UTS site search

Dr Suwin Sandu

Biography

Suwin Sandu joined UTS in 2010 as a lecturer in the School of Systems, Management and Leadership in the Faculty of Engineering and Information Technology. Prior to joining UTS, he worked at the Australian Bureau of Agricultural and Resource Economics (ABARE) for four years, where he was responsible for undertaking economic research and policy analysis of issues relating to energy in both Australian and international markets. Key research projects that he had undertaken include: long-term projections of Australia's energy demand-supply and associated greenhouse gas emissions; analysis of the impact of energy policies in reducing greenhouse gas emissions in Australia; analysis of economy-wide energy efficiency improvements; assessment of the international oil and gas markets and their implications for Australia; and economic assessment of Australian energy resources.

He received a PhD and Master degree in energy planning and policy from the University of Technology, Sydney (Australia), and an Engineering degree from Chiang Mai University (Thailand). His PhD thesis title was: Assessment of carbon tax as a policy option for reducing carbon-dioxide emissions in Australia.

Professional

International Association for Energy Economics (IAEE)

Image of Suwin Sandu
Lecturer, School of Systems, Management and Leadership
BE (CMU), MEStud (UTS), PhD (UTS)
Member, International Association of Energy Economics
 
Phone
+61 2 9514 2437
Room
CB11.06.200

Research Interests

  • Energy modelling and policy analysis,
  • climate change policy research,
  • electricity industry reform - productivity issue,
  • energy resources assessment - economic aspect,
  • energy market analysis
Can supervise: Yes

Conferences

Sandu, S. 2012, 'Energy-related Greenhouse-gas Emissions in the ASEAN: A Decomposition Analysis', The 3rd IAEE Asian Conference: Growing Energy Demand, Energy Security and the Environment in Asia - Challenges under enormous uncertainty, International Association for Energy Economics, Kyoto, Japan, pp. 1-12.
The Association of Southeast Asian Nations is one of the most dynamic and diverse regions in the world. Although the region currently accounts for 3.5% of global greenhouse-gas emissions, this share is expected to increase substantially due to population growth and increasing urbanization and industrialization. This is likely to have implications for the development of regional climate policies. Understanding how greenhouse-gas emissions for countries in the region has evolved in the past is an important first step to develop meaningful policies. This paper analyses the historical development in CO2 emissions for the ASEAN countries over the period 1971 to 2009, using an index decomposition method. The key results show that: (1) population growth and increased levels of affluence are the largest contributors to emissions growth in most countries; (2) fossil fuels have increasingly become the dominant fuel source in the region despite recent global environmental pressures - reversing this trend will be a challenging task; (3) production structures for most countries have increasingly become concentrated towards energy-intensive industrial sector; (4) the region has achieved energy efficiency gains at both end-use and conversion levels - in fact this is the only factor that led to reduced emissions; and (5) the effect of changes in carbon intensity of primary energy was only negligible and no meaningful trend can be observed. These results should be useful for framing effective climate policy response, both at the country and regional levels.
Sandu, S. & Sharma, D. 2010, 'Alternative Approaches to Designing Climate Policy Response: An Australian Case Study', The 18th International Input-output Conference, International Input-Output Association (IIOA), University of Sydney, Sydney, Australia, pp. 1-20.
Climate change presents a significant risk to humanity. Fossil fuels combustion is the single largest source of carbon emissions, which contributes to climate change. Carbon emissions can be mitigated either at the point of production of goods and services where consumers of fossil fuels are held responsible for reducing emissions, or at the point of final consumption where responsibility to reduce emissions are shared across the economy according to the amount of carbon embedded in goods and services. Climate policy is traditionally framed on the basis of the former approach. This is mainly because of the complexity involved in the application of the latter approach, specifically in terms of accounting for carbon emissions embodied in goods and services. This paper shows that the input-output analysis can be used to understand such complexity. It encapsulates embodied energy flows and associated carbon emissions within the economy, and hence provides information on carbon footprints of goods and services. The method also captures behavioural response from changes in policy, and thus allows the assessment of the impact of climate policy throughout the economy. This paper provides a comparative analysis of the economy-wide impacts of a carbon tax based on the two approaches noted above - in the context of limiting carbon emissions from the Australian electricity sector, to 20 per cent below 2000 levels by the year 2020.
Sandu, S. & Sharma, D. 2010, 'Interplay between economic and environmental productivity: a case study of Australian electricity industry', International DEA Symposium: Pushing the Envelope, The University of Queensland, Brisbane.
Australian electricity industry reform, initiated in the mid-1990s, was predicated on the assumption that it would improve industry productivity and provide wide-ranging economic benefits. Opinions however differ on the actual gains from reform. While some argue that economic gains of recent times are directly attributable to reform, others concur that these gains have their origin in the pre-reform era and that reform has merely maintained the status quo. The emerging concern about global warming, and the role of the electricity sector as the dominant source of greenhouse-gas emissions, has imparted yet another dimension to the ongoing debate about the nexus between reform and productivity, namely, the relationship between economic and environmental productivity. This paper develops a perspective on these dimensions, namely, whether the economic gains are a direct consequence of reform or precede it, and what is the interplay between economic and environmental productivity in the context of Australian electricity reform. The paper employs Data Envelopment Analysis (DEA) and Malmquist approaches to evaluate the economic and environmental productivity of the Australian electricity industry for the period 1955 to 2008. Early analyses indicate that electricity industry productivity improvements for the recent years have their origin in the prereform era. Also, that there is an inherent tension between economic and environmental productivity. These analyses should be useful for the Australian energy policy analysts and planners as they endeavour to progress electricity reform and design the architecture of the Australian response to contain global warming.
Sandu, S. & Chaivongvilan, S. 2009, 'Assessment of alternative scenarios for electricity system development in Thailand', International Conference on Green and Sustainable Innovation: Sufficiency and Sustainability Life Cycle Thinking, Energy Research and Development Institute (ERDI), Faculty of Engineering, Chiang Mai University, Chiang Mai, pp. 1-11.
Sandu, S. & Chaivongvilan, S. 2009, 'Assessment of Alternative Scenarios for Electricity System Development in Thailand', Chiang Rai, Thailand, pp. 1-11.
Chaivongvilan, S., Sharma, D. & Sandu, S. 2007, 'Energy Challenges in Thailand: An Overview', pp. 1-7.

Journal articles

Sandu, S. & Copeland, A. 2010, 'World oil outlook to 2015', Australian Commodities, vol. 17, no. 1, pp. 134-143.
Sandu, S., Copeland, A. & Beaini, F. 2010, 'World natural gas outlook to 2015', Australian Commodities, vol. 17, no. 1, pp. 144-151.
Sandu, S. & Copeland, A. 2009, 'World oil market', Australian Commodities, vol. 16, no. 4, pp. 651-657.
Sandu, S. 2009, 'World oil market', Australian Commodities, vol. 16, no. 3, pp. 483-489.
Sandu, S. 2009, 'World natural gas market', Australian Commodities, vol. 16, no. 2, pp. 337-340.
Sandu, S. & Copeland, A. 2009, 'Natural Gas: Outlook to 2013-14', Australian Commodities, vol. 16, no. 1, pp. 142-148.
Sandu, S. & Copeland, A. 2008, 'World natural gas market', Australian Commodities, vol. 15, no. 4, pp. 700-704.
Vaiyavuth, R., Sharma, D. & Sandu, S. 2008, 'The Relationship between Electricity and Gas Industries in Australia', International Energy Journal, vol. 9, no. 1, pp. 1-8.
View/Download from: Publisher's site
Electricity and gas industries are major industries in the Australian economy. Significant reforms were initiated in these industries in the early 1990s, with a core objective of improving their efficiencies through recourse to market competition. Further, these reforms were being undertaken separately for each industry, in total disregard of the relationship that may exist between these two industries. Several studies have alluded to the need for examining the nature of this relationship as it may provide useful insights for developing more meaningful reform program for each of these industries. This paper is an attempt in that direction. This relationship is examined both through qualitative (historical) and quantitative analyses. The qualitative analysis is supported by cross price elasticities of demand between electricity and gas, at the national and state levels. These elasticities are estimated using simultaneous demand functions for electricity and gas. While this paper focuses on Australia, its findings should be relevant for other countries that are in the process of reforming their electricity and gas industries.
Chaivongvilan, S., Sharma, D. & Sandu, S. 2008, 'Energy Challenges for Thailand: An Overview', GMSARN International Journal, vol. 2, no. 2, pp. 53-60.
View/Download from: Publisher's site
Thailand is one of the most dynamic countries in South-east Asia. Energy has traditionally played a vital role in its economic growth. Currently, over 50% of the energy consumption in Thailand is imported. The energy demands are expected to increase by approximately 4.5% per year over the next decade. The future economic prosperity is, therefore, dependent on the provision of adequate energy. In order to ensure such provision, effective national energy policies would be needed. This is likely to be a challenging task. This paper examines if the current energy policies are adequate to meet this challenge. The examination reveals that the current policies are not adequate. This paper further recommends the need to develop a comprehensive framework that could be used to analyse the economy-wide impacts which could provide guidance for the development of appropriate energy policies.

Reports

Sandu, S., Jaques, L., Bradshaw, M., Carson, L., Budd, A., Huleatt, M., Hutchinson, D., Lambert, I., LePoidevin, S., McKay, A., Miezitis, Y., Sait, R., Zhu, R., Hughes, M., Ball, A., Cuevas-Cubria, C., Copeland, A., Hogan, L., Lampard, M., Maliyasena, A., New, R., Penney, K., Petchey, R., McCallum, R. & Warr, S. ABARE 2010, Australian Energy Resource Assessment, pp. 1-344, Canberra, Australia.
This national assessment of Australia's energy resources examines Australia's identified and potential energy resources ranging from fossil fuels and uranium to renewables. It reviews and assesses the factors likely to influence the use of Australia's energy resources to 2030 including the technologies being developed to extract energy more efficiently and cleanly from existing and new energy sources. Australia has an abundance and diversity of energy resources. Australia has more than one third of the world's known economic uranium resources, very large coal (black and brown) resources that underpin exports and low-cost domestic electricity production, and substantial conventional gas and coal seam gas resources. This globally significant resource base is capable of meeting both domestic and increased export demand for coal and gas, and uranium exports, over the next 20 years and beyond. There is good potential for further growth of the resource base through new discoveries. Identified resources of crude oil, condensate and liquefied petroleum gas (LPG) are more limited and Australia is increasingly reliant on imports for transport fuels.
Sandu, S. & Petchey, R. ABARE 2009, End use energy intensity in the Australian economy, pp. 1-56, Canberra, Australia.
This report analyses historical energy intensity trends and identifies key factors affecting the amount of energy consumed in all end use sectors of the Australian economy between 1989-90 and 2006-07
Sandu, S. & Syed, A. ABARE 2008, Trends in Energy Intensity in Australian Industry, pp. 1-36, Canberra, Australia.
The Department of Resources, Energy and Tourism commissioned ABARE to undertake a study investigating energy intensity trends in Australian industry. The analysis was conducted at the national level for different energy consuming industrial and services sectors over the period 1989- 90 to 2005-06. The analysis covers five major sectors of Australian industry including manufacturing, services, agriculture, mining and construction. For the manufacturing and services sectors, the analysis is also undertaken at the subsectoral level. The objective of this study is to distinguish between different factors affecting the amount of energy consumed. This is done by using a `factorisation technique, a method that decomposes a change in energy use over time into an activity effect, a structural effect and a real intensity effect.
Syed, A., Wilson, R., Sandu, S., Cuevas-Cubria, C. & Clarke, A. ABARE 2007, Australian energy: National and state projections to 2029-30, pp. 1-50, Canberra, Australia.
Medium to long term projections of Australias energy consumption, production and trade are presented in this report. These projections are made using ABAREs E 4 cast model for the period between 2005-06 and 2029-30, and update those published in December 2006 (Cuevas-Cubria and Riwoe 2006). Since the 2006 energy projections, E 4 cast has been modi? ed to include an additional electricity generation technology, namely solar electricity. ABAREs practice in making these projections is to include only those policies that have been implemented at the date of publication. Policies that have been announced but not implemented have not been included in the projections. This means that the Australian Governments policies to introduce an emissions trading scheme and increase the Mandatory Renewable Energy Target to 20 per cent of electricity supply by 2020 have not been included. Further, the projections do not include the impact of climate change on economic growth
Syed, A., Sandu, S., Wilson, R. & Cuevas-Cubria, C. 2007, Australian Stationary Energy Emissions Projections: 2004-05 to 2019-20, pp. 1-35, Canberra.