ∗i (h, (θ, θ˜)) = 0 for all h ∈ H∞ and
(
θ, θ˜) ∈ Dz.

6 Clearly, this profile satisfies (i) and (ii)

in the claim. Thus, at any h ∈ H∞, πh
i (σ∗, Re) = vi(f) for all i.

To show that σ∗ is a Nash equilibrium, consider a unilateral one-step deviation by any

agent i. Fix any h ∈ H∞. There are two cases to consider. First, fix any partial history θ.

By the outcome function of ge and self-selection in the range, one-step deviation to a non-

truthful state does not improve one-period payoff; also, since the other player’s strategy

is Markov and the transition rules do not depend on Stage 1 actions, the continuation

payoff at the next period is unaffected. Second, fix any partial history
(
θ, θ˜). In this case,

by Rule A.2, the continuation payoff from deviating to any positive integer is identical to

the equilibrium payoff, which is equal to vi(f).

Our next Lemma is concerned with the players’ equilibrium behavior whenever they

face Stage 2 (the integer part) of mechanism ge on the equilibrium path. It shows that at

any such history both players must be either playing 0 for sure and obtaining the target

payoffs v(f) in the continuation game next period, or mixing between 1 and 2 for sure

and obtaining less than v(f). Thus, in terms of continuation payoffs, mixing is strictly

Pareto-dominated by the pure strategy equilibrium.

6Here we have abused the notation slightly to describe pure strategies.
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Lemma 3 Consider any Nash equilibrium of regime Re. Fix any t, h ∈ Ht and d =

(θ, θ˜) ∈ Dz on the equilibrium path. Then, one of the following must hold at (h, d):

(a) Each i announces 0 for sure and his continuation payoff at the next period is vi(f).

(b) Each i announces 1 or 2 for sure, with the probability of choosing 1 equal to xi(t)−yi

xi+xi(t)−2yi
∈

(0, 1), and his continuation payoff at the next period is less than vi(f).

Proof. See Appendix A.1.

To gain intuition for the above result, consider the matrix below that contains the

corresponding continuation payoffs when at least one player announces a positive integer.

Figure 2: Continuation payoffs

Player 2

0 1 2

0 · w2 w2

Player 1 1 w1 x y

2 w1 y x(t)

First, from Figure 2, the inequalities of (1) imply that any equilibrium with pure

strategy at the relevant history must play 0. In such a case, it then follows that each

player i’s continuation payoff must be bounded below by vi(f) since, otherwise, the player

could deviate by reporting a positive integer and obtain wii = vi(f) from the continuation

regime Si (Rule A.2). Since this is true for all i, the efficiency in the range of the SCF

then implies that the continuation payoffs are equal to the target payoffs for all agents.

Second, we show that if the players are mixing over integers then zero cannot be

chosen. Since xi(t) > wji and yi > wji for i, j = 1, 2, the transition rules imply that each

agent prefers to announce 1 than to announce 0 if the other player is announcing a positive

integer for sure. It then follows that if agent i attaches a positive weight to 0 then the

other agent j must also do the same, and i’s continuation payoff is at least vi(f), with it

being strictly greater than vi(f) when j plays a positive integer with positive probability.

Applying this argument to both agents leads to a contradiction against the assumption

that the SCF is efficient in the range.
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Finally, i’s continuation payoff at the next period when both choose a positive integer

is xi, xi(t) or y. The precise probability of choosing integer 1 by i in the case of mixing is

determined trivially by these payoffs as in the lemma. Also, since these payoffs are all by

assumption less than vi(f), we have that mixing results in continuation payoffs strictly

below the target levels.

Given Lemma 3, we can also show that if the players were to mix over integers at

any on-the-equilibrium history it must occur in period 1; otherwise, both players must

be playing 0 in the previous period where either player i could profitably deviate by

announcing a positive integer and activating continuation regime Si. The properties of

Nash equilibria of our regime can then be summarized as follows.

Proposition 1 Consider any Nash equilibrium σ of regime Re. Then, one of the follow-

ing must hold:

(a) Each player i announces 0 for sure at any (h, d) ∈ H∞ × Dz on the equilibrium

path, and πh
i (σ,Re) = vi(f) for any t ≥ 2 and h ∈ Ht on the equilibrium path.

(b) Each player i mixes between 1 and 2 at some d ∈ Dz in period 1 on the equilib-

rium path, and his continuation payoff at the next period is less than vi(f); hence,

πi(σ,R
e) < vi(f) if δ is sufficiently large.

Proof. See Appendix A.1.

Thus, if we restrict attention to pure strategies, the first part of this Proposition and

Lemma 2 imply that we obtain payoff-repeated implementation from period 2. Further-

more, any mixed strategy equilibrium of our regime is strictly Pareto-dominated by any

pure strategy equilibrium in terms of continuation payoffs from period 2.

3.3 Refinement: Credibility and Complexity

Our characterization of Nash equilibria of regime Re demonstrates that in any equilibrium

the players must either continue along the desired path of play or fall into coordination

failure early on in the game by mixing over the positive integers in period 1 which leads

to strictly inefficient continuation payoffs. We now introduce our refinement arguments

based on complexity considerations to select the former. Note first that, if we apply
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subgame perfection, the statements of Lemma 3 above can be readily extended to hold

for any on- or off -the-equilibrium history after which the agents find themselves in the

integer part of mechanism ge; that is, in a subgame perfect equilibrium (SPE) of regime

Re, at any (h, d) ∈ H∞ ×Dz they must either choose 0 for sure or mix between 1 and 2.

Also, the Nash equilibrium identified in Lemma 2 is itself an SPE.

In order to facilitate our complexity arguments, we add to the construction of Re the

following property: the sequence of regimes {X(t)}∞t=1 is such that, in addition to (1)

above, the corresponding payoffs {x(t)}∞t=1 satisfy

x1(t′) 6= x1(t′′) and x2(t′) 6= x2(t′′) for some t′, t′′. (2)

Note that this can be done simply by ensuring that the sequence {λ(t) : λ(t) ∈ (µ, 1) ∀(t)}
used before to construct these regimes is such that λ(t′) 6= λ(t′′) for at least two distinct

dates t′ and t′′.

Clearly, this additional feature does not alter Lemmas 2 and 3, or their SPE extensions.

However, it implies for any SPE that, if the agents mix over integers at some period t

on or off the equilibrium path, each i’s mixing probability, given by xi(t)−yi

xi+xi(t)−2yi
, is not

constant across periods.7

We next introduce a “small” cost associated with implementing a more complex strat-

egy. Complexity of a strategy can be measured in a number of ways. For our analysis, it

is sufficient to have a notion of complexity that captures the idea that stationary behavior

(always making the same choice) at every stage in mechanism ge is simpler than taking

different actions in ge at different histories. We adopt the following.

Definition 3 For any i and any pair of strategies σi, σ
′
i ∈ σi, we say that σi is more com-

plex than σ′i if the strategies are identical everywhere except, after some partial history in

mechanism ge, σ′i always behaves (randomizes) the same way while σi does not. Formally,

there exists some d′ ∈ D ≡ Dθ ∪Dz with the following properties:

(i) σ′i(h, d) = σi(h, d) for all h ∈ H∞ and all d ∈ D, d 6= d′.

(ii) σ′i(h, d
′) = σ′i(h

′, d′) for all h,h′ ∈ H∞.

(iii) σi(h, d
′) 6= σi(h

′, d′) for some h,h′ ∈ H∞.

7Our results are unaffected by making X(·) dependent on the entire history and not just its date. See
Section 6 for further discussion on this issue.
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Notice that this definition imposes a very weak and intuitive partial order over the

strategies. It has a similar flavor to the complexity notions used by Chatterjee and

Sabourian [6], Sabourian [27] and Gale and Sabourian [10] who consider bargaining and

market games. Our results also hold with other similar complexity measures, which we

discuss in further detail in Section 5 below.

Using Definition 3, we refine the set of SPEs as follows.

Definition 4 A strategy profile σ is a weak perfect equilibrium with complexity cost

(WPEC) of regime Re if σ is an SPE and for each i no other strategy σ′i ∈ σi is such that

(i) σ′i is less complex than σi; and

(ii) σ′i is a best response to σ−i at every information set for i (on or off the equilibrium).

WPEC is a very mild refinement of SPE since it requires players to adopt minimally

complex strategies among the set of strategies that are best responses at every information

set. This means that complexity appears lexicographically after both equilibrium and off-

equilibrium payoffs in each player’s preferences. This contrasts with the more standard

equilibrium notion in the literature on complexity in repeated and bargaining games that

requires strategies to be minimally complex among those that are best responses only on

the equilibrium path.8 This latter approach, however, has been criticized for prioritizing

complexity costs ahead of off-equilibrium payoffs in preferences. Our notion of WPEC

avoids this issue since it only excludes strategies that are unnecessarily complex without

any payoff benefit on or off the equilibrium.

These complexity considerations imply that mixing over integers can no longer be part

of equilibrium behavior in our regime.

Lemma 4 Fix any WPEC of regime Re. Also, fix any t, h ∈ Ht and d ∈ Dz (on or off

the equilibrium path). Then, each agent announces zero for sure at this history.

Proof. See Appendix A.1.

To obtain this lemma we suppose otherwise. Then, some agent must respond differ-

ently to some partial history d ∈ Dz depending on what happened in the past. But then,

8The two exceptions in the existing literature are Kalai and Neme [14] and Sabourian [27]. The notion
of WPEC was first introduced by [27].
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this agent could deviate to another less complex strategy identical to the equilibrium

strategy everywhere except that it always responds to d by announcing 1 and obtain the

same payoff at every history. Three crucial features of our regime construction deliver

this argument. First, the deviation is less complex because the mixing probabilities are

uniquely determined by the date t and, hence, the equilibrium strategy must prescribe

different behaviors at different histories. Second, since the players can only randomize

between 1 and 2, the deviation would not affect payoffs at histories where the equilibrium

strategies randomize. Finally, since at histories where the equilibrium strategies do not

mix they report 0 for sure with continuation payoffs equal to v(f), by reporting 1 the

deviator becomes the “odd-one-out” and ensures the same target payoff.

Note that, since Markov strategies are simplest strategies according to Definition 3,

Lemma 2 continues to hold with WPEC. Thus, combining the previous lemmas, we es-

tablish the following main result.

Theorem 1 Suppose that I = 2 and δ ∈
(

1
2
, 1
)
. If an SCF f is efficient in the range,

and satisfies self-selection in the range and condition φ, there exists a regime R such that

(i) a WPEC exists and (ii) every WPEC σ satisfies πh
i (σ,R) = vi(f) for any i, t ≥ 2 and

h ∈ Ht(σ,R).

Proof. This follows immediately from Lemmas 2-4.

Notice that the extent of implementation achieved in Theorem 1 is stronger than

that of Definition 2 above since, here, we obtain the desired payoffs at every on- and

off -the-equilibrium history after period 1.

To obtain repeated implementation in terms of outcomes, as in LS, we need to go be-

yond efficiency in the range. LS assume pure strategies and hence invoke strict efficiency;

here, we use the following.

Definition 5 An SCF f is strongly efficient if it is efficient and there does not exist a

random SCF ξ : Θ→4 (A) such that v(ξ) = v(f); f is strongly efficient in the range if it

is efficient in the range and there does not exist ξ : Θ→4 (f(Θ)) such that v(ξ) = v(f).

Corollary 1 Suppose that, in addition to the conditions in Theorem 1, f is strongly

efficient in the range. Then, there exists a regime R such that (i) a WPEC exists and (ii)

every WPEC σ satisfies Ah,θ(σ,R) = {f(θ)} for any t ≥ 2, h ∈ Ht(σ,R) and θ ∈ Θ.
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Proof. It suffices to show part (ii). Fix any WPEC σ of regime Re. Also, fix any t ≥ 2

and h ∈ Ht. For each θ and a ∈ f(Θ), let r(a, θ) denote the probability that outcome a

is implemented in equilibrium at (h, θ). By Lemmas 3 and 4, we know that, for any i,

πh
i (σ,Re) = (1− δ)

∑
θ∈Θ,a∈f(Θ)

p(θ)r(a, θ)ui (a, θ) + δvi(f) = vi(f),

which implies that
∑

θ∈Θ,a∈f(Θ) p(θ)r(a, θ)ui (a, θ) = vi(f). Since f satisfies strong effi-

ciency in the range, part (ii) of the claim follows.

3.4 Further Equilibrium Refinement and Period 1

Our results do not ensure implementation of the desired outcomes in period 1. One way

to sharpen our results in this direction is to consider a stronger equilibrium refinement in

line with the standard literature on strategic complexity in dynamic games (e.g. Abreu

and Rubinstein [3], Sabourian [27], Lee and Sabourian [16]) and to require the strategies

to be minimally complex mutual best responses only on the equilibrium path.

Definition 6 A strategy profile σ is a perfect equilibrium with complexity cost (PEC) of

regime Re if σ is an SPE and for each i no other strategy σ′i ∈ σi is such that (i) σ′i is

less complex than σi and (ii) σ′i is a best response to σ−i.

Compared with WPEC, this concept prioritizes the complexity of their strategies over

off-the-equilibrium payoffs and hence selects minimally complex strategies over a larger

set. An alternative way of thinking about the issue of credibility of strategies and com-

plexity considerations is to introduce two kinds of perturbations and find the limiting

Nash equilibrium behavior as these perturbations become arbitrarily small (e.g. Chatter-

jee and Sabourian [6], Sabourian [27] and Gale and Sabourian [10]). One perturbation

allows for a small but positive cost of choosing a more complex strategy; another per-

turbation represents a small but positive and independent probability of making an error

(off-the-equilibrium-path move). The notions of WPEC and PEC can then be interpreted

as as the limiting Nash behavior as the two types of perturbation go to zero. The differ-

ence is that the WPEC results hold for such limiting equilibria independently of the order

of the limiting arguments, while with PEC the order of limit is the complexity cost first

and then the tremble.
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Clearly, since WPEC is itself a PEC, all our previous WPEC results above remain

valid under PEC. Additionally, we show that every PEC in regime Re must be Markov.

Lemma 5 Every PEC, σ, of regime Re is Markov: for all i, σi(h
′, d) = σi(h

′′, d) for all

h′,h′′ ∈ H∞ and all d ∈ D.

Proof. See Appendix A.1.

Together with Theorem 1, this lemma immediately implies the following.

Theorem 2 Suppose that I = 2 and δ ∈
(

1
2
, 1
)
. If an SCF f is efficient in the range,

and satisfies self-selection in the range and condition φ, there exists a regime R such that

every PEC σ satisfies πht

i (σ,R) = vi(f) for any i, t ≥ 1 and h ∈ Ht(σ,R).

4 Three or More Agents

In this section, we extend the arguments developed for the two-agent case to deal with

the case of three or more agents.

4.1 Regime Construction

An important part of our constructive arguments with two agents above was to construct

for each i a history-independent and non-strategic regime Si (by alternating two dicta-

torships) that generates a unique payoff profile wi = (wii, w
i
j) such that wii = vi(f) and

wij ≤ vj(f). This was possible as long as the SCF f was efficient in the range, the two

dictatorships d(1, f(Θ)) and d(2, f(Θ)) yielded unique payoffs, and δ > 1
2
. With almost

no loss of generality, we considered the case where the latter inequality was strict.

With three or more agents, we also need to be able to construct, for each agent i,

regime Si with the correct payoff property. We assume the following condition.

Condition χ. For each i, there exists wi = (wi1, . . . , w
i
I) ∈ co(W ) such that vi(f) = wii ≥

wji for all j 6= i; moreover, for some k, l ∈ I, wjk < wkk for all j 6= k and wjl < wll for

all j 6= l.
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By Lemma 1 above, any payoff profile w ∈ co(W ) could be generated as a repeated

game payoff of a regime that appropriately alternates some dictatorial mechanisms if

δ ∈
(

1− 1
|W | , 1

)
. Assuming that δ indeed satisfies this condition (which we shall do

throughout below), condition χ immediately implies that for each agent i there exists

a regime Si such that i obtains a payoff equal to the target level vi(f) but every other

agent derives a payoff weakly less than his target, while for at least two agents the latter

inequality is always strict. As before, let wi denote the payoff profile associated with

regime Si.

We have already discussed that, with I = 2, condition χ imposes almost no restriction

on our problem under efficiency. Let us present one case that guarantees condition χ with

I ≥ 3. The following lemma also demonstrates that we may not actually need a discount

factor as large as 1− 1
|W | (as in Lemma 1) to obtain condition χ; here, the regime Si could

be constructed by alternating just two mechanisms and hence δ > 1
2

would be sufficient.

Lemma 6 Consider an SCF f such that (i, f(Θ)) ∈ Φ for all i and vji (f(Θ)) ≤ vi(f) for

all i, j, i 6= j. Suppose also that there exists some ã ∈ A such that vi(ã) ≤ vi(f) for all i.

Then, for any i, there exists wi ∈ co(W ) such that

(i) wii = vi(f); and

(ii) wij ≤ vj(f) for any j 6= i, with this inequality being strict if either vj(f) > vj(ã) or

vj(f) > vij (f(Θ)).

Proof. For each i, since vii (f(Θ)) ≥ vi(f) ≥ vi(ã), there must exist αi ∈ [0, 1] such that

vi(f) = αivii (f(Θ)) + (1− αi)vi(ã). Let wi = αivi(A) + (1− αi)v(ã). Clearly, wi satisfies

(i) for all i.

To show (ii), consider any j 6= i. Then by construction wij ≤ max{vij (f(Θ)) , vj(ã)}.
Since by assumption vj(f) ≥ vj(ã) and vj(f) ≥ vij (f(Θ)), we have wij ≤ vj(f). Further-

more, the last inequality is strict if either vj(f) > vj(ã) or vj(f) > vij (f(Θ)).

Now, consider any SCF that is efficient in the range and satisfies condition χ. Hence-

forth, fix k and l as any two agents for whom the inequalities are strict in condition χ.

Then, we can show the existence of the following (history-independent) regimes.

Lemma 7 Suppose that f is efficient in the range and satisfies condition χ. Then, for

any subset of agents C ⊆ I and each date t = 1, 2, . . ., there exist regimes SC , X(t), Y that
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respectively induce unique payoff profiles wC , x(t), y ∈ co(W (f)) satisfying the following

conditions:9

wlk < yk < xk(t) < wkk and wkl < xl(t) < yl < wll (3)

xk(t
′) 6= xk(t

′′) and xl(t
′) 6= xl(t

′′) for some t′, t′′ (4)

wCk < wkk if C 6= {k} and wCl < wll if C 6= {l} (5)

wCi ≥ w
C\{i}
i for all i ∈ C. (6)

Proof. To construct these regimes, first let y = µwk + (1− µ)wl for some µ ∈ (0, 1) and

set x(t) = λ(t)wk + (1 − λ(t))wl such that {λ(t) : λ(t) ∈ (µ, 1) ∀t} and λ(t′) 6= λ(t′′) for

some t′, t′′. Also, for any C ⊆ I, let wC = 1
|C|
∑

i∈C w
i, where wi is given by condition

χ. Since wjj > wij for all j 6= i , these payoffs satisfy (3)-(6). Furthermore, since for each

i, wi ∈ co(W ) can be obtained as a convex combination of some dictatorships, it follows

that wC , x(t), y ∈ co(W ) can be all obtained by regimes that appropriately alternate the

same dictatorships.

Using the constructions in Lemma 7, we extend the regime construction for the case

of I = 2 to the case of I ≥ 3. First, define the sequential mechanism ĝe as follows:

Stage 1 - Each agent i announces a state from Θ.

Stage 2 - Each of agents k and l announces an integer from the set {0, 1, 2}; each

i ∈ I\{k, l} announces an integer from the set {0, 1}.

The outcome function of this mechanism again depends solely on the action of Stage

1 and is given below:

(i) If at least I − 1 agents announce θ, then f(θ) is implemented.

(ii) Otherwise, f(θ̃) for some arbitrary but fixed θ̃ is implemented.

It is important to note that this mechanism extends mechanism ge above by allowing

only two agents to choose from {0, 1, 2} while all the remaining agents choose from just

{0, 1}.
Next, using the constructions in Lemma 7 above, we define new regime R̂e inductively

as follows: (i) mechanism ĝe is implemented at t = 1 and (ii) if, at some date t, ĝe is the

9Note that when C consists of single player i, SC means Si and wC = wi.
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mechanism played with a profile of states θ˜ = (θ1, . . . , θI) announced in Stage 1 and a pro-

file of integers z˜ = (z1, . . . , zI) announced in Stage 2, the continuation mechanism/regime

at the next period is as follows:

Rule B.1: If zi = 0 for all i, then the mechanism next period is ĝe.

Rule B.2: If zk > 0 and zl = 0 (zk = 0 and zl > 0), then the continuation regime is

Sk (Sl).

Rule B.3: If zk, zl > 0, then we have the following:

Rule B.3(i): If zk = zl = 1, then the continuation regime is X ≡ X(t̃) for some

arbitrary but fixed t̃, with the payoffs henceforth denoted by x.

Rule B.3(ii): If zk = zl = 2, then the continuation regime is X(t).

Rule B.3(iii): If zk 6= zl, then the continuation regime is Y .

Rule B.4: If, for some C ⊆ I\{k, l}, zi = 1 for all i ∈ C and zi = 0 for all i /∈ C,

then the continuation regime is SC .

This regime extends the two-agent counterpart Re by essentially maintaining all the

features for two players (k and l) and endowing the other agents with the choice of just

0 or 1. However, the regime prioritizes these two selected agents when determining the

transition of mechanism: note from Rules B.2 and B.3 that if either k or l plays a non-zero

integer the integer choices of other players are irrelevant to transitions. We emphasize

that the size of the integer set in our construction is actually independent of the number

of agents.

We define histories, partial histories (within period), strategies and continuation pay-

offs similarly to their two-agent counterparts. Also, the definitions of complexity and

WPEC can be defined analogously here to the two-agent case above.

4.2 Results

We present below our main results for the case of I ≥ 3. First, we obtain properties of

Nash equilibria of regime R̂e above that parallel Proposition 1 for the two agent case.
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Proposition 2 Consider any Nash equilibrium σ of regime R̂e. Then, one of the follow-

ing must hold:

(a) Each player i ∈ I announces 0 for sure at any (h, d) ∈ H∞×Dz on the equilibrium

path, and πh
i (σ, R̂e) = vi(f) for any t ≥ 2 and h ∈ Ht on the equilibrium path.

(b) Players k and l mix between 1 and 2 at some d ∈ Dz in period 1 on the equilibrium

path and, for each i ∈ I, the continuation payoff at the next period is less than vi(f);

hence, for each i ∈ I, πi(σ, R̂
e) < vi(f) if δ is sufficiently large.

Proof. See Appendix A.1.

Characterizing the set of Nash equilibria of regime R̂e is more involved but essentially

yield the same set of results as in the case of two agents. The key feature of our regime

construction with I ≥ 3 that extends the previous ideas with I = 2 is that R̂e treats two

(arbitrary but fixed) agents asymmetrically. Let us offer a brief sketch of our arguments

for Proposition 2.

First, suppose that the players choose pure strategies over integers. We want to show

that in this case the agents must all play 0. On the one hand, note that when either of the

two selected agents k and l announces a positive integer the integer choice of any other

agent does not matter at all (Rules B.2 and B.3). Thus, the inequalities in (3) imply

that, by the analogous arguments in the two agent case above, k and l must report 0 in

equilibrium. On the other hand, if k and l both announce 0 and another agent reports

integer 1, by (5) and Rule B.4, either k or l could profitably deviate by announcing a

positive integer himself.

Second, suppose that some player randomizes over integers. We want to show that

in this case k and l must mix between integers 1 and 2. Suppose otherwise, so that

either k or l plays 0 with positive probability. Similarly to the two agent case above, our

construction here is such that both k and l strictly prefer to announce a positive integer

over 0 if there is another player (possibly other than themselves) announcing a positive

integer. Therefore, if either k or l chooses 0 with positive probability then every other

agent must do the same and the corresponding continuation payoff for k or l is at least

vk(f) or vl(f), with the inequality being strict if another agent chooses a positive integer

with positive probability. Furthermore, using (6), we can show that it is also true for any

agent i other than k or l that his continuation payoff from choosing 0 is at least vi(f) if
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every other agent announces 0 with positive probability. Combining these observations

leads to a contradiction against the assumption that the SCF is efficient in the range.

Introducing complexity considerations to regime R̂e yields that the players must always

play 0 for sure in any WPEC. Given (4), again, the arguments are similar to those for

the two agent case. Also, the regime admits a Markov equilibrium in which the agents

always tell the truth and announce 0. Thus, together with Proposition 2, we next obtain

the following.

Theorem 3 Suppose that I ≥ 3 and δ ∈
(

1− 1
|W | , 1

)
. If an SCF f is efficient in the

range and satisfies condition χ, there exists a regime R such that (i) a WPEC exists and

(ii) every WPEC σ satisfies πh
i (σ,R) = vi(f) for any i, t ≥ 2 and h ∈ Ht(σ,R).

Proof. See Appendix A.1.

As in Corollary 1 for the case of I = 2, we can strengthen Theorem 3 to outcome

implementation by additionally invoking strong efficiency in the range. Also, we can

introduce the stronger refinement notion of PEC in the same way as in the case of I = 2

and obtain repeated implementation from period 1.

5 Alternative Complexity Measures

5.1 Cost of Recalling History

The basic idea behind our complexity measure is that if a strategy conditions its actions

less on what happened in the “past” than another strategy then the strategy is simpler

than the other. Definition 3 captures this by saying that a strategy that at every date

t responds identically to some partial history d, independently of the previous history of

play h before t, is less complex than one that responds differently to the same partial

history d but is identical everywhere else.

According to this definition, the “past” that matters for complexity of a strategy in

any given period is not what happened within the period but the play that precedes it.

Thus, a simple strategy may still announce different messages at different partial histories.

An intuitive justification for such treatment of history in our complexity measure appeals

to the presence of memory cost for recalling history of actions before the current period;
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the partial history within the period can be interpreted as some stimuli that involve no

cost of recalling.

This asymmetric treatment of history of outcomes before and within a period in our

definition of complexity is motivated because, in repeated interactions, substantial time

lags often exist between periods and it may require costly memory to condition the cur-

rent action on the play of previous periods whereas, within a period, the delay between

receiving information about the partial history and taking an action is insignificant. Since

our regimes involve two-stage sequential mechanisms in each period, this justification of

Definition 3 also means that the time lag between players’ turns across the two stages of

each period are inconsequential, or at least less important than the distance between two

periods, in terms of complexity of a strategy.

Such sharp asymmetric treatment, however, may not always be reasonable and one

may want to ask how robust our results are to a less stark treatment of the history before

the period and the partial history within it. We offer two extensions. One possibility

is to differentiate the partial histories that occur in the two stages of the sequential

mechanism. More specifically, we can assume that when the players are asked to announce

a state at the beginning of the first stage of each period, nature’s move θ is simply some

stimulus that is known at no cost, while in the second stage of each period, when making

integer announcements, recalling partial history that previously occurred is costly due

to a significant time lag between stages. This would mean that we need to modify our

previous definition of complexity such that conditioning behavior on the partial history of

play in the first stage of the mechanism is more complex than not doing so. A complexity

measure that reflects this idea is follows.

Definition 7 For any i and any pair of strategies σi, σ
′
i ∈ σi, we say that σi is more

complex than σ′i if one of the following holds:

(i) There exists d′ ∈ Dθ ≡ Θ such that

σ′i(h, d) = σi(h, d) for all h ∈ H∞ and all d ∈ D, d 6= d′.

σ′i(h, d
′) = σ′i(h

′, d′) for all h,h′ ∈ H∞.

σi(h, d
′) 6= σi(h

′, d′) for some h,h′ ∈ H∞.

(ii) σ′i(h, d) = σi(h, d) for all h ∈ H∞ and all d ∈ Dθ,
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σ′i(h, d) = σ′i(h
′, d′) for all h,h′ ∈ H∞ and all d, d′ ∈ Dz, and

σi(h, d) 6= σi(h
′, d′) for some h,h′ ∈ H∞ and some d, d′ ∈ Dz.

Definition 7 may be a plausible complexity criterion not only because the knowledge

of nature’s move θ at the beginning of each period may be costless information, but also

because it influences the players’ immediate payoffs, whereas the partial history at the

beginning of the second stage of the mechanism only affects future payoffs. Assuming that

players have the knowledge of current and future payoffs would therefore mean that one

should treat nature’s move differently from other partial histories for its payoff relevance.

It is straightforward to verify that our WPEC results above are not affected in any way

by imposing Definition 7 instead. In particular, recall from the proof of Lemma 4 that if a

WPEC were to involve mixing over integers at any history, deviating to always announcing

integer 1 at every information set in the second stage would always generates the same

payoff. This deviating strategy is simpler than the equilibrium strategy according the

new definition as well.

Yet another approach to the treatment of the partial histories would be to treat in-

formation at any decision node identically and say that a strategy that announces the

same integer or state regardless of both the history before the date and the partial history

within the date is less complex than one that announces different integers or states while

being identical everywhere else.

Definition 8 For any i and any pair of strategies σi, σ
′
i ∈ σi, we say that σi is more

complex than σ′i if there exists l ∈ {θ, z} with the following properties:

(i) σ′i(h, d) = σi(h, d) for all h ∈ H∞ and all d /∈ Dl.

(ii) σ′i(h, d) = σ′i(h
′, d′) for all h,h′ ∈ H∞ and all d, d′ ∈ Dl.

(iii) σi(h, d) 6= σi(h
′, d′) for some h,h′ ∈ H∞ and some d, d′ ∈ Dl.

Under this definition, complexity-averse players may want to economize even on the

responsiveness of their behavior to nature’s move θ at the beginning of each period. Even

if there is no significant time lag between decision turns, however, we have already argued

that this approach may be less plausible than Definition 3 or 7 because nature’s moves

may be just simple costless stimuli and also are immediately payoff-relevant.
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With Definition 8, our characterization of WPECs of the regimes Re for I = 2 and

R̂e for I ≥ 3 actually remain valid via identical arguments. However, these regimes may

not admit an equilibrium since the players may find it beneficial to economize on the

complexity of their reports and make unconditional state announcements. To see this,

consider the type of strategies that we have used to obtain existence in which the true

state is always announced. Here, a unilateral deviation from truth-telling leads to either

one-period outcome according to self-selection when I = 2 or no change in the outcome

when I ≥ 3. Thus, in the latter case, deviating to always announcing the same state may

reduce complexity cost without affecting payoffs; in the former case, each player faces the

same incentive if the self-selection condition holds with equality.

In order to obtain our WPEC results on the basis of this alternative complexity mea-

sure, we therefore need to have equilibria where such a deviation generates a strict reduc-

tion in the continuation payoff. This would be possible in environments where a strict

one-period punishment is possible for deviations from truth-telling. With I = 2, a stronger

self-selection condition with strict inequalities would achieve this. With more than two

players, suppose that there exists a “bad outcome” ã ∈ A such that ui(ã, θ) < ui(f((θ), θ)

for all i and θ (e.g. zero consumption in a market; see Moore and Repullo [24]). Then, we

could alter R̂e above by simply modifying the outcome function of its stage mechanism as

follows: whenever all agents announce the same state θ in Stage 1, f(θ) is implemented

while, otherwise, the bad outcome ã is implemented. Note that the transition rules are

entirely independent of actions of Stage 1 and, hence, all our characterization results re-

main unaffected; on the other hand, the Markov strategy profile in which the true state

and integer 0 are always announced is a strict WPEC.

If the agents are sufficiently patient, another way to obtain the same results with

Definition 8 is to modify the regime in a way that strict punishment for deviation from

truth-telling arises in the continuation game, rather than from one-shot incentives via the

bad outcome or its equivalent. In Appendix A.2, we construct such a regime for the case

of I = 2 (without self-selection) which delivers the same results with Definition 8.

5.2 One-Shot Mechanisms

Our analysis is built on regime constructions employing sequential mechanisms. As should

be clear from our WPEC arguments above, the use of sequential mechanisms allows us
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to treat complexity of behavior regarding states and integers differently and invoke a

minimal partial order over the set of strategies.

Definition 9 For any i and any pair of strategies σi, σ
′
i ∈ σi, we say that σi is more

complex than σ′i if the strategies are identical everywhere except, after some partial history

in mechanism ge and some set of histories, σ′i always behaves (randomizes) the same way

while σi does not. Formally, there exists some d′ ∈ D ≡ Dθ ∪Dz and H′ ⊆ H∞ with the

following properties:

(i) σ′i(h, d) = σi(h, d) for all h ∈ H∞\H′ and all d ∈ D, d 6= d′.

(ii) σ′i(h, d
′) = σ′i(h

′, d′) for all h,h′ ∈ H′.

(iii) σi(h, d
′) 6= σi(h

′, d′) for some h,h′ ∈ H′.

5.3 Complete Complexity Orders

The above notions of complexity are based on partial ordering over strategies. We could

also adopt complete complexity orders such as counting the number of “states of the

minimal automaton” implementing the strategy (e.g. Abreu and Rubinstein [3]) or the

number of “continuation strategies” induced by the strategy (e.g. Kalai and Stanford

[15], Lee and Sabourian [16]). Another measure that can be used is the “collapsing state

condition” (Binmore, Piccione and Samuelson [5]).

To see how our WPEC results can be obtained with these complete orders, consider

the notion of state complexity in which the number of states of an automaton counts the

number of continuation strategies that the underlying strategy induces. By appropriately

defining the output function of the automaton, we can then make the corresponding state

complexity measure to be consistent with any of our partial orders above. For instance,

an automata definition that includes all the partial histories (both at the first and second

stages of the sequential mechanism) as arguments of the output function would correspond

to Definition 3, while an output function that does not involve any type of partial history

would lead to state complexity in line with Definition 8.
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6 Conclusion

In summary, this paper explores how to repeatedly implement an efficient social choice

function when the agents have a preference for less complex strategies at the margin.

We identify some minor conditions under which such implementation is achieved with

using only finite mechanisms and allowing for mixed strategies. Compared with Lee and

Sabourian [17], when faced with complexity-averse agents, the freedom to set different

mechanisms at different histories gives the planner an additional leverage to deter unde-

sirable (mixing) behavior even if the mechanisms themselves are simple. Another feature

of our constructions is that all mixed equilibria are strictly Pareto-dominated by pure

equilibria which attain the desired outcome paths.

The key feature in our regime constructions driving the WPEC results is the non-

stationarity of continuation regimes {X(t)}∞t=0, activated if two players announce the same

positive integer 1 or 2 at each period t. Although each mechanism in our regimes is simple

and does not employ integer games, one may suggest that the non-stationary sequence

of regimes poses another kind of implausible design. Our response is two-fold. First, the

criticism leveled at integer games is not about the implausibility of unboundedness per

se but rather about the fact that integer games kill off unwanted equilibria by strategies

that are themselves dominated. Our constructions achieve full implementation without

appealing to such arguments. Second, as specified in condition (2) above, our WPEC

results require X(t) to be distinct at just two dates. Thus, the degree of non-stationarity

or complexity in our regime constructions needs not be overly demanding.

Regarding the latter point, however, it is worth pointing out that greater non-stationarity

in {X(t)}∞t=0 also means more complex mixed strategy SPEs, and therefore, strengthens

the agents’ incentives to economize on complexity cost associated with such behavior. In

general, the planner could even write X(·) as a function of the entire (publicly observable)

history instead of just its date.

Another related issue that can be raised against our complexity analysis is why we

consider a preference for less complexity only by the agents and not by the planner. We

note here that our complexity notion only calls for any additional complexity of a strategy

to be justified by payoffs. In a similar vein, for the planner the cost of implementing a

more complex regime could be warranted if it led to better implementation results.

A more broad lesson from our analysis is that complexity may help the planner’s
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cause: by deliberately constructing a complex institution, the planner may guide the

agents to adopt desired strategies if they are simple while other equilibria involve complex

behavior. In our particular exploration, the agents are assumed to have preference for

less complex strategies at the margin, where complexity is concerned with the degree

of history-dependence of behavior. The complexity of regime that exploited these traits

was manifested in the non-stationarity of the sequence of mechanisms enforced. Indeed,

one can find many real world cases of complex institutions that have survived the test

of time (for an illuminating example, see the voting protocol for electing the Doge of

Venice between 1268 and 1797; Mowbray and Gollmann [25]).10 A potentially fruitful

direction for future research would be to uncover other relationships between complexity

and mechanism/institution design beyond the premises of this paper.

A Appendix

A.1 Omitted Proofs

Proof of Lemma 3

For each i = 1, 2, let Πi denote i’s continuation payoff at the next period if both agents

announce zero at the given history (h, d). Also, let zi denote the integer that i ends up

choosing at (h, d). At this history the players either randomize (over integers) or do not

randomize. We consider each case separately.

Case 1: No player randomizes.

In this case we show that each player must play 0 for sure. Suppose otherwise; then

some i plays zi 6= 0 for sure and the other announces zj for sure. We derive contradiction

by considering the following subcases.

Subcase 1A: zi > 0 and zj = 0.

The continuation regime at the next period is Si (Rule A.2). But then, since yj > wij by

construction, j can profitably deviate by choosing a strategy identical to the equilibrium

strategy except that it announces the positive integer other than zi at this history, which

activates the continuation regime Y instead of Si (Rule A.3(iii)). This is a contradiction.

10The authors thank Romans Pancs for the example.
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Subcase 1B: zi > 0 and zj > 0.

The continuation regime is either X, X(t) or Y (Rule A.3). Since y2 > x2(t) for any t,

it follows that if the continuation regime is X or X(t) then player 2 can profitably deviate

just as in Subcase 1A, a contradiction. Since x1 > y1, if the continuation regime is Y

player 1 can profitably deviate and we obtain a contradiction.

Thus, both players choose 0 for sure at this history, and ge must be the mechanism

at the next period. We next show that Πi = vi(f) for all i. For this, suppose first

that Πi < vi(f) for some i. But then, by Rule A.2, i could deviate at this history

(h, d) by announcing a positive integer and obtain a continuation payoff equal to vi(f), a

contradiction. It therefore follows that Πi ≥ vi(f) for all i. Then, suppose that Πi > vi(f)

for some i. But, since regime Re only employs outcomes from the set f(Θ), and since

f is efficient in the range, it must be that Πj < vj(f) for j 6= i. This contradicts that

Πi ≥ vi(f) for all i.

Case 2: Some player randomizes.

We proceed by first establishing the following two claims.

Claim 1 : For each i, the continuation payoff from announcing 1 is greater than that

from announcing 0, if zj > 0 for sure, j 6= i.

Proof of Claim 1. If i announces zero, by Rule A.2, his continuation payoff is wji . If he

announces 1, by Rules A.3(i) and A.3(iii), the continuation payoff is xi > wji or yi > wji .

Claim 2 : Suppose that agent i announces 0 with positive probability. Then the other

agent j must also announce 0 with positive probability and Πi ≥ vi(f). Furthermore,

Πi > vi(f) if j does not choose 0 for sure.

Proof of Claim 2. By Claim 1, playing 1 must always yield a higher continuation

payoff for player i than playing 0, except when j plays 0. Since i plays 0 with positive

probability, it must then be that j also chooses 0 with positive probability. Hence, we

obtain that Πi ≥ vi(f) with the inequality being strict if j plays a positive integer with

positive probability.

We now show that, in this Case 2, both players choose a postive integer for sure. To

show this suppose otherwise; then some player chooses 0 with positive probability. By

Claim 2, the other player must also play 0 with positive probability and, also, Πi ≥ vi(f)

for any i = 1, 2. Moreover, since this case assumes that some player is choosing 0 with
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probability less than one, by appealing to Claim 2 once again, it must be that at least one

of the inequalities Π1 ≥ v1(f) or Π2 ≥ v2(f) is strict. Note also that regime Re involves

only outcomes in the range of f . Therefore, since f is efficient in the range, we have a

contradiction.

In this case, therefore, both players mix between 1 and 2 for sure and, by simple com-

putation, it must be that each i plays 1 with probability xi(t)−yi

xi+xi(t)−2yi
∈ (0, 1). Furthermore,

since for each i, vi(f) exceeds xi, xi(t) or y, it follows that the continuation payoff at the

next period must be less than vi(f).

Proof of Proposition 1

Given Lemma 3, it suffices to show that any mixing over integers in equilibrium must

occur in period 1. Suppose not; so, there exists a Nash equilibrium σ such that, for some

t > 1, there exist ht ∈ Ht and d ∈ Dz that occur on the equilibrium path at which the

players are mixing over integers.

First, note that by Lemma 3 the players must have all announced 0 for sure in the

previous period and, moreover, πht

i (σ,Re) = vi(f) for all i = 1, 2. Second, for any d′ ∈ Dz,

we can apply similar reasoning to show that π
ht,d′,z˜i (σ,Re) = vi(f) for all i if z˜ = (0, 0)

and (ht, d′, z˜) occurs on the equilibrium path.

Next, let r(d′, z˜) denote the probability of (d′, z˜) ∈ Dz × Z2 occurring at ht under

σ, and let aht,d′ denote the outcome implemented at (ht, d′). Then, with slight abuse of

notation, i’s continuation payoff at ht can be written as

πht

i (σ,Re) =
∑

(d′,z˜)∈Dz×Z2

r(d′, z˜)
[
(1− δ)ui(aht,d′ , d′) + δπ

ht,d′,z˜i

]
= vi(f). (7)

Lemma 3 implies that, for any i and any d′, it must be either that z˜ = (0, 0) and

hence, by the argument above, π
ht,d′,z˜i = vi(f), or that both players announce a positive

integer and hence π
ht,d′,z˜i < vi(f) for all i. Thus, since we assume that mixing over positive

integers occurs after d, it follows from (7) that
∑

(d′,z˜) r(d
′, z˜)ui(aht,d′ , d′) > vi(f) for all i.

But this contradicts that f is efficient in the range.
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Proof of Lemma 4

Suppose not. Then, by the SPE extension of Lemma 3 discussed at the beginning of

Section 3.3, there exists a WPEC, σ, such that, at some t, ht ∈ Ht and d ∈ Dz, the

two agents play integer 1 or 2 for sure and each i plays 1 with probability xi(t)−yi

xi+xi(t)−2yi
.

Furthermore, by construction, there exist t′ and t′′ such that x(t′) 6= x(t′′) and, therefore,

it follows that, for all i, we have either σi(h
t, d) 6= σi(h

t′ , d) for some ht
′ ∈ Ht′ , or

σi(h
t, d) 6= σi(h

t′′ , d) for some ht
′′ ∈ Ht′′ .

Now, consider any i = 1, 2 deviating to another strategy σ′i that is identical to the

equilibrium strategy σi except that, for all h ∈ H∞, σ′i(h, d) prescribes announcing 1 with

probability 1. Since σ′i is less complex than σi, we obtain a contradiction by showing that

πh
i (σ′i, σ−i, R

e) = πh
i (σ,Re) for all h ∈ H∞. To do so, fix any history h and suppose that

the given partial history d occurs after h. Given Lemma 3, there are two cases to consider

at (h, d).

First, suppose that j plays 0 for sure. Then, by part (a) of Lemma 3, i also plays 0 for

sure and obtains a continuation payoff equal to vi(f) in equilibrium. By Rule B.2 of the

regime, the deviation also induces the same continuation payoff vi(f). Second, suppose

that j is mixing. Then, by part (b) of Lemma 3, j mixes between 1 and 2 and i is also

indifferent between choosing 1 and 2.

Proofs of Proposition 2 and Theorem 3

These results are proved by the following lemmas.

Lemma 8 Regime R̂e admits a Nash equilibrium, σ∗, in Markov strategies such that, for

any t, h ∈ Ht and θ ∈ Θ, (i) gh(σ∗, Re) = ge and (ii) Ah,θ(σ∗, Re) = {f(θ)}.

Proof. The proof is similar to that of Lemma 2.

Lemma 9 Consider any Nash equilibrium of regime R̂e. Fix any t, h ∈ Ht and d ∈ Dz

on the equilibrium path. Then, one of the following must hold at (h, d):

(a) Each i ∈ I announces 0 for sure and his continuation payoff at the next period is

equal to vi(f).
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(b) Each i ∈ {k, l} announces 1 or 2 for sure, with the probability of choosing 1 equal to
xi(t)−yi

xi+xi(t)−2yi
∈ (0, 1). Furthermore, for all j ∈ I, the continuation payoff at the next

period is less than vj(f).

Proof. For each i, let Πi denote i’s continuation payoff at the next period if all agents

announce zero at the fixed history (h, d) ∈ Ht ×Dz. Also, let zi denote the integer that

i ends up choosing at (h, d). At this history the players either randomize (over integers)

or do not randomize. We shall prove the claim by considering each case separately.

Case 1: No player randomizes.

In this case, we show that, each player must play 0 for sure. Suppose otherwise;

then some i plays zi 6= 0 for sure. We derive contradiction by considering the following

subcases.

Subcase 1A: zk > 0 and zl = 0, or zk = 0 and zl > 0.

Consider the former case; the latter case can be handled analogously. The continuation

regime at the next period is Sk (Rule B.2). But then, since yl > wkl by (3), l can

profitably deviate by choosing a strategy identical to the equilibrium strategy except

that it announces the positive integer other than zl at this history, which activates the

continuation regime Y instead of Sk (Rule B.3(iii)). This is a contradiction.

Subcase 1B: zk > 0 and zl > 0.

The continuation regime is either X,X(t) or Y (Rule B.3). Suppose that it is X or

X(t). By (3), we have yl > xl(t
′) for all t′. But then, l can profitably deviate by choosing a

strategy identical to the equilibrium strategy except that it announces the positive integer

other than zl at this history, which activates Y (Rule B.3(iii)). This is a contradiction.

Similarly, since xk > yk by (3), when the continuation regime is Y , player k can profitably

deviate and we obtain a similar contradiction.

Subcase 1C: For some C ⊆ I\{k, l}, zi = 1 for all i ∈ C and zi = 0 for all i /∈ C.

The continuation regime is SC (Rule B.4). By (5), we have wjj > wCj for j ∈ {k, l}.
But then, j can profitably deviate by choosing a strategy identical to the equilibrium

strategy except that it announces a positive integer at this history, which activates Sj

(Rule B.2).

Thus, all players choose 0 for sure at this history, and ĝe must be the mechanism at

the next period. We next show that Πi = vi(f) for all i. Suppose not. First, suppose
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that Πi < vi(f) for some i. But then, i could deviate at this history (h, d) by announcing

a positive integer and obtain a continuation payoff equal to vi(f), a contradiction. It

therefore follows that Πi ≥ vi(f) for all i. In the continuation game, we either have

implementation of outcomes in the range of f or end up activating continuation regimes

from {Si}Ii=1 ∪{X(t)}∞t=1 ∪Y whose payoffs are all Pareto-dominated by v(f). Therefore,

if f is efficient in the range Πi = vi(f) for all i.

Case 2: Some player randomizes.

We proceed by establishing the following claims.

Claim 1 : For each agent k or l, the continuation payoff (at the next period) from

announcing 1 is greater than that from announcing 0, if there exists another player an-

nouncing a positive integer.

Proof of Claim 1. Consider k and any z˜−k 6= (0, . . . , 0). The other case for l can be

proved identically. There are two possibilities:

First, suppose that zl > 0. In this case, if k announces zero, by Rule B.2, his con-

tinuation payoff is wlk. If he announces 1, by Rules B.3(i) and B.3(iii), the continuation

payoff is xk or yk. But, by (3), we have xk > yk > wlk.

Second, suppose that zl = 0. In this case, since z˜−k 6= (0, . . . , 0), there must exist a

non-empty set C ⊆ I\{k, l} such that zi = 1 for all i ∈ C and zi = 0 for all i ∈ I\{C∪k}.
Then if k announces 0, by Rule B.4, his continuation payoff is wCk , whereas if he announces

1, by Rule B.2, the continuation payoff is wkk . But, by (5), we have wkk > wCk .

Claim 2 : If agent k or l announces zero with positive probability, then every other

agent must also announce zero with positive probability.

Proof of Claim 2. Suppose not. Then, suppose that k plays 0 with positive probability

but some i 6= k chooses 0 with zero probability. (The other case for l can be proved

identically.) But then, by Claim 1, the latter implies that k obtains a lower continuation

payoff from choosing 0 than from choosing 1. This contradicts the supposition that k

chooses 0 with positive probability.

Claim 3. Suppose that some agent i ∈ {k, l} announces 0 with positive probability.

Then, Πi ≥ vi(f) with this inequality being strict if some other agent announces a positive

integer with positive probability.
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Proof of Claim 3. For any agent i ∈ {k, l}, by Claim 1, playing 1 must always yield a

higher continuation payoff i than playing 0, except when all other agents play 0. Since i

plays 0 with positive probability, the following must hold:

(i) If all others announce 0, i’s continuation payoff when he announces 0 must be no

less than that he obtains when he announces 1, i.e. Πi ≥ vi(f).

(ii) If some other player attaches a positive weight to a positive integer, i’s continuation

payoff must be greater when he chooses 0 than when he chooses 1 in the case in which all

others choose 0, i.e. Πi > vi(f).

Claim 4 : For each agent i ∈ I\{k, l}, the continuation payoff from announcing zero

is no greater than that from announcing 1, if there exists another player announcing a

positive integer.

Proof of Claim 4. For each i ∈ I\{k, l}, the continuation payoff is independent of his

choice if zk > 0 or zl > 0. So, suppose that zk = zl = 0. Then if i chooses 1 he obtains

wCi , for some C ∈ I\{k, l} such that i /∈ C, while he obtains w
C∪{i}
i from choosing 1. By

(6), wCi ≤ w
C∪{i}
i . Thus, the claim follows.

Claim 5. For each agent i ∈ I\{k, l}, Πi ≥ vi(f) if all players announce 0 with positive

probability.

Proof of Claim 5. Note that, if zj = 0 for all j 6= i, i obtains Πi from choosing 0

and obtains vi(f) from choosing 1. Since, by assumption, i announces 0 with positive

probability, announcing 0 must be weakly preferred to either positive integer. The claim

then follows immediately from the previous claim.

Claim 6. Both k and l choose a postive integer for sure.

Proof of Claim 6. Suppose otherwise; then some i ∈ {k, l} chooses 0 with positive

probability. Then, by Claim 2, every other agent must play 0 with positive probability.

By Claims 3 and 5, this implies that Πj ≥ vj(f) for every j. Moreover, since in this

case there is randomization, some player must be choosing a positive integer with positive

probability. Then, by appealing to Claim 3 once again, we must also have that at least

one of the inequalities Πk ≥ vk(f) or Πl ≥ vl(f) is strict. Since f is efficient in the range,

this is a contradiction.

Claim 7. Both k and l choose each of the integers 1 and 2 with positive probability.
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Proof of Claim 7. Suppose not; then by the previous claim one of either k or l must

choose one of the positive integers for sure. But then, (3) implies that the other must also

do the same. But, by applying (3) once again, this induces a contradiction (the argument

is exactly the same as in Subcase 1B of Case 1 with no randomization).

Given the last two claims, simple computation verifies that both agents k and l must

be playing 1 with unique probability as in the statement. The continuation payoffs, for

each i ∈ I, when k or l chooses a positive integer are xi, xi(t) or y. Moreover, by (3), each

of these payoffs is less than vi(f). Therefore, it follows that, in this case, the continuation

payoff at the next period must be less than vi(f) for all i.

If we consider SPEs instead of Nash equilibria, Lemma 9 can be extended to hold

for any on- or off-the-equilibrium history/partial history. Also, the equilibrium profile

identified in Lemma 8 is itself an SPE and, also, a WPEC. This, together with our next

Lemma, completes the proof of Theorem 3.

Lemma 10 Fix any WPEC of regime R̂e. Also, fix any t, h ∈ H∞ and d ∈ Dz. Then,

every agent announces zero for sure at this history.

Proof. Suppose not. Then, by the SPE extension of Lemma 9 as discussed above, there

exists a WPEC, σ, such that, at some t, ht ∈ Ht and d ∈ Dz, each i ∈ {k, l} plays

integer 1 or 2 for sure and integer 1 is chosen with probability xi(t)−yi

xi+xi(t)−2yi
. Furthermore,

by construction, there exist t′ and t′′ such that xk(t
′) 6= xk(t

′′) and xl(t
′) 6= xl(t

′′). Thus,

it follows that, for each i ∈ {k, l}, we have either σi(h
t, d) 6= σi(h

t′ , d) for some ht
′ ∈ Ht′ ,

or σi(h
t, d) 6= σi(h

t′′ , d) for some ht
′′ ∈ Ht′′ .

Now, consider any i ∈ {k, l} deviating to another strategy σ′i that is identical to the

equilibrium strategy σi except that, for all h ∈ H∞, σ′i(h, d) prescribes announcing 1

for sure. Since σ′i is less complex than σi, we obtain a contradiction by showing that

πh
i (σ′i, σ−i, R

e) = πh
i (σ,Re) for all h ∈ H∞. To this end, fix any history h and suppose

that the given partial history d occurs at h. Given Lemma 9, there are two cases to

consider at (h, d).

First, suppose that every agent plays 0 for sure. Then, by part (a) of Lemma 9, i

also plays 0 for sure and obtains a continuation payoff equal to vi(f) in equilibrium. By

Rule B.2 of the regime, the deviation also induces the same continuation payoff vi(f).

Otherwise, by part (b) of Lemma 9, agents k and l mix between 1 and 2; thus, i is

indifferent.
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Proof of Lemma 5

Suppose not. Then, there exists some PEC, σ, such that σi(h
′, d) 6= σi(h

′′, d′) for some

i,h′,h′′ and d′. By Lemma 4, we know that d′ ∈ Dθ; let d′ = θ.

Consider i deviating to another strategy σ′i that is identical to σi except that, irre-

spective of past history, (i) whenever d = θ, it does what the equilibrium strategy does

in period 1 after the given partial history, and (ii) whenever d = (θ, θ˜) for any θ˜ ∈ Θ2,

i.e. any Stage 2 partial history following realization of the given state θ̃, it announces 1.

Formally, for all h ∈ H∞ and θ˜ ∈ Θ2, σ′i(h, θ̃) = σi(∅, θ) and σ′i(h, θ, θ˜) = 1 (where the

latter slightly abuses notation to denote a pure strategy).

Clearly, σ′i is less complex than σi. Furthermore, the deviation alters neither i’s one-

period payoff in period 1 at θ̃ nor, by Rule A.2 of the regime, and since the opponent

player’s equilibrium strategy announces 0, his continuation payoff as of period 2 on the

equilibrium path. This contradicts the assumption of PEC.

A.2 Alternative Regime Construction

Here, we offer an alternative construction for the two agent case that does not involve the

self-selection condition but instead requires sufficiently large δ. The construction and its

equilibrium properties below can be similarly extended to the case of I ≥ 3.

The construction involves the following two mechanisms. Let g′(1) denote an extensive-

form mechanism such that:

Stage 1 - Each agent i = 1, 2 announces a state, θi, from Θ.

Stage 2 - Each agent announces an integer, zi, from the set Z ≡ {0, 1, 2}.

The outcome function is such that a constant outcome, f
(
θ̃
)

for some arbitrary but fixed

θ̃ ∈ Θ, is always implemented.

Let g′ be an extensive-form mechanism such that:

Stage 1 - Each agent i = 1, 2 announces a state, θi, from Θ.

Stage 2 - Each agent announces an integer, zi, from the set Z.

The outcome function is given below:
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(i) If θ1 = θ2 = θ, f(θ) is implemented.

(ii) Otherwise, f
(
θ̃
)

for some arbitrary but fixed θ̃ ∈ Θ is implemented.

Note that this mechanism differs from ge in Section 3 in that it does not invoke the

self-selection condition when the agents announce different states.

Next, we define regime R′ inductively with mechanism g′(1) enforced in period 1 and

the transition rules below.

Period 1:

Let (z1, z2) be the integers announced. The transition rules in period 1 are as follows.

Rule C.1: If z1 = z2 = 0, the mechanism next period is g′.

Rule C.2: If z1 > 0 and z2 = 0 (z1 = 0 and z2 > 0), the continuation regime is S1

(S2).

Rule C.3: Suppose that z1, z2 > 0. Then, we have the following:

Rule C.3(i): If z1 = z2 = 1, the continuation regime is X ≡ X(t̃) for some

arbitrary t̃, with the payoffs henceforth denoted by x.

Rule C.3(ii): If z1 = z2 = 2, the continuation regime is X(1).

Rule C.3(iii): If z1 6= z2, the continuation regime is Y .

Period t ≥ 2:

Consider any date t ≥ 2. Let (θ1, θ2) and (z1, z2) be the states and integers announced

in period t. The transitions rules are as follows.

Rule D.1: If θ1 6= θ2, the continuation regime is X.

Rule D.2: If θ1 = θ − 2 and z1 = z2 = 0, the mechanism next period is g′.

Rule D.3: If θ1 = θ2, z1 > 0 and z2 = 0 (z1 = 0 and z2 > 0), the continuation regime

is S1 (S2).

Rule D.4: Suppose that θ1 = θ2 and z1, z2 > 0. Then, we have the following:
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Rule D.4(i): If z1 = z2 = 1, the continuation regime is X.

Rule D.4(ii): If z1 = z2 = 2, the continuation regime is X(t).

Rule D.4(iii): If z1 6= z2, the continuation regime is Y .

This regime modifies Re in Section 3 in the following way. In the first period, the

planner enforces a constant outcome but the integer play generates essentially identical

transition rules as in Re. In any period after the first, the agents play a sequential

revelation mechanism with integers g′, but the transition rules when playing g′ is identical

to the corresponding features of Re only if the two agents announce the same state in Stage

1; otherwise, the continuation regime is X, which generate continuation payoffs strictly

dominated by v(f). With some abuse of notation, let us define the set of histories, partial

histories, strategies and payoffs as before.

To examine the set of equilibria of regime R′, note first that the statements of Lemma

3, or their SPE extensions, can be extended here as follows: conditional on any history

beyond the first period at which mechanism g′ is played and the same state announced in

Stage 1, the two players must either report 0 for sure and obtain v(f), or uniquely mix

between 1 and 2 and obtain strictly less than v(f); for t = 1, this also holds by similar

arguments. Second, as in Lemma 4, in any WPEC, the agents must play 0 for sure on-

or off-the-equilibrium. (Note that, following any partial history involving disagreement in

Stage 1, the integer play does not affect the continuation game because of Rule D.1.)

In the next lemma, we establish that the players must always report the same state

after the first period. The basic intuition is that, otherwise, the continuation payoff of

each agent i falls short of vi(f) and hence a deviation would occur in the previous period’s

integer stage. Note that this argument could not work if disagreement occurred in the

first period; in order to avoid such coordination failure, we implement a constant outcome

in period 1.

Lemma 11 Fix any WPEC of regime R′. Also, fix any t ≥ 2 and ht ∈ Ht. Then, the

agents always report the same state for sure.

Proof. Let r(θ, θ˜) denote the probability with which partial history (θ, θ˜) ∈ Dz occurs at

ht under the given WPEC, and let aht,θ,θ˜ represent the corresponding outcome. Also, let

Θ˜ ′ = { (θ1, θ2) ∈ Θ2 | θ1 = θ2} denote the set of state profiles in which the players agree

and Θ˜ ′′ = Θ2\Θ˜ ′ denote the set of state profiles in which they disagree.
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By definition, at ht mechanism g′ is played. Therefore, in the previous period t− 1 of

history ht, one of the following must be true: (i) the same mechanism was in force, and

moreover, by the transition rules of R′, the players announced the same state in Stage 1

and integer 0 in Stage 2, or (ii) the players were in period 1 and announced 0 for sure.

Then, by previous arguments, it must be that πht

i = vi(f) for all i.

Next, at ht, if the agents report the same state in Stage 1, by applying the arguments of

Lemma 4, the agents report zero for sure in Stage 2. It then follows that the continuation

payoff profile after any d = (θ, θ˜) is v(f) if θ˜ ∈ Θ˜ ′ and, by Rule D.1, x if θ˜ ∈ Θ˜ ′′.
Therefore, we can write each i’s continuation payoff at ht as

πht

i =
∑

θ∈Θ,θ˜∈Θ˜′
r(θ, θ˜)

[
(1− δ)ui(aht,θ,θ ,̃ θ) + δvi(f)

]
+

∑
θ∈Θ,θ˜∈Θ˜′′

r(θ, θ˜)
[
(1− δ)ui(aht,θ,θ ,̃ θ) + δxi

]

= (1− δ)
∑

θ∈Θ,θ˜∈Θ2

r(θ, θ˜)ui(aht,θ,θ ,̃ θ) + δ

vi(f)
∑

θ∈Θ,θ˜∈Θ˜′
r(θ, θ˜) + xi

∑
θ∈Θ,θ˜∈Θ˜′′

r(θ, θ˜)
 .

Since πht

i = vi(f) and xi < vi(f) for all i, if
∑

θ∈Θ,θ˜∈Θ˜′′ r(θ, θ˜) 6= 0 then it must be

that
∑

θ∈Θ,θ˜∈Θ2 r(θ, θ˜) ui(aht,θ,θ ,̃ θ) > vi(f) for all i. But this is not feasible with f being

efficient in the range. It therefore follows that
∑

θ∈Θ,θ˜∈Θ˜′′ r(θ, θ˜) = 0.

Next, define

δ̄ = max
i∈I

{
maxa,a′∈f(Θ),θ∈Θ {ui(a, θ)− ui(a′, θ)}

maxa,a′∈f(Θ),θ∈Θ {ui(a, θ)− ui(a′, θ)}+ (vi(f)− xi)

}
∈ (0, 1).

We obtain existence below.

Lemma 12 If δ > δ̄, regime R′ admits a WPEC.

Proof. Consider the following repeated game strategy profile. In period 1, each player

announces 0 for sure. From period 2, each player always reports the true state followed

by integer 0.

To see that this profile constitutes an SPE, by Rules C.2 and D.3, neither player wants

to deviate at any integer-reporting stage; by Rule D.1, and since δ > δ̄, deviation from

the prescribed state-reporting strategy is not profitable. It is also clear that this SPE is

a WPEC itself.
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A.3 Construction with One-Shot Mechanisms

Suppose that I = 2. Define g∗ as a one-shot mechanism in which, for each i = 1, 2,

Mi = Θ×Z and the outcome function is such that:

(i) If m1 and m2 are such that θ1 = θ2 = θ and zi = 0 for some i, f(θ) is implemented.

(ii) If m1 and m2 are such that θ1 6= θ2 and zi = 0 for some i, an outcome from the

set L1(θ2) ∩ L2(θ1), as defined by self-selection in the range, is implemented.

(iii) If m1 and m2 are such that z1 > 0 and z2 > 0, a constant outcome, f
(
θ̃
)

for

some arbitrary but fixed θ̃ ∈ Θ, is always implemented.

Next, regime R∗ is defined inductively as follows. First, mechanism g∗ is played in

t = 1. Second, if, at date t ≥ 1, g∗ is the mechanism played with mi = (θi, zi) being the

message announced by i = 1, 2, the continuation mechanism or regime at the next period

is given by the transition rules below:

Rule E.1: If z1 = z2 = 0, then the mechanism next period is g∗.

Rule E.2: If z1 > 0 and z2 = 0 (z1 = 0 and z2 > 0), then the continuation regime is

S1 (S2).

Rule E.3: If z1, z2 > 0, then we have the following:

Rule E.3(i): If z1 = z2 = 1, the continuation regime is X ≡ X(t̃) for some

arbitrary but fixed t̃, with the payoffs henceforth denoted by x.

Rule E.3(ii): If z1 = z2 = 2, the continuation regime is X(t).

Rule E.3(iii): If z1 6= z2, the continuation regime is Y .

For this regime, with slight abuse of notation, let Ht continue to denote the set of

histories at the beginning of period t. Then, we write player i’s strategy as σi : H∞×Θ→
4 (Θ×Z); for h ∈ H∞, πh

i (R∗, σ) denotes i’s continuation payoff in this regime under

strategy profile σ.

Define u = maxi∈I,a∈A,θ∈Θ ui(a, θ) and u = mini∈I,a∈A,θ∈Θ ui(a, θ). Also, for each i and

j 6= i, define Ei = {wii, w
j
i , xi(t), yi}t∈Z++ and ei = mine,e′∈Ei

|e − e′|; let e = mini∈I ei.

Then, define

δ̄ =
u− u

u− u+ e
.

Let us consider Nash equilibria of the above regime.
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Lemma 13 Suppose that δ ∈ (δ̄, 1). Consider any Nash equilibrium of regime R∗, and fix

any t, θ ∈ Θ and h ∈ Ht on the equilibrium path. For each i = 1, 2, let ri(θ, z) denote the

probability with which i’s equilibrium strategy plays message (θ, z) at (h, θ). Then, one of

the following must hold:

(a) For each i,
∑

θ∈Θ ri(θ, 0) = 1 and his continuation payoff at the next period is vi(f).

(b) For each i,
∑

θ∈Θ ri(θ, 1) +
∑

θ∈Θ ri(θ, 2) = 1 such that
∑

θ∈Θ ri(θ, 1) > 0 and∑
θ∈Θ ri(θ, 2) > 0; the mixing probabilities depend on x(t); i’s continuation pay-

off at the next period is less than vi(f).

Proof.

Fix any δ > δ̄ and any Nash equilibrium of R∗. Fix any t, θ ∈ Θ and h ∈ Ht on

the equilibrium path. Let zi denote the integer that i ends up choosing at (h, θ) and Πi

denote i’s continuation payoff at the next period if both agents announce zero at the given

history.

Also, for any i, whenever we mention a deviating strategy that is identical to the

equilibrium strategy everywhere except that at (h, θ) it announces integer z′, we mean

the following: letting r′i(θ, z) be the probability of playing (θ, z) under the deviating

strategy at (h, θ), we have
∑

θ∈Θ r
′
i(θ, z

′) = 1 and r′i(θ, z
′) =

∑
z∈Z ri(θ, z) for any θ.

We consider two cases in turn.

Case 1: No player randomizes over integers, i.e.
∑

θ∈Θ ri(θ, 0) = 1,
∑

θ∈Θ ri(θ, 1) = 1

or
∑

θ∈Θ ri(θ, 2) = 1 for all i.

In this case we show that each i must play 0 for sure, i.e.
∑

θ∈Θ ri(θ, 0) = 1. Suppose

otherwise; then some i plays zi 6= 0 for sure and the other announces zj for sure. We

derive contradiction by considering the following subcases.

Subcase 1A: zi > 0 and zj = 0.

The continuation regime at the next period is Si (Rule E.2). Thus, j’s equilibrium

continuation payoff at (h, θ) is at most (1 − δ)u + δwij. Consider j deviating to another

strategy identical to the equilibrium strategy except that it announces the positive integer

other than zi at this history. By (iii) of the outcome function of g∗, and by Rule E.3(iii),

the corresponding continuation payoff is (1− δ)f(θ̃) + δyj. Since yj > wij by construction,

and since δ > δ̄, the deviation is profitable. This is a contradiction.
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Subcase 1B: zi > 0 and zj > 0.

The continuation regime is either X, X(t) or Y (Rule E.3). Also, the current period’s

outcome is f(θ̃). Since y2 > x2(t) for any t, it follows that if the continuation regime is X

or X(t) then player 2 can profitably deviate just as in Subcase 1A, a contradiction. Since

x1 > y1, if the continuation regime is Y player 1 can profitably deviate and we obtain a

contradiction.

Thus, both players choose 0 for sure at this history, and g∗ must be the mechanism

at the next period. We next show that Πi = vi(f) for all i. For this, suppose first that

Πi < vi(f) for some i. But then, consider i deviating to another strategy identical to the

equilibrium strategy except that it announces a positive integer at this history. By (i)

and (ii) of g∗, and by Rule E.2, such a deviation does not alter the current period’s payoff

but leads to a continuation payoff at the next period equal to vi(f), a contradiction. The

rest follows as in the proof of Lemma 3 since f is efficient in the range.

Case 2: Some player randomizes over integers.

We proceed by first establishing the following two claims.

Claim 1 : For each i, the continuation payoff from announcing 1 is greater than that

from announcing 0, if zj > 0 for sure, j 6= i.

Proof of Claim 1. If i announces zero, by Rule A.2, his continuation payoff at the next

period is wji . If he announces 1, by Rules A.3(i) and A.3(iii), the continuation payoff at

the next period is xi > wji or yi > wji . Since δ > δ̄, the current period’s payoff does not

matter.

Claim 2 : Suppose that agent i announces 0 with positive probability, i.e.
∑

θ∈Θ ri(θ, 0) >

0. Then the other agent j must also announce 0 with positive probability and Πi ≥ vi(f).

Furthermore, Πi > vi(f) if j does not choose 0 for sure.

Proof of Claim 2. Let us show the first part of this claim by way of contradiction.

So, suppose that
∑

θ∈Θ rj(θ, 0) = 0. Consider i deviating to a strategy identical to the

equilibrium strategy except that it announces integer 1 for sure at this history. By Claim 1,

the deviation is profitable, a contradiction against the assumption that
∑

θ∈Θ ri(θ, 0) > 0.

The latter parts of the claim follow immediately.

We now show that, in this Case 2, both players choose a postive integer for sure. To

show this suppose otherwise; then some player chooses 0 with positive probability. By
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Claim 2, the other player must also play 0 with positive probability and, also, Πi ≥ vi(f)

for any i = 1, 2. Moreover, since this case assumes that some player is choosing 0 with

probability less than one, by appealing to Claim 2 once again, it must be that at least one

of the inequalities Π1 ≥ v1(f) or Π2 ≥ v2(f) is strict. Note also that regime R∗ involves

only outcomes in the range of f . Therefore, since f is efficient in the range, we have a

contradiction.

In this case, therefore, for each i,
∑

θ∈Θ ri(θ, 1) +
∑

θ∈Θ ri(θ, 2) = 1 and, clearly, the

mixing probabilities must depend on x(t). Furthermore, since for each i, vi(f) exceeds

xi, xi(t) or y, it follows that the continuation payoff at the next period must be less than

vi(f).

We adopt the following complexity definition.

Definition 10 For any i and any pair of strategies σi, σ
′
i ∈ σi of regime R∗, we say that

σi is more complex than σ′i if there exist some H′ ⊆ H∞ and θ′ ∈ Θ with the following

properties:

(i) σ′i(h, θ) = σi(h, θ) for all h ∈ H∞\H′ and all θ.

(ii) σ′i(h, θ
′) = σ′i(h

′, θ′) for all h,h′ ∈ H′.

(iii) σi(h, θ
′) 6= σi(h

′, θ′) for some h,h′ ∈ H′.

It is straightforward to identify that R∗ has a WPEC in which each agent always

announces the true state and integer 0 (for any δ). The next lemma characterizes WPECs

of R∗.

Lemma 14 Suppose that δ ∈ (δ̄, 1). Consider any WPEC of regime R∗, and fix any t,

θ ∈ Θ and h ∈ Ht (on or off the equilibrium path). Then, each agent announces zero for

sure at this history.

Proof. Suppose not. Then, since the results of Lemma 13 must hold with SPE for any on-

or off-the-equilibrium history, there exists a WPEC, σ, such that, at some t, θ and ht ∈ Ht,

the two agents play integer 1 or 2 for sure with the mixing probabilities determined by

x(t). Furthermore, by construction, there exist t′ and t′′ such that x(t′) 6= x(t′′) and,
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therefore, it follows that, for all i, we have either σi(h
t, θ) 6= σi(h

t′ , θ) for some ht
′ ∈ Ht′ ,

or σi(h
t, θ) 6= σi(h

t′′ , θ) for some ht
′′ ∈ Ht′′ . Without loss of generality, assume the former.

Now, consider any i = 1, 2 deviating to another strategy σ′i that is identical to the

equilibrium strategy σi except that σ′i(h, θ) = σ′i(h
′, θ) for all h,h′ ∈ Ht ∪Ht′ such that

integer 1 is announced with probability 1. Since σ′i is less complex than σi according to

Definition 10, we obtain a contradiction by showing that πh,θ
i (σ′i, σ−i, R

∗) = πh,θ
i (σ,R∗)

for any h ∈ Ht ∪Ht′ .

Fix any h ∈ Ht ∪ Ht′ and consider history (h, θ). First, suppose that j plays 0 for

sure. Then, by part (a) of the SPE extension of Lemma 13, i also plays 0 for sure and

obtains a continuation payoff equal to vi(f) at the next period in equilibrium. By (i)

and (ii) of the outcome function of g∗, the deviation does not alter the current outcomes

and, by Rule E.2, it also induces the same continuation payoff vi(f) at the next period.

Second, suppose that j is mixing over integers at this history. Then, by part (b) of the

SPE extension of Lemma 13, j mixes between 1 and 2 in equilibrium. By (iii) of g∗, the

deviation does not alter the current outcomes, while i is indifferent between choosing 1

and 2 in terms of the next period’s continuation payoff.
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