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Abstract

This paper studies stochastic stability methods applied to processes with a general state space. This includes
settings in which agents repeatedly interact and choose from an uncountable set of strategies. Dynamics
exist for which the stochastically stable states differ to those of any reasonable finite discretization. When
there are a finite number of rest points of the unperturbed dynamic, sufficient conditions for results from
the finite state space literature are derived and studied. Illustrative examples are given.
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1. Introduction

The occurence of social learning and the convergence of agents’ behavior via processes of adaptive
behavior is well-documented within economics (e.g. Chong et al., 2006; Selten and Apesteguia, 2005). The
possibility of multiple resting points for such processes naturally leads one to question which of these steady
states is more plausible from an economic perspective. Strongly influenced by evolutionary game theory
(Smith and Price, 1973), a literature has grown that analyses the robustness of steady states of social
learning dynamics to random errors made by players in their choice of action (Kandori et al., 1993; Young,
1993a). These ideas have been applied to a variety of economic situations, including bargaining (Young,
1993b), Nash demand games (Agastya, 1997), exchange economies (Serrano and Volij, 2008), local interaction
on networks and the persistence of altruistic behavior (Eshel et al., 1998).

A common approach when assessing the robustness of steady states of social learning dynamics has
been that pioneered by Kandori et al. (1993) and Young (1993a). Agents are assumed to make errors
independently and when they do make an error are assumed to play a strategy chosen at random from a
distribution with full support on a finite set of strategies. This imposes a mathematical structure on the
process that leads to clear and appealing characterization results.

Unfortunately, such results cannot be straightforwardly applied when agents’ have non-finite sets of
strategies.3 Even assuming the convergence of the underlying social learning dynamic, the addition of
random errors can lead to behavior which hinders efforts to obtain a clear cut characterization of the
long run pattern of play. This paper takes up the task of analysing the problems and intricacies which
arise and, when there are a finite number of rest points of the underlying dynamic, determines a set of
sufficient conditions which enable existing results to be applied to models with continuous state spaces.
These conditions include a continuity requirement on error distributions, continuity of players’ responses as
a function of the current state, an asymptotic stability condition and a condition which ensures a specific

1This paper has been and is being extensively revised, but it hasn’t been cleaned up yet, so apologies for all errors. Please
do not cite without permission of the author.

2Come rain or come shine, I can be reached at jonathan.newton@sydney.edu.au
3An early paper in the literature (Foster and Young, 1990) has an infinite state space and uses Gaussian error distributions.

However, it differs markedly from the majority of the literature, in which the error distributions are irrelevant to the stability
results as long as they have full support.
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type of discontinuity does not occur at rest points of the underlying dynamic. Examples are given showing
how no subset of the conditions is sufficient on its own.

Fortunately, all of these conditions are satisfied for many common models found in economics. Typical
error distributions of the kind described above coupled with the continuous best responses found in many
models of industrial organization will often satisfy all of the conditions. This study applies the theory to
linear quadratic games and to population models in the style of Kandori et al. (1993).

A related paper is that of Feinberg (2006) which also looks at discrete time, continuous state space
processes. However, the paper in question imposes the strong condition that the perturbed process be
governed by transition probabilities that are continuous functions of the current state of the process. The
bulk of the analysis in the current paper concerns situations where this is not the case. Schenk-Hoppe (2000)
adapts the results of Freidlin and Wentzell (1998) and Ellison (2000) for use in finding stochastically stable
states in a continuous strategy oligopoly model equipped with an imitation dynamic.

The paper is organized as follows. Section 2 introduces the ideas of the paper via two motivating exam-
ples. Section 3 describes the processes of interest, gives convergence results, looks at transition probabilities
between steady states, and defines a useful regularity property, showing how this property allows the prob-
lems associated with non-finite state spaces to be circumvented. Section 4 gives sufficient conditions for this
property to hold and discusses each of the conditions, giving examples of the problems which arise if any
condition fails to hold. Section 5 gives examples. Section 6 solves an example from section 2 for which our
regularity condition fails to hold. Section 7 concludes.

2. Motivating examples

This paper focuses on situations where agents follow some rule when deciding how to behave. The rule
can be deterministic or random, cautious or hasty, imitative or best responding. Usually the rule is adaptive
in the sense that an agent’s behavior is intended to improve his lot. What really matters is that the rule
has the Markov property: the past per se does not affect the future, although features of the present shaped
by the past, including memories, are allowed to do so. We analyse situations where behavior over time will
converge towards one of a number of steady states. As long as there is some probability of convergence to
more than one steady state, this is predictively awkward. The possibility of random errors in play justifies
the introduction of perturbed versions of the process which help in obtaining long run predictions. There
is a well-developed literature which deals with these problems for finite state spaces4, so the first question
that must be addressed is whether there is benefit to be had from dealing directly with processes on general
state spaces directly, rather than with finite discrete approximations.

2.1. Discretization can fail to represent the original process accurately

There is not always a suitable finite discretization of a process available. To illustrate, we present the
following example. Consider a Markov process with state space X = [−1, 1] ⊂ R. Let the process be
governed by the Markov kernel P (., .). For notational ease, for y ∈ X, we identify P (., y) := P (., {y}). Let
P (., .) be as follows:

P
(
x,
x

2

)
= 1− |x|

P (x, 1) = max{0, x}
P (x,−1) = max{0,−x}.

This process has a set of stable states Λ = {−1, 0, 1}: from x∗ ∈ Λ, P (x∗, x∗) = 1. We examine a perturbed
variant of the process in which each period, with probability 1− ε the unperturbed process is followed, and
with probability ε the new state is drawn from the uniform distribution U [[−1, 1]]. This perturbed process

4See Kandori et al. (1993); Young (1993a); Bergin and Lipman (1996); van Damme and Weibull (2002).
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has an invariant distribution πε which converges to a distribution with all weight on {−1, 1} as ε→ 0: the
set of stochastically stable states is {−1, 1}.

Any discretized state space and process should satisfy some properties in order for it to be a reasonable
representation of the original process. We suggest the following as reasonable restrictions on the discretized
state space Xd ⊆ X and the discretized unperturbed process Pd(., .):

(a) ∀x ∈ Xd, A ⊆ X : P t(x,A) > 0 =⇒ P td(x, {z ∈ Xd : z ∈ arg min
y∈Xd

d(y,A)}) > 0.

(b) ∀x : P t(x, {x̃ ∈ X : z ∈ arg min
y∈Xd

d(y, x̃)}) = 0∀t =⇒ P td(x, z) = 0∀t.

(c) Λ ⊆ Xd.

In words, these conditions are that: (a) From a state x ∈ Xd, if a set A ⊆ X is reached with positive
probability under the original process, then the closest states to A in Xd (under the original metric) are
reached with positive probability under the discretized process Pd(., .); (b) If, from a state x ∈ Xd, under
the original process the set of states in X which are closer to z ∈ Xd than to any other point in Xd is never
reached with positive probability, then z is never reached with positive probability under the discretized
process; (c) Stable states of the original process are states of the discretized process and therefore stable
states of the discretized process by (a) and (b).

We take as a discretization of the perturbation (the uniform distribution on X) any distribution on Xd

that places positive probability on at least one state in (−1, 0) and at least one state in (0, 1). The uniform
distribution on Xd would satisfy this requirement. Now, as ε→ 0, the limit of πε places positive probability
on all states in {−1, 0, 1}: discretizing the process has given us one additional stochastically stable state.

Finding the stochastically stable states of the original process in this section turns out to be simple. The
reason for this is that far enough along any convergent path to a stable state, the probability under the
perturbed process of moving to the basin of attraction of another given stable state is of constant order of
ε. For example, any convergent path to −1 under the unperturbed process P (., .) eventually reaches −1,
from where in any given period, say period t, the probability under the perturbed process of the next (from
period t+ 1 onwards) basin of attraction of a stable state entered being that of state 0 is of order ε∞ = 0.
The probability of it being that of state 1 is of order ε. There do not exist convergent paths with different
escape probabilities. We refer to this as Property C. When Property C holds, we show that variants of
several results used heavily in the finite state space stochastic stability literature can be used. An important
part of the current paper gives sufficient conditions under which Property C holds.

2.2. Multiple convergent paths

The next example can be considered as a model in which there are two possible focal points for a
social norm. There are n agents who contribute some real amount. If at least some threshold number
of agents contribute at least some focal amount (which we take to be 1) then agents converge towards
that level of contribution. Otherwise they converge towards a zero contribution. Consider a state space
X = [0, xmax]n ⊂ Rn+, xmax > 1, n ∈ N. For some k < n, k ∈ N define for all x ∈ X:

I(x) = {i ∈ {1, . . . , n} : xi ≥ 1}.

Define P (., .) as follows:

If |I(x)| < k then P
(
x,
x

2

)
= 1

If |I(x)| ≥ k then P

(
x,
x+ 1

2

)
= 1.

The process has stable states Λ = {0n, 1n}. We examine a perturbed variant of the process in which each
period, with probability 1 −

∑n
r=1 ε

i the unperturbed process is followed, and with probability εr the new
state is drawn from the distribution:

Gr(x, .) ∼ U [{x̄ ∈ X : (|{i : xi = x̄i}| = n− r)}].
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That is, with probability εr, exactly r agents randomly choose their contribution from a uniform distribution
on [0, xmax]. There exist convergent paths to 1n with |I(x)| ∈ {k, k+1, . . . n}. From a convergent path to 1n

for which |I(x)| = k, a move to the basin of attraction of 0n in a single period is an event with probability
of order ε. From a convergent path to 1n for which |I(x)| = n, a move to the basin of attraction of 0n in a
single period is an event with probability of order εn−k+1. Property C does not hold. The only stochastically
stable state of this process turns out to be 0n. Showing that this is the case is complicated by Property C
not holding, so recourse to more general methods is necessary (see section 6). For completeness, we note
that if k < n − k + 1, then any reasonable finite discretization of the process leads to 1n being selected as
the unique stochastically stable state.

3. A general model of perturbed adaptive behavior

A very general model is presented: the unperturbed dynamic can be any Markov process on any metric
space, the only assumption being the nonemptiness of, and convergence of the process to, a set of stable
states. The perturbed model then allows a broad class of perturbations which includes independent random
errors such as are found in the traditional stochastic stability literature, but also allows correlated errors
and any type of state dependent behavior.5

3.1. Quantitative characterization

The first step is to model an unperturbed dynamic which gives the behavior of agents in the absence of
random errors. Let Φ be a Markov process on a metric space X with kernel P (x,A), x ∈ X, A ∈ B(X),
where B(X) is the Borel σ-algebra.

Definition. The set of stable states is defined:

Λ := {x ∈ X : P (x, x) = 1}.

Assume Λ 6= ∅.

Definition. The basin of attraction Wi of x∗i ∈ Λ is:

Wi :=
{
x ∈ X : for every open V ⊃ {x∗i } : P t(x, V )→ 1 as t→∞

}
.

Define W :=
⋃
iWi. We now introduce an assumption which guarantees that wherever you start in the

state space you end up arbitrarily close to some element of Λ — the unperturbed process Φ converges to
a stable set. This assumption is necessary to the purpose of this paper, which is to give tools by which to
select from several stable states. If convergence were not assumed, then equilibrium selection would become
a secondary issue.

Convergence assumption

∀x0 ∈ X : P t(x0,W )→ 1 as t→∞

Definition. The basin of possible attraction Wi of Λi is:

Wi :=

{
x ∈ X :

∞∑
t=1

P t(x,Wi) > 0

}

5For example, perturbations could include coalitional behavior such as that found in Newton (2012).

4



Φ can be taken to represent some unperturbed dynamic which describes the evolution of the strategies
of players in a game, with each entry in a vector x ∈ X describing the strategy chosen by a player in some
previous time period. In this context the kernel P (x,A) can be taken to be some sort of (not necessarily
continuous) best response or imitation dynamic. Let {Φε}ε be a family of Markov processes on the state
space X with kernels Pε(x,A). Define:

Pε(x,A) =

(
1−

M∑
i=1

εi

)
P (x,A) +

M−1∑
i=1

εiGi(x,A) + εMGM (A)

where M ∈ N, Gi(x, .), GM (.) are probability measures on B(X). For A ∈ B(X), Gi(., A) are non-negative
B(X)-measurable functions on X. As a sum of B(X)-measurable functions, Pε(., A) is B(X)-measurable.
Note that Pε(x,X) = 1 is satisfied. {Φε}ε is a subset of the class of Puiseux Markov processes. For more
on Puiseux Markov processes see Appendix A.6

In the most common models of stochastic stability, which we refer to as independent error models (Young,
1993a; Kandori et al., 1993), the state is composed of strategy profiles, each player has an independent
probability of making an error with probability ε and players who make errors play strategies chosen from
a given distribution with full support. Such a process satisfies the definition above.7 We now show that for
any given value of ε, Φε has a unique invariant measure. This measure is predictive in the sense that it gives
the frequencies with which given sets of states will be observed in the long run.

Definition. A measure ϕ on B(X) is an irreducibility measure and Φε is ϕ-irreducible if for all x ∈ X,
whenever ϕ(A) > 0, there exists some t > 0, possibly depending on both A and x, such that P tε(x,A) > 0.

Definition. A set A ∈ B(X) is petite if there exists a nontrivial measure ν and a probability distribution
a on Z+ such that ∀x ∈ A:∑

t

a(t)P tε(x, .) ≥ ν(.)

Proposition 1. Φε has a unique invariant probability measure πε.

Proof. GM (.) is an irreducibility measure on B(X) as for any A ∈ B(X) with GM (A) > 0 we have Pε(x,A) ≥
εMGM (A) > 0 for all x ∈ X. Letting a(1) = 1, ν(.) = εMGM (.) we see that the set X is petite as for
all x ∈ X: Pε(x, .) ≥ εMGM (.) = ν(.). As X is the entire state space, τX := min{t ≥ 1 : Φtε ∈ X} ≡ 1.
Combined with irreducibility and petiteness of X this implies the existence of a unique invariant probability
measure πε for Φε.

89

Proposition 2. For all x ∈ X:

sup
A∈B(X)

|P tε(x,A)− πε(A)| → 0 as t→∞.

Proof. As GM (.) is state-independent, the process is aperiodic. This and the uniqueness and finiteness of
πε imply the result.10

6Setting ε = e
−1
η , the processes in this paper satisfy: limη→0 ηP η(x, U) = − infy∈U ρ(x, y) for a function ρ(., .) : X → X,

ρ(., .) is not necessarily continuous and so does not necessarily satisfy the conditions of Kifer (1990). For example, independent
error models do not satisfy continuity of ρ(., .). Despite this, much of the analysis that follows is similar to that of Kifer (1990).

7Independent error models do not have Pε(x,A) continuous in x for any given A ∈ B(X) and so do not satisfy the assumptions
of Feinberg (2006).

8Meyn and Tweedie (1994), Theorem 3.2.
9This implies Lemma 2 of Schenk-Hoppe (2000). Similarly, Proposition 3 and its corollary imply Lemma 3 of Schenk-Hoppe

(2000).
10Meyn and Tweedie (2009), Theorem 13.0.1.
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3.2. Stationary distributions with small error probabilities

In the preceding subsection it was shown that Φε has a unique invariant measure πε which depends on
ε. In order to predict long term behavior under small error probabilities it helps to analyse the limit as
ε → 0. In the following proposition it is shown that as ε gets small, πε places arbitrarily small probability
mass on sets of states which are not close to the steady states of the unperturbed process. Because all of our
measures have B(X) as their domain and all our functions are B(X)-measurable, we can use the property
that an integral over a sum of measures is equal to the sum of integrals over those measures.11

Proposition 3. For any η ∈ (0, 1), A ∈ B(X) such that Λ ∩ cl(A) = ∅ there exists ε̂ such that πε(A) < η
for all ε < ε̂.

Proof. Let λ(.) be an arbitrary probability measure on B(X). By the convergence assumption there exists
K ∈ N such that for all k > K:∫

X

P k(x,A)λ(dx) <
η

2

so for k > K:∫
X

P kε (x,A)λ(dx) =

∫
X

∫
X

Pε(x, dy)P k−1
ε (y,A)λ(dx)

=

∫
X

∫
X

(
1−

M∑
i=1

εi

)
P (x, dy)P k−1

ε (y,A)λ(dx) + . . .

=

∫
X

∫
X

. . .

∫
X

(
1−

M∑
i=1

εi

)k
P (x, dy1)P (y1, dy2) . . . P (yk−2, dyk−1)P (yk−1, A)λ(dx) + . . .

=

∫
X

(
1−

M∑
i=1

εi

)k
P k(x,A)λ(dx) + . . .

<

∫
X

P k(x,A)λ(dx) +

∫
X

1−

(
1−

M∑
i=1

εi

)kλ(dx)

=

∫
X

P k(x,A)λ(dx) + 1−

(
1−

M∑
i=1

εi

)k
<
η

2
+ 1−

(
1−

M∑
i=1

εi

)k
which is less than η for small enough ε as limε→0 ε

i = 0 for all i.

Corollary 1. A limiting distribution (in the sense of weak convergence of measures) of πε exists: πε ⇒ π.
π is an invariant distribution of the unperturbed process Φ.

Proof. The proof of existence of a limit is relegated to Appendix A. By Proposition 3 the only states in X
which can have positive probability in such a limit are in Λ.

So if the invariant distributions of the perturbed process converge then they converge to a particular
invariant distribution of the unperturbed process. The addition of the random errors to the model can be
seen as a way of selecting between the alternative invariant distributions of the unperturbed process. We
make the following assumption.

11See Fremlin (2001), 234H(c).
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Assumption

|Λ| <∞

The case of |Λ| = ∞ is analysed in other work.12. Note that |Λ| < ∞ implies that Λ = {x∗1, . . . x∗J} for
some J ∈ N. The invariant distribution in many examples turns out to place all of the probability mass on
a single steady state, predicting that in the long run the process should be observed to be at or near that
state almost all of the time.

Definition. Steady states x∗ ∈ X with π(x∗) > 0 are called stochastically stable.

The rest of the paper devotes itself to the question of how to find stochastically stable states and the analysis
of intricacies that can arise due to having an non-finite state space.

3.3. Transition probabilities between steady states

In order to find stochastically stable states it will be necessary to determine the magnitudes of the
transition probabilities between the basins of attraction of different steady states. These magnitudes are
given as powers of ε and it will be necessary to use Bachmann-Landau asymptotic notation. In words, the
notation expresses the ideas of f being bounded by g below, above, and both above and below respectively:

f(ε) ∈ Ω(g(ε))⇔ ∃k > 0, ε̄ s.t. ∀ ε < ε̄ : kg(ε) ≤ |f(ε)|

f(ε) ∈ O(g(ε))⇔ ∃k > 0, ε̄ s.t. ∀ ε < ε̄ : |f(ε)| ≤ kg(ε)

f(ε) ∈ Θ(g(ε))⇔ ∃k1, k2 > 0, ε̄ s.t. ∀ ε < ε̄ : k1g(ε) ≤ |f(ε)| ≤ k2g(ε)

Define:

τA := min{t ≥ 1 : Φtε ∈ A}, Tε(x,Wj) := Prx(τWj < τWi ∀i)

where Prx denotes the probability of events conditional on the chain beginning with Φ0
ε = x. τA is the time

of first return of the process to a set A. Tε(x,Wj) should be interpreted as the probability that, starting
from state x, the process Φε enters the basin of attraction (under Φ) of x∗j before it enters the basin of
attraction of any other stable state.

Define W δ
j = Wj ∩Bδ(x∗j ), Wδ

j =Wj ∩Bδ(x∗j ):

V δ(x∗k, x
∗
j ) := min

{
i : lim

ε→0

Tε(x,Wj)

εi
> 0 ∀x ∈W δ

k

}
∧∞

V δ−(x∗k, x
∗
j ) := min

{
i : ∃x ∈W δ

k : lim
ε→0

Tε(x,Wj)

εi
> 0

}
∧∞

which can be interpreted as resistances measuring the difficulty of moving from the basin of attraction of
x∗k to the basin of attraction of x∗j . V

δ(x∗k, x
∗
j ) and V δ−(x∗k, x

∗
j ) measure respectively the most unlikely and

easiest way in which a move from W δ
j to W δ

k could occur without passing through Wi for any i 6= j, k.

Note that ∀ x ∈W δ
k :

Tε(x,Wj) ∈ Ω(εV
δ(x∗

k,x
∗
j )), Tε(x,Wj) ∈ O(εV

δ−(x∗
k,x

∗
j ))

12Schenk-Hoppe (2000) is a good introduction to the ideas involved.
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Define limiting resistances as δ → 0:

V (x∗k, x
∗
j ) := lim

δ→0
V δ(x∗k, x

∗
j ), V −(x∗k, x

∗
j ) := lim

δ→0
V δ−(x∗k, x

∗
j )

These limits exist as V δ and V δ− are monotonic (decreasing and increasing respectively) as δ → 0 and

V δ, V δ− ∈ {1, . . . ,M,∞} so there must exist δ̂ > 0 so that for all δ < δ̂:

V δ(x∗k, x
∗
j ) = V (x∗k, x

∗
j ), V δ−(x∗k, x

∗
j ) = V −(x∗k, x

∗
j )

Definition (Property C) Property C is said to hold when V (x∗k, x
∗
j ) = V −(x∗k, x

∗
j ) for all k, j.

When Property C holds we obtain an important regularity in the magnitude of the transition probabilities
between the basins of attraction of steady states when the process is close to the steady state itself. Assuming
Property C we have that ∀x ∈W δ

k , δ < δ̂:

Tε(x,Wj) ∈ Θ(εV (x∗
k,x

∗
j ))

The reason this regularity is important is that it allows a single magnitude of transition probability to
characterize transitions from the neighborhood of one stable state to another. As there are a finite number of
stable states there are a finite number of such transitions and the problem of determining the stochastically
stable states is reduced to a discrete problem: the sets W δ

k for which πε(W
δ
k ) 9 0 as ε→ 0 are determined

solely by the values of V (., .). Results from the finite state space stochastic stability literature can then be
used.

3.4. Previous results restated for uncountable state spaces

Let L = {1, . . . , ν}. A graph on L is an i-graph if each j 6= i has a single exiting directed edge, and the
graph has no cycles. Let G(i) denote the set of all i-graphs. Define:

V(i) = min
g∈G(i)

∑
(k→j)∈g

V (x∗k, x
∗
j ),

Lmin = {i ∈ L : V(i) = min
j∈L
V(j)}.

The key result of Young (1993a) and Kandori et al. (1993) can now be stated.

Proposition 4. If Property C holds then:

π(x∗i ) > 0⇔ i ∈ Lmin

Proof. See appendix.

Results of Ellison (2000) also carry through. First we define some concepts, the radius R(.) and the
coradius CR(.), which are the natural extensions of the similarly named concepts of Ellison (2000) to larger
state spaces and which for finite state spaces simplify to the definitions of radius and coradius found in his
paper:

R(x∗k) := min
j
V (x∗k, x

∗
j )

Letting {x̄∗1, x̄∗2, . . . , x̄∗m} be an ordered set of steady states such that x̄∗1 = x∗j and x̄∗m = x∗k we can define:

CR(x∗k) := max
j

min
{x̄∗

1 ,...,x̄
∗
m}

x̄∗
1=x∗

j

x̄∗
m=x∗

k

m−1∑
i=1

V (x̄∗i , x̄
∗
i+1)

where the minimum is over all possible paths of steady states starting at x∗j and finishing at x∗k. R(x∗k) can

be interpreted as measuring how easy it is to escape from W δ
k , δ < δ̂. CR(x∗k) can be interpreted as giving

a measure of how difficult it can be to get to W δ
k from anywhere in the state space.
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Figure 1: Property C does not hold. V (x∗k, x
∗
j ) = 3 and V −(x∗k, x

∗
j ) = 1. If convergent paths were all similar to path α then

the two semicircles could be treated as separate steady states, but the possibility of paths such as β complicates estimates of
transition probabilities.

Proposition 5. If Property C holds and:

R(x∗k) > CR(x∗k)

then x∗k is the unique stochastically stable state.

Proof. Choose δ < δ̂, W δ
k such that πε(W

δ
k ) > 0. Then (Meyn and Tweedie (2009), Theorem 10.4.9)) for all

i 6= k we have:

π(W δ
i ) =

∫
W δ
k

π(dy)Ey

τWδ
k
−1∑

t=0

I(Φtε ∈W δ
i )


and:

Ey

τWδ
k
−1∑

t=0

I(Φtε ∈W δ
i )

 ∈ O(εR(x∗
k)−CR(x∗

k))

as probability of leaving W δ
k is Θ(εR(x∗

k)) and length of time spent outside W δ
k before returning to W δ

k is
O(ε−CR(x∗

k)). So the integrand above approaches zero as ε→ 0 and π(W δ
i )→ 0 for all i 6= k. So π(W δ

k )→ 1
and x∗k is the stochastically stable state.

4. Sufficient conditions for unique transition times

Given the usefulness of Property C in allowing the use of theorems from the finite state space literature,
a natural question to ask is under what conditions it holds and whether or not these conditions are plausible
and commonly satisfied. The next two propositions concern themselves with finding sufficient conditions for
Property C. The first of these makes use of a strong continuity requirement on error distributions Gi(., .).

Proposition 6. If there exists δ̂ > 0 such that for all δ < δ̂, A ∈ B(X):

∀x1, x2 ∈ Bδ(x∗k), Gi(x1, A) > 0⇔ Gi(x2, A) > 0

then V (x∗k, x
∗
j ) = V −(x∗k, x

∗
j ) for all j 6= k.

Proof. Notice that by definition V (x∗k, x
∗
j ) ≥ V −(x∗k, x

∗
j ). Assume V (x∗k, x

∗
j ) = a > b = V −(x∗k, x

∗
j ). Choose

any δ < δ̂. Then V −(x∗k, x
∗
j ) = b implies that there exists xe ∈W δ

k such that limε→0
Tε(xe,Wj)

εb
> 0. It follows

that for some b ≤ b, Gb(xe, C) > 0, where C ⊂ X is such that from any point in C the probability that the
next basin of attraction of a steady state entered by the process is Wj is Θ(εb−b). Now, for all xf ∈W δ

k , as

xe, xf ∈ Bδ(x∗k) and δ < δ̂, it follows that Gb(xf , C) > 0 which implies that limε→0
Tε(xf ,Wj)

εb
> 0, that is

V (x∗k, x
∗
j ) ≤ b. Contradiction.

9



Figure 2: Proposition 6. δ < δ̂ so a Θ(εb), b < b probability of transiting from xe to set C implies a Ω(εb) probability of
transiting from any xf ∈W δ

k to set C.

Figure 3: ( η2
2
, 0)) differs from all points in C by one coordinate, ( η2

2
, η1

2
) by two coordinates.

The condition in Proposition 6 is a strong one and is not satisfied by independent error models of
stochastic stability. To see this take a game where each of two players chooses a number in the interval
[0, 1], the best response is to choose a number equal to half the number chosen by the other player and the
unperturbed dynamic Φ is to naively best respond to what the other player played in the previous period
(i.e. players have one period memory). The perturbed dynamic Φε has players independently making errors
with probability ε and when this happens a player chooses an action from a distribution over [0, 1] with full
support. Let x = (x1, x2) and define:

C =

{
x : x1 ≥

1

2
, x2 = 0

}
Then for η1, η2 > 0 we have G1((0, η2), C) > 0 but G1((η1, η2), C) = 0 no matter how small is η1 (Figure 3).
So the condition of Proposition 6 is not satisfied.

Proposition 7 gives conditions for Property C that can be satisfied by independent error models of
stochastic stability. This is important as such models are commonly found in the literature. Firstly, a
weaker continuity requirement is placed on the error distributions than is the case in Proposition 6. This
requirement is satisfied by independent error models. The weakening of the continuity requirement requires
the introduction of further conditions. Secondly, the weak Feller property is imposed on the transition kernel
of the unperturbed dynamic Φ. In a game theoretic context this corresponds to imposing continuity of the
response correspondence of the underlying game. Thirdly, an asymptotic stability condition is imposed in
the neighbourhoods of the steady states. Fourthly, a condition is given which restricts the behaviour of the

10



process at a steady state according to the behaviour of the process at nearby states. Following the proof of
the proposition a series of examples illustrates the role each of these conditions plays in the proof.

First define an attainability property for each x∗ ∈ X∗ which holds when there is a positive probability
of ending up spending time in the basin of attraction of x∗ when the process is started from some arbitrary
point in the state space.

Definition (Attainable steady states). For a given steady state x∗i , let

Bi = {x ∈ X : ∃t s.t. P tε(x,Wi) > 0}.

Define the set of attainable steady states A = {x∗i ∈ Λ : GM (Bi) > 0}.

Condition (iii) of Proposition 7 is implied by (but does not imply) asymptotic stability under Φ of any
x∗ ∈ A. Note x∗i ∈ Λ \ A implies πε(Wi) = 0.

Proposition 7. If the following conditions hold then V (x∗k, x
∗
j ) = V −(x∗k, x

∗
j ) for all j 6= k.

(i) For all A ∈ B(X) open, x1 ∈ X, there exists δAx1
> 0 such that if x2 ∈ X satisfies |x1 − x2| < δAx1

then:

Gi(x1, A) > 0⇒ Gi(x2, A) > 0

(ii) P (x, .) is weak Feller, i.e. for all x ∈ X:

P (y, .)⇒ P (x, .) as y → x

(iii) For all x∗i ∈ A, there exists δ̃ > 0 such that W δ̃
i is open.

(iv) For all j, k:

Tε(x
∗
k,Wj) ∈ Θ(εV

−(x∗
k,x

∗
j ))

First a useful claim is proved.

Claim. Assume the assumptions of Proposition 7 hold. Let Q ∈ B(X) be an open set, b ∈ {0, . . . ,M}.
Define:

Db = {x ∈ X : ∃t > 0 s.t. P tε(x,Q) ∈ Ω(εb)}.

Then Db is open.

Proof. The proof proceeds by induction. Assume that the claim holds for b < k: for a givenQ, D0, D1, . . . , Dk−1

are open. Define:

R = {x ∈ X : Gj(x,Dk−j) > 0 for some j ∈ {1, . . . , k}} ∪Dk−1

then R is open by (i). Notice that:

P tε(x,Q) ∈ Ω(εk) ∀ x ∈ R

and as a consequence Dk can be written as:

Dk =
{
x ∈ X : P t(x,R) > 0 for some t

}
.

which is open by (ii). Showing that D0 is open will complete the proof

D0 = {x ∈ X : P tε(x,Q) ∈ Ω(1) for some t}.

= {x ∈ X : P t(x,Q) > 0 for some t}.
which is open by (ii).

11



Figure 4: Given D0, D1, the sets R and then D2 are constructed.

Figure 5: Example: (ii) does not hold

This paves the way for the proof of Proposition 7.

Proof of proposition 7. Assume V −(x∗k, x
∗
j ) = b < ∞. This implies x∗j ∈ A. Define D0, D1, . . . , DM as

above with Q = W δ̃
j for some δ̃ which we can choose by (iii). As V −(x∗k, x

∗
j ) = b, we know from (iv) that

Tε(x
∗
k,Wj) ∈ Θ(εb). This implies that x∗k ∈ Db. We know from the claim that Db is an open set so δ̂ can be

chosen such that:

x ∈ Bδ̂(x
∗
k) =⇒ x ∈ Db =⇒ P tε(x,Wj) ∈ Ω(εb) for some t.

This implies that V (x∗k, x
∗
j ) ≤ b = V −(x∗k, x

∗
j ).

The rest of this section consists of stylized examples designed to demonstrate how Property C can fail if
any of the four conditions of Proposition 7 do not hold.

4.1. Example: (ii) does not hold

Define X = [0, 1]3. Let the unperturbed process Φ represent a game played repeatedly by 3 players with
strategy spaces [0, 1]. Each period each player plays a best response to the actions of the other two players
in the previous period. Define Ci =

(
3
4

1
2i ,

1
2i

]
. Define C =

⋃∞
i=1 Ci. Let Bi =

(
1
2

1
2i ,

3
4

1
2i

]
, B =

⋃∞
i=1Bi. Let

best response functions be symmetric and anonymous:

BR(a, b) =


Ci+1, if a ∈ Ci, b /∈ Cj for some i, j
Ci+1, if a ∈ Ci, b ∈ Cj for some i, j, i ≥ j

1, if a ∈ ( 1
2 , 1], b /∈ C

Bi+1, if a ∈ Bi, b ∈ Bj for some i, j, i ≥ j
0, if a = b = 0.

Note that x∗0 = (0, 0, 0) and x∗1 = (1, 1, 1) are the only stationary states of the unperturbed dynamic. Let
the perturbed process Φε be such that each player independently with probability ε plays an action chosen
randomly from [0, 1] instead of playing a best response. V (x∗0, x

∗
1) = 3. V −(x∗0, x

∗
1) = 1. There is in effect
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one convergent path to x∗0 via states in B from which it is easy to escape and another convergent path via
states in C from which it is difficult to escape. As ε→ 0, πε ⇒ π where π((0, 0, 0)) = 1.

Intuitively, (ii) not holding carries the implication that even when two states are extremely close to one
another there is no guarantee that similar random shocks will lead to similar responses by the players. It is
always possible to choose two states x1, x2 arbitrarily close to one another such that from x1 a single player
choosing a given random action would lead to completely different short run behaviour of the process to
that which would occur if from x2 exactly the same player chose exactly the same random action.

4.2. Example: (i) does not hold

For some steady states x∗k = 0, x∗j = 1, let Wk ⊃ Bδ(x∗k) for some δ, so (iii) is satisfied. The error process
guarantees that (iv) is also satisfied:

G1(x, x) = 1, if the first non-zero digit in the decimal expansion of x is 1.

G1(x,Wj) = 1, otherwise

G2(Wj) = 1

Then V −(x∗k, x
∗
j ) = 1 and V (x∗k, x

∗
j ) = 2 no matter whether or not (ii) is satisfied.

4.3. Example: (iii) does not hold

Figure 6: Example: (iii) does not hold

Define X = [0, 1]2. Let (x, y) describe an element of the state space. Let:

P

(
(x, y),

(
x

2
, y + min

{
1

2
, y

}
(1− y)

))
= 1

then there are 2 steady states, x∗k = (0, 1) and x∗j = (0, 0). Let:

A = {(x, y) ∈ X : x = 0}

G1(x,A) =
1

2
for x ∈ U := {(x, y) ∈ X : x+ 2y ≥ 2} ,
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and let G1(x, .) be uniform on X otherwise. Let G2(A) = 1. Then (i), (ii) and (iv) hold but V −(x∗k, x
∗
j ) = 1

and V (x∗k, x
∗
j ) = 2. Intuitively, although (ii) implies that from any point close to x∗k but not in U it is

possible to reach any point arbitrarily close to x∗j with a probability of order ε, (iii) not holding means that
this is not sufficient for convergence to x∗j and the process ends up reconverging towards x∗k.

4.4. Example: (iv) does not hold

Figure 7: Example: (iv) does not hold. Although convergent paths to (0, 0) from above are in D1, convergent paths from below
are not so (1, 1) cannot always be reached with Ω(ε) probabilities.

Define X = [0, 1]× [−1, 1]. Let (x, y) describe an element of the state space. Let:

P
(

(x, y),
(x

2
,
y

2

))
=

max
{

0, 3
4 − x,

1
2 − y

}
max

{
0, 3

4 − x,
1
2 − y

}
+ max

{
0,min

{
x− 1

4 , y
}}

P

(
(x, y),

(
x+ 1

2
,
y + 1

2

))
=

max
{

0,min
{
x− 1

4 , y
}}

max
{

0, 3
4 − x,

1
2 − y

}
+ max

{
0,min

{
x− 1

4 , y
}}

then there are 2 steady states, x∗k = (0, 0) and x∗j = (1, 1). Note that under the unperturbed dynamic the
process will in each period move in a straight line towards one of the steady states. Let:

G1((x, y), .) ∼ U [{(x′, y′) : x′ = x or y′ = y}]

G2(.) ∼ U [X]

Then (i), (ii) and (iii) hold but V −(x∗k, x
∗
j ) = 1 and V (x∗k, x

∗
j ) = 2. Intuitively, although a convergent path

to x∗k exists in D1(Bδ̃(x
∗
j )), the limit x∗k is not in D1, and so the existence of other convergent paths not in

D1 cannot be ruled out.

5. Economic examples

5.1. Linear quadratic games

We apply the theory to two player games with strategies yi ∈ R+ and the following payoff functions:

ui(yi, yj) = aiy
2
i + biyiyj + ciyi + diyj , ai, bi < 0; ci > 0; ai, bi, ci, di ∈ R.
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This class of games includes public goods problems with strategic substitutes and Cournot duopolies with
linear demand and quadratic costs. Oechssler and Riedel (2001) showed that under the replicator dynamic
with symmetric payoff functions such games converge to the interior equilibrium in which players play
yinti =

bicj−2ciaj
4aiaj−bibj

13. We assume a multiplicity of equilibria: yinti > 0 so that xI = (yint1 , yint2 ) is a Nash

equilibrium; 4aiaj < bibj so that corner equilibria exist: xc1 = (ycnr1 , 0), xc2 = (0, ycnr2 ), ycnri = −ci
2ai

. Let

the unperturbed dynamic be a Markov process on X = R2
+ in which each period each player has an equal

chance to best respond. Φ has kernel:

P

(
(y1, y2),

(
max

{
−b1y2 − c1

2a1
, 0

}
, y2

))
=

1

2
; P

(
(y1, y2),

(
y1,max

{
−b2y1 − c2

2a2
, 0

}))
=

1

2
.

This gives:

WI = {xI}, Wci = {(yi, yj) : yi > yinti , yj < yintj },

WI = {(yi, yj) : yi = yinti or yj = yintj }, Wci = {(yi, yj) : yi > yinti or yj < yintj }.
Note that P (., .) satisfies condition (ii) of proposition 7. We analyse two possible perturbed dynamics.

5.1.1. Uniform local perturbations

For some small δ > 0, define:

G1((y1, y2), .) ∼ U [Bδ((y1, y2)) ∩ R+]

Gn((y1, y2), .) = Gn1 ((y1, y2), .), n = 2, . . . ,M − 1

GM ((0, 0)) = 1.

These Gn(., .), GM (.) satisfy condition (i) of proposition 7. GM (.) is not necessary for the results of this
section, although it is of interest to note that any Markovian dynamic with some small, bounded below,
probability of an armageddon event will satisfy the conditions for ergodicity. A = {xc1, xc2} and it is clear
that for some δ > 0, Wδ

ci are open so condition (iii) is also satisfied. As Wδ
cj is open, for any escape path

from a state close to xci to Wδ
cj there is a similar path from xci itself to Wδ

cj , so condition (iv) is satisfied.
Now:

V (xci, xcj) = min

{
yintj

δ
,
ycnri − yinti

δ

}
and applying proposition 4 we obtain:

Proposition 8.

min
{
yintj , ycnri − yinti

}
≥ min

{
yinti , ycnrj − yintj

}
⇔ π(xci) > 0

5.1.2. Proportional perturbations

For some k ∈ (0, 1), define:

G1((y1, y2), .) ∼ U [[ky1, y1]× [ky2, y2]]

Gn((y1, y2), .) = Gn1 ((y1, y2), .), n = 2, . . . ,M − 1

GM ((0, 0)) = 1.

Similarly to above, conditions (i),(iii),(iv) are satisfied. Then:

V (xci, xcj) =
ycnri

yinti

and applying proposition 4 we obtain:

13yinti = −c
2a+b

under symmetry.
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Proposition 9.

ycnri

yinti

≥
ycnrj

yintj

⇔ π(xci) > 0

5.2. Sampling a population

Take a two player symmetric bimatrix game in which a player has a set N of possible actions, |N | = n.
Let there be a continuum of agents on the unit interval. The state space is defined as the proportions in
which each action is played at a point in time: X is the unit (n− 1)-simplex. In period t, independently of
his previous actions, with probability 1 − α any given player plays the same action as at time t − 1. With
probability α he randomly and uniformly samples a finite number k of the actions of players in period t− 1
before playing a best response to the mixed strategy which has each action being played with a probability
equal to its proportion in his sample. If multiple best responses exist we assume that they are chosen with
equal probability Denote the distribution of such best responses to an action profile x by BR(x). Then:

P (x, x̃) = 1, x̃ := (1− α)x+ αBR(x).

Note that as the probability of drawing any given sample is continuous in x, P (x, .) is itself continuous and
condition (ii) of proposition 7 is satisfied. We restrict attention to games for which this process satisfies the
convergence assumption. It is trivial to construct games which do not satisfy the convergence assumption
under this process, for example the 2 by 2 matrix of zeroes.

Any steady state x∗ is close to a Nash equilibrium of Γ in the following sense:

Proposition 10. For any ξ > 0, there exists k̄ ∈ N+ such that if k > k̄, for any x∗ ∈ Λ there exists a
symmetric Nash equilibrium xNE of Γ such that |x∗ − xNE | < ξ.

Proof. See appendix.

The perturbations are defined as follows. For some small δ > 0, define:

G1(x, .) ∼ U [Bδ(x) ∩X]

Gn(x, .) = Gn1 (x, .), n = 2, . . . ,M − 1

GM (.) ∼ U [X]

These Gn(., .), GM (.) satisfy condition (i) of proposition 7. GM (.) is not necessary for the results of this
section.

Proposition 11. If xNE is a strict symmetric pure Nash equilibrium then:

xNE ∈ A and xNE is asymptotically stable.

Proof. See appendix.

L R
L a, a b, c
R c, b d, d

Figure 8: A two player strategic game. (L,L) and (R,R) assumed to be strict Nash equilibria.

In a game such as that of figure 8 in which there are two strict symmetric Nash equilibria, by proposition
11 both of these Nash equilibria correspond to steady states in A such that the basin of attraction includes
some open ball centred on the Nash equilibrium. Close to the mixed Nash equilibrium, for large enough k,
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there is one steady state which is not in A. Hence condition (iii) of proposition 7 is satisfied. Let (p, 1− p)
be the equilibrium strategy of the mixed Nash equilibrium. Then as long as neither p nor 1− p is an integer
multiple of δ, condition (iv) is also satisfied.14 Identical arguments to those in Young (1998) then give:

Proposition 12. In a 2 by 2 game with two symmetric strict pure Nash equilibria, one of which is risk
dominant, the risk dominant equilibrium is uniquely stochastically stable.

6. What if Property C does not hold?

Analysis can be complicated in cases in which Property C does not hold. In some cases, however, a
simple argument can still be used to find the stochastically stable state. This is true for the dynamic of
section 2.2. The state space in that example can be partitioned into a finite collection of disjoint sets such
that under Pε(., .) any of the sets can be reached from any x ∈ X with a probability bounded below by a
strictly positive number. Such a partition is:

X = X0 ∪Xk ∪Xk+1 . . . ∪Xn

where for i = k, . . . , n:

Xi = {x ∈ X : |I(x)| = i}

and

X0 = {x ∈ X : |I(x)| < k}

Bounds can be found for the transition probabilities between these sets. Freidlin and Wentzell (1998) style
tree arguments can then be used. The ‘flow’ of probability mass from Xi to Xi−1 for i = k + 1, . . . , n,
and from Xk to X0 can be shown to be of order Θ(ε), so a tree of order Θ(εn−k+1) rooted at X0 can be
constructed. Any tree not rooted at X0 must include an edge leaving X0 of order O(εk). Taking limits of
the invariant measures then gives the conclusion that all probability mass in the limit is concentrated in X0

and therefore, by proposition 3, on 0n.

Proposition 13. In the example of section 2.2 the unique stochastically stable state is 0n.

Proof. See appendix.

7. Concluding remarks

This paper has demonstrated how commonly used stochastic stability methods can be applied to settings
with non-finite state spaces, corresponding to situations in which economic agents choose from non-finite
strategy sets. It includes sufficient conditions for the straightforward application of existing results in the
literature to such settings. Moreover, the analysis of the complications that can arise with general state
spaces aids understanding of the problems of which one should be aware when applying ideas of robustness
to random perturbations to processes which do not satisfy all of our conditions.

Another approach when seeking to find stochastically stable states for games with non-finite strategy
sets is to discretize the strategy space and the transition kernel. This is not always simple and can lead to
problems such as the absence of simple closed form best response functions and nonexistence of equilibrium.
Difficulties can be met when passing to the limit of any discretization as it becomes fine. Moreover, examples
in this paper show that for some examples, any discretization satisfying plausible criteria leads to the selection
of different equilibria to those selected when the analysis is carried out directly on the original state space
and process. Sometimes it may be better to analyze stochastic stability whilst remaining in a non-finite
world. This paper gives tools with which to aid that endeavour.

14If p = 2δ, from (0, 1) it takes an order ε3 event to move to the basin of attraction of (1, 0), but from (ξ, 1 − ξ), ξ ∈ (0, δ),
an order ε2 event is all that is required.
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Appendix A. Puiseux Markov processes

The field of Puiseux functions is all functions f̂ : (0, 1)→ R that can be represented as:

f̂ε =

∞∑
i=L

aiε
i/M .

in some neighbourhood of zero for some integer L and some positive integer M . The valuation of a Puiseux
function f with this representation is:

w(f̂) =
min{i : ai 6= 0}

M
.

Proof of existence of limiting distribution. If all Pε(x,B), x ∈ X, B ∈ B(X), are Puiseux, then:

AP
t
ε(x,B) := Px(Φtε ∈ B, τA ≥ t); x ∈ X; A,B ∈ B(X)

are Puiseux functions as Puiseux functions form a field and Px(Φtε ∈ B, τA ≥ n) can be expanded into a
summing and multiplication of Puiseux functions. So:

UA(x,B) :=

∞∑
t=1

AP
t
ε(x,B); x ∈ X; A,B ∈ B(X)

is a Puiseux function if it exists as the limit of Puiseux functions is Puiseux because Puiseux functions are
a field. It does exist if we let A have positive probability under GM (.), as:

AP
t
ε(x,B) ≤ (1−GM (A))t < 1

so UA(x,B) is bounded above by the sum of a geometric series which converges. As A ∈ B+(X) we have:

π(B) =

∫
A

π(dy)UA(x,B)

which is a weighted average of Puiseux functions and therefore a Puiseux function (CHECK THIS!!!) for
any ε. As π(B1), π(B2) are Puiseux functions, say w(π(B1)) ≥ w(π(B2) we have:

lim
ε→0

{
π(B1)

π(B2)

}
→ a ≥ 0.

Appendix B. Proofs

Let {Xi|i ∈ L}, |L| = ν, be a partition of X into finitely many disjoint sets such that:

∃cij > 0 s.t. inf
x∈Xi

Pε(x,Xj) ≥ cij .

For given invariant measure π(.), let:

pij :=
1

π(Xi)

∫
Xi

Pε(x,Xj)π(dx)

For g ∈ G(i), define:

vol(g) :=
∏

(j→k)∈g

pjk; Qi :=
∑
g∈G(i)

vol(g)

then (Freidlin and Wentzell, 1998):

πε(Xi) =
Qi∑ν
j=1Qj

.

18



Proof of proposition 4. Property C ensures we can choose δ small enough that:

∀x ∈W δ
j : pjk := Tε(x,Wk) ∈ Θ(εV (x∗

k,x
∗
j ))

Choosing the partition {W δ
1 , . . . ,W

δ
ν−1, X \ ∪iW δ

i } we get that:

i ∈ Lmin ⇔ V(i) ≤ V(j) ∀j 6= i

⇔ ∃g ∈ G(i) : vol(g) ∈ Θ(εV(i)) and ∀j, ∀g ∈ G(j) : vol(g) ∈ O(εV(i))

⇔ ∃V(i) ∈ N0 : Qi ∈ Θ(εV(i)),
∑
j

Qj ∈ Θ(εV(i))

⇔ π(W δ
i ) > 0⇔ π(x∗i ) > 0.

Proof of proposition 10. Assume the statement is incorrect for some ξ > 0. There must be an infinite
sequence of steady states {x∗(k)}k corresponding to increasing values of k such that none of these steady
states are within ξ of any Nash equilibrium. As the sequence is bounded it contains a convergent subsequence.
Denote its limit by x̄∗. As x̄∗ is not a Nash equilibrium at least one of the actions played is not a best
response to the true distribution of play. Assume that action i is one of these actions. x̄∗i > 0. Then there
exists k, η > 0, such that for all k > k, x∗i (k) > η. Note that as x∗(k) is a steady state, BRi(x

∗(k)) = x∗i (k).
There exists γ such that for all x such that |x− x̄∗| < γ, best responses to the true distribution of x are

a subset of the best responses to the true distribution of x̄∗. Define fk(σ) as the distribution of samples σ
at x∗(k). As k →∞: fk(σ) approaches in distribution the probability measure with point mass on x̄∗. This
implies:

∀η ∃k̄ : ∀k > k̄ :
∑

σ/∈Bγ(x̄∗)

fk(σ) < η,

which implies:

BRi(x
∗(k)) < η.

and we have a contradiction.

Proof of proposition 11. Assume that xNEi = 1. Let xt be such that xti = 1 − ξ, ξ ∈ (0, 1). There exists
s ∈ R such that if i is not a best response to the strategy σ then:∑

j 6=i

σj ≥ s.

The proportion of players changing strategy who will sample such a σ is:

ξ̃ =

k∑
j=dkse

(
k

j

)
ξj(1− ξ)k−j ∈ Θ(ξdkse).

Assuming k is large enough that dkse ≥ 2, there exists ξ̄ such that:

∀ ξ < ξ̄ : ξ̃ < ξ.

So for any xt ∈ Bξ̄(xNE) we have that xti = 1− ξ for some ξ < ξ̄ and:

xt+1
i ≥ (1− α)xti + α(1− ξ̃) = (1− α)(1− ξ) + α(1− ξ̃) > 1− ξ = xti.

So we have convergence to xNE from an open ball centered on xNE , so xNE ∈ Λ. This open ball is reached
with positive probability from anywhere in the state space so xNE ∈ A.
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Proof of proposition 13. For i = k + 1, . . . , n, x ∈ Xi:

Pε(x,Xi−1) ∈ Θ(ε).

therefore pi,i−1,∈ Θ(ε). Also, for x ∈ Xk:

Pε(x,X0) ∈ Θ(ε).

and pk,0,∈ Θ(ε). So there exists a 0-graph g̃ with vol(g̃) ∈ Θ(εn−k+1). Therefore Q0 ∈ Θ(εn−k+1). For
x ∈ X0, i 6= 0:

Pε(x,Xi) ∈ O(εk)

so any i-graph, i 6= 0, has vol(g̃) ∈ O(ε(n−k)+k) = O(εn). Therefore Therefore Qi ∈ O(εn). Using the
formula for πε(Xi) we see that πε(Xi) → 0 as ε → 0 for all i 6= 0. So πε(X0) → 1 as ε → 0 and by
proposition 3, πε approaches the distribution with point mass on 0n.
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